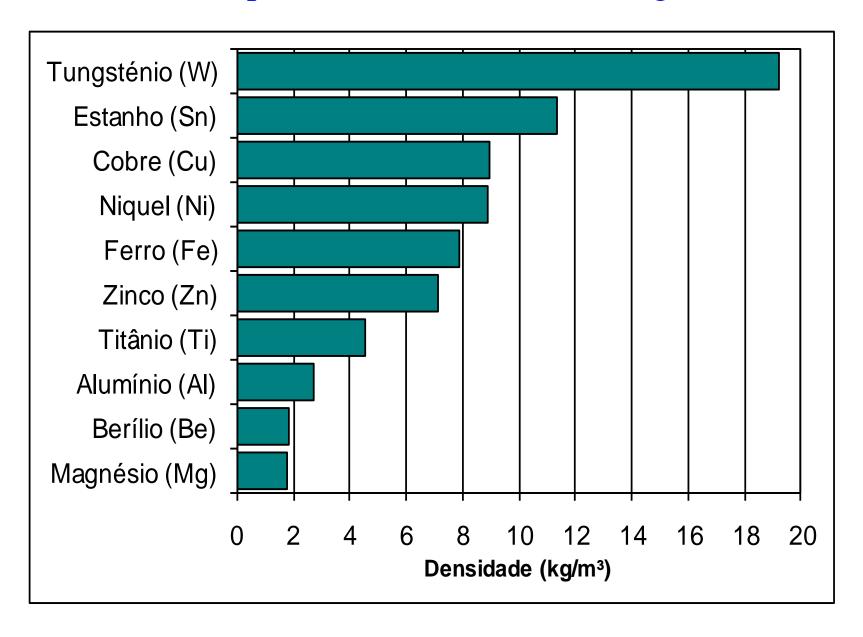
LIGAS DE ALUMÍNIO


MATERIAIS PARA ENGENHARIA UFPR/2010 PROF. SCHEID

ALUMÍNIO

- PROPRIEDADES FÍSICAS E MECÂNICAS

- →Número Atômico: 13
- → Massa Atômica: 26,98
- →Ponto de Fusão: 660 °C
- → Sistema cristalino: CFC (a: 4,044 Ângstrons)
- **→Densidade:** 2,7 g/cm³

Gráfico comparativo da densidade de alguns metais

PROPRIEDADES FÍSICAS E MECÂNICAS

A GRANDE VANTAGEM DO ALUMÍNIO É O BAIXO PESO ESPECÍFICO E ELEVADA RESISTÊNCIA À CORROSÃO ATMOSFÉRICA (película ${\rm Al_2O_3}$ com espessura entre 50 a 100 Ângstrons).

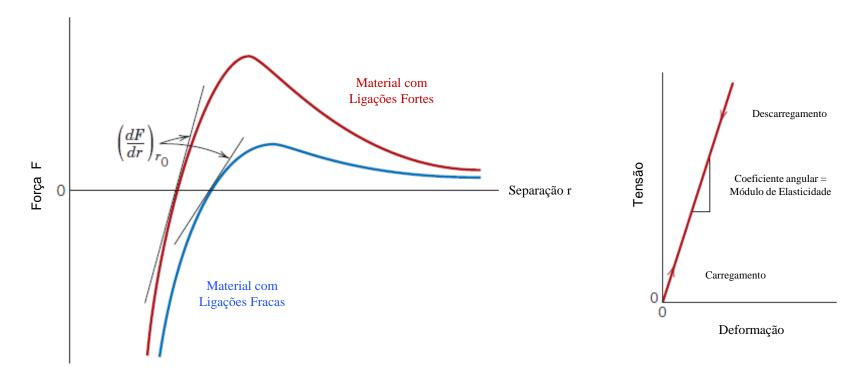
→ RESISTÊNCIA MECÂNICA

O Al puro (99,99%) tem baixa resistência mecânica

Resistência à tração:

- Al puro: 60 MPa
- Al comercial= 90 140 MPa
- ELEMENTOS DE LIGA, TRABALHO A FRIO E TRATAMENTO TÉRMICO, AUMENTAM A RESISTÊNCIA À TRAÇÃO (600 MPa).

