

6ª aula - MIG/MAG

Na aula passada discutimos o ponto de funcionamento e a influência da regulagem da tensão e da velocidade do arame. Constatamos, em laboratório, que a altura do arco é tanto maior quanto maior a tensão de soldagem e que a corrente de soldagem depende diretamente da velocidade do arame. A figura 1 nos ajuda a entender a variação da corrente conforme variamos a velocidade do arame. Para uma dada regulagem de tensão, a medida que aumentamos a velocidade do arame o arco se torna cada vez mais curto, o que reduz a resistência a passagem de corrente pelo arco, favorecendo assim o aumento da corrente.

Velocidade do arame ou corrente

Vamos agora discutir a **Equação do consumo**. Considere a **figura 2** abaixo, em que a altura do arco elétrico h permanece constante e há uma extensão do arame entre o arco e o bico de contato denominado **stick-out**, de comprimento **L**.

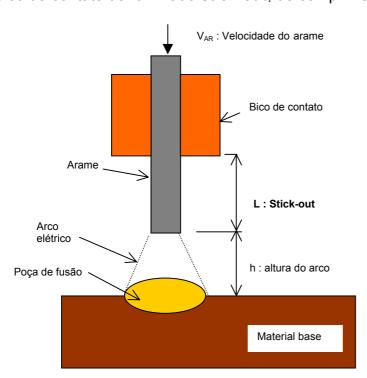


Figura 2: Representação do arco elétrico e do Stick-out.

Nesta situação, todo arame que é alimentado com velocidade VAR é fundido na mesma velocidade. Estudos realizados por diversos autores mostraram que o consumo de arame C em (kg/h) depende de duas fontes de calor :

- Aquecimento resistivo (efeito Joule) do stick-out, antes do arame chegar ao arco elétrico. Este aquecimento é bastante acentuado pois o arame tem um pequeno diâmetro, podendo atingir centenas de graus antes de chegar à ponta do arame
- > Aquecimento gerado pelo arco elétrico na ponta do arame, sendo este diretamente à corrente de soldagem.

A equação do consumo é dada pela seguinte expressão :

$C = \alpha I_m + B R I_m^2$

Sendo:

• α, B : constantes

• I_m: corrente média de soldagem

• R : resistência ôhmica à passagem de corrente do Stick-out

Parcela devida ao aquecimento promovido pelo arco elétrico

Parcela devida ao aquecimento por efeito Joule do Stick-out

Podemos calcular o valor de R através da expressão : $\mathbf{R} = \rho \mathbf{L} / \mathbf{A}$, sendo :

- ρ : resistividade do material do arame
- L: stick-out
- A: área da secção transversal do arame.

Considerando que A e ρ são constantes, a equação do consumo pode ser reescrita da seguinte forma:

$$C = \alpha I_m + B \rho L I_m^2/A$$

Considerando B
$$\rho$$
 / A = constante = β , temos \rightarrow C = α I_m + β L I_m²

Sendo α e β são constantes determinadas experimentalmente, que dependerão do material do arame e do seu diâmetro (que afeta a área A);

O consumo do arame C em [kg/h] dependerá portanto da corrente média de soldagem I_m, do stick-out L, do diâmetro do arame D_{AR} e do tipo do material do arame (afeta a resistividade ρ).

Curvas de consumo de arame de aço, bitola de 1mm e Stick-out de 8mm determinadas experimentalmente podem ser vistas na figura 3, para gases de proteção Ar e CO₂.

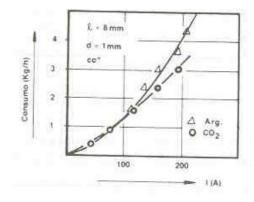
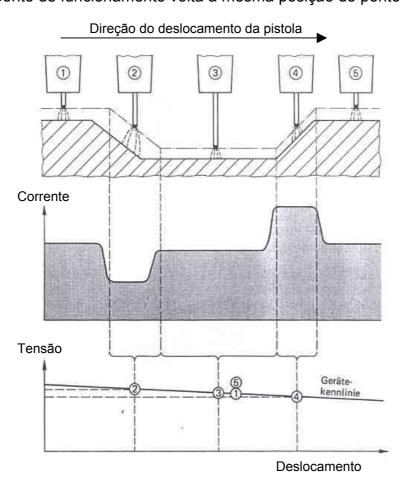


Figura 3 : Curvas de consumo para diferentes gases de proteção.


