MAQUINAS HIDRAULICAS: BOMBAS

UNA MAQUINA HIDRAULICA ES AQUELLA EN QUE EL FLUIDO QUE INTERCAMBIA ENERGIA CON LA MISMA NO MODIFICA SU DENSIDAD A SU PASO POR LA MAQUINA Y POR ENDE EN SU DISEÑO Y SU ESTUDIO SE CONSIDERA QUE ρ = CTE

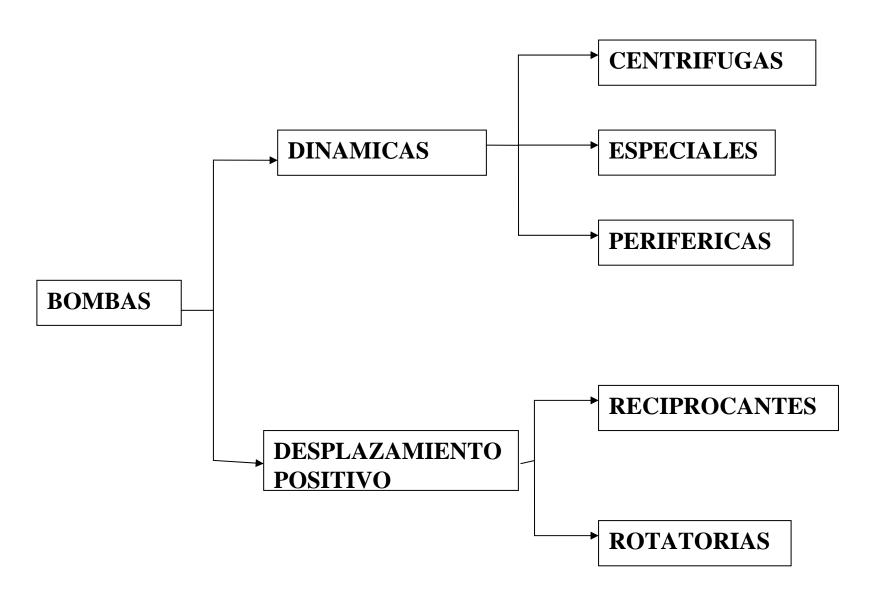
CLASIFICACION DE LAS MAQUINAS HIDRAULICAS

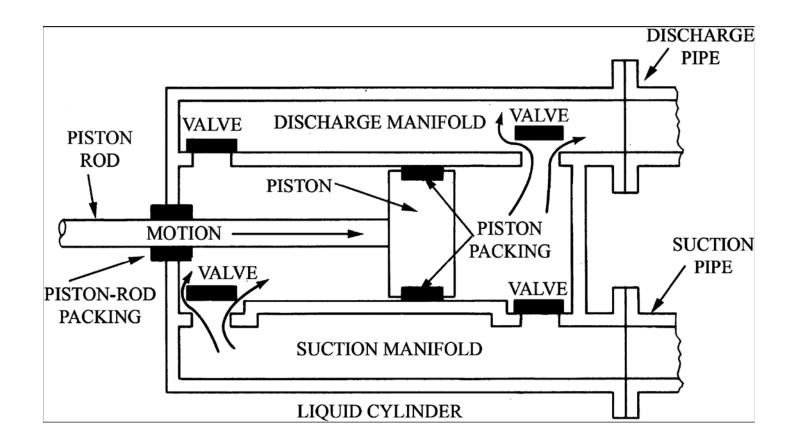
CONVERTIDOR DE PAR: TRANSFIEREN ENERGIA MEDIANTE UN FLUIDO

BOMBAS: TRANSFIEREN ENERGIA MECANICA A UN FLUIDO (LIQUIDO O GAS)

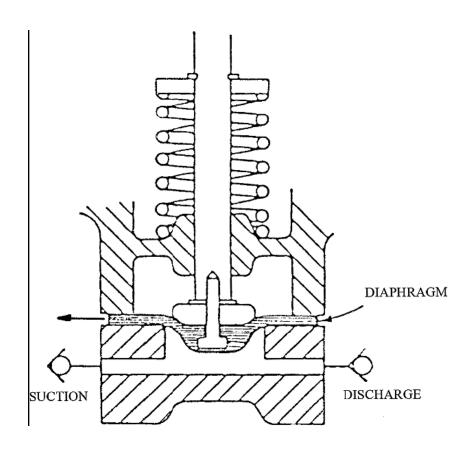
TURBINAS: RECIBEN ENERGIA MECANICA DE UN FLUIDO (LIQUIDO O GAS)

CLASIFICACION DE LAS BOMBAS

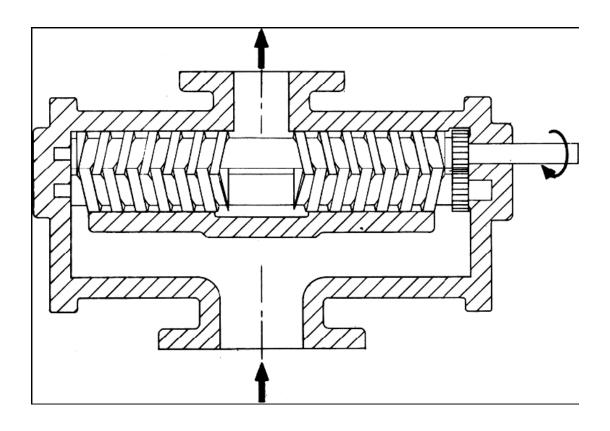




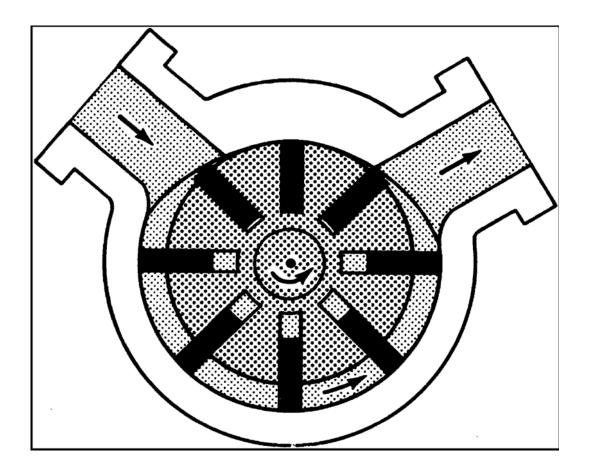
DESPLAZAMIENTO POSITIVO DE PISTON DE DOBLE EFECTO O RECIPROCANTE



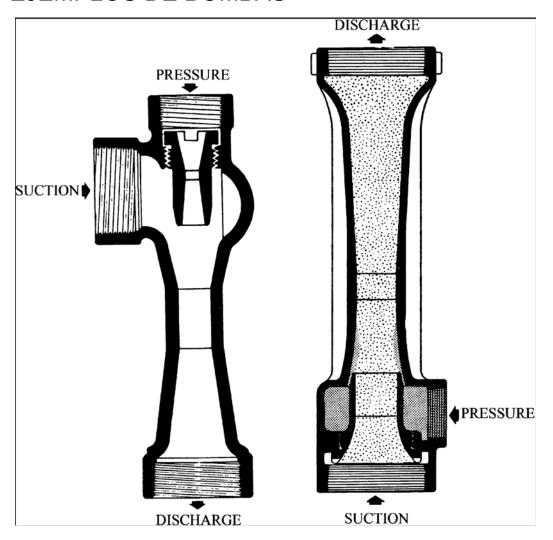
DESPLAZAMIENTO POSITIVO DE DIAFRAGMA



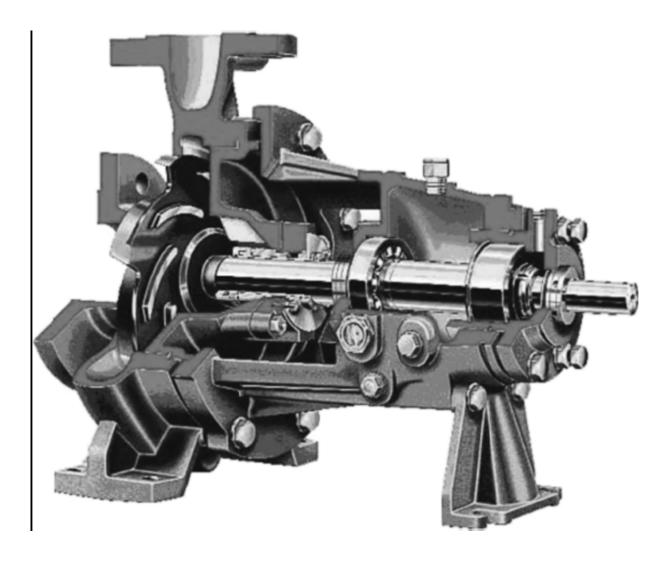
DESPLAZAMIENTO POSITIVO DE ROTOR



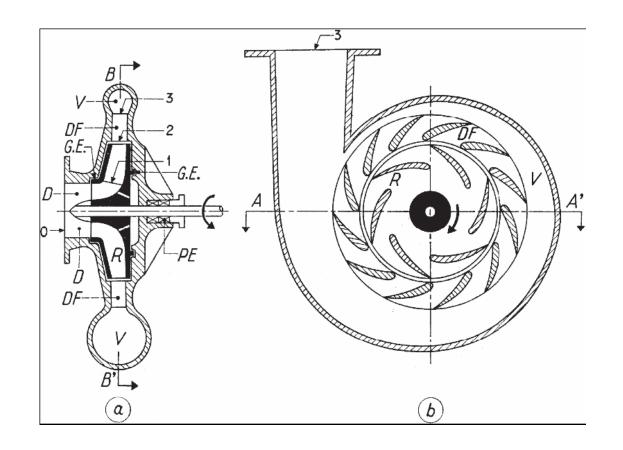
DESPLAZAMIENTO POSITIVO DE ROTOR INTERNO

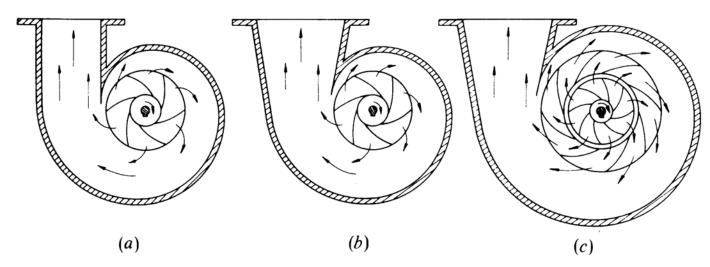


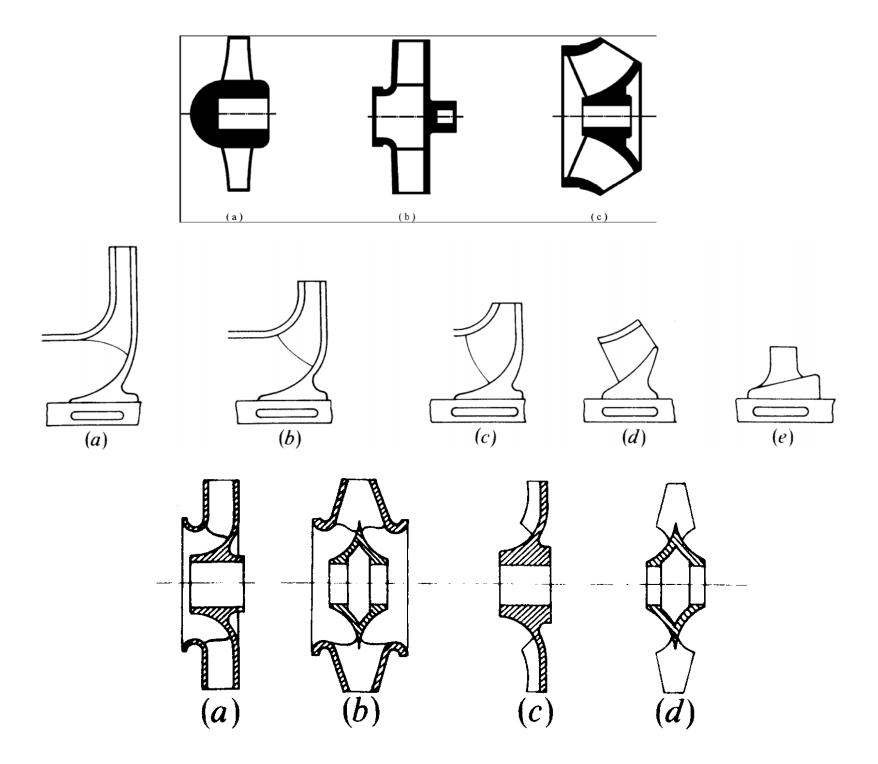
BOMBAS CENTRIFUGAS



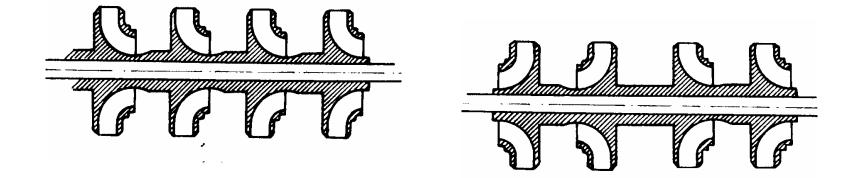
BOMBA CENTRIFUGA (CORTE)



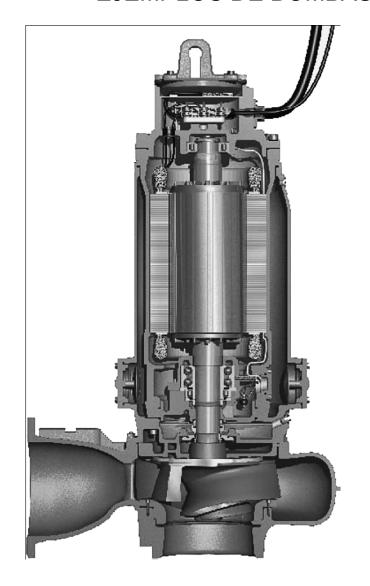


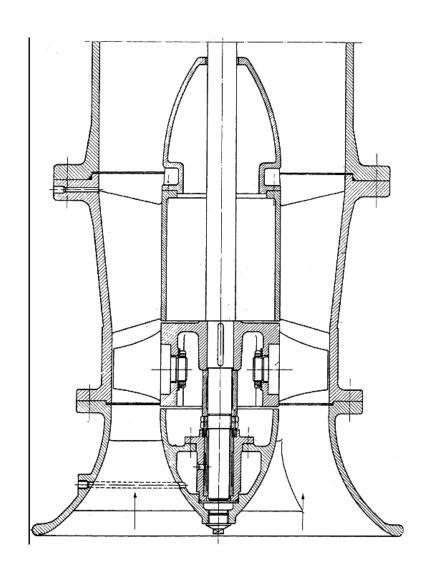


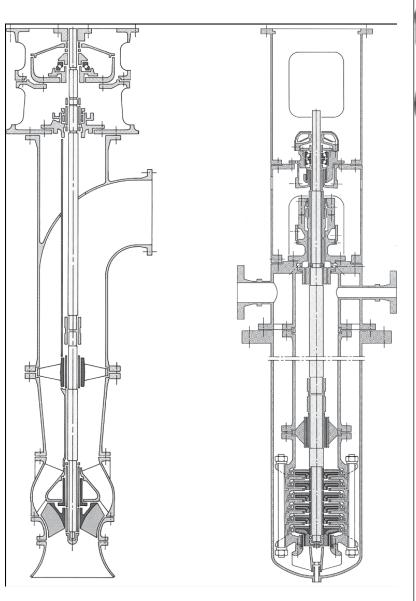
$\Omega Z \Omega \Delta \Omega$

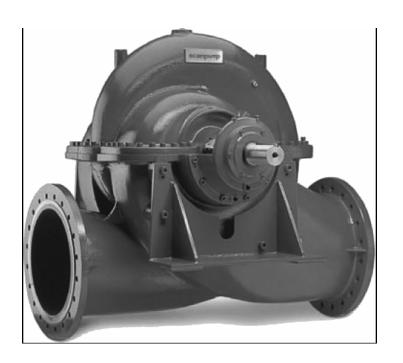


EJEMPLOS DE BOMBAS CENTRIFUGAS

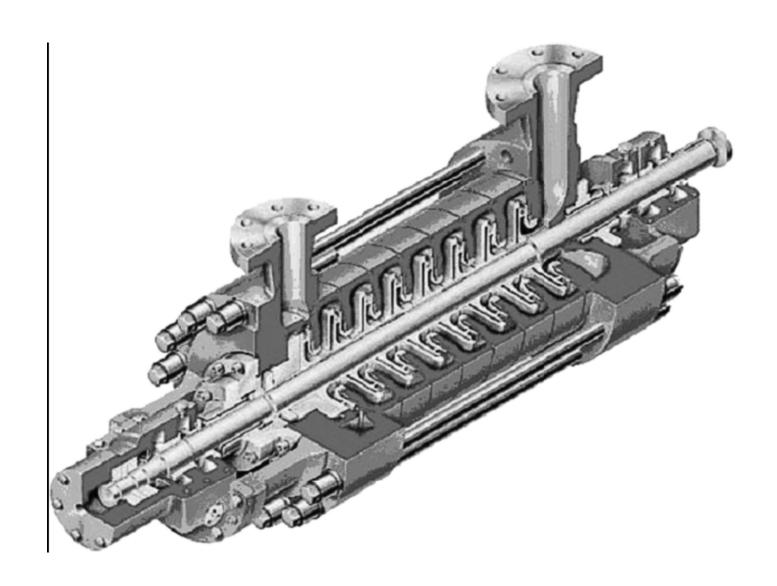


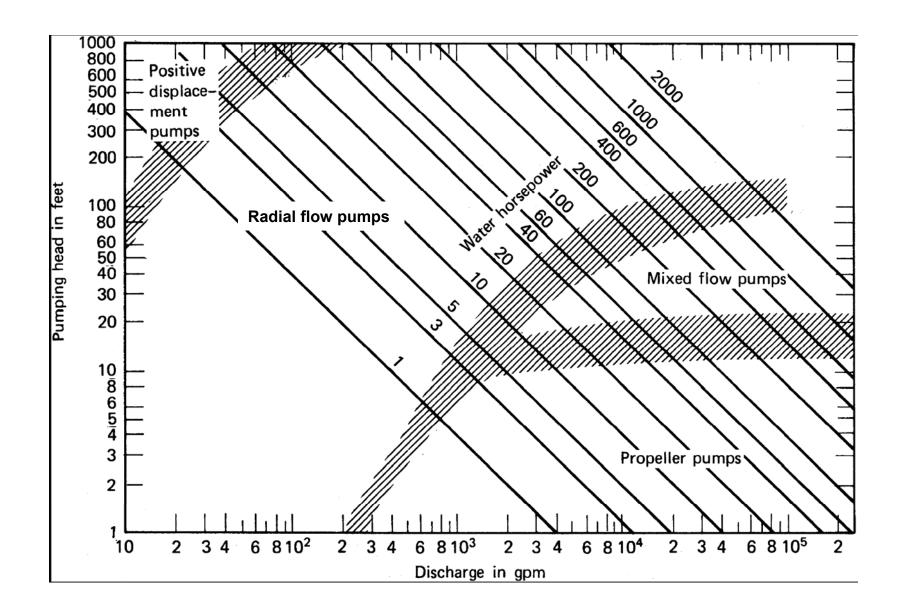




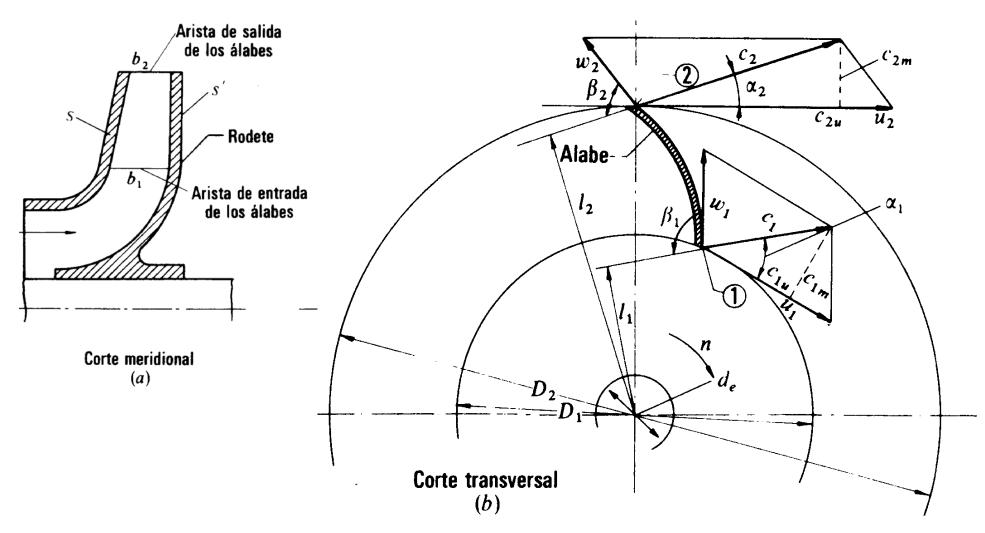


EJEMPLOS DE BOMBAS CENTRIFUGAS





TRIANGULOS DE VELOCIDADES FORMULA DE EULER



$$\bar{w}_1 = \bar{c}_1 - \bar{u}_1 \qquad \qquad \bar{c}_2 = \bar{w}_2 + \bar{u}_2$$

$$\bar{c}_2 = \bar{w}_2 + \bar{u}_2$$

$$d\bar{F} = dQ\rho(\bar{c}_2 - \bar{c}_1)$$

$$dM = dQ\rho(l_2c_2 - l_1c_1)$$

$$M = Q\rho(l_2c_2 - l_1c_1)$$

$$l_1 = r_1 \cos \alpha_1$$
 y $l_2 = r_2 \cos \alpha_2$

$$M = Q \rho (r_2 c_2 \cos \alpha_2 - r_1 c_1 \cos \alpha_1)$$

$$P_{u} = M\omega = Q \rho\omega(r_{2}c_{2}\cos\alpha_{2} - r_{1}c_{1}\cos\alpha_{1}) \quad W, SI \quad \omega = \frac{2\pi n}{60}$$

$$P_{\mathbf{u}}(\mathbf{W}) = G\left(\frac{\mathbf{kg}}{\mathbf{s}}\right) Y_{\mathbf{u}}\left(\frac{\mathbf{J}}{\mathbf{kg}}\right) = Q\left(\frac{\mathbf{m}^3}{\mathbf{s}}\right) \rho\left(\frac{\mathbf{kg}}{\mathbf{m}^3}\right) g\left(\frac{\mathbf{m}}{\mathbf{s}^2}\right) H_{\mathbf{u}}(\mathbf{m})$$

$$Y_{u}\left(\frac{J}{kg}\right) = Y_{u}\left(\frac{m^{2}}{s^{2}}\right) = H_{u}(m)g\left(\frac{m}{s^{2}}\right)$$

$$Q \rho Y_{u} = Q \rho \omega (r_{2}c_{2}\cos\alpha_{2} - r_{1}c_{1}\cos\alpha_{1})$$

$$r_{1}\omega = u_{1} \qquad r_{2}\omega = u_{2}$$

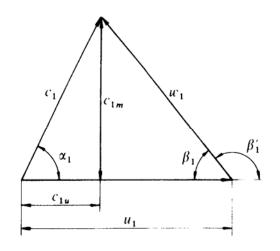
$$c_{1}\cos\alpha_{1} = c_{1u} \qquad c_{2}\cos\alpha_{2} = c_{2u}$$

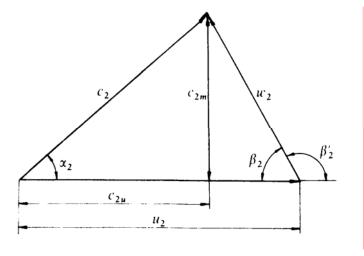
PRIMERA FORMA DE LA ECUACION DE EULER (Expresión energética)

$$Y_{u} = \pm (u_{1} c_{1u} - u_{2} c_{2u})$$

(Expresión en alturas)

$$H_{u} = \pm \frac{u_{1} c_{1u} - u_{2} c_{2u}}{g}$$





$$\begin{array}{l} \bar{c}_1 = \bar{u}_1 + \bar{w}_1 \\ \bar{c}_2 = \bar{u}_2 + \bar{w}_2 \end{array}$$

$$w_1^2 = u_1^2 + c_1^2 - 2 u_1 c_1 \cos \alpha_1 = u_1^2 + c_1^2 - 2 u_1 c_{1u}$$

$$u_1 c_{1u} = 1/2 (u_1^2 + c_1^2 - w_1^2)$$

$$u_2 c_{2u} = 1/2(u_2^2 + c_2^2 - w_2^2)$$

SEGUNDA FORMA DE LA ECUACION DE EULER (Expresión energética)

$$Y_{u} = \pm \left(\frac{u_{1}^{2} - u_{2}^{2}}{2} + \frac{w_{2}^{2} - w_{1}^{2}}{2} + \frac{c_{1}^{2} - c_{2}^{2}}{2}\right)$$

(Expresión en alturas)

$$H_{u} = \pm \left(\frac{u_{1}^{2} - u_{2}^{2}}{2g} + \frac{w_{2}^{2} - w_{1}^{2}}{2g} + \frac{c_{1}^{2} - c_{2}^{2}}{2g}\right)$$

$$H_{u} = \pm \left(\frac{u_{1}^{2} - u_{2}^{2}}{2g} + \frac{w_{2}^{2} - w_{1}^{2}}{2g} + \frac{c_{1}^{2} - c_{2}^{2}}{2g} \right)$$

$$H_{u} = \pm \left(\frac{p_{1} - p_{2}}{\rho g} + z_{1} - z_{2} + \frac{c_{1}^{2} - c_{2}^{2}}{2g}\right)$$

ALTURA DE PRESION DEL RODETE

$$H_p = \pm \left(\frac{p_1 - p_2}{\rho g}\right) = \pm \left(\frac{u_1^2 - u_2^2}{2g} + \frac{w_2^2 - w_1^2}{2g}\right)$$

(Signo +: turbinas; signo -: bombas)

ALTURA DINAMICA DEL RODETE

$$H_d = \pm \frac{c_1^2 - c_2^2}{2g}$$

GRADO DE REACCION DE LA BOMBA

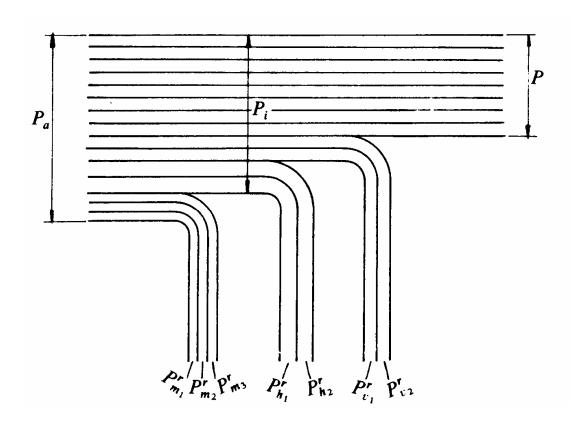
$$\varepsilon = Hp/Hu$$

- Si $H_p < 0$, el grado de reacción es negativo; Si $H_p = 0$, el grado de reacción es 0; Si $0 < H_p < H_u$ el grado está comprendido entre 0 y 1, que es el caso normal:
- Si $H_p > H_u$, el grado de reacción es mayor que 1.

POTENCIA DE LA BOMBA

$$P = Q \rho g H$$

RENDIMIENTO DE LA BOMBA



- P_h^r pérdidas hidráulicas: P_{h1}^r pérdidas por rozamiento de superficie; P_{h2}^r pérdidas por rozamiento de forma.
- P_v^r pérdidas volumétricas: P_{v1}^r pérdidas por caudal al exterior; P_{v2}^r pérdidas por cortocircuito.
- P_m^r pérdidas mecánicas: P_{m1}^r pérdidas por rozamiento en el prensaestopas; P_{m2}^r pérdidas por rozamiento en los cojinetes y accionamiento de auxiliares; P_{m3}^r pérdidas por rozamiento de disco.

$$\eta_h = H/H_u$$

Rendimiento volumétrico,
$$\eta_v$$

$$\eta_v = \frac{Q}{Q + q_e + q_i}$$

Rendimiento interno,
$$\eta_i$$

$$\eta_i = \frac{P}{P_i} = \frac{Q \rho g H \eta_h \eta_v}{Q \rho g H}$$

$$\eta_i = \eta_h \, \eta_v$$

Rendimiento mecánico,
$$\eta_m$$

$$\eta_m = P_i/P_a$$

Rendimiento total,
$$\eta_{tot}$$

Rendimiento total,
$$\eta_{tot} = \frac{P}{P_a} = \frac{P}{P_i} \frac{P_i}{P_a} = \eta_i \eta_m = \eta_v \eta_h \eta_m$$

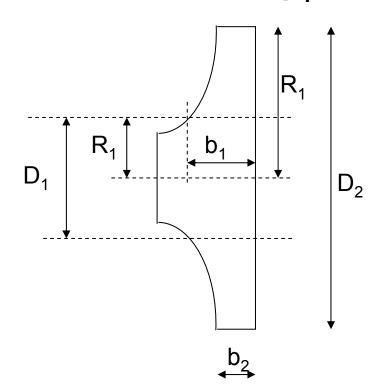
$$P_a = \frac{Q \rho g H}{\eta_i \eta_m} = \frac{Q \rho g H}{\eta_v \eta_h \eta_m} = \frac{Q \rho g H}{\eta_{tot}}$$

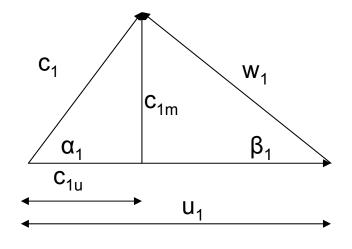
INFLUENCIA DE LOS ANGULOS DE LOS ALABES: β1

$$Q = C_{1m}^* 2\pi^* r_1^* b_1 = C1m^*\pi^* D1^*b1$$

$$U1 = \omega 1 r1$$

como ω y r son ctes por lo tanto U1 = cte además C_{m1} = cte (Q = cte, D_1 = cte, b_1 = cte)

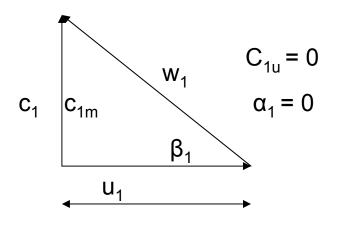




a) β 1 es tal que α 1 < 90 °

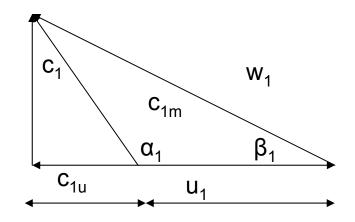
$$H_t = (C_{u2} U_2 - C_{u1} U_1)/g$$

INFLUENCIA DE LOS ANGULOS DE LOS ALABES: β₁



b) β 1 es tal que α 1 = 90 °

$$H_t = (C_{u2} U_2)/g$$



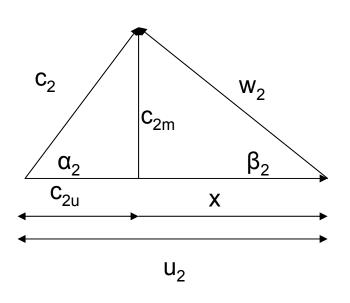
c) β 1 es tal que α 1 > 90 °

$$C_{1u} < 0$$

$$H_t = (C_{u2} U_2 + C_{u1} U_1)/g$$

Conviene un β_1 tal que $\alpha_1 > 90$ ° pero tengo un álabe muy largo

INFLUENCIA DE LOS ANGULOS DE LOS ALABES: β₂



$$\beta_1$$
 es tal que $\alpha 1 = 90^\circ$

$$H_t = (C_{u2} U_2)/g$$

$$C_{2u} = U_2 - X = U_2 - C_{2m}/tg \beta_2$$

$$H_t = ((U_2 - C_{2m}/tg \beta_2) U_2)/g$$

$$H_t = U_2^2(1 - C_{2m}/(tg \beta_2 U_2)/g$$

$$H_d = (C_2^2 - C_1^2)/2g = (C_{2u}^2 + C_{2m}^2 - C_{2u}^2)/2g$$

Cm1 = Cm2 = C1por que la veloc radial del impulsor es cte

$$H_d = (C_{2u}^2)/2g = (U_2 - X)^2/2g = (U_2 - C_{2m}/(U_2 tg \beta_2))^2 = f(\beta_2)$$

$$\varepsilon = 1 - H_d/H_t = \frac{1}{2} + \frac{1}{2} * (C_{2m}/(U_2 \text{ tg } \beta_2))$$

$$H_p = H_t - H_d = (U_2^2/2g)^* (1 - C_{2m}/(U_2 tg^2 \beta_2))$$

INFLUENCIA DE LOS ANGULOS DE LOS ALABES: β₂

Consideremos un valor de β que anule H_t

$$H_t = U_2^2(1 - C_{2m}/(tg \beta_2 U_2)/g = 0$$
 tg $\beta_2 = C_{2m}/U_2$

$$\beta_{min} \longrightarrow H_t = 0 \longrightarrow H_p = H_d \longrightarrow \epsilon = 1$$

$$\beta 2 = \pi/2$$
 tg β_2 = infinito $H_t = U^2/g$ $H_d = U^2/2g$ $\epsilon = 1/2$

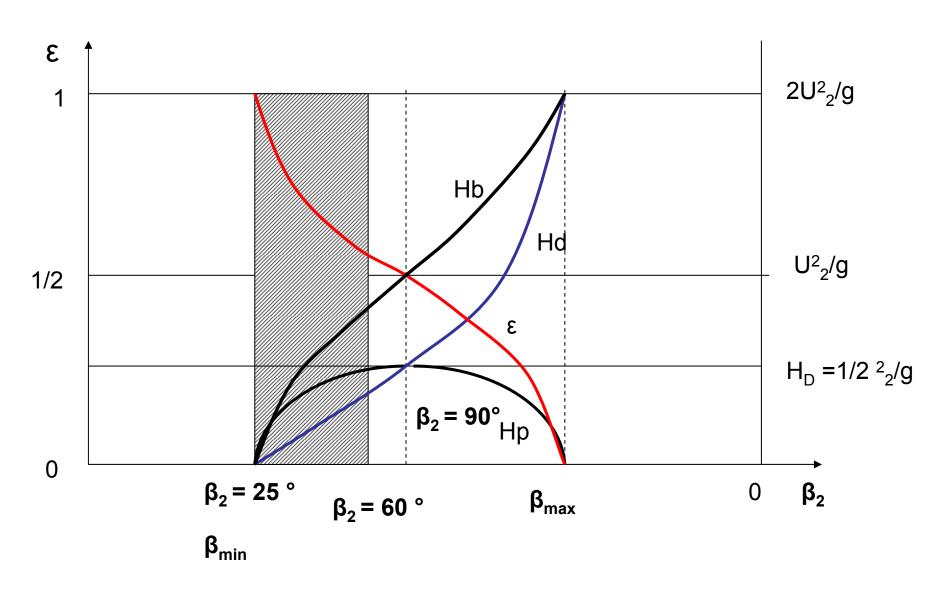
Finalmente Ht tendrá un máximo cuando

$$H_t = U^2/g(1-(-1))$$
 Esto implica que

$$C_{2m}/(tg \beta_2 U_2) = -1$$
 $tg \beta_2 = -C_{2m}/U_2$

$$H_t = 2 U^2/g = H_d$$
 $H_p = 0$ y $\epsilon = 0$

INFLUENCIA DE LOS ANGULOS DE LOS ALABES: β₂



LEYES DE SEMEJANZA DE LAS BOMBAS

Dos bombas son semejantes si existe:

Semejanza Geométrica (relación entre: dimensiones, formas, etc.) Semejanza Cinemática (cuando el triángulo de velocidad es semejante) Semejanza Dinámica (en 2 puntos homólogos, tienen igual Reynold)

Las 3 primeras leyes se refieren a 2 bombas semejantes funcionando en iguales condiciones.

ightharpoonup Q= A. Cm = Cm. π .D.b pero Cm = fn (n,D) y b = fn (D) entonces Q=fn (n,D³) donde

Cm es el caudal másico, D es el diámetro del rodete, n es la velocidad de rotación,

$$\frac{Q_1}{Q_2} = \frac{n_1.D_1^3}{n_2.D_2^3}$$
 Ley 1 de semejanza (1) Si n1= n2 entonces

$$\frac{Q_1}{Q_2} = \frac{D_1^3}{D_2^3} \tag{1'}$$

Por Euler vimos que: Ht=
$$\frac{C_{2u}U_2}{g}$$
 C_{2u} = fn (n, D)

$$U_2 = \text{fn (n, D), entonces}$$
 Ht= fn (n^2, D^2)

$$\frac{H_1}{H_2} = \frac{n_1^2 . D_1^2}{n_2^2 . D_2^2}$$
 Ley 2 de semejanza (2) Si n1= n2 entonces

$$\frac{H_1}{H_2} = \frac{D_1^2}{D_2^2} \tag{2'}$$

Potencia
$$N = \frac{H.Q.\gamma}{75.\eta}$$
 por lo tanto N= fn (Q,H) de lo visto en los dos puntos anteriores

decimos que: Q=fn (n,D^3) y Ht = fn (n^2, D^2) entonces

$$N = fn(n^3, D^5)$$

$$\frac{N_1}{N_2} = \frac{n_1^3 . D_1^5}{n_2^3 . D_2^5}$$
 Ley 3 de semejanza Si n1= n2 entonces

$$\frac{N_1}{N_2} = \frac{D_1^5}{D_2^5} \tag{3`}$$

Las 3 siguientes son para una misma bomba (D=cte) que funciona en 2 condiciones distintas:

$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$
 (4) $\frac{H_1}{H_2} = \frac{n_1^2}{n_2^2}$ (5) $\frac{N_1}{N_2} = \frac{n_1^3}{n_2^3}$ (6)

De la ecuación 2 despejamos

$$\frac{D_1^2}{D_2^2} = \frac{H_1 \cdot n_2^2}{H_2 \cdot n_1^2} \qquad \text{por lo tanto} \qquad \frac{D_1}{D_2} = \frac{H_1^{1/2} \cdot n_2}{H_2^{1/2} \cdot n_1} \tag{7}$$

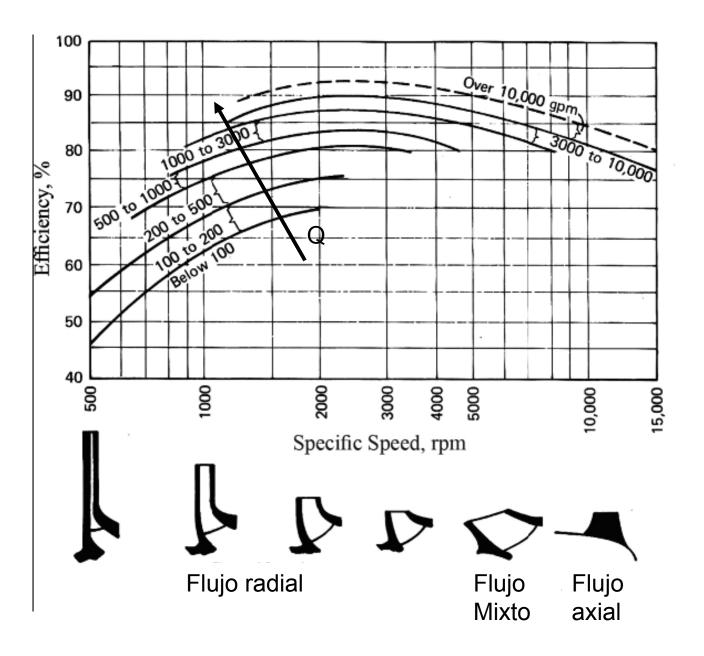
Reemplazamos (7) en (1):

$$\frac{Q_1}{Q_2} = \frac{H_1^{3/2}.n_2^2}{H_2^{3/2}.n_1^2} \quad \text{saco raíz cuadrada} \quad \frac{Q_1^{1/2}}{Q_2^{1/2}} = \frac{H_1^{3/4}.n_2}{H_2^{3/4}.n_1}$$

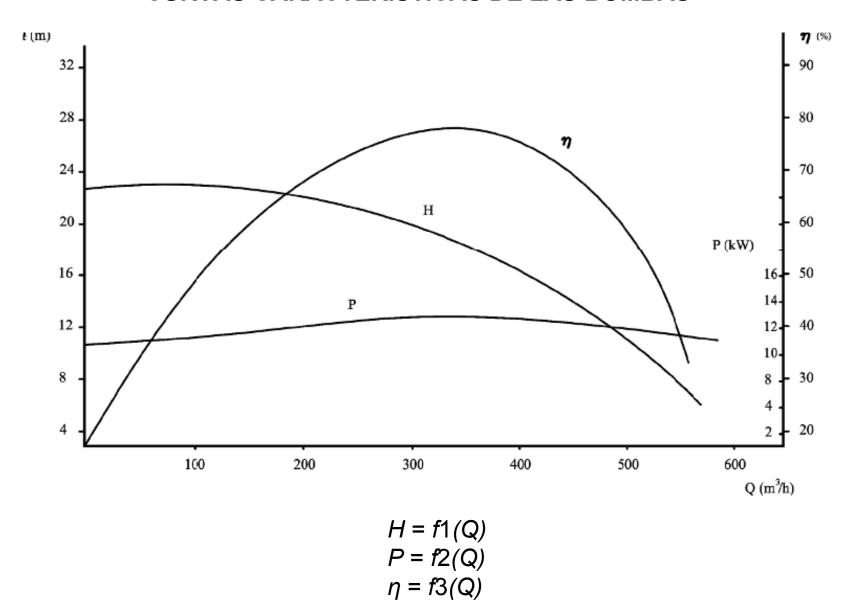
Por lo tanto reordenando la ecuación anterior:

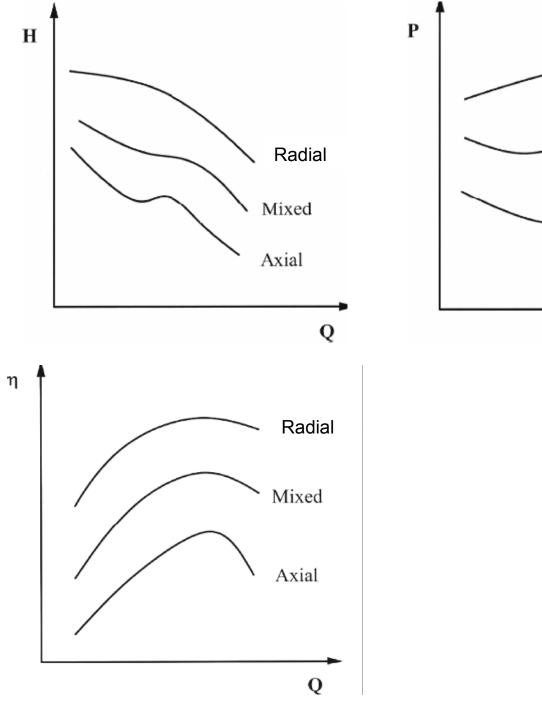
$$\frac{Q_1^{1/2}.n_1}{H_1^{3/4}} = \frac{Q_2^{1/2}.n_2}{H_2^{3/4}} = \dots = \frac{Q^{1/2}.n}{H^{3/4}}$$

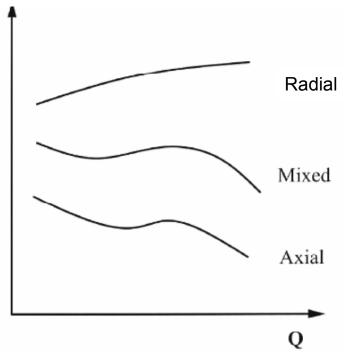
Número específico de revoluciones. Constante para una serie de bombas semejantes

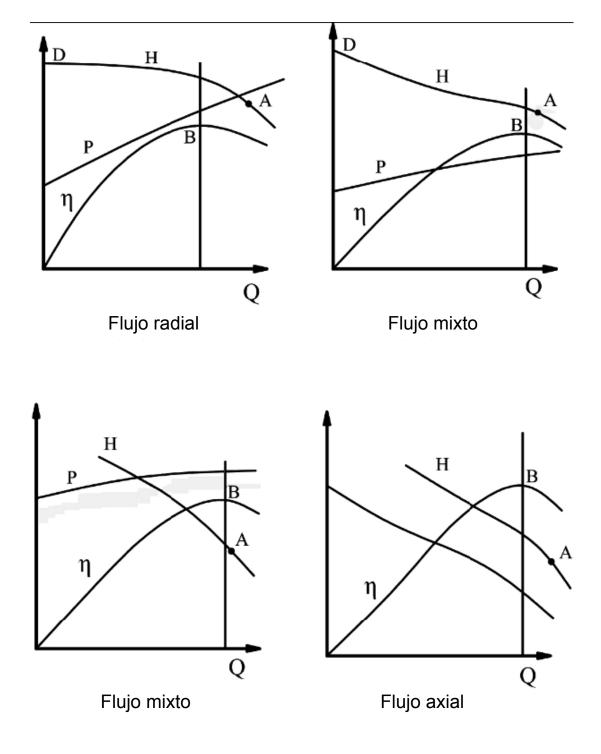


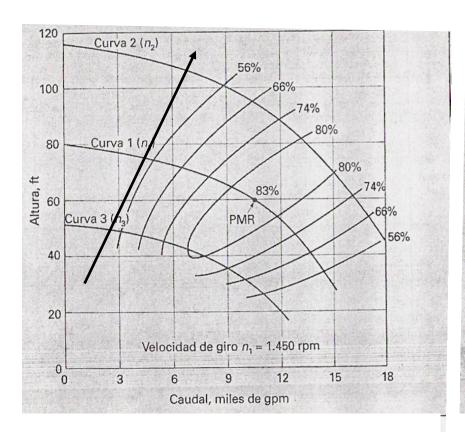
CURVAS CARACTERISTICAS DE LAS BOMBAS

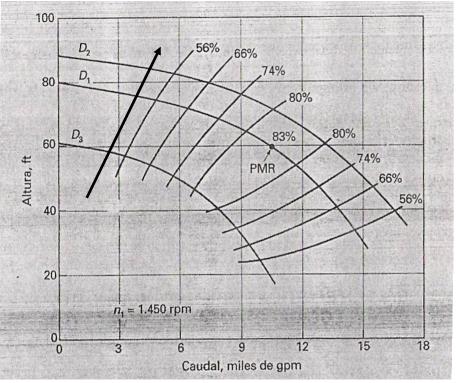


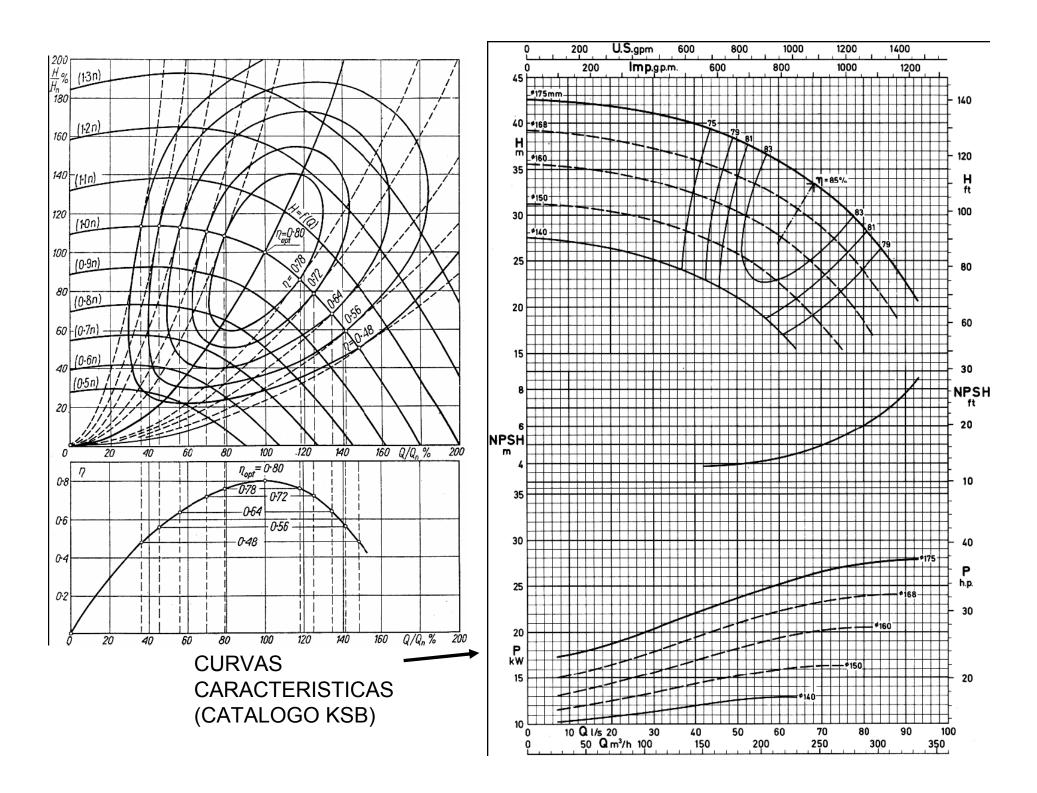










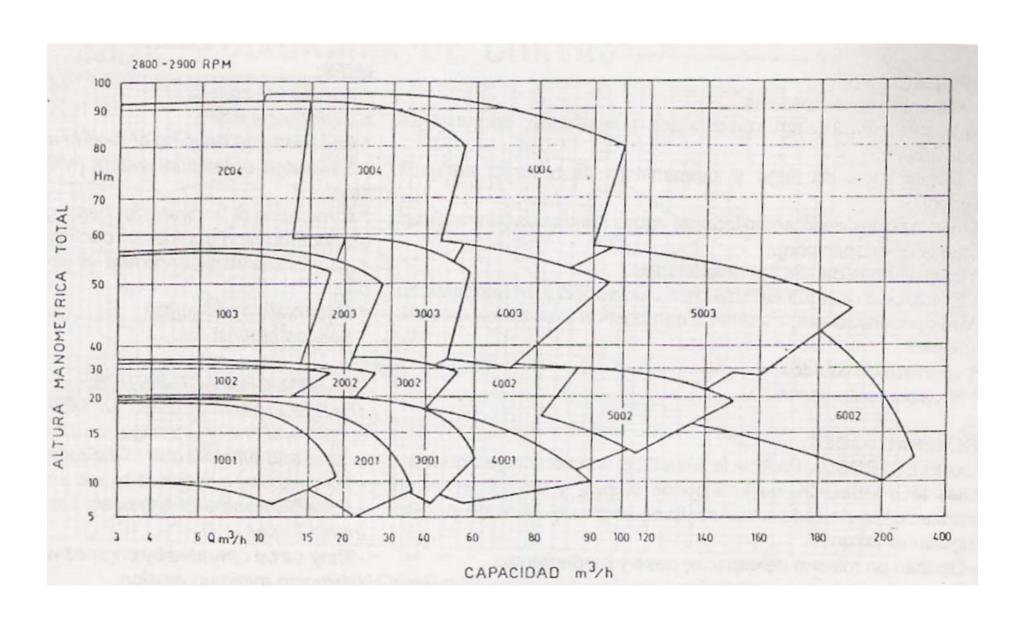


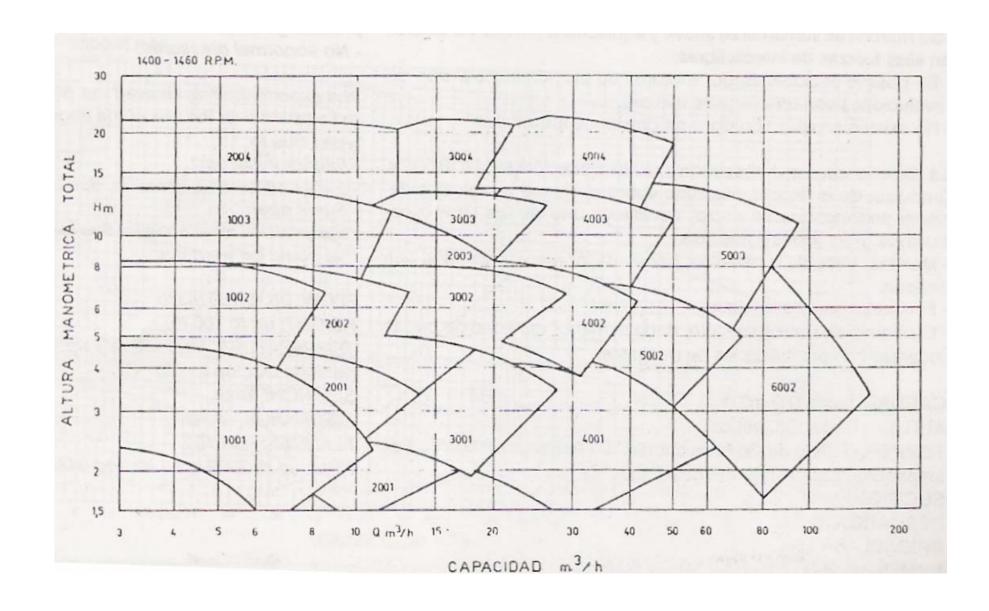
SELECCIÓN DE BOMBAS

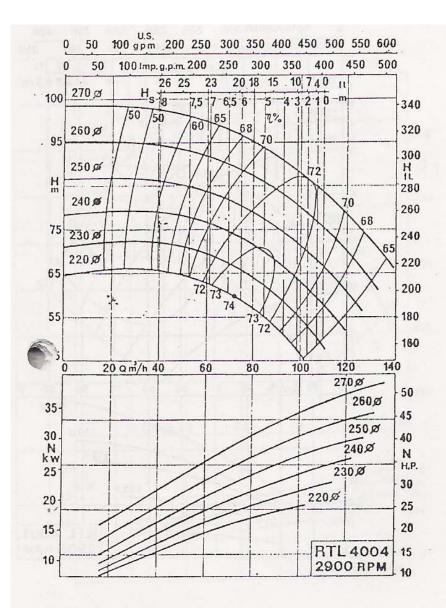
CONSIDERACIONES

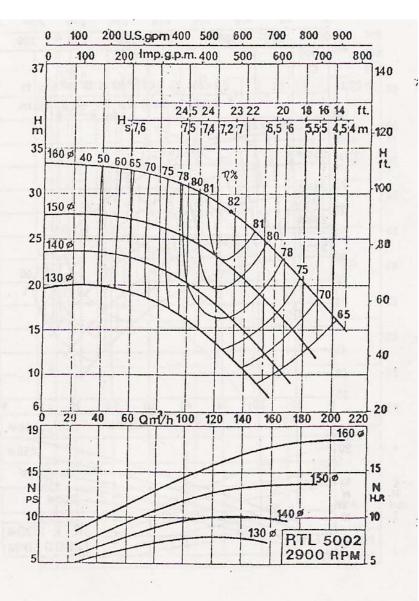
- 1- LOS GRÁFICOS BASICOS DE LOS CATÁLOGOS Y SOFTWARE ESTAN DISEÑADOS PARA AGUA
- 2- SE HACE NECESARIO OBTENER LOS EQUIVALENTES PARA AGUA (CAUDAL, ETC) DE LOS FLUIDOS QUE SE VAN A BOMBEAR
- 3- A PARTIR DE ESTE PUNTO SE DEFINE EL GRUPO DE BOMBAS EN FUNCION DE CAUDAL Y ALTURA MANOMETRICA
- 4- EN LAS CURVAS DEL GRUPO DE BOMBAS SE SELECCIONA LA QUE POSEE MEJOR COMPORTAMIENTO EN NUESTRAS CONDICIONES DE TRABAJO (MAYOR RENDIMIENTO Y MAYOR ESTABILIDAD DE FUNCIONAMIENTO

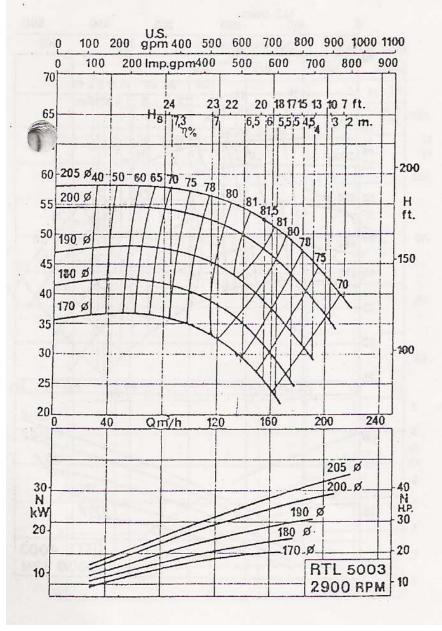
SELECCIÓN DE BOMBAS

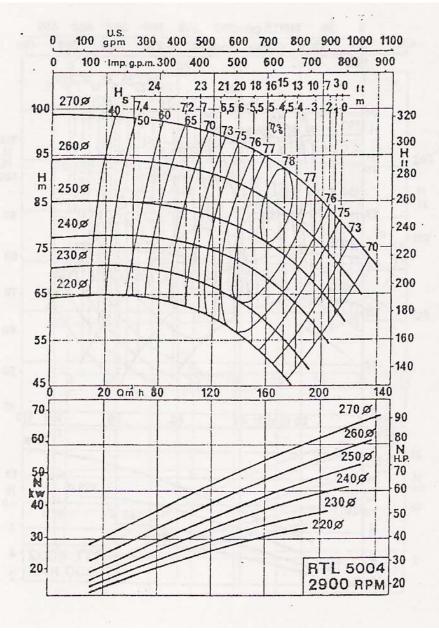


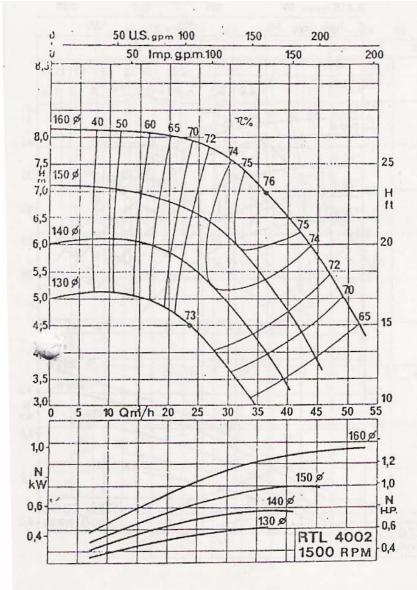


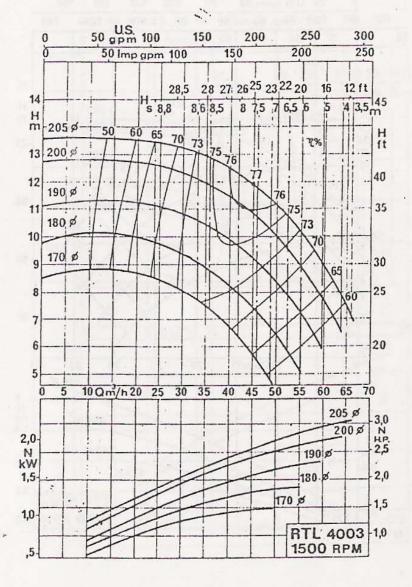


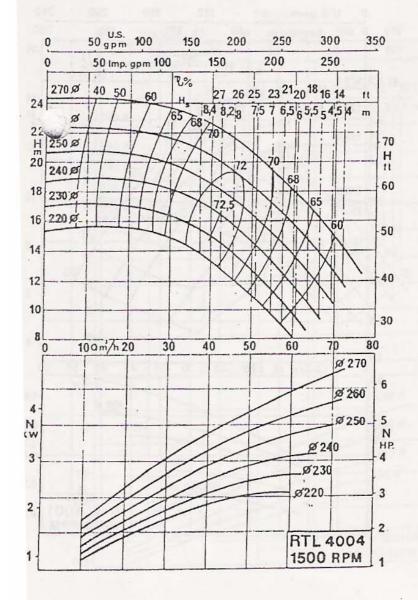


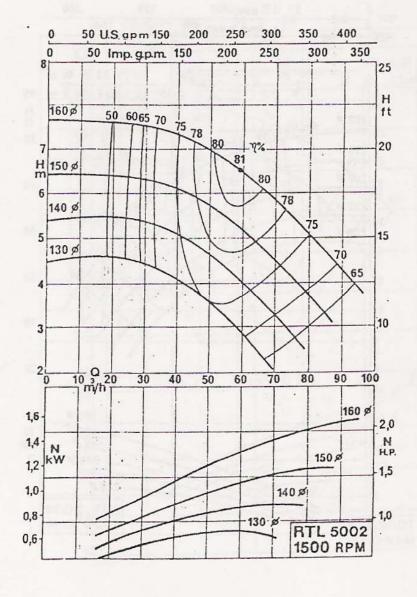




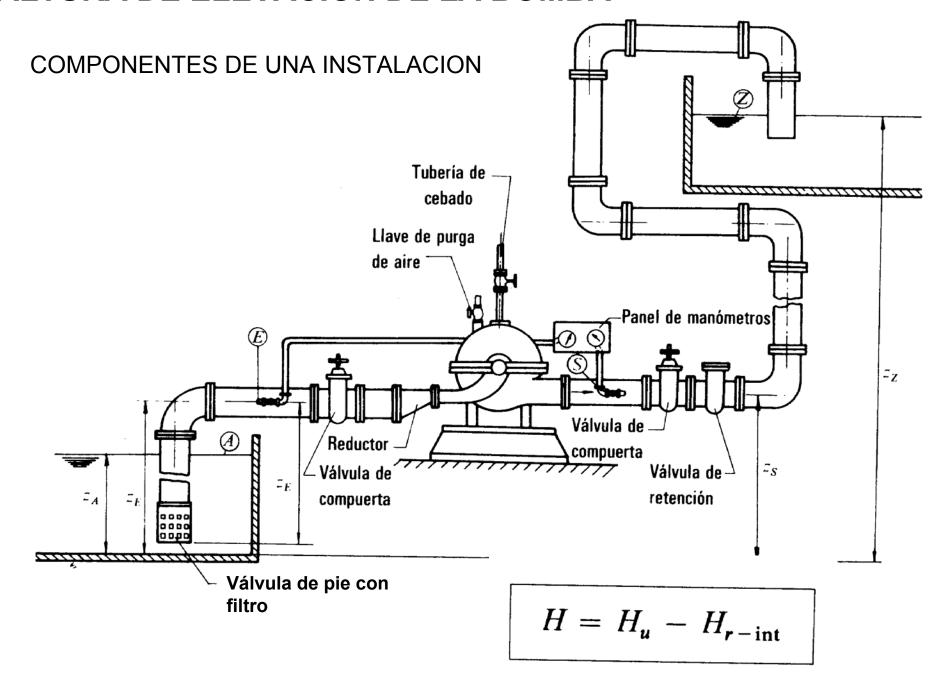


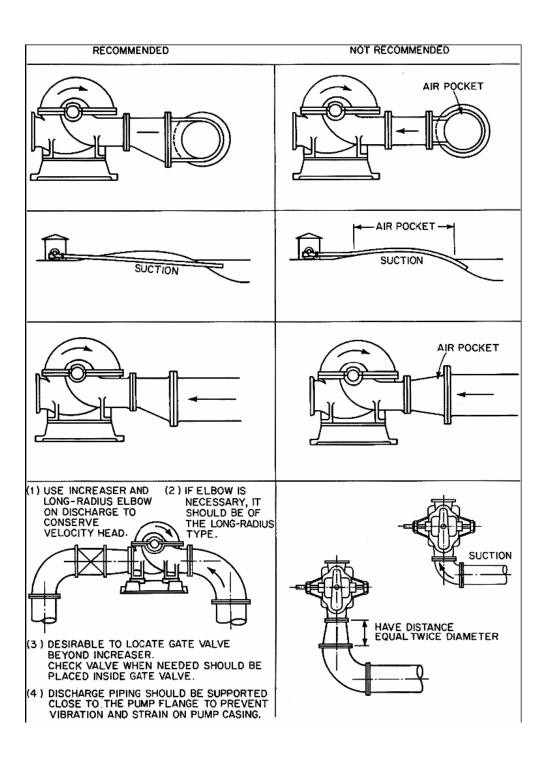






ALTURA DE ELEVACION DE LA BOMBA





$$\frac{p_E}{\rho g} + z_E + \frac{v_E^2}{2g} + H = \frac{p_S}{\rho g} + z_S + \frac{v_S^2}{2g}$$

$$H = \left(\frac{p_S}{\rho g} + z_S + \frac{v_S^2}{2g}\right) - \left(\frac{p_E}{\rho g} + z_E + \frac{v_E^2}{2g}\right)$$

PRIMERA EXPRESION DE LA ALTURA UTIL

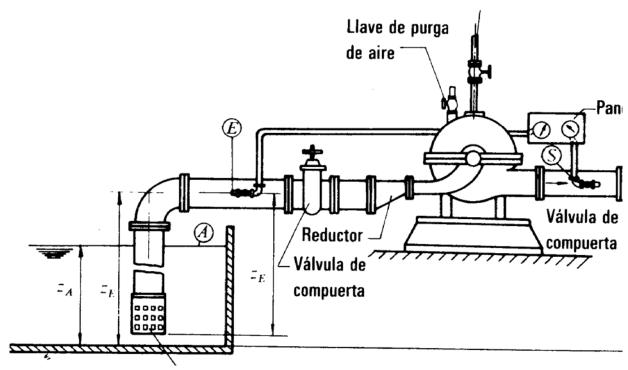
$$H = \frac{p_S - p_E}{\rho g} + z_S - z_E + \frac{v_S^2 - v_E^2}{2g}$$

$$\frac{p_A}{\rho g} + z_A + \frac{v_A^2}{2g} - H_{r-ext} + H = \frac{p_Z}{\rho g} + z_z + \frac{v_z^2}{2g}$$

SEGUNDA EXPRESION DE LA ALTURA UTIL

$$H = \frac{p_{Z} - p_{A}}{\rho g} + z_{Z} - z_{A} + H_{ra} + H_{ri} + \frac{v_{t}^{2}}{2g}$$

CAVITACION



Válvula de pie con filtro

$$\frac{p_A}{\rho g} + z_A - H_{rA-E} = \frac{p_E}{\rho g} + z_E + \frac{c_E^2}{2g}$$

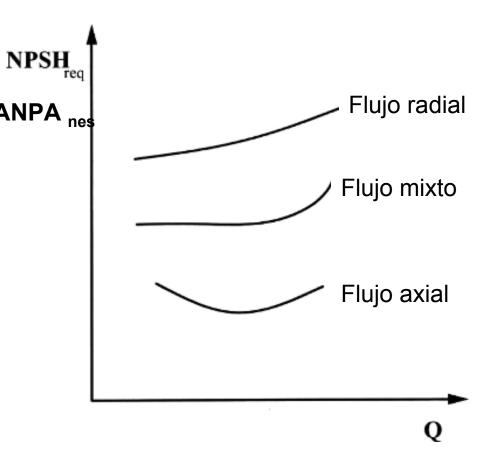
$$\frac{p_A}{\rho g} - H_s - H_{rA-E} = \frac{p_E}{\rho g} + \frac{c_E^2}{2g}$$

CAVITACION

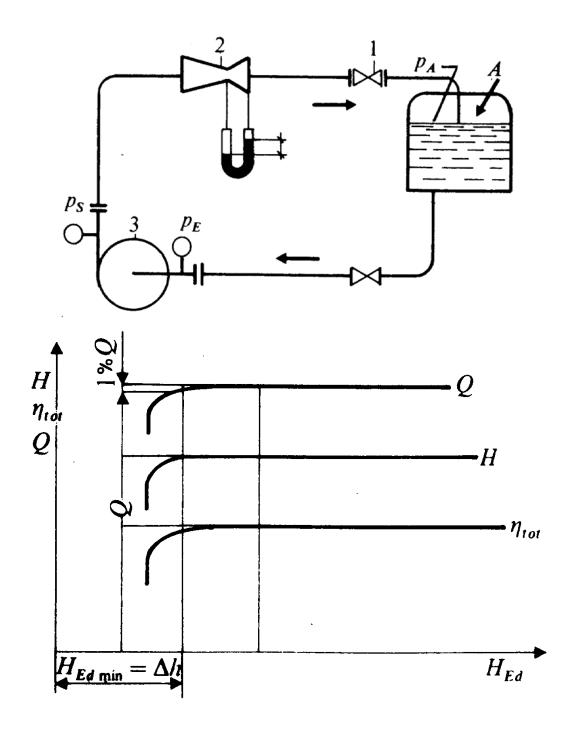
$$H_{Ed} = \frac{p_E - p_s}{\rho g} + \frac{c_E^2}{2g}$$

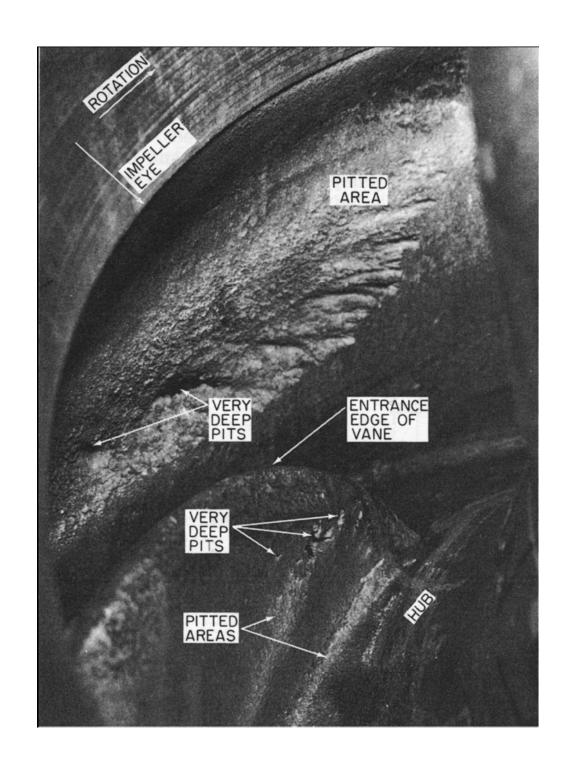
$$H_{Ed} = \frac{p_A - p_s}{\rho g} - H_s - H_{rA-E}$$

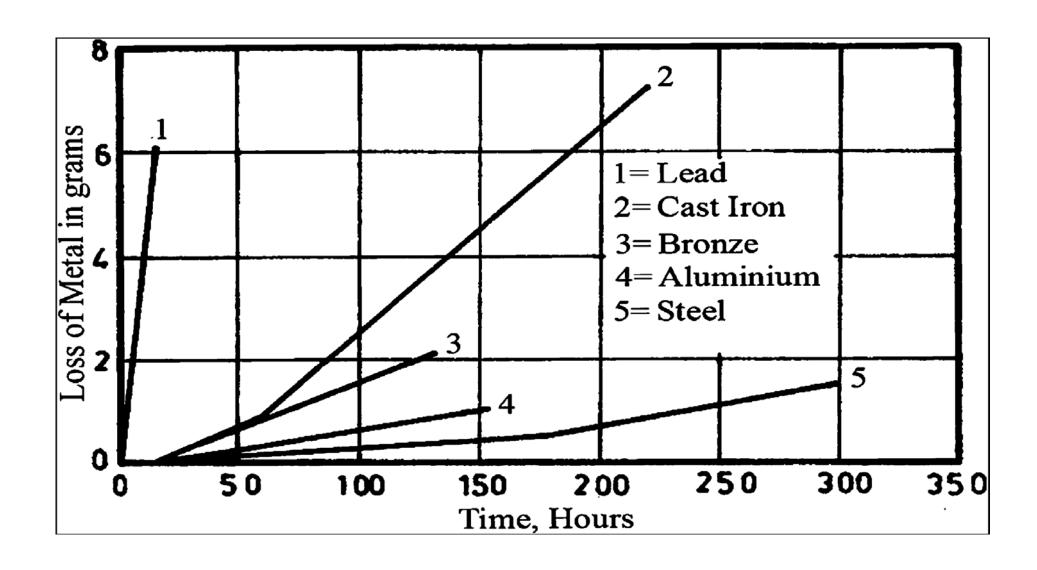
$$H_{s\,max} = \frac{p_A - p_s}{\rho g} - H_{r\,A-E} - \Delta h$$



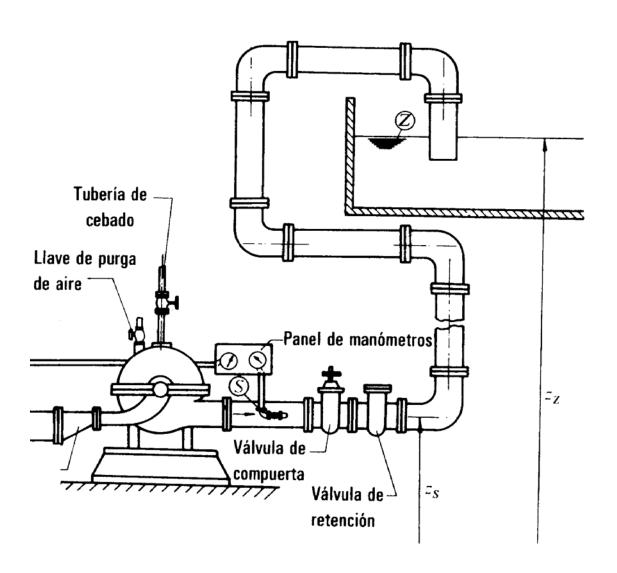
$$\mathsf{ANPA}_{\mathsf{nes}} = \Delta h = H_{\mathit{Ed min}} = \left(\frac{p_{\mathit{A}} - p_{\mathit{s}}}{\rho g} - H_{\mathit{s}} - H_{\mathit{rA} - \mathit{E}}\right)_{\mathit{min}}$$







GOLPE DE ARIETE



El golpe de ariete puede producirse

- si se para el motor de la bomba sin cerrar previamente la válvula de impulsión;
- si hay un corte imprevisto de corriente, en el funcionamiento de la bomba.

COMO EVITARLO

- cerrar lentamente la válvula de impulsión;
- escoger el diámetro de la tubería de impulsión grande, para que la velocidad en la tubería sea pequeña;
- instalar la bomba con un *volante* que en caso de corte de la corriente reduzca lentamente la velocidad del motor y por consiguiente la velocidad del agua en la tubería;
- inyectar aire con un compresor para producir un muelle elástico durante la sobrepresión;
- utilizar uno de los esquemas de la Fig. 19-31 a, b, c.

