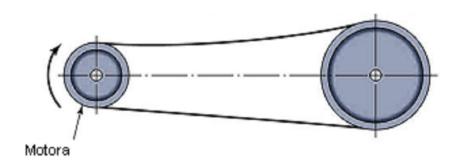
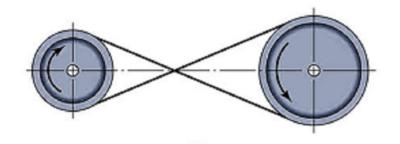
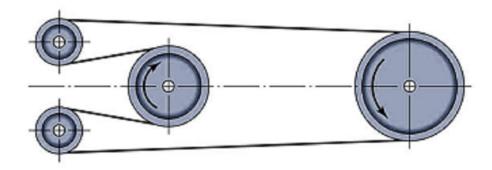
ELEMENTOS MECÂNICOS FLEXÍVEIS - CORREIAS

Prof. Alexandre Augusto Pescador Sardá

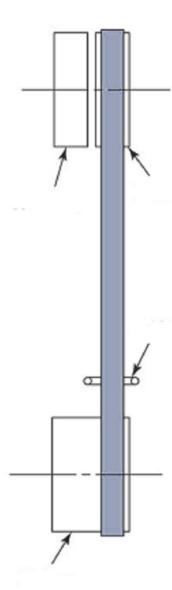

INTRODUÇÃO

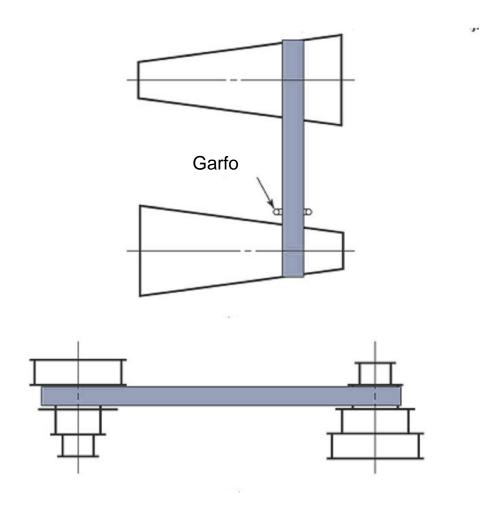

ELEMENTOS FLEXÍVEIS - UTILIZAÇÃO

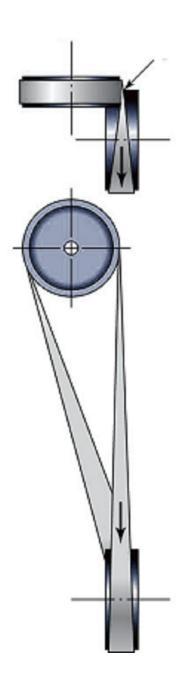
- •Transmitem potência através de distâncias relativamente grandes.
- •Substituem engrenagens, eixos, mancais ou dispositivos similares de transmissão de potência;
- Redução de custos (Economia);
- •Importantes na absorção de cargas de choque e no amortecimento de vibrações.


- Devem ser utilizadas para grandes distâncias entre eixos;
- •Devido ao deslizamento e à deformação das correias, a velocidade angular não é constante, nem é igual à razão dos diâmetros das polias (Exceto as correias de tempo);
- •Isolam vibrações, diferentemente das engrenagens.
- •Polia intermediária ou de tensão pode ser usada para evitar ajustes na distância de centro que são ordinariamente necessários pelo envelhecimento ou pela instalação de correias novas.

Tipo de correio	r Figura	Junta	Intervalo de tamanho	Distância de cen
Plana	<u> </u>	Sim	$t = \begin{cases} 0.03 \text{ a } 0.20 \text{ in} \\ 0.75 \text{ a } 5 \text{ mm} \end{cases}$	Nenhum limite superi
Redonda	$O_{\frac{d}{\uparrow}}$	Sim	$d=\frac{1}{8}$ a $\frac{3}{4}$ in	Nenhum limite superic
V	b	Nenhuma	$b = \begin{cases} 0.31 \text{ a } 0.91 \text{ in} \\ 8 \text{ a } 19 \text{ mm} \end{cases}$	Limitada
De tempo	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	Nenhuma	p=2 mm e acima	Limitada




•Reversão: Só correias chatas podem ser utilizadas, pois os dois lados contatam a polia.

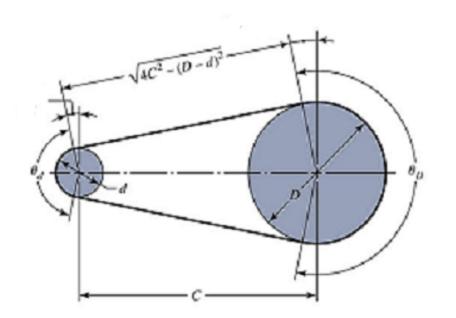

Transmissão reversível e não-reversível de correias.

Elimina a necessidade de uma embreagem. A correia plana pode ser mudada de um lado para outro pelo uso de um garfo.

Transmissões de velocidade variável.

MATERIAIS

- •Correias Planas: Uretano e tecido impregnado de borracha reforçado com cabo de aço ou cordas de náilon, para absorver a carga de tensão
- •Correia em V: tecido e corda algodão, raiom ou náilon e impregnada de borracha.


UTILIZAÇÃO

Correias Planas: Transmitem grandes quantidades de potência por longas distâncias de centro; extremidades unidas por apetrechos fornecidos pelo fabricante;

- •Correia em V: Um pouco menos eficientes que as planas, não tem juntas, tendo comprimentos padronizados.
- •Correias de tempo: feitas de tecido emborrachado e cabo de aço e tem dentes que se encaixam nos sulcos cortados na periferia da roda dentada;
 - não sofrem esticamento ou escorregamento, transmitem potência com velocidade angular constante, utilizadas em qualquer velocidade.
 - desvantagem: custo e necessidade de dentes na polia.

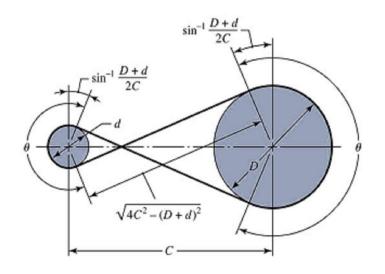
- Forte núcleo elástico rodeado por um elastômero;
- Apresentam vantagens sobre as transmissões de engrenagens ou de correia em V;
- Eficiência de 98% (próximo a uma engrenagem);
- Pouco ruído e absorção de vibração torcional do sistema;

Para uma correia aberta, os ângulos de contato devem ser:

$$\theta_d = \pi - 2sen^{-1} \frac{D - d}{2C}$$

$$\theta_D = \pi + 2sen^{-1} \frac{D - d}{2C}$$

D = diâmetro da polia maior;


d = diâmetro da polia menor;

C = distância entre-centros;

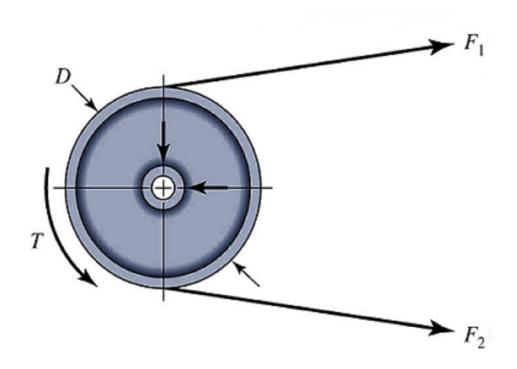
 θ = ângulo de contato.

$$L = \sqrt{4C^2 - (D - d)^2} + \frac{1}{2} (D\theta_D + d\theta_d)$$

Para uma correia fechada, o ângulo de contato deve ser:

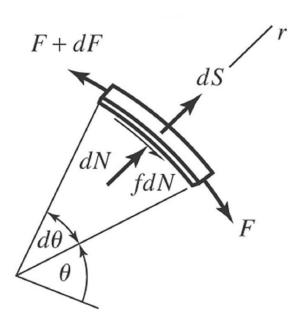
$$\theta = \pi + 2sen^{-1} \frac{D+d}{2C}$$

D = diâmetro da polia maior;


d = diâmetro da polia menor;

C = distância entre-centros;

 θ = ângulo de contato.


$$L = \sqrt{4C^2 - (D+d)^2} + \frac{1}{2}(D+d)\theta$$

Relação entre tensão do lado apertado e lado frouxo:

Somatório de forças na direção radial:

$$\sum F_r = -(F + dF) sen\left(\frac{d\theta}{2}\right) - F sen\left(\frac{d\theta}{2}\right) + dN + dS = 0$$

$$\sum F_r = -(F + dF)\frac{d\theta}{2} - F\frac{d\theta}{2} + dN + dS = 0$$

Ignorando-se os termos de ordem mais elevadas:

$$dN = F d\theta - dS$$

Na direção tangencial:

$$\sum F_t = -f \, dN - F + (F + dF) = 0$$

$$dF = f dN$$

$$|dF = f(F d\theta - dS) = f F d\theta - f dS|$$

ou:

$$\left| \frac{dF}{d\theta} - f F = -f m r^2 \omega^2 \right|$$

Solução da equação diferencial, linear, primeira ordem, não homogênea:

$$F = A \exp(f\theta) + m r^2 \omega^2$$

Assumindo $\theta = 0$ no lado frouxo:

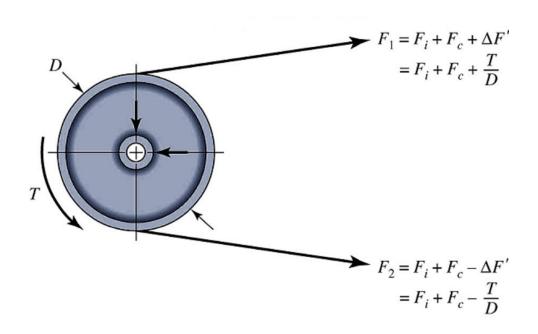
$$F_2 = A \exp(f \, 0) + m \, r^2 \, \omega^2 = A + m \, r^2 \, \omega^2$$

$$A = F_2 - m r^2 \omega^2$$

$$F = (F_2 - mr^2 \omega^2) \exp(f\theta) + mr^2 \omega^2$$

Para o lado mais apertado da correia ($\theta = \phi$):

$$F_1 = (F_2 - m r^2 \omega^2) \exp(f \phi) + m r^2 \omega^2$$


Pode-se escrever:

$$\left| \frac{F_1 - m r^2 \omega^2}{F_2 - m r^2 \omega^2} = \frac{F_1 - F_c}{F_2 - F_c} = \exp(f \phi) \right|$$

$$F_c = m r^2 \omega^2$$

De outra forma:

$$F_1 - F_2 = (F_1 - F_c) \frac{\exp(f \phi) - 1}{\exp(f \phi)}$$

 F_i = tensão inicial;

F_c = tensão circunferencial decorrente da força centrífuga;

 $\Delta F'$ = tensão decorrente do torque transmitido T;

D = diâmetro da polia;

Diferença entre F_1 e F_2 é proporcional ao torque (do slide anterior):

$$F_1 - F_2 = \frac{2T}{D} = \frac{T}{D/2}$$

Soma de F_1 e F_2 (do slide anterior):

$$|F_1 + F_2 = 2F_i + 2F_c|$$

$$F_i = \frac{F_1 + F_2}{2} - F_c$$

Da seguinte divisão, obtém-se:

$$\left| \frac{F_i}{T/D} = \frac{(F_1 + F_2)/2 - F_c}{(F_1 - F_2)/2} = \frac{(F_1 + F_2) - 2F_c}{F_1 - F_2} \right|$$

$$\frac{F_i}{T/D} = \frac{(F_1 - F_c) + (F_2 - F_c)}{(F_1 - F_c) - (F_2 - F_c)} = \frac{(F_1 - F_c)/(F_2 - F_c) + 1}{(F_1 - F_c)/(F_2 - F_c) - 1}$$

$$F_i = \frac{T}{D} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

Torque é proporcional à tensão inicial.

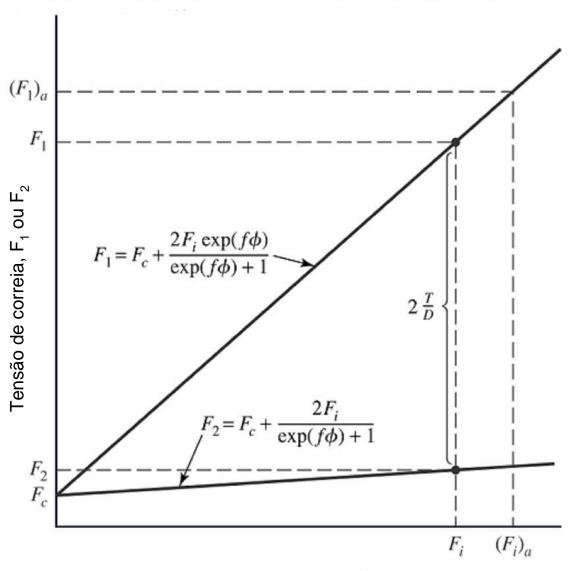
Para existir uma transmissão satisfatória de correia plana, a tensão inicial deve ser:

- Provida;
- Sustentada;
- Na quantidade apropriada;
- Mantida por inspeção rotineira.

$$\frac{T}{D} = F_i \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$

$$\left| F_1 = F_c + F_i + \frac{T}{D} = F_c + F_i + F_i \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1} \right|$$

$$F_{1} = F_{c} + F_{i} + \frac{T}{D} = F_{c} + \frac{F_{i}[\exp(f\phi) + 1] + F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$


$$F_1 = F_c + F_i + \frac{T}{D} = F_c + F_i \frac{2 \exp(f\phi)}{\exp(f\phi) + 1}$$

$$F_2 = F_c + F_i - \frac{T}{D} = F_c + F_i - F_i \frac{\exp(f \phi) - 1}{\exp(f \phi) + 1}$$

$$F_2 = F_c + \frac{F_i \left[\exp(f\phi) + 1 \right] - F_i \left[\exp(f\phi) - 1 \right]}{\exp(f\phi) + 1}$$

$$F_2 = F_c + F_i + \frac{T}{D} = F_c + F_i \frac{2}{\exp(f\phi) + 1}$$

$$H = \frac{(F_1 - F_2)\pi \, D \, n}{60000}$$

Tensão inicial $\,F_i\,$

 Fabricantes especificam suas correias incluindo a tensão admissível F_a, expressa em unidades de força por unidade de largura.


$$\left| \left(F_1 \right)_a = b \, F_a \, C_p \, C_v \right|$$

 $(F_1)_a = máxima tensão admissível, lbf;$

b = largura da correia, in;

C_p = fator de correção de polia (relacionado com a intensidade de flexão na polia e seu efeito sobre a vida);

C_v = fator de correção de velocidade;

Fator de correção da velocidade para correias de couro.

 Fator de serviço K_s é utilizado para desvios da carga a partir da nominal.

$$H_d = H_{nom} K_s n_d$$

n_d é o fator de projeto;

Os seguintes passos devem ser tomados ao se analisar uma correia plana:

- Encontrar exp(fφ) a partir da geometria da transmissão de correia e fricção;
- A partir da geometria da correia e da velocidade, encontrar F_c;
- Encontrar o Torque necessário;
- A partir do torque T, encontrar F_1 - F_2 =2T/D;
- Encontrar a tensão necessária F;
- Verificar a fricção f;

$$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$$

Encontrar o fator de segurança;

$$n_{fs} = \frac{H_a}{H_{nom} K_s}$$

Tamanhos mínimos de polia para correias de uretano plana e redonda. (Os diâmetros de polia em polegadas estão listados)

Estilo de	Tamanho	Razão da velocidade de polia pelo comprimento de correia rev/(ft • min)			
correia	de correia, in	Até 250	250 a 499	500 a 1000	
Plana	$0,50 \times 0,062$	0,38	0,44	0,50	
	$0,75 \times 0,078$	0,50	0,63	0,75	
	$1,25 \times 0,090$	0,50	0,63	0,75	
Redonda	$\frac{1}{4}$	1,50	1,75	2,00	
	3/8	2,25	2,62	3,00	
	$\frac{1}{2}$	3,00	3,50	4,00	
	$\frac{3}{4}$	5,00	6,00	7,00	

Fonte: Eagle Belting Co., Des Plaines, Ill.

Propriedades de alguns materiais de correia plana e redonda. (Diâmetro = d, espessura = t, largura = w)

sterial	Especificação	Tamanho, in	Diâmetro mínimo de polia, in	Tensão admissível por unidade de largura a 600 ft/min, Ibf/in	Peso específico, Ibf/in³	Coeficiente de fricção
Couro	1 camada	$t = \frac{11}{64}$	3	30	0,035-0,045	0,4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0,035-0,045	0,4
	2 camadas	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0,035-0,045	0,4
		$t = \frac{20}{64}$	6°	50	0,035-0,045	0,4
		$t = \frac{23}{64}$	9°	60	0,035-0,045	0,4
laliamida ^b	F-O°	t = 0.03	0,60	10	0,035	0,5
	F-1°	t = 0.05	1,0	35	0,035	0,5
	F-2°	t = 0.07	2,4	60	0,051	0,5
	A-2°	t = 0,11	2,4	60	0,037	0,8
	A-3°	t = 0,13	4,3	100	0,042	0,8
	A-4°	t = 0,20	9,5	175	0,039	0,8
	A-5°	t = 0,25	13,5	275	0,039	0,8
lretano ^d	w = 0,50	t = 0.062	Veja a	5,2°	0,038-0,045	0,7
	w = 0.75	t = 0.078	Tabela	9,8 ^e	0,038-0,045	0,7
	w = 1,25	t = 0.090	17-3	18,9°	0,038-0,045	0,7
	Redonda	$d = \frac{1}{4}$	Veja a	8,3°	0,038-0,045	0,7
		$d = \frac{3}{8}$	Tabela	18,6°	0,038-0,045	0,7
		$d = \frac{1}{2}$	17-3	33,0°	0,038-0,045	0,7
		$d = \frac{3}{4}$		74,3°	0,038-0,045	0,7

icionar 2 in a tamanhos de polia para correias de largura de 8 in ou mais.

Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

betura de fricção de borracha acrilonitrila-butadieno em ambos os lados.

Eagle Belting Co. Des Plaines, Ill.

de elongação; 12% é o valor máximo admissível.

Tabela 17-4 Fator de correção de polia C_p para correias planas*

			Diâmetro me	enor de polia,	in	
Material	1,6 a 4	4,5 a 8	9 a 12,5	14, 16	18 a 31,5	Acima de al
Couro	0,5	0,6	0,7	8,0	0,9	1,0
Poliamida, F-0	0,95	1,0	1,0	1,0	1,0	1,0
F-1	0,70	0,92	0,95	1,0	1,0	1,0
F-2	0,73	0,86	0,96	1,0	1,0	1,0
A-2	0,73	0,86	0,96	1,0	1,0	1,0
A-3		0,70	0,87	0,94	0,96	0,1
A-4	_	_	0,71	0,80	0,85	0,99
A-5	_	_	_	0,72	0,77	0,91

^{*} Os valores médios de Cp para os intervalos dados foram aproximados de curvas no Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), the

Tabela 17-5 Altura de coroa e diâmetros ISO de polia para correias planas*

Diâmetro ISO de	Altura de coroa,	Diâmetro ISO de	Altura de coroa		
polia, in	in	polia, in	w ≤ 10 in	W > 10 III	
1,6, 2, 2,5	0,012	12,5, 14	0,03	0,03	
2,8, 3,15	0,012	12,5, 14	0,04	0,04	
3,55, 4, 4,5	0,012	22,4, 25, 28	0,05	ara / 0,05	
5, 5,6	0,016	31,5, 35,5	0,05	0,06	
6,3,7,1	0,020	40	0,05	0,06	
8, 9	0,024	45, 50, 56	0,06	0,08	
10, 11,2	0,030	63, 71, 80	0,07	0,10	

^{*} A coroa deve ser arredondada, e não pontiaguda; a rugosidade é R_a = AA 63 μ in.

EXEMPLO 17.1 - Shigley

Uma correia de poliamida A-3, com largura de 6 in, é usada para transmitir 15 hp sob condições de choque leve, em que $K_s = 1,25$, e um fator de segurança igual ou maior que 1,1 é apropriado. Os eixos de rotação da polia são paralelos e estão no plano horizontal. Eles estão 8 ft distantes. A polia motora de 6 in gira a 1750 rpm, de uma maneira tal que o lado folgado está em cima. A polia movida tem diâmetro de 18 in. O fator de segurança destina-se a exigências não qualificáveis.

- a) Estime a tensão centrífuga F_c e o torque T.
- b) Estime as F₁, F₂ e F_i admissíveis, bem como a potência admissível H_a;

EXEMPLO 17.1 - Shigley

Da Tabela 17-2

$$f = 0.8$$

$$\phi = \theta_d = \pi - 2sen^{-1} \frac{D - d}{2C} = \pi - 2sen^{-1} \frac{18 - 6}{2(96)} = 3,0165 \, rad$$

$$\exp(f\phi) = \exp(0.8 \cdot 3.0165) = 11.17$$

$$V = \frac{\pi d n}{12} = \frac{\pi (6)1750}{12} = 2748,9 \text{ ft/min}$$

Da Tabela 17-2

$$t = 0.13$$
 $\gamma = 0.042 \, lbf / in^3$

$$w = 12\gamma b t = 12(0,042)6(0,130) = 0,393 lbf / ft$$

EXEMPLO 17.1 - Shigley

$$F_c = \frac{w}{g} \left(\frac{V}{60}\right)^2 = \frac{0,393}{32,17} \left(\frac{2749}{60}\right)^2 = 25,6 \, lbf$$

$$T = \frac{63025 H_{nom} K_s n_d}{n} = \frac{63025 (15 hp) 1,25 (1,1)}{1750} = 742,8 lbf.in$$

b) Para correias de poliamida e uretano, $C_v=1$: Da Tabela 17-4, Cp=0.70;

$$(F_1)_a - F_2 = \frac{2T}{D} = \frac{2(742.8)}{6} = 247.6 \, lbf$$

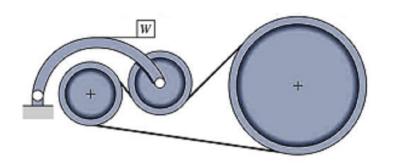
$$(F_1)_a = b F_a C_p C_v = 6(100)0,70(1) = 420 lbf$$

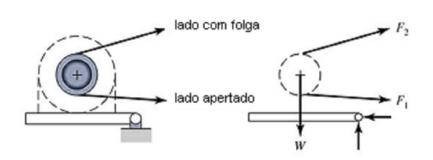
EXEMPLO 17.1 - Shigley

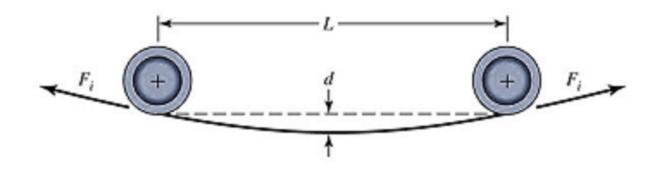
$$(F_1)_a - F_2 = 247,6 \, lbf$$

$$420 - F_2 = 247,6 \, lbf$$

$$F_2 = 172,4 \, lbf$$


$$F_i = \frac{(F_1)_a + F_2}{2} - F_c = \frac{420 + 172,4}{2} - 25,6$$


$$F_i = 270,6 \, lbf$$


Potência admissível:

$$H_d = 15(1,25)1,1 = 20,6 hp$$

CONTROLE DA TENSÃO INICIAL

$$d = \frac{3L^2w}{2F_i}$$

 As dimensões transversais são padronizadas pelos fabricantes, com cada secção designada por uma letra do alfabeto para tamanhos em dimensões de polegada (em metros por números)

<u>→ </u>	Secção de correia	Largura a, in	Espessura b, in	Diâmetro mínimo de polia acanalada, in	Intervale, UII ou mais cerre
	Α	1/2	11 32	3,0	1-10
	В	<u>21</u> 32	7 16	5,4	1-25
	С	7/8	17 32	9,0	15-100
	D	1 1/4	<u>3</u>	13,0	50-250
	E	1 1/2	1	21,6	100 e acima

 Para especificar uma correia em V, dê a letra da secção, seguida pela circunferência interna em polegadas (Ex: B75).

Circunferências internas das correias padronizadas em V

Secção	Circunferência, in
Α	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128
В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103,105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
С	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
E	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

 Para qualquer secção de correia, o comprimento médio é obtido adicionando-se um determinado valor à circunferência interna (padrão).

Secção de correia	А	В	С	D	Е
Quantidade a ser adicionada [in]	1,3	1,8	2,9	3,3	4,5

• Ex: B75;

Comprimento médio do passo primitivo de 76,8 pol

Comprimento de passo primitivo L_p e distância de centro a centro C:

$$L_p = 2C + \pi (D+d)/2 + (D-d)^2/(4C)$$

$$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2} (D+d) \right] + \sqrt{\left[L_p - \frac{\pi}{2} (D+d) \right]^2 - 2(D-d)^2} \right\}$$

Onde D é o diâmetro de passo primitivo da maior polia e d é o diâmetro de passo primitivo da menor.

Recomendações:

Utilizar 300 < V < 1200 m/min.

Não é recomendado longas distâncias entre centros para correias trapezoidais porque a excessiva vibração do ramo frouxo abrevia a duração da vida da correia.

$$\begin{vmatrix} C < D + d \\ C > D \end{vmatrix}$$

$$\boldsymbol{H}_a = \boldsymbol{K}_1 \boldsymbol{K}_2 \boldsymbol{H}_{tab}$$

H_a = potência admissível por correia;

K₁ = fator de correção de ângulo de envolvimento;

K₂ = fator de correção de comprimento de correia.

