Numer'ical Heat Transfer, Paf').t B, 57: 414439, 2010 Taylor & Francis
Copyright © Taylor & Francis Group, LLC Taylor & Francls Group
ISSN: 1040-7790 print/1521-0626 online

DOI: 10.1080/10407791003685155

ERROR ANALYSIS OF THE FINITE-VOLUME METHOD
WITH RESPECT TO MESH TYPE

F. Jureti¢' and A. D. Gosman?
YAVI-AST d.o.o, Zagreb, Croatia
2CD-Adapco Ltd,, London, England

This article presents truncation ervor tevms for flux approximations on mesh Juaces, needed
by the finite-volume method, and their influence on solution accuracy in the search for the
optimal cell type. Face truncation ervors are nsed to assemble truncation ervors Sfor different
cell types such as squares, triangles, and hexagons, It is shown that squares have the smal-
lest and triangles the largest truncation ervors, for the same cell size, which is also confirned
by numerical experiments. It is also shown that polyhedral meshes consisting of hexagons
are slightly less accurate than hexahedral meshes with the same cell size,

1. INTRODUCTION

The issue of numerical accuracy in computational fluid dynamics (CFD) is
becoming very important as it becomes a widely used engineering tool, The method
most widely used for solving fluid flow problems is the finite-volume method (FVM),
whose accuracy is examined in this article.

The FVM is a well-established tool used for solving problems involving
combustion [1-5], radiation [6-18], multiphase flow [19], flow in a porous medium
[20], moving-boundary problems [21-24], biological processes [25], non-Newtonian
flows [26], etc.

The finite-volume discretization of the partial differential equations is
performed using the integral formulation of the conservation laws, such that the
quantity of interest remains conserved. The solution domain is subdivided into
contiguous control volumes (CVs), which can move in space with time but should
not overlap. The older versions of the finite-volume methods, see Ferziger et al,
[27], Versteeg et al. [28], Dong et al. [29], Lilek et al. [30] and many more, required
so-called structured grids which consist of the same type of cells which are ordered
in’a systematic manner, However, structured grids are not suitable for geometries
appearing in engineering practice, because it is hardly ever possible to generate
meshes of good quality in complex geometries and refine them only where needed
to achieve the required accuracy with a reasonable number of cells. The finite-volume
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NOMENCLATURE

CD central differencing A orthogonal part of the

Cp=P— Pum/0.5pU  pressure coefficient face area vector

d PN vector ¢ general tensorial property

e truncation error, [ approximated value of
discretization ervor general tensorial property

f face, face interpolate W measure of skewness

S interpolation factor

F face convection flux Subscripts

FVM finite-volume method convHexagon convection on hexagonal

k nonorthogonal part of the mesh

i face area vector convSquare convectiont on square

k nonorthogonal part of the mesh
face area unit vector convTri convection on triangular

] side length mesh

m skewness vector Ccv contro! volume

w skewness unit vector diff diffusion

n unit normal vector diffHexagon diffusion on hexagonal

Re Reynolds numbe mesh

S area vector diffSquare diffusion on square mesh

AS sum of face area vectors diffTri diffusion on triangular
on two laces mesh

S(x, ¢) source term f face center

Sp (xp, p) implicit part of the source  f; intersection of face with
term vector PN

Su (xp, p) explicit part of the source  { label of the current cell
term interpolation linear interpolation for

U velocity skewed meshes

AU difference of transport ! linear interpolation
velocities on two faces mean mean, average

up upwind differencing N center of the neighboring

v volume control volume

X position vector P center of the control
flow angle volume

oy nonorthogonality angle sng surlace-normal gradient

Iy diffusivity source source term

methods which operate on cells of arbitrary shape are becoming very popular [27,
31-37] because the cells of arbitrary topology make the process of mesh generation
in complex domains easier.

The discretization error is an important class of errors in the FVM solution
which are the main interest of this work. There have been several attempts at esti-
mating the discretization error; see [32, 33, 38-41]. The information about the discre-
tization error can also be used to drive the mesh refinement in order to control the
discretization accuracy; see [33, 40-43] and others.

Perez-Segarra et al. [44] and Farre et al. [45] have performed an analysis of
various discretization schemes which included the influence of the solution type
and the mesh quality on the accuracy of various terms. However, they did not
analyze the influence of different types of cells on the solution error.
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This article provides the truncation error terms for convection and diffusion
terms for different shapes of control volumes in two dimensions, i.e., squares, trian-
gles, and hexagons, in a search for the optimal cell type. Triangles and squares are
considered because they are common types of cells, while hexagons can be created
automatically as a dual of a Delaunay triangulation. Examples of hexagonal meshes
can be found in [35, 40, 46-48].