PROPRIEDADES FÍSICAS E MECÂNICAS


→ DUCTILIDADE

Alongamento pode ser superior a 40%.

→ MÓDULO DE ELASTICIDADE

Possui módulo de elasticidade baixo

Al: 7000 Kg/mm² Cu: 11.500 Kg/mm² Aço: 21.000 Kg/mm²

PROPRIEDADES FÍSICAS E MECÂNICAS

→ CONDUTIVIDADE ELÉTRICA

A condutividade elétrica do Alumínio é de 35 x 10^4 (Ω .m)⁻¹ a 25°C, correspondendo entre 61- 65% da condutividade do Cobre.

A condutividade elétrica é afetada pela presença de impurezas

→CONDUTIVIDADE TÉRMICA

Tem elevada condutividade térmica 0,57 cal/cm.s a 0°C

→ CALOR LATENTE DE FUSÃO

Tem elevado calor latente de fusão

- → COMPORTAMENTO NÃO-FERROMAGNÉTICO
- → ANTIFAISCANTE E NÃO-TÓXICO
- → REFLETIVIDADE TÉRMICA E ASPECTO BRILHANTE

ALUMÍNIO E SUAS LIGAS PRINCIPAIS ELEMENTOS DE LIGA São Divididos em três grupos:

1º- Cobre, Magnésio e Zinco formam soluções sólidas em variados percentuais, em temperaturas relativamente elevadas. A solubilidade é quase nula em temperatura ambiente.

O Cobre e o Magnésio originam as fases intermediárias $CuAl_2 - \theta$ e $Al_3Mg_2 - \beta$

ALUMÍNIO E SUAS LIGAS PRINCIPAIS ELEMENTOS DE LIGA São Divididos em três grupos:

2º- Silício e Estanho são formadores de eutéticos. O Silício forma eutético com 12,6% deste elemento e a fase rica em Alumínio apresenta baixo teor de Silício.

Silício e Estanho são igualmente insolúveis em temperatura ambiente.

ALUMÍNIO E SUAS LIGAS PRINCIPAIS ELEMENTOS DE LIGA São Divididos em três grupos:

3º- Ferro, Manganês, Níquel, Titânio e Cromo são pouco solúveis no Alumínio, formando determinadas fases ou compostos intermediários, tais como: Fe₃Al, β-Al₆Mn, Al₃Ni, Al₇Cr, Al₃Ti, promovendo alterações significativas nas propriedades mesmo em pequenas quantidades.

ALUMÍNIO E SUAS LIGAS - PRINCIPAIS APLICAÇÕES-

Elevada Plasticidade laminados de baixa espessura (chapas, folhas, resguardos de bombons...)

Elevada condutividade elétrica (65% do Cu) - emprego no setor elétrico (cabos, fios). A vantagem do Al é a leveza.

Elevada resistência à corrosão artigos domésticos, embalagens, esquadrias, telhas, perfis, luminárias.

Baixa densidade→ material para construção mecânica (carros, aeronaves)

ALUMÍNIO E SUAS LIGAS

CLASSIFICAÇÃO DAS LIGAS DE ALUMÍNIO

LIGAS TRABALHADAS

LIGAS FUNDIDAS

Passam por processos de laminação, extrusão, forjamento, estiramento.

Sub-divisão:

A- LIGAS TRABALHADAS TRATÁVEIS TERMICAMENTE

- Ótimas propriedades mecânicas são obtidas por tratamento térmico

B- LIGAS TRABALHADAS NÃO-TRATÁVEIS OU LIGAS ENCRUÁVEIS

- Não respondem ao tratamento térmico.
- As propriedades mecânicas são determinadas pelo grau de trabalho a frio / encruamento.

NOMENCLATURA ALUMINUM ASSOCIATION (AA) e ASTM PARA LIGAS TRABALHADAS

XXXX

1º X classifica a liga pela série segundo o elemento majoritário da liga

2º X se for zero a liga é normal e se for 1, 2 e 3 indica uma variante específica da liga normal (como teor mínimo e máximo de um determinado elemento)

3º X e 4º X são para diferenciar as várias ligas do grupo.