Tabela 17-12 Classificações de potência de correias padronizadas em V

Secção	Diâmetro de passo		Velocidade de correia, ft/min		
de correia	primitivo de polia	1000	2000	3000	4000
Α	2,6	0,47	0,62	0,53	0,15
	3,0	0,66	1,01	1,12	0,93
	3,4	0,81	1,31	1,57	1,53
	3,8	0,93	1,55	1,92	2,00
	4,2	1,03	1,74	2,20	2,38
	4,6	1,11	1,89	2,44	2,69
	5,0 e acima	1,17	2,03	2,64	2,96
В	4,2	1,07	1,58	1,68	1,26
	4,6	1,27	1,99	2,29	2,08
	5,0	1,44	2,33	2,80	2,76
	5,4	1,59	2,62	3,24	3,34
	5,8	1,72	2,87	3,61	3,85
	6,2	1,82	3,09	3,94	4,28
	6,6	1,92	3,29	4,23	4,67
	7,0 e acima	2,01	3,46	4,49	5,01
С	6,0	1,84	2,66	2,72	1,87
	7,0	2,48	3,94	4,64	4,44
	8,0	2,96	4,90	6,09	6,36
	9,0	3,34	5,65	7,21	7,86
	10,0	3,64	6,25	8,11	9,06
	11,0	3,88	6,74	8,84	10,0
	12,0 e acima	4,09	7,15	9,46	10,9
D	10,0	4,14	6,13	6,55	5,09
	11,0	5,00	7,83	9,11	8,50
	12,0	5,71	9,26	11,2	11,4
	13,0	6,31	10,5	13,0	13,8
	14,0	6,82	11,5	14,6	15,8
	15,0	7,27	12,4	15,9	17,6
	16,0	7,66	13,2	17,1	19,2
	17,0 e acima	8,01	13,9	18,1	20,6
E	16,0	8,68	14,0	17,5	18,1
	18,0	9,92	16,7	21,2	23,0
	20,0	10,9	18,7	24,2	26,9
	22,0	11,7	20,3	26,6	30,2
	24,0	12,4	21,6	28,6	32,9
	26,0	13,0	22,8	30,3	35,1
	28,0 e acima	13,4	23,7	31,8	37,1

Fator de correção de ângulo de contato K_1 para transmissões VV^* e V planas

D-d			Κ,
<u>C</u>	φ, graus	W	V plana
0,00	180	1,00	0,75
0,10	174,3	0,99	0,76
0,20	166,5	0,97	0,78
0,30	162,7	0,96	0,79
0,40	156,9	0,94	0,80
0,50	151,0	0,93	0,81
0,60	145,1	0,91	0,83
0,70	139,0	0,89	0,84
0,80	132,8	0,87	0,85
0,90	126,5	0,85	0,85
1,00	120,0	0,82	0,82
1,10	113,3	0,80	0,80
1,20	106,3	0,77	0,77
1,30	98,9	0,73	0,73
1,40	91,1	0,70	0,70
1,50	82,8	0,65	0,65

^{*} Um ajuste de curva para a coluna VV, em termos de θ , é $K_1 = 0.143543 + 0.007468 \theta - 0.000015052 \theta^2$ no intervalo $90^{\circ} \le \theta \le 180^{\circ}$.

Fator de correção de comprimento de correia K_2^*

Fator de	Comprimento nominal de correia					
comprimento	Correias A	Correias B	Correias C	Correias D	Correias E	
0,85	Até 35	Até 46	Até 75	Até 128		
0,90	38-46	48-60	81-96	144-162	Até 195	
0,95	48-55	62-75	105-120	173-210	210-240	
1,00	60-75	78-97	128-158	240	270-300	
1,05	78-90	105-120	162-195	270-330	330-390	
1,10	96-112	128-144	210-240	360-420	420-480	
1,15	120 e acima	158-180	270-300	480	540-600	
1,20		195 e acima	330 e acima	540 e acima	660	

^{*} Multiplique a potência estimada por correia por este fator, para obter a potência corrigida.

Potência de projeto:

$$H_d = H_{nom} K_s n_d$$

H_{nom} = potência nominal;
 K_s= fator de serviço;
 n_d = fator de projeto.