The article is organized as follows. Section 2 presents the finite-volume
discretization with polyhedral mesh support and the truncation errors for face flux
approximations. Truncation errors for the convection and diffusion terms are
assembled in Section 3. Numerical examples illustrating the behavior of the discreti-
zation error on two laminar flow examples are shown in Section 4. The findings of
the work are analyzed in Section 5.

2. FINITE-VOLUME DISCRETIZATION

A short outline of the finite-volume discretization on polyhedral meshes will be
given in this section.

The finite-volume discretization consists of two consecutive steps. The first step
is to decompose the domain into convex polyhedra, see Figure 1, which cover the
whole domain and do not overlap.

The second step is the discretization of the governing partial differential
equations on the given mesh. A steady-state transport equation for a tensorial pro-
perty ¢ is used as an example for presenting FV discretization and trancation error
analysis in this work. It has the following form:

V- (Ug) = V- (TyVe) = S(x, ) (1)

N

Figure 1. Control volume,
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where U is the transport velocity and I'y is the diffusion coefficient. The source term
S(x, ¢) is linearized [49]:

S(x,¢) = Su(xp, dp) + Sp(xp, pp)hp ()

The finite-volume discretization is performed using the integral form of Eq. (1):

| vy - /V VLV v = /V SCx, v 3)

By assuming linear variation of ¢ in the control volume,
¢ =dp+(x—x) (Vo) (4)

we obtain second-order-accurate approximations for surface and volume integrals:
L dlasi= [+ x-x) - (90), 1181 = gyisy 1+ Ol -x 2 (5)
] S

and

04V = [ r+-tx-x0)- (V010 = gy v O] (6)

respectively.

When the divergence terms in Eq. (3) are tranformed into sums of surface inte-
grals using the Gauss theorem, and by using the above expressions for face and cell
integrals, the discrete form of the transport equation is obtained:

Z Fpy — Z (Ta)p(S- V), =Su Ve +Spgp Vp (7)
! r

where F is the face flux, defined as
F=U;-8 (8)

In order to complete the discretization process, the approximations for face
value ¢y and face-normal gradient (S - V) are still required. These terms are eval-
uated from the values in the neighboring cells, and their accuracy depends on the cell
size and mesh quality, Properties which measure mesh quality are defined on mesh
faces and as such do not depend on the shapes of the control volumes. The properties
and their measures are as follows.

I. Nonorthogonality is measured by the angle ay between the vector d and the face
area vector S; see Figure 2a. The vector d is defined as

d=xN—x1» (9)
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(a) Non-orthogonality

(b) Skewness

Figure 2. Mesh quality measures.

The angle should be as small as possible. The reasons for this will be given later in
this section.

. Mesh skewness. When the vector d does not intersect a face in its center, the mesh

is defined as skewed (Figure 26). The degree of skewness can be measured by
m|

\I/=—|a|— (10)

Here m is defined as
m:xf—-xj-, (11)

where x, denotes a point at which the vector d intersects the face (see Figure 2b).
Skewness affects the accuracy of the interpolation from the nodes onto the faces,
as will be shown in the remainder of the section.

Uniformity. A mesh is uniform when d intersects the face midway between the
nodes P and N (Figure 2b). Uniformity can be measured by

. Xri — X
j”‘zL_jl]?lTﬁ_l (12)

thus f,=0.5 on uniform meshes. This property affects the accuracy of
face-normal gradients.

The discretization procedures for the terms in the transport equation, Eq. (1),

and their corresponding truncations errors will be presented term by term.
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2.1. Convection Term

The discrete form of the convection term is
ZF(/)f -+ €cony (13)
=L

where the second-order-accurate value at the face ¢, is evaluated using a linear
interpolation scheme [30]:

bp = (b, +m-(Ve);) + Cinterpolation (14)

where (_V_(/)___)fi is the gradient interpolated at the face using:
by = fubp + (1= Ly (15)
(Vo) =/5(V)p + (1 = f:) (V) y (16)

The truncation error for the above interpolation practice can be estimated by
using the following Taylor expansions:

bp=¢; + (xp—x5)- (V) —I--;-(XP — x_,;)z :(VV¢), + HOT (17)

by = s+ (xn —x) - Vo), —I—é(x;v — xj;)z 1 (VV¢), +HOT (18)

1
by = gy -+ m - (V) - 5m2 : (VV¢), + HOT (19)
where HOT is higher-order terms. By substituting ¢ p and ¢ in Eq. (15) with Eq. (17)
and (18), respectively, the truncation error for linear interpolation from Egs, (15) can
be obtained as [27]
I, . a2

o=y~ dy = —/(l - SOlAP(@” : (VV4),) + HOT (20)

d being a unit vector in the direction of d (Figure 2b).
From Eq. (20) it follows that the truncation error for the gradient interpolated

using Eq. (16) has the form

1. . 2
(Ve), = (Vo) = (Vo) = —5/:(1 ~ [N : (VIV),) +HOT (1)
Taking the difference between Eq. (19) and Eq. (14), the truncation error for

the linear interpolation scheme, which is of second order on every mesh, can be
obtained in the following form:

éierpanion = =5 WP{A(1 = LI : (V)] + Wl - [+ (V999 ]}

+%E[a|2[m2 : (VV¢),] + HOT (22)
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Here, d and m and are unit vectors in the directions of d and m, respectively.
This error reduces with the square of the distance between the neighboring nodes
and is minimized when the mesh is not skewed (i =0) and uniform f,=0.5. Note
that nonorthogonality does not influence the accuracy of the linear interpolation
practice. It is well known that the linear interpolation scheme, usually called central
differencing (CD), can lead to nonphysical oscillations [27], which are often damped
by blending the linear interpolation scheme with the upwind differencing (UD)
scheme, which is of first order. The dissipative effects of the UD scheme have been
described in many textbooks [27, 28] and will not be treated in this study.

Finally, the error for the convection term is a sum of errors due to interp-
olation onto the faces weighted by the face flux, thus,

€cony = ZF €interpolation (23)
J

and it depends on the shape of the control volume. Note that mesh-to-flow align-
ment, present when F=0 at most faces of the control volume, is desirable because
such faces do not contribute to the convection transport and therefore do not
contribute to the discretization error.

Let us now consider two faces of the control volume in order to show some
interesting properties of this discretization practice. By denoting the transport velo-
cities at the faces with U, and U,, respectively, and where S| and S; are the normal
vectors of the respective faces we can write the following:

U ~-U; =AU (24)
S) +S; = AS (25)

The error on two faces can be written:

(Ul ‘S])eimerpolationl + (UZ : Sz)einterpolationfz
= (Ul ' Sl)einlcrpolationl =+ [(Ul - AU) . (AS - Sl)]‘«’inlcmolatioﬂ

= (UI : Sl)eimerpolationl — Cinterpolation2
+ (Ul ‘AS — AU - AS+ AU - Sl)einlerpola(iorlZ (26)

Equation (26) exhibits the following:

1. Face pairs |AS| =0, faces with the opposite orientation and the same area magni-
tude, reduce the error because the error on a face is canceled by the error on the
other face. The effect of face pairs on the accuracy will be treated in more detail in
Section 3.

2. The abrupt changes of the transport velocity |AU- S| >> 0 increases the error in
the solution because it reduces the effect of error cancellation. This is significant
in the case of shocks.

3. The difference in the error of the linear interpolation scheme is dependent on the
solution type as shown in Eq. (22). It is desirable that the vectors d and m are
collinear in the case of smoothly varying solutions. If the second gradient is domi-
nant, it is advisable to keep the mesh as uniform as possible and the vectors d and
m pointing in the opposite direction and having the same magnitude.
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2.2. Diffusion Term
The discrete approximation of the diffusion term is

Y (T)(S- V), + eair 27)
(Al A4

where the terms (I'y),, and (S - V¢), need further treatment. The former is interpo-

lated onto the faces using Eq. (14).
Approximation of (S - V¢), is performed using the following expression [32]:

(S-Vo), = A1 222 1k (T9), + emg (28)

— d|

where (V¢), can be evaluated using Eq. (16). Here, 4 is parallel with d, where 4 and
k have the property (Figure 3)

S=A+k (29)

The length of 4 can be expressed as [32]

|S|
= 0
|A| COoS oy (3 )

and the length of k can be calculated from

k| = |S| tan oy ' (31)

.-c'

Figure 3. Nonorthogonality treatment.
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The truncation error eg, for the approximation of the (S-V¢), term can be
obtained using the following Taylor expansions:

dp= ¢y + (xp—%r)  (V@),
+ %(Xp - xf)2 {VVP), + % (xp — xf)3 1 (VVV¢), + HOT (32)

by = b+ (xn —%7) - (Vo) +%(XN —x7)*: (VV¢),

+%(XN —x/)? : (VVV$), + HOT (33)

By substituting Eq. (32) and Eq. (33) into Eq. (28) and adding the error from the
interpolation of (V¢),, the truncation error for (S- V), is obtained:

Csng = (S V(I))f - (S- V(,b)f

=" —"‘C(JSSLNL;I 2f - l)fl2 L (VV),
- gél)ssl—aNldlz[(l — £ 128 = (VVVe),
2
— |S|tan oy l'dz‘l‘fx(l “‘fx)ﬁ . [&2 : (VVV(/))f] + HOT (34)

where d and k are unit vectors in directions d and k, respectively, and f, is the linear
interpolation factor defined in Eq. (12). From the dependence of Eq. (34) on fr it
follows that the approximation is of first order except for f, = 0.5, i.e., when the mesh
is uniform and the approximation is of second order. The error is also dependent on
the angle of nonorthogonality and is minimal when oy = 0. Note that mesh skewness
does not influence the accuracy of the diffusion term discretization.