NOMENCLATURA ALUMINUM ASSOCIATION (AA) e ASTM PARA LIGAS TRABALHADAS

Alumínio > 99% de pureza → 1XXX

Cobre \rightarrow 2XXX

Manganês \rightarrow 3XXX

Silício \rightarrow 4XXX

Magnésio → 5XXX

Zinco → 7XXX

Outros elementos → 8XXX

NOMENCLATURA ALUMINUM ASSOCIATION (AA) e ASTM PARA LIGAS TRABALHADAS

Alumínio não ligado: Série 1000

• O segundo algarismo indica modificações nos limites de impurezas

 Os dois últimos algarismos representam o teor de Alumínio

• Ex: 1065 **Al com 65% de pureza**

NOMENCLATURA ALUMINUM ASSOCIATION (AA) e ASTM PARA LIGAS FUNDIDAS

XXX.X

1º X indica a série segundo o principal elemento da liga

2º X e 3º X caracterizam ligas de composição específica

4º X→ zero (0) indica peças fundidas Um (1) indica lingotes

NOMENCLATURA ALLUMINUM ASSOCIATION (AA) e ASTM PARA LIGAS FUNDIDAS

Alumínio > 99% de pureza

→ 1XX.X

Cobre

→ 2XX.X

Silício e Cobre e/ou Magnésio

→ 3XX.X

Silício

→ 4XX.X

Magnésio

→ 5XX.X

Zinco

→ 7XX.X

Estanho

→ 8XX.X

Outros Elementos

→ 9XX.X

LIGAS DE ALUMÍNIO

(Ligas Trabalhadas / Fundidas)

Sistemas de Liga com potencial para endurecimento por solubilização e Envelhecimento: Endurecíveis por tratamento térmico

Al-Cu (CuAl₂) Al-Cu-Mg (Al₂CuMg) Al-Mg-Si (Mg₂Si) Al-Zn-Mg (MgZn₂) Al-Zn-Mg-Cu

Ligas comerciais tratáveis por solubilização e

Envelhecimento são:

2XXX, 6XXX, 7XXX 2XX.X, 3XX.X, 7XX.X

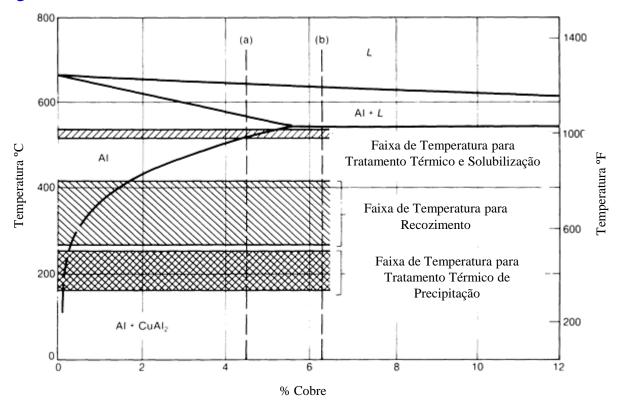
Ligas comerciais ao Lítio Tratáveis:

Al-Li $(\delta' - Al_3Li)$ 8XXX, 9XX.X

NOMENCLATURA E SIMBOLOGIA DAS TRANSFORMAÇÕES ESTRUTURAIS

Tabela 11.8 Sistemas de designação de têmpera para ligas de alumínio^a

Têmpera	Definição							
F	Conforme fabricado							
O	Recozido							
H1	Apenas endurecido por encruamento							
H2	Endurecido por encruamento e parcialmente recozido							
Н3	Endurecido por encruamento e estabilizado (propriedades mecânicas estabilizadas por tratamento térmico de baixa temperatura)							
T1	Resfriado a partir de um processo de moldagem em temperatura elevada e naturalmente envelhecido para uma condição substancialmente estável							
T2	Resfriado a partir de um processo de moldagem em temperatura elevada, trabalhado a frio e naturalmente envelhecido para uma condição substancialmente estável							
Т3	Tratamento térmico para solubilização, trabalhado a frio e naturalmente envelhecido para uma condição substancialmente estável							
Т4	Tratamento térmico para solubilização e naturalmente envelhecido para uma condição substancialmente estável							
T5	Resfriado a partir de um processo de moldagem em temperatura elevada e envelhecido artificialmente							
Т6	Tratamento térmico para solubilização e envelhecido artificialmente							
T7	Tratamento térmico para solubilização e estabilizado							
T8	Tratamento térmico para solubilização, trabalhado a frio e envelhecido artificialmente							
Т9	Tratamento térmico para solubilização, envelhecido artificialmente e trabalhado a frio							
T10	Resfriado a partir de um processo de moldagem em temperatura elevada, trabalhado a frio e envelhecido artificialmente							


Nota: Uma listagem mais completa e descrições mais detalhadas podem ser encontradas nas páginas 24-27 de *Metals Handbook*, 9. ed., Ohio: American Society for Metals, vol. 2, 1979.

W – Solubilizada.

Leia-se Moldagem em temperatura elevada como trabalho a quente.

a Designação geral da liga: têmpera XXXX, onde XXXX é o número da liga da Tabela 11.7 (por exemplo, 6061-T6).

- Alívio de tensões
- Recozimento para recristalização e homogeneização
- Solubilização
- Precipitação ou envelhecimento

Alívio de tensões

As tensões internas do Alumínio puro trabalhado ou fundido ou ainda em peças soldadas são removidas pelo aquecimento na faixa de 130 a 150 °C, por tempo determinado conforme a espessura ou diâmetro da peça sendo, no mínimo, de 1 min/mm.

O alívio de tensões envolve apenas a recuperação ou ainda uma recristalização apenas parcial da estrutura.

Recozimento para recristalização e homogeneização

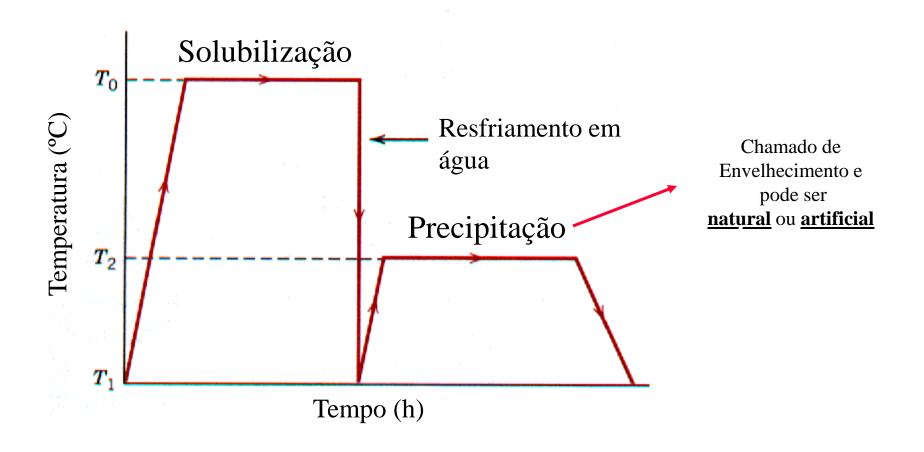
A Recristalização de ligas laminadas, extrudadas e trefiladas ou a homogeneização de peças fundidas são efetuados normalmente pelo aquecimento na faixa de 300 – 400°C*, havendo uma recristalização quase instantânea, evitando-se atingir 460°C na maior parte das ligas.

O resfriamento posterior è feito ao forno em taxa de 30°C/h até 250°C e depois resfriando ao ar, resultando em excelente ductilidade.

A homogeneização visa a dissolução de microconstituintes, resultando em uniformidade química e distribuição uniforme de fases.

Usar como referência cerca de 50 a 100°C abaixo da temperatura eutética.