Fatores de serviço K_s sugeridos para transmissões de correia em V

	Fonte de potência			
Maquinaria movida	Característica normal de torque	Torque elevado ou não-uniforme		
Uniforme	1,0 a 1,2	1,1 a 1,3		
Choque leve	1,1 a 1,3	1,2 a 1,4		
Choque médio	1,2 a 1,4	1,4 a 1,6		
Choque elevado	1,3 a 1,5	1,5 a 1,8		

Um motor de 7,5 kW (9,87 hp), com velocidade de rotação de 1750 rpm deve ser usado para acionar uma bomba centrífuga que opera 24 horas por dia (1175 rpm) A distância entre centros não deve excefer 1117 mm. O espaço disponível limita o diâmetro da polia a 292 mm. Determinar o diâmetro das polias, as dimensões das correias e o número de correias.

Decisões:

- 1) K sobrecarga = 1,2 (choque leve);
- 2) 7,5 kW, correia com secção B;
- 3) D < 292 mm; D = 280 mm como primeira tentativa;
- 4) $C = 1060 \text{ mm} (1^{a} \text{ tentativa})$

Potência de projeto:

$$\boldsymbol{H}_d = \boldsymbol{H}_{nom} \boldsymbol{K}_s \boldsymbol{n}_d$$

$$H_d = (9.87)(1.2)1 = 11.84hp$$

Diâmetro da polia menor:

$$d_2 = D_1 \frac{n_1}{n_2} = 280 \frac{1175}{1750} = 188 mm$$

$$\theta_d = \pi - 2sen^{-1} \frac{D - d}{2C} = \pi - 2sen^{-1} \frac{280 - 188}{2(1060)} = 3,055 \, rd$$

$$\theta_D = \pi + 2sen^{-1} \frac{D - d}{2C} = \pi + 2sen^{-1} \frac{280 - 188}{2(1060)} = 3,228 \, rd$$

Comprimento da correia:

$$L = \sqrt{4C^2 - (D - d)^2} + \frac{1}{2} (D\theta_D + d\theta_d)$$

$$L = \sqrt{4(1060)^2 - (280 - 188)^2} + \frac{1}{2}(280(3,288) + 188(3,055))$$

$$L = 2867,09 \, mm = 112,87 \, in$$

Padronizada mais próxima: B112

Comprimento nominal: 112+1,8=113,8 in

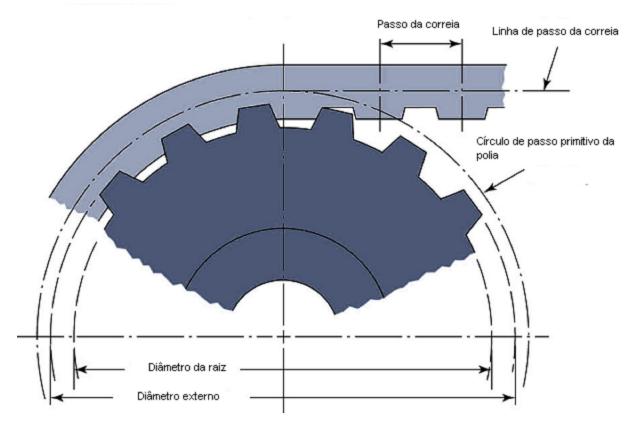
Velocidade:

$$V = \frac{\pi d n}{12} = \frac{\pi (188/25,4)1750}{12} = 3391 ft / min$$

Da tabela 17-12, com d = 7,4 in e V = 3391 ft/min:

$$H_a = (4.7hp)K_1K_2 = 4.7hp(0.99)(1.05)$$

$$H_a = 4.88 hp$$


$$N = \frac{H_d}{H_a} = \frac{11,84}{4,88hp} = 2,42 = 3 correias$$

CORREIAS DE TEMPO

Feitas de tecido emborrachado revestido de um tecido de náilon, com fio de aço no interior para suportar a tensão.

Não necessita tensão inicial;

Não estica nem desliza, transmitindo a uma razão de velocidade angular constante.

CORREIAS DE TEMPO

Passos padronizados das correias de tempo

Serviço	Designação	Passo p, in
Extraleve	XL	1/5
Leve	L	3/8
Pesado	Н	1/2
Extrapesado	ХH	7/8
Duplamente extrapesado	XXH	1 1/4

REFERÊNCIAS

SHIGLEY, J.E., MISCHKE, C.R., BUDYNAS, R.G., *Projeto de Engenharia mecânica, 7ª edição, Bookman.*