The truncation error for the diffusion term is the sum of errors on the faces,
and has the form

Dy — @
ediff = Ef: (Fq’:)_f Ceng + ; Cinterpolation [|A| Mﬁ[ﬁ +k- (V(/))f:l

+ Z Cinterpolation €sng (35)
7

from which it follows that the order of the approximation is equal to the lowest order
found in Eqs. (34) and (22). This error depends on the shape of the control volume.
The overall error is dependent on the error of the linear interpolation scheme in the
case of variable diffusion coefficient, and on the error from the approximation of the
surface-normal gradient. By taking two arbitrary faces of the control volume and
analyzing their contribution to the error, as in the case of the convection term, it
can be noticed that the errors cancel each other if the vectors d and k are collinear
and point in opposite directions, present in the case when the faces form a pair. This
will be treated in more detail in Section 3.
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2.3. Source Term

The discrete form of the source term is
, Se(@) dV =Su Vp+ Sp Vb ¢p + esource (36)
»

The truncation error for the source term can be estimated by using the following
Taylor expansion:

| S = [ {8 dp)+ (x= x0) - (9560, + 29 B Dy

(x —xp)? :: [VVS(x, q’))]P}dV

{3
v f {50500 950, DR

1 9%S(x, )
+ L ) (5 (A(/))ZW) dv (37)

where A¢ stands for
Adp = (x ~xp) - (V) (38)

After substituting A¢ and S(xp, ¢p) + AP[OS(x,$)/0¢] in Eq. (37) with
Eq. (38), the truncation error can be found as the difference between Eq. (37) and
Eq. (36):

Coms =3 (=) (VIS Vit (=52 (VOHIS)sl 55V
2 (/]
+ % (x = xp)? 1 (V)2 25 9) %(;2’ Dy, (39)

The error is not a sum of face errors and it is therefore not critically dependent
on the shape of the control volume, but on its size.

3. TRUNCATION ERRORS FOR CONVECTION AND DIFFUSION TERMS
FOR DIFFERENT SHAPES OF CONTROL VOLUMES

The aim of this section is to determine the influence of various cell types on the
discretization error. In order to simplify the analysis, the effects of nonorthogonality,
skewness, and nonuniformity will not be considered because they are not the proper-
ties of the studied cell types, but the artefacts a low-quality mesh. The analysis will be
performed on 2-D cell types in order to reduce the number of terms in the equations,
due to the smaller number of faces than in their 3-D counterparts, but it still remains
valid for 3-D cell types.

The shapes of control volumes used for this analysis are squares, triangles, and
hexagons. Triangles are chosen because they are the simplest shape without face
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‘N
1
w | ke

Figure 4. Square mesh,

pairs, squares are the shape with the smallest number of face pairs, and hexagons
are chosen to find out how the increased number of face pair affects the accuracy.
The properties of such meshes are as follows.

1. Square mesh, A representative cell with its neighbors which influence it are shown
in Figure 4. This mesh is orthogonal, it is not skewed, and uniform f,=0.5
because the center of each internal face lies midway between the neighboring
nodes.

2. Triangular mesh. A mesh consisting of equilateral triangles is uniform f; =0.5,
orthogonal, and not skewed; see Figure 5.

3. Regular hexagonal mesh. This type of mesh can be generated using a Delaunay
algorithm [36]. It consists of hexagons and is uniform, orthogonal, and not
skewed, see Figure 6.

Figure 5. Triangular mesh,
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o

Figure 6. Hexagonal mesh,

3.1. Convection Term

The analysis of errors in the convection term will be performed by using the
linear interpolation scheme and taking the fluid velocity to be constant:

U = const.

1. Error analysis for a square mesh. The distance between the two nodes is equal to
the length of a side. Hence, the mass flux is

F=plU}l (40)
because [S| =/ and f, =0.5. Replacing |d| in Eq. (22) with [ yields

CeonvSquare = “—lF cos o 12(n2 : (VV(/))e) - lFSil‘lOt ll(nIZI : (VV(P)H)

8 ¢ 8
1 202 L oo 2l -
+§Fcosocl (ng, : (VV),) +§Fsmoc g : (VV¢),)

1
=~ PFoosa(nd s (VV9), - (VV9),))
1 .
~g PFsina(} : (VV4), = (YV4),)) (41)
where d from Eq. (22) is replaced by n, which represents a unit-face-normal vector
pointing outwards from the cell P. The subscript n. denotes that the face is shared

with a neighbor E. o is the angle between the velocity vector and the x axis,
2. Equilateral triangular mesh. For this mesh the mass flux is

F =+/3p|U|] (42)
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The truncation error can be found using Eq. (22), yielding