A equação do consumo permite compreender porque o arco se estabiliza conforme variamos a velocidade de soldagem (**figura 1**). Um aumento da velocidade do arame implica que a corrente irá aumentar. Este aumento de corrente promove um aumento de consumo, de forma a compensar o aumento da velocidade do arame. O ponto de funcionamento se dará na corrente necessária para fundir todo o arame, obtido pelo menor comprimento do arco elétrico.

Da mesma forma, podemos compreender porque a variação na distância entre a pistola e o material base não desestabilizam a soldagem, como ocorre no processo Eletrodo revestido. Considere a **figura 4**, onde a pistola caminha da esquerda para a direita, a partir do ponto 1, sendo a velocidade do arame constante.

Quando atingir o ponto 2 a altura do arco irá aumentar momentaneamente, devido a um aumento da distância pistola-metal base. Nesta situação a corrente cairá levemente, o consumo se reduzirá instantaneamente, compensando o aumento da distância pistola peça.

Ao atingir o ponto 3 a corrente tende a ser ligeiramente inferior ao ponto 1, pois o Stickout é maior, o que acarreta maior aquecimento resistivo e diminui a corrente necessária para fundir o arame.

No ponto 4 a súbita redução da distância pistola-material base reduz o tamanho do arco, o que acarreta aumento de corrente, que compensa a aproximação da pistola. No ponto 5 o ponto de funcionamento volta a mesma posição do ponto 1.

Figura 4 : Variação do comprimento do arco, corrente e tensão em função da variação da distância pistola-material base.

MIG-PULSADO

Para entender a origem do MIG Pulsado, vamos fazer um pequeno comparativo (**tabela** 1) entre os modos de transferência por curto-circuito e por pulverização, considerando as informações contidas nas aulas anteriores.

Tabela 1 : Comparativo entre soldagem por curto-circuito e pulverização.

	Curto-circuito	Pulverização		
Tensão de soldagem	Baixas a média – requer arcos curtos para forçar curto-circuito - 15 a 25 V	Altas – para ter arcos longos e permitir a gota se formar dentro do arco – acima de 25 V		
Velocidade do arame e corrente de soldagem	Baixas a média, devendo ser compatível com a tensão	Altas, devendo ser acima da corrente de transição		
Aporte térmico : AT = V. I / Vs	Sendo V e I baixos, o aporte será baixo	V e I altos implicam em aporte alto		
Penetração e espessura da chapa aplicável	soldagem, a penetração é baixa,	Alto aporte e alta corrente implicam em alta penetração, sendo recomendado para chapas acima de 5mm		
Estabilidade do arco	Baixa, devido ao pico de corrente durante o curto-circuito me a extinção temporária do arco	Elevada, pois tanto corrente como tensão variam pouco durante a soldagem		
Presença de respingos	Ocorre, podendo ser controlada pela indutância	Não ocorre, pois não há curto-circuito		
Posição de soldagem	Todas, pois a transferência ocorre pelo contato direto entre gota e poça de fusão			
Tipo de gás de proteção	Qualquer tipo de gás	Requer gases que promovam arcos longos. Isto é obtido com misturas ricas em Ar (no mínimo 80%)		

Em alaranjado encontram-se as principais desvantagens e em azul as principais vantagens de cada tipo de transferência metálica. Para aliar as vantagens dos modos de transferência por curto-circuito (soldar chapas finas em qualquer posição) e a estabilidade do arco e ausência de respingos da pulverização, foi criado o modo de transferência denominado de **ARCO PULSADO**. Neste modo de transferência passa-se a controlar, de forma cíclica, a corrente de soldagem, conforme pode ser visto na **figura 5**. Este ciclo de imposição de corrente é dado pela máquina, assim sendo uma máquina convencional de soldagem MIG/MAG (máquina de tensão constante) não permite soldar neste modo de transferência. Existem máquinas especiais que permitem obter o arco pulsado, sendo bem mais caras que a convencionais. Este processo é conhecido como **MIG-Pulsado**, pelo fato do arco pulsar numa freqüência que podemos regular, a medida que variamos a corrente de forma cíclica.

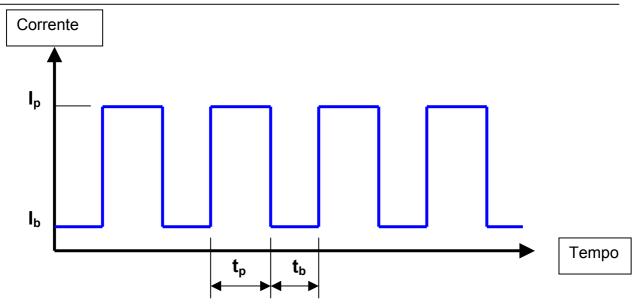


Figura 5 : Ciclo de corrente imposto pela máquina de solda em MIG pulsado.

A regulagem da máquina de MIG-pulsado exige a definição de 5 parâmetros :

▶ I_p : corrente de pico

> Ib : corrente de base

➤ t_p: tempo de pico

> t_b: tempo de base

V_{AR}: velocidade do arame

Para que o processo seja estável, é necessário que a cada pico de corrente seja formada e desprendida uma gota na ponta do arame eletrodo. Isto ocorre quando duas condições são satisfeitas :

- A corrente de pico ultrapassa a corrente de transição;
- O produto I_p². t_p assume um valor característico, denominado parâmetro de destacamento da gota, que depende do tipo e do diâmetro de arame. Alguns valores de I_p e t_p podem ser vistos na tabela 2.

Tabela 2 : I_p e t_p recomendados para condição de uma gota por pulso em MIG-Pulsado.

anna gota por parec on moration					
			Diâmetro (mm)	$I_{p}(A)$	t _p (ms)
Arame	de	aço	1,0	240	4
carbono e inoxidável		1,2	300	4 a 5	

Neste modo de transferência pode-se escolher o **diâmetro da gota – D_g**. Arbitrando a **velocidade do arame V_{AR}** e sendo o **diâmetro do arame D_{AR}**, podemos calcular o tempo necessário para formar uma gota , que seria o **período T**, através da seguinte expressão :

$$T = 40. D_g^3 / V_{AR \cdot DAR}^2$$
 Sendo : $T \text{ em ms}, D_g \text{ e } D_{AR} \text{ em mm e } V_{AR} \text{ em m/min}$

Uma vez que a corrente varia ciclicamente, podemos calcular a corrente média $-I_m$ - através da seguinte expressão : $I_m = (I_p.t_p + I_b.t_b) / (t_p + t_b)$

LDAGEM Prof. Okimoto

Podemos agora simular uma regulagem em MIG Pulsado. Façamos com um exemplo. Suponha que você tenha que regular uma soldagem em MIG-Pulsado para soldar um aço inoxidável. Você vai utilizar um arame de aço inoxidável ER308, de 1,2 mm de diâmetro. Faça a escolha dos 5 parâmetros, sendo que se impõe as seguintes condições : $V_{AR} = 4$ m/min

$$D_g = 1.2 \text{ mm},$$

Para resolver este problema, podemos começar calculando o período T, pois temos V_{AR} , Dg e D_{AR} .

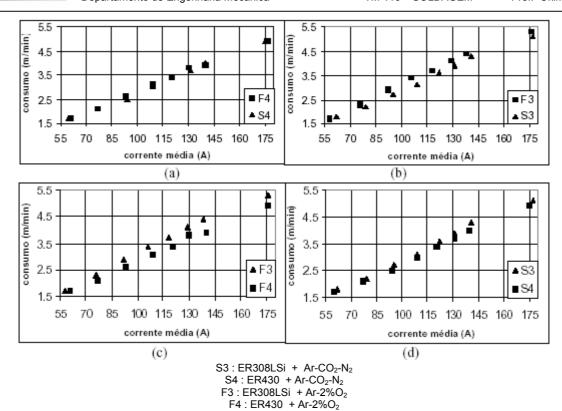
$$T = 40. (1,2)^3 / 4. (1,2)^2 = 12 \text{ ms}$$

Para obter uma gota por pulso podemos arbitrar I_p = 300 A e t_p = 4 ms, conforme recomendação da tabela 2.