Solubilização

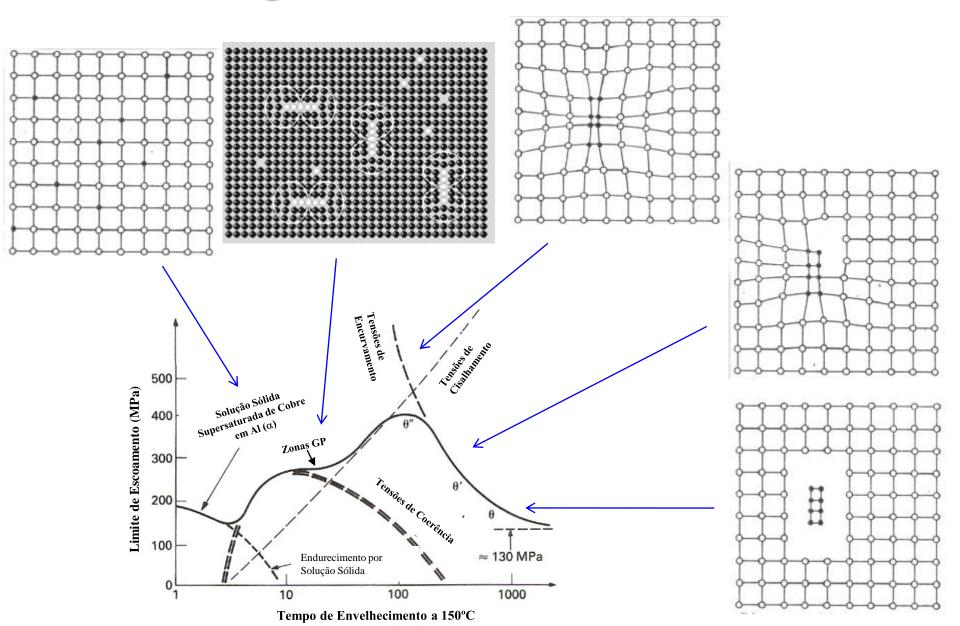

Consiste no aquecimento, encharque e resfriamento brusco. Visa a dissolução de elementos de liga, visando formar uma solução sólida homogênea (campo monofásico).

Temperatura: depende da liga (400 – 650°C). Liga Al-Cu (2XXX) a máxima solubilidade está a 548°C e é de 5,6% de Cobre em solução sólida.

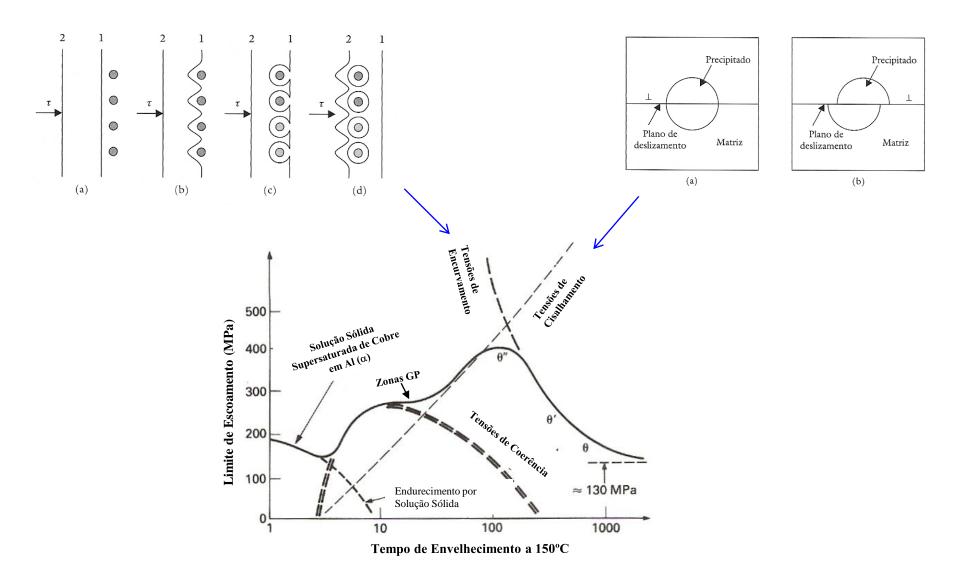

Precipitação ou Envelhecimento Artificial (100 – 250°C)

Consiste no reaquecimento a fim de promover a precipitação da segunda fase e conferir a máxima dureza e resistência mecânica.