CoonvTri = ——31%12 Feosa{n?: (VV),] - 0], : (VV),l}

€

4

_ -;-12 Fsin a{l 2 (VV6),] - [ : (VVe),] - % w2 : (vv(p)w]} (43)

2

Hexagonal mesh. Here the expression for the mass flux is

V3

AN §11
F 3pll

and Eq. (22) gives the truncation error as

3
€convHexagon = —'1"‘\/6—12}?003 O‘{n;zw : [(VVQS)M, - (VV(/))S“,]}
V3

T 16
- ~éle sinan? : (YY), — (VV),)]

PFcosofnl, : [(VV¢),, — (VVE),,]}

he

—~ T%FF sina{n?, : (VV),, — (VVP), 1}

— L EFsina{wd, : (V9 — (96,1

(45)

Evidently, the error in Eqgs. (41), (43), and (45) is dependent on both the spatial
resolution and the form of the solution itself, as expressed through its gradients. A
comparison of accuracy can therefore only be performed by examining different
forms of solutions, as follows.

1. V¢ =constant. When the solution field has a uniform and fixed gradient, the
error is zero on all types of meshes. This is consistent with the assumption

expressed in Eq. (4).

. VV¢ =constant. This class of solutions with uniform curvature reveals differ-

ences in accuracy between different mesh types. The discretization on square
and hexagonal meshes still produces exact solutions Eqs. (41) and (45), while
on triangular meshes it produces errors. The truncation error for triangular

meshes, Eq. (43), can be simplified to

V3
CoonvTr = -T6—12F cosaf(n? —n2) : VV¢]

(4

- él2FsincxK%ng —n? —%nﬁ,) : VV(/)}

(46)
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The above equation shows that the errors exist because triangles do not have face
pairs, such that the error on each pair cancels out. Two cell faces form a face pair
if the sum of their outward-pointing normal vectors is a zero vector. It follows
that the difference between the diadic tensors of the face normals, i.e.,
(n2 —n2) = 0, is a zero tensor for every face pair; which results in zero discretiza-
tion error for squares and hexagons Triangular meshes do not have any face
pairs because (n? —n2) and ({n? —nZ —in?) in Eq. (46) are not zero tensors.

. VVV¢ = constant. ThlS type of problem cannot be resolved exactly on any type
of mesh. Hence, it should show which of the square or hexagon shapes should be
more accurate. The variation of VV¢(x) within the cell is

VVH(x) = (VVP)p + (x — Xp) - VVV¢ (47)

When VV¢ in Eq. (22) is substituted with Eq. (47), the following expressions for
the truncation errors result:

CoonvSquare = — —IXF cosan : VUV — —I’F sinon :: VVVG  (48)

1 V3
€convHexagon = §13F COs o—— ( e T nnw) VVV(i)
1

) 1 (49)
—=p I R
81F smoc( 3 5 ,v> 1 VVVe

In order to get an idea which type of mesh is more accurate, the problem is sim-
plified such that 8°¢/dx® = constant, while all other components of VVV¢ are
zero. The velocity U is at the angle of a=0. When the above is inserted in
Eqgs. (48) and (49), there results

1 o3
Econviquare = — 513 é‘;% (50)
9 9%
€convHexagon = — [ lJF‘é‘;é)" (51)

For the same number of cells in the domain, the area of the square cell is equal to
the area of the hexagon. From there it follows that

3 (52)

Ihcxagon = 3 Isqunre

By knowing the ratio between lexagon and lquares Eq. (52), the ratio between the
errors is

CeonvHoxagon _ 1 15 (53)

CconvSquare
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Equation (53) shows that the error on the hexagonal mesh is expected to be
slightly higher than that for the square mesh. The hexagon always has more faces
with nonzero mass fluxes than the square, such that the sum of errors on those
faces is larger than for the square.

3.2. Diffusion Term

Accuracy of the diffusion term discretization on different mesh types can be
performed by comparing the truncation errors defined in Eq. (35). In order to
simplify the analysis, the diffusion coefficient I'y, is assumed to be constant, i.e.,

T’y = constant

This makes the error arising from interpolation of I', onto the cell faces equal
to zero; and The only remaining error in Eq. (28) comes from the approximation of
surface-normal gradients. This will now be evaluated for different mesh types:

-

1. Square mesh. For the configuration depicted in Figure 4, the magnitude of the
surface vector is

|8 =1 (54)
Noting that |[d| =/, ay=0, and f,=0.5, the truncation error can be written:

1

54 (PD)ISI2[m;, = (VV'Vg),)

1
€diffSquare = ——z—i(pF)ISIIZ[nz: = (VVV(Ab)e] -

— o (OT)ISIPINS = (VV9),] — o (STISIPMS = (VIV)]
= — 5 (DS = [(VIV4), - (VIV4), ]}
— 3 (ODISIPW = (VVV$), - (V9V),) (55)

2. Equilateral triangular mesh. The truncation error for this cell type is
1
CAiffTe = --ZZpF|S|12[n2 2 (VVYVY), +1d i (VVV), +nd = (VVVH)] (56)

where |S| = /3.
3. Equilateral hexagonal mesh

@diffHexagon — _% pl“|S|12{n,31 - E(VVV(/))" - (VVV(/))A‘.]}
~ 5 PTISIP (= (V94 — (V9V4),,))
o OTISIP = (VOV4),, ~ (VV98)D)  (57)

where [S| = (v/3/3)1.
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Again, the comparison will be made for different forms of solution fields.

VV ¢ =constant. Equations (55)-(57) show that the error is zero for all mesh
types.

VVV¢=constant. For such fields, exact solutions are produced on meshes
consisting of squares, Eq. (55), and hexagons, Eq. (57). The truncation errors
for the triangular mesh is

1
€difrtri = ~ 57 pLISIA[(nd + 0l + n2) = (VVV )] (58)

The error is a consequence of the fact that triangles have an odd number of faces,
which are not paxred thus the error on them cannot cancel out. For example, the
third-rank tensor (n} +n’, + n?) in Eq. (58) is not a zero tensor. On the contrary,
cell face pairs make the sum of those tensors equal to zero, i.e., (3 +n’) = 0in
Eqs. (55) and (57).

. VVVV¢ =constant. Exact solutions for this type of problem cannot be obtained

on any mesh type. The variation of VVV¢(x) within the domain is
VVVH(x) = (VVVP)p + (x = xp) - VVVV (59)
The error for the square cell reads
CitSquare = ~ -2-12 pTISIA(@? + %) 1 VIVV4 (60)
and the error for hexagon can be written as
eatvisagon = =5 TSI (0, 40 0, ) 22 VYTV (61)

In order to get an insight into the error behavior on such problems, the problem is
simplified to 9*¢p/0x* = constant while all other components of are zero. By insert-
ing this into Eqs. (60) and (61), there results

1 ot

€diffSquare = — % ( )|S'P (b (62)
99

cuttsagn = = 57 (OT) 3 5x,’, (63)

By comparing Eqs. (62) and (63) on meshes with the same number of cells, there
results

€diffHexagon =1.155 (64)
CdiffSquare

These results are valid for 3-D cell types; a tetrahedron is the cell type with the

smallest number of faces without any face pairs, and it corresponds to a triangle in
two dimensions. The approximation of the convection term is exact only for solutions
with constant gradient, and the diffusion term discretization is exact for solutions
with constant curvature. A hexahedron has the smallest number of face pairs in three
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dimensions and corresponds to a square in this analysis. The approximation of the
convection term on the hexahedron is exact for solutions with constant curvature,
and the discretization of the diffusion term is exact for solutions with the constant
third gradient,

4. NUMERICAL EXAMPLES

In order to validate the above analysis, two laminar-flow cases will be used.
Testing will be performed on meshes consisting of quadrilaterals, triangles, and poly-
gons. Polygonal meshes consist mainly of hexagons studied in the previous section.
The discretization error will be measured as the difference between the calculated
value and the exact value at the cell centers, and given as its absolute value. The dis-
cretization error is a consequence of the inexact discretization practice, measured by
the studied truncation errors, and therefore it is proportional to the intensity of
truncation errors within the domain. Reduction of the maximum and mean error
on meshes with the increased number of cells, generated by halving the mean edge
length, will be monitored in order to establish relations between the solution quality
on different mesh types. Each mesh will be generated by the mesh generator by
halving the specified mean edge length of the previous one. The mean error is calcu-
lated using

Y o led Vi
€mean = Zl—r?l 1l : (65)
=0 Vi

where |e;| is the error at the cell center and V; is the volume of the current cell.

4.1. Planar Jet

In this test case, a fluid enters a planar 2-D domain via a slot, see Figure 7,
forming a jet.

The analytical solution for the U, velocity component, which can be found in
[50], was derived by assuming the flow is incompressible with uniform pressure and a
small cross-stream velocity:

3 1/3 Re? 1/3
Ux=(2—OORe) X3 sechzli<ﬁ—7—§> YX"Zﬂ} (66)

The expression for the cross-stream component is obtained from the continuity
equation:

1/225 1\ Re?\ '?
U _——— — "2/3 o '2/3
Y ( 7 Re) X tanhl(lws) YXx

o

3 o\ Re?\ "’
+§<ﬂ)—6Re> Y X4 sech? l(l_iﬁg) Y X“2/3] (67)
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Note that Egs. (66) and (67) represent the approximate solution of the Navier-Stokes
system, which limits their usability to solutions on coarse meshes where the discreti-
zation error is considerably larger than the error in the above approximation.

The current example is at Re = 520, which is based on the maximum velocity,
found in the lower-left corner of the domain, and the domain length.

The solution was sought on five meshes for every cell type. Their sizes and quality
measures are given in Table 1. Each mesh was generated by the mesh generator, and
the meshes with the same number have the same average edge length. The refinement
was performed by halving the specified edge length to the mesh generator. The values
of average skewness, average uniformity, and average nonorthogonality show that the
mesh quality is very close to the theoretical situation studied in the previous section
and therefore the influence of skewness, nonuniformity, and nonorthogonality is
not considered important. All calculations were performed by using the linear

Figure 7. Geometry and boundary conditions for the planar jet.

Table 1. Number of cells and mesh quality measures for different types of meshes (jet case)

Mesh type No. No. of cells Average ¥ Average [ Average oy deg
Quadrilaterals l 18 0.0 0.5 0.0
2 72 0.0 0.5 0.0
3 288 0.0 0.5 0.0
4 1,152 0.0 0.5 0.0
5 4,608 0.0 0.5 0.0
Polygons i 19 0.052 0.402 6.71
2 59 0.059 0.439 497
3 211 0.037 0.472 3.72
4 782 0.024 0.484 2.85
5 3,063 0.011 0.493 2.79
Triangles 1 20 0.057 0.443 16.0
2 86 0.037 0.467 11.0
3 362 0.026 0.484 7.10
4 1,448 0.012 0.491 5.14
5 5,898 0.008 0.496 3.73
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interpolation scheme for the convection term, and the boundary conditions were set
according to Figure 7. Boundary conditions are set consistently for all meshes by
assigning the values of the velocity at the face centers at inlet boundaries and by setting
the normal gradient to zero at outlet boundaries. The pressure is set to zero at the out-
let boundary, and the normal gradient is set to zero at inlet boundaries. Hence, the
boundary conditions do not cause differences in accuracy on different mesh types.

The meshes corresponding to the number 3 in the Table 1 are shown in
Figures 8a, 8b, and 8c. Figure 85 shows that most cells in the polygonal mesh are
hexagons.

Figure 9a shows that for the same number of cells, the maximum exact error is
largest on triangular meshes, while it is at the same level for polygonal and quadri-
lateral meshes when the mesh becomes fine. The mean error depicted in Figure 95
also behaves according to the findings from the previous section. The mean error
is lowest on quadrilateral meshes and largest on the triangular ones. On fine meshes,
all mesh types tend to the same curve, which is the influence of the approximations
used for deriving the analytical solution.

4.2. Flow over a Cavity

The second case considered is a 2-D incompressible laminar channel flow with
a cavity in the bottom wall; see Figure 10.
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Figure 8. Meshes for the jet case.
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Figure 9. Variation of errors for the jet case. Errors are given as percentage of the maximum velocity
found at (0.5H, 0).

The flow is at Re= 200 based on the channel height H and the average inlet
velocity Uynyg. At the inlet, a parabolic velocity profile is prescribed. Boundary con-
ditions are prescribed consistently for all meshes and therefore they should not affect
the accuracy of different mesh types. Additionally, the flow in the channel is a flow
with constant curvature, which will be resolved exactly on the quadrilateral and
polygonal meshes, and the triangular meshes produce errors there. Therefore, the
accuracy on the triangular meshes is expected to be significantly worse than on
the other ones. However, this problem has no analytical solution, so the benchmark
solution, considered error-free, was obtained on a fine mesh with approximately
500,000 cells. The maximum error in the benchmark solution is estimated to
0.57% of the average inlet velocity using the Richardson extrapolation [27], and
the average error in the benchmark solution is estimated to 0.002%.

Four meshes of each type, summarized in Table 2, were used to determine
which type gives the best accuracy, and to monitor the reduction of error on a set
of meshes of each type generated by halving the specified average edge length.
The convergence of the predicted pressure-drop coefficient was also monitored.
The quality of the meshes is high, and the effects of skewness, nonuniformity, and
nonorthogonality are not considered important. The calculations were performed
using the linear interpolation scheme for the convection term.

The quadrilateral, polygonal, and triangular meshes corresponding to the
number 2 in Table 2 are shown in Figures 11a, 115, and 11c.

Variations of maximum and mean errors in the velocity field for different types
of meshes are given in Figures 12a and 12, respectively, Triangular meshes have the

Pushlia velogity proflla Walls Outiet

o
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Figure 10. Geometry and boundary conditions for the flow over a cavity.
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Table 2. Number of cells and mesh quality measures for different types of meshes (cavity case)

Mesh type No. No. of cells Average s Average Average oy deg
Quadrilaterals 1 594 0.005 0.49%4 4.54
2 2,376 0.002 0.497 4.69
3 9,504 0.001 0.498 4.71
4 38,016 0.0006 0.499 4.8
Polygons 1 556 0.042 0.464 4.33
2 2,159 0.022 0.483 2.98
3 8,487 0.012 0,492 2.00
4 33,352 0.006 0.495 1.51
Triangles 1 950 0.025 0.478 9.53
2 3,996 0.011 0.489 6.39
3 16,336 0.007 0.495 4.70
4 65,430 0.003 0.497 3.31

largest error for the same number of cells, as expected. The maximum errors found
on quadrilateral meshes are almost the same as on the polygonal meshes, which is
in agreement with the analysis presented in the previous section. The unexpected
behavior of the maximum error on the quadrilateral mesh between the first and
second cycles is attributed to inadeguate resolution in the critical regions; see
Figure 11a. Triangular meshes have the largest average exact error for a given num-
ber of cells and require almost 10 times more cells to achieve the same accuracy as on
the quadrilateral meshes. The average error on polygonal meshes is much closer
to the quadrilateral mesh result, requiring approximately twice as many cells to
achieve the same accuracy. The reduction of the average exact error is very close

o
zaas

(@) Quadrilateral mesh (2376 cells)

X

TXRLLLT,
shueve

O R e R Le el e oo TR NN SLOe ey eRy

(&) Polygonal mesh (2159 cells)

(¢) Triangular mesh (3996 cells)

Figure 11. Meshes for the cavity case.
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Figure 12. Variation of errors for the cavity case. Errors are given as percentage of average inlet velocity Uyg.

Table 3. Scaling of C, for different types of meshes {cavity case)

Pressure-drop coefficient (C,)

Quadrilateral Polygonal Triangular
Cells Co Cells Cy Cells C,
594 1.43128 556 1.59121 950 1.96345
2,376 1.49723 2,159 - 1.53935 3,996 1.67216
9,504 1.51544 8,487 1.52665 16,336 1.56432
38,016 1.51982 33,352 1.52333 65,430 1.53555

Mesh-independent value Cp,= 1,5203

to the theoretical second-order reduction rate for all types of meshes, and it deterio-
rates when the mesh becomes fine, This is caused by the remaining error in the
benchmark solution, as its influence is larger on fine meshes.

A comparison of the pressure-drop coefficients (C,,) given in Table 3 shows that
on the quadrilateral and polygonal meshes C,, tends to the mesh-independent value
faster than on its triangular counterpart. The magnitude of the error is almost the
same for quadrilateral and polygonal meshes for all mesh sizes, and much smaller
than the error on triangular meshes.

5. SUMMARY AND FUTURE WORK

This article presented an analysis of truncation errors for a second-order finite-
volume method on square, triangular, and hexagonal meshes because they com-
pletely fill a 2-D space. The analysis has shown that squares are the most accurate
type of cells in two dimensions because of face pairs which cancel the error and the
smallest possible number of face pairs. It was shown why the triangular meshes are
the least accurate type of meshes; because triangles do not have face pairs. The
analysis reveals that errors on hexagonal meshes are expected to be slightly larger
than on square meshes because they have more faces contributing to the transport
of the given property. However, the merit of using hexagonal meshes is in the fact
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that their generation can be made automatic much more easily than for quadrilat-
eral meshes. This results also apply for a 3-D case, where hexahedral meshes are
expected to be the most accurate because they have the smallest possible number
of face pairs, while tetrahedral meshes are expected to be the least accurate type
of mesh because the tetrahedra do not have face pairs which would cancel the error
out. The above results were tested on two laminar-flow examples, which corroborate
the analysis.

It was also shown that skewness has an adverse effect on the accuracy of
interpolation on the face, nonorthogonality increases the error of the approximation
of the surface-normal gradient, and nonuniformity reduces the order of the approxi-
mation of the surface-normal gradient to firstorder. The detailed analysis of their
effect on accuracy is not within the scope of this work because of the vast number
of possible cases appearing in practice. Future work could consist of studying the
effect of nonorthogonality, skewness, nonuniformity, and aspect ratio on accuracy
for different cell types with various type of deviation from the ideal shape. Addition-
ally, the orientation of the skewed, nonorthogonal, and nonuniform faces with
respect to the main axes of the solution gradients will also be studied in detail.
Despite all that, we can still conclude that it makes sense to optimize the mesh, as
it pays back in higher accuracy for the same number of cells.

The influence of boundary conditions was not studied in this article because in
most cases the number of cells with some boundary faces is much smaller than the
number of internal cells and they were not considered essential to the main goal
of the work. In addition, they were applied consistently for all cases in Section 4
and they could not cause the difference in the measured discretization error. The
effects of the blended discretization schemes were also not considered essential,
because most of the modern schemes introduce a small amount of numerical
diffusion in the solution and therefore perform similarly to the studied linear
interpolation scheme.

Finally, it remains to say that realistic meshes for computational domains of
industrial interest will contain various types of cells and more complex solution
forms. Thus, the conclusions of this study can still be used as a guideline for creation
of optimal meshes in general.
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