Grupo de pesquisa:

CFD, propulsão e aerodinâmica de foguetes

(CFD/UFPR) – junho/2002

15 Fev 2014

Laboratórios (136 m²):

Lena 1:	alunos
Lena 2:	professores
LAE:	minifoguetes

Localização: salas 7-16, 7-30 e 7-31 do DEMEC

Equipamentos principais:
23 computadores (192 GB, Xeon, 12 núcleos)
5 impressoras laser
sensores F, T, p, h, V, α, GPS, filmadora etc

PESQUISADORES atuais (11)

Da UFPR:

Prof. Carlos Henrique Marchi (líder)Prof. Luciano Kiyoshi ArakiProf. Márcio Augusto Villela Pinto

De outras instituições: UEPG = 3 UNICENTRO = 1 UTFPR = 2 UNIBRASIL = 1 IFPR = 1

COLABORAÇÕES atuais: 6

ORIENTANDOS atuais na UFPR: 24

IC = 3 TG = 2

 $M = 4 \qquad D = 8$

PD = 0 outros = 7

ORIENTAÇÕES concluídas na UFPR, 2002 →: 48

IC = 8 TG = 16

M = 11 D = 13

PD = 0 outros = 0

Métodos usados na engenharia

Linhas de pesquisa

- Propulsão de foguetes
- Aerodinâmica de foguetes
- Otimização de métodos numéricos
- Verificação e validação de soluções numéricas

Modelos matemáticos

Equações (1D/2D/3D/t): Laplace Poisson Fourier Advecção-difusão Burgers Euler **Navier-Stokes** Turbulência

Metodologia

Métodos numéricos: Diferenças finitas **Volumes Finitos** Ordem das aproximações numéricas: 1, 2, 3 e 4 Tipos de malhas: Uniformes e não-uniformes Quadradas e triangulares Estruturadas e não-estruturadas Não-ortogonais Solvers: GS, TDMA, ADI e MSI com multigrid Linguagem de programação: Fortran 90

Ar sobre cone (L/D = 3): campo p

Ar sobre cone (L/D = 3): C_{Df}

M Re Exp Mach2D

3 4,00 x 10⁶ 0,084 \pm 0,003 0,08406 \pm 0,0007

4 2,16 x 10⁶ 0,078 \pm 0,005 0,07779 \pm 0,0009

5 1,05 x 10⁶ 0,076 \pm 0,005 0,07556 \pm 0,0009

Ar sobre o foguete VLS

Foguete VS-30 (IAE) em túnel de vento

Foguete VS-40 (IAE), Mach 1, PSP

Motor-foguete SSME e Space Shuttle

Esquema de motor-foguete bipropelente com refrigeração regenerativa

Detalhes dos canais de refrigeração

Motor-foguete

Vulcain do

Ariane V

Motor Vulcain (Ariane V)

- F(nivel do mar) = 103 tf
- Tw-max = 750 K
- To = 3.500 K
- Po = 100 atm
- q"max = 60 MW/m²
- Canais = 360
- Altura = 9,5 a 12 mm
- Largura = 1,3 a 2,6 mm

Modelos físicos para escoamento na tubeira

1: Gás com propriedades constantes

2: Gás com propriedades variáveis

3: Gases congelados

4: Gases em equilíbrio químico local

5: Gases com taxa finita de reação

a) invíscido

b) laminar

c) turbulento

Escoamento reativo 2D laminar

$$C^{\phi}\left[\frac{\partial}{\partial t}(\rho\phi) + \frac{\partial}{\partial x}(\rho u\phi) + \frac{1}{r}\frac{\partial}{\partial y}(r\rho v\phi)\right] = \frac{\partial}{\partial x}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(r\Gamma^{\phi}\frac{\partial\phi}{\partial y}\right) + P^{\phi} + S^{\phi}$$

Equação	ϕ	C^{ϕ}	Γ^{ϕ}	P^{ϕ}	S^{ϕ}
Massa	1	1	0	0	0
QML-x	и	1	μ	$-\frac{\partial p}{\partial x}$	$\frac{1}{3}\frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(\mu\frac{\partial v}{\partial x}\right) - \frac{2}{3}\frac{\partial}{\partial x}\left[\frac{\mu}{r}\frac{\partial}{\partial y}(rv)\right]$
QML-y	v	1	μ	$-\frac{\partial p}{\partial y}$	$\frac{1}{3r}\frac{\partial}{\partial y}\left(r\mu\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{2}{3}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{4}{3}f\frac{u}{r^2}v - \frac{2}{3r}fv\frac{\partial \mu}{\partial y}$
Energia	Т	c_p	k	$\frac{\partial p}{\partial t} - uP^u - vP^v$	$2\mu \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + f \left(\frac{v}{r} \right)^2 \right] + \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 - \frac{2}{3} \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + f \frac{v}{r} \right)^2 + S_{eq/tf}$
Espécies	Y_i	1	0	0	\dot{w}_i

Escoamento reativo 2D laminar

Equilíbrio químico local

$$S_{eq/tf} = -\frac{\partial}{\partial x} \left(\sum_{i=1}^{N_e} \rho h_i Y_i u \right) - \frac{1}{r} \frac{\partial}{\partial y} \left(\sum_{i=1}^{N_e} r \rho h_i Y_i v \right)$$

Taxa finita:

$$S_{eq/tf} = -\sum_{i=1}^{N_e} h_i \dot{w}_i \qquad p = \sum_{i=1}^{N_e} p_i$$

$$c_p = \sum_{i=1}^{N_e} Y_i (c_p)_i$$
 $R = \sum_{i=1}^{N_e} Y_i R_i$ $p = \rho R T$

Modelos químicos para H_2/O_2

9 equilíbrio e 6 taxa finita

Modelo	Número de reações	Número de espécies	Espécies envolvidas
0	0	3	H_2O, O_2, H_2
1	1	3	H_2O, O_2, H_2
2	2	4	H_2O, O_2, H_2, OH
3	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
4	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
5	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
7	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
10	6	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$
9	18	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$

Malha 56x20, Mach2D, invíscido

Malha 56x50, Mach2D, laminar

Mach2D, 224x80/200, p parede

Mach, invíscido, 1792x640, Mach2D

Mach, invíscido, 1792x640, Mach2D

Mach, invíscido, 1792x640, Mach2D

Otimização de métodos numéricos

- Métodos *multigrid* geométricos e algébricos
- Aproximações numéricas
- Multiextrapolação de Richardson
- Programação //, *solvers* etc

Otimização do Mach2D com //

Multigrid

- v, L, N
- Solver
- Operadores de transferência

- Ciclos
- FAS x CS
- GMG x AMG
- MG x FMG

Efeito de v sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Efeito de *L* sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Efeito de N sobre o tempo de CPU FAS-FMG e *solver* GS-Lex em VF

Laplace 2D em DF com CDS-2

Multigrid em 1 ou 2 equações

MER em Tc, Advecção-difusão 1D, VF

h

$$\mathbf{E}(\phi) = \Phi - \phi$$

$$E(\phi) = C_0 h^{p_0} + C_1 h^{p_1} + C_2 h^{p_2} + \dots = \sum_{m=0}^{\infty} C_m h^{p_m}$$

$$\phi_{g,m} = \phi_{g,m-1} + \frac{\phi_{g,m-1} - \phi_{g-1,m-1}}{r^{p_{m-1}} - 1}$$

Tabela de MER

g \ m	0	1	2	3	4
1	1,0				
2	2,0	2,1			
3	3,0	3,1	3,2		
4	4,0	4,1	4,2	4,3	
5	5,0	5,1	5,2	5,3	5,4

Malhas quadradas e triangulares

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

h

h

Verificação e validação de soluções numéricas

- Verificar códigos e soluções numéricas
- Validar soluções numéricas
- Avaliar e desenvolver estimadores de erros numéricos
- Gerar resultados numéricos de referência
- Incerteza dos dados da simulação

Tipos de erros

V&V: estimador de erro para MER

Poisson 1D, DF, T(3/4) nodal, CDS-2

Benchmark da cavidade 2D

Ref.		Re = 100			Re = 400			Re = 1000		
	-Ψ _{min}	x	у	-Ψ _{min}	x	у	-Ψ _{min}	x	У	
2	0.1022			0.1017						
3	0.1034						0.114			
4							0.1193			
5	0.103423	0.6172	0.7344	0.113909	0.5547	0.6055	0.117929	0.5313	0.5625	
6	0.10330	0.61667	0.74167	0.11399	0.55714	0.60714	0.11894	0.52857	0.56429	
7	0.1034	0.6188	0.7375	0.1136	0.5563	0.6000	0.1173	0.5438	0.5625	
9	0.103506	0.6094	0.7344				0.119004	0.5313	0.5625	
10	0.1030	0.6196	0.7373	0.1121	0.5608	0.6078	0.1178	0.5333	0.5647	
11	0.103519	0.6157	0.7378				0.118821	0.5308	0.5659	
12							0.1157			
13	0.10330			0.11389			0.118930			
14							0.1189366	0.5308	0.5652	
15	0.103511	0.617187	0.734375				0.118806	0.531250	0.562500	
17	0.103	0.6125	0.7375	0.113	0.5500	0.6125	0.117	0.5250	0.5625	
16							0.118942	0.5300	0.5650	
18							0.11892	0.53125	0.56543	
CFD	0.1035212	0.61621	0.73730	0.11398887	0.55371	0.60547	0.118936708	0.53125	0.56543	

Re = 10, **Ref. 2:** -*ψmin* = 0.0999; **Present:** -*ψmin* = 0.1001132

Classificação de motores de espaçomodelos

<u>Motores B6-4:</u> It = 2,51 a 5,00 Ns Em = 6 N t = 4 s

Motores C20-0: It = 5,01 a 10,00 Ns Em = 20 N

Motores D20-0: It = 10,01 Ns a 20,00 Ns Em = 20 N

Componentes do motor-foguete

Teste estático de motor de EM

Motor BT-100, TE 27 Jul 2010, Curva_empuxo 1.2

Lançamento EM α-17/C6-5 (23/06/2011)

Agradecimentos (financiadores):

Para interessados em IC, TG, M, D, PD, colaborações:

www.cfd.ufpr.br

www.foguete.ufpr.br

marchi@ufpr.br