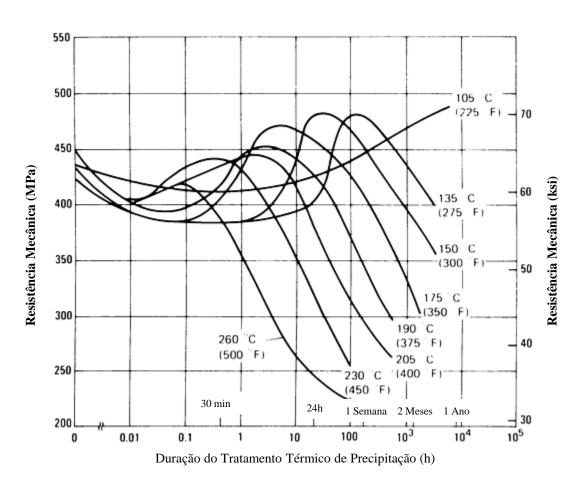
Tratamento Térmico Solubilização e Envelhecimento



Sistema Al-Cu



A fase endurecedora das ligas Al-Cu é CuAl₂ (θ)

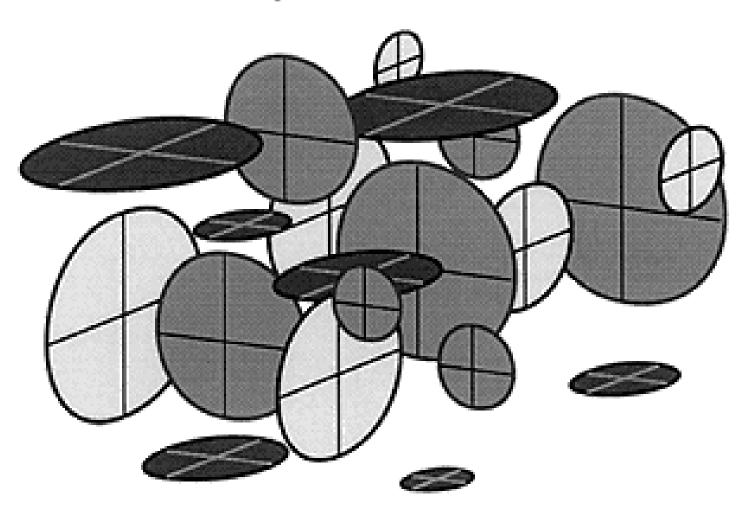

Ligas binárias Al-Cu

Ligas binárias Al-Cu

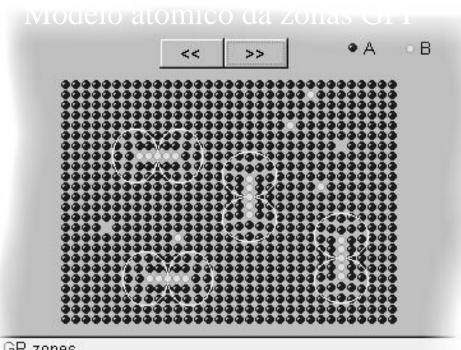
Ligas binárias Al-Cu

As zonas GP

Zonas **Guinier-Preston** (GP): homenagem aos cientistas que revelaram a estrutura dessas zonas através de estudos de difração de raios-x

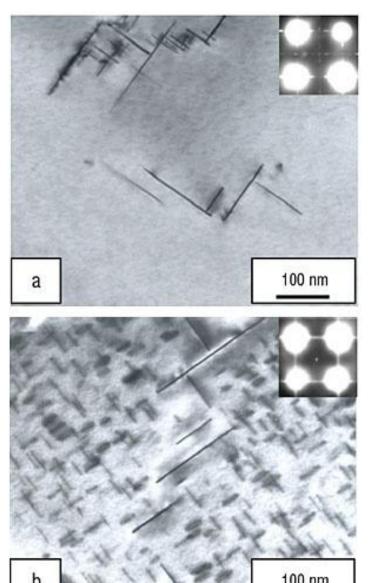

Guinier A: *Nature*, **142**, 569 (1938)

Preston G P: *Nature*, **142**, 570 (1938).


As fases precipitadas são altamente coerentes com a matriz, ou seja, é muito difícil determinar a sua estrutura mesmo com microscopia eletrônica de alta resolução (HRTEM).