Já temos então V_{AR} , I_p , t_p . Faltam I_b e t_b . Sabemos, entretanto que o período T é a soma dos tempos de pico e de base. Assim temos : $T = t_p + t_b$. Como arbitramos t_p e calculamos o período T, podemos obter t_b .

$$t_b = T - t_p = 12 - 4 = 8 \text{ ms}$$

Falta-nos apenas calcular lb. Sabemos também que a corrente média pode ser expressa por : $I_m = (I_p.t_p + I_b.t_b) / (t_p + t_b)$. Esta expressão nos mostra que o valor de I_b afetará o valor da corrente média. Poderíamos arbitrar lb ? Caso fizéssemos isso, estaríamos definindo um valor para a corrente média. Isto seria correto ?


A resposta obvia é que este procedimento seria inadequado. Porque ? Simplesmente porque existe uma relação entre a corrente média e a velocidade do arame Va. Esta relação é direta, pois quanto maior a velocidade do arame, maior a corrente média para promover a fusão do material. Assim, caso seja arbitrado um valor para Ib, o valor definido para Im poderia ser inadequado para a Va escolhida.

Para visualizarmos a relação entre Im e Va (denominada de consumo), podemos recorrer aos gráficos mostrados na **figura 6**. Como pode ser constatado a dependência é direta e , neste caso, guase linear.

Para concluirmos nossa seleção, tomemos a curva do aço inox ER308LSi como base. Para uma velocidade de arame igual a 4 m/min, e utilizando as curvas F3 e S3 da **figura 6**, retiramos uma corrente média de 130 A. Podemos agora calcular lb, a partir da expressão da corrente média : $I_m = (I_p.t_p + I_b.t_b) / (t_p + t_b)$

Assim nossa seleção de parâmetros em MIG pulsado para arame de aço inox ER308 de 1,2mm de diâmetro, V_{AR} de 4m/min e Dg de 1,2mm são :

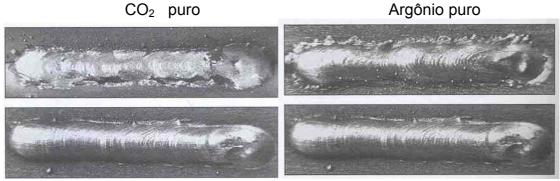
$$Ip = 300 A$$
 $Ib = 45 A$ $tp = 4 ms$ $tb = 12 ms$

Figura 5 : Relação entre corrente média e velocidade do arame em MIG Pulsado dos arames ER430 (inoxidável ferrítico) e ER308LSi (inoxidável austenítico) de 1,2 mm de diâmetro, para diferentes gases de proteção (Lagares e Scotti, COBEF 2001).

Consideremos agora a corrente média de 130 A obtida na seleção de parâmetros. Ela é alta ou baixa ? Imagine que você quisesse soldar em pulverização. Qual seria a corrente mínima requerida ? Sabe-se que ela deveria ser acima da corrente de transição. Consultando a tabela 2 da aula anterior verificamos que, para um arame de aço inoxidável de 1,2 mm de diâmetro, seria necessário uma corrente acima de 225 A.

Ou seja, a corrente de soldagem em MIG pulsado pode ser muito menor que a necessária para forçar a pulverização. Isto é uma grande vantagem pois podemos soldar chapas mais finas e fora de posição, com uma transferência muito estável e sem respingos.

Gases de proteção


Vários gases de proteção são utilizados em soldagem MIG/MAG. Influem na seleção o material a ser soldado, o perfil de cordão a ser obtido, o modo de transferência metálica e evidentemente o custo.

Os principais gases utilizados são o Ar, He, CO_2 , ou misturas Ar-He, $Ar-CO_2$, $Ar-CO_2-O_2$ e CO_2-O_2 . Ar e He são considerados inertes, enquanto que os demais são considerados ativos por reagirem com o metal de solda. Cada tipo de gás possui suas características tais como condutividade térmica, densidade, potencial de ionização, etc, o que afeta a estabilidade e comprimento do arco, o formato do cordão de solda, o modo de transferência, etc.

Os gases inertes Ar e He são utilizados na soldagem de materiais altamente reativos, que se oxidam acentuadamente mesmo na presença de pequenas quantidades de oxigênio, tais como Alumínio, Titânio, Magnésio e suas ligas. O He é um gás muito caro, devendo ser utilizado somente em casos especiais.

Para o aço carbono são utilizados vários gases. Quando soldar em curto-circuito podem ser utilizados o CO₂ puro, e misturas de Ar contendo de 4 a 50%CO₂. O CO₂ puro é ainda muito utilizado pelo menor custo, comparativamente as misturas Ar-CO₂. Nas empresas é muito comum utilizar misturas Ar-CO₂ contendo entre 18 a 25%CO₂. Estas misturas servem para uso geral, com bom acabamento e boa estabilidade de arco.

Quando soldar em pulverização, o teor de CO₂ deve ser reduzido (menos de 20%), para se obter a pulverização, por requerer arcos mais longos. O Ar puro não é utilizado por apresentar um arco instável. Uma comparação da influência do gás de proteção pode ser vista na **figura 7**, onde são comparadas as características de cordões feitos com diferentes gases de proteção. Observa-se que a mistura Ar-CO₂ acarretam os melhores resultados que o Ar ou CO₂ puros.

Mistura Argônio com 25%CO₂.

Figura 7 : Comparação entre cordões obtidos por MIG/MAG com diferentes gases de proteção.

Para aços inoxidáveis são utilizadas com mais freqüência misturas de Ar e O_2 , variando entre 1 a $5\%O_2$. Podem ainda ser utilizadas misturas $Ar-CO_2$, porém há o risco de haver incorporação de C na composição do metal de solda. Isto é perigoso por favorecer a precipitação de carbonetos de Cr, o que diminui a resistência à corrosão intergranular. O CO_2 puro não deveria ser utilizado, entretanto esta prática existe. Atualmente estão sendo empregadas misturas Ar-18%He-1%CO2

Na tabela 3 são mostradas algumas recomendações para a soldagem de diferentes materiais, considerando ainda o tipo de transferência metálica aplicada.

Tabela 3 : Gases recomendados para soldagem de alguns materiais.

Material	Gás de proteção	Modo de	Recomendações		
	, ,	transferência	,		
	Ar + (18 a 25%) CO ₂	Curto-circuito (CC)	Bom acabamento, recomendado para espessuras de até 4 mm. Boa penetração, poucos respingos e elevada velocidade de soldagem		
Aço carbono	CO ₂ puro	CC	Elevada penetração, baixo custo e alta velocidade de soldagem		
	Ar – 50%CO ₂	CC	Para espessuras de chapa maior de 4mm		
	Ar - (2 a 5%) O ₂	Pulverização (PV)	Para chapas acima de 5mm		
Alumínio	Ar	CC	Para chapas finas		
	Ar	PV	Para chapas até 25mm		
	He + Ar	CC e PV	Para chapas grossas, acima de 25mm		
Aço	Ar – 1 a 2 % O ₂	PV			
inoxidável	Ar – 18% He – 1 %	PV			
	CO ₂				
	90%He-7,5%Ar-	CC			
	2,5%CO ₂				
Ligas de Mg, TI, Zr e Ta	Ar de alta pureza ou mistura Ar-He	CC e PV			

Defeitos em soldagem MIG/MAG

Existem diversos defeitos que podem ser gerados durante a soldagem MIG/MAG. Na figura 8 são mostradas as principais e suas causas.

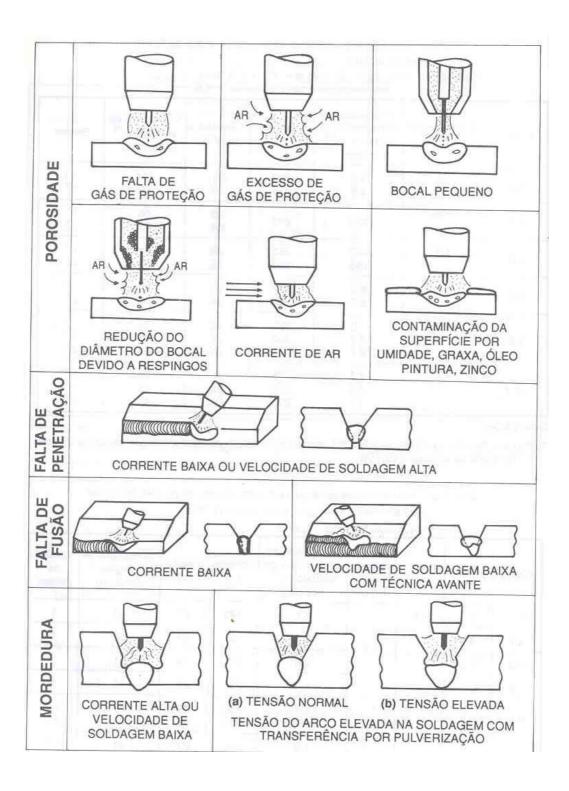


Figura 8 : Principais defeitos observados em soldagem MIG/MAG e suas causas.

ALGUMAS REGULAGENS DO **PROCESSO** MIG/MAG **PARA DIFERENTES APLICAÇÕES**

Para soldarmos em MIG/MAG existem recomendações para os diferentes tipos de junta. Na figura 9 são mostradas algumas configurações usuais e nas tabelas 3 e 4 estão indicadas algumas regulagens apropriadas para as juntas E e G. Note que a tensão varia de acordo com o modo de transferência. Outros procedimentos estão disponíveis na literatura.

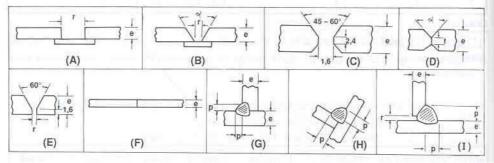


Figura 9 : Configurações típicas de preparação de junta.

Tabela 4 : Parâmetros recomendados para soldagem de aço inoxidável em junta de topo tipo E da figura 9.

e(mm)	Velocidade de alimentação do eletrodo nu (m/min) (1)	Modo de transferência (2)	Distância bocal bico de contato (mm) (3)	Corrente (A)	Tensão (V)	Velocidade de soldagem (cm/min)	Passes
6,4	3,2 8,2	cc pv	+ 4	120 - 130 220 - 240	16 30	15 - 20 25 - 30	1º 2º
9,5	3,8	cc	+ 4	140 - 150	16	12 - 18	1º
	8,7	pv	- 5	230 - 250	30	15 - 20	2º
12,7	3,8	cc	+ 4	140 - 150	16	15 - 20	1º
	8,7	pv	- 5	230 - 250	30	20 - 25	2º
	9,3	pv	- 5	240 - 260	31	15 - 20	3º

Tabela 5 : Parâmetros de soldagem em junta em ângulo de aço carbono conforme iunta tipo G da figura 9.

e(mm)	p(mm)	ø do eletrodo nu (mm)	Velocidade de alimentação do eletrodo nu (m/min)	Corrente (A)	Tensão (V)	Velocidade de soldagem (cm/min)
6,4	4,7	1,2	8,9	260 - 320	26 - 27	63
7,9 6,3	-	0,8	12,7	260 - 320	26 - 27	36
	1,2	9,5	270 - 330	26 - 27	46	
	1,6	5,9	320 - 380	25 - 26	48	
9,5 7,8		8,0	15,2	260 - 320	27 - 28	25
	7,8	1,2	12,1	300 - 370	27 - 28	33
		1,6	5,9	320 - 380	25 - 26	30
12,7	9,4	1,6	5,9	320 - 380	25 - 26	23