Por exemplo: no sistema Al-Cu, os átomos de Cu precipitam paralelos aos planos {100} da matriz de Alumínio, então o contraste entre as fases depende muito da espessura da amostra

Modelo para Zonas GP



Modelo para Zonas GP

GP zones

Diffusion during ageing results in localised concentrations of Batoms on specific planes of the Allattice. These are nown as GP (Guinier-Preston) zones. In some system Tones are disk-shaped, whilet in others they can be a

- GRUPO DO ALUMÍNIO PURO (1XXX)-
- Fácil de conformar
- Dúctil
- Resistência Mecânica relativamente baixa
- Boa condutividade elétrica
- Bom acabamento
- Fácil de soldar

		Propriedades mecânicas Propriedades mecânicas Propriedades mecânicas							_		
	AA	Res	Mac	Solo	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
ſ		LIGAS DE TRABALHO MECÂNICO - NÃO TRATÁVEIS									
	1100	Α	C-D	Α	A91100	0.12Cu	Recozido(O)	90	35	35-45	Alimentos, produtos químicos, permutadores de calor, reflectores de luz

- GRUPO ALUMÍNIO MANGANÊS (3XXX)-
- Apresenta melhores propriedades mecânicas que o Al puro
- A ductilidade é ligeiramente diminuída pelo Mn
- Boa resistência à corrosão

ist. osão puin. dabil.		dabil.			_	Propriedades mecânicas			_
AA	Resist corros Maquir	Soldal	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
3003	A C-D	Α	A93003	0.12Cu, 1.2Mn,0.1Zn	Recozido(O)	110	40	30-40	Utensílios culinários, reservatórios de pressão e tubagens, latas de bebidas

- GRUPO ALUMÍNIO SILÍCIO (4XXX)-
- Apresenta baixo ponto de fusão
- Boa fluidez
- Tonalidade cinza agradável quando anodizada
- aplicações arquitetônicas

- GRUPO ALUMÍNIO - MAGNÉSIO (5XXX)-

Apresenta a mais favorável combinação de:

- Resistência Mecânica
- Resistência à Corrosão
- Ductilidade

	sist. rosão quin.	dabil.	Soldabil.	dabil.			_	Proprie	dades mecâ	nicas	
AA	Resist corrosâ Maquir	Sol	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características		
5052	A C-D	Α	A95052	2.5Mg, 0.25Cr	Def. Frio (H32)	230	195	12-18	Tubagens de óleo e combustível em aeronaves, tanques de combustível, rebites, arame		

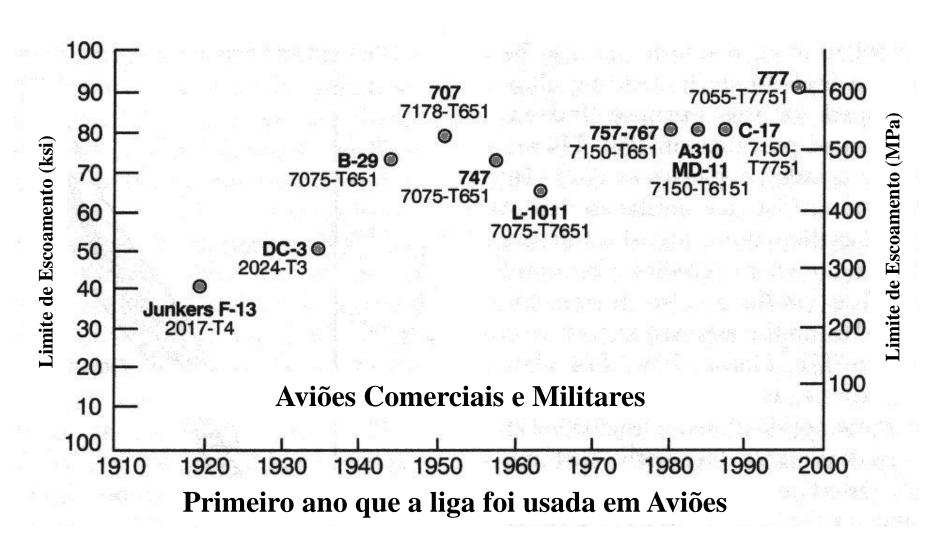
LIGAS TRATÁVEIS TERMICAMENTE - GRUPO ALUMÍNIO - COBRE (2XXX)-

- Com quantidades de Mg, Mn ou Si
- Apresentam alta resistência mecânica
- Apresentam resistência à corrosão limitada
- Conformabilidade limitada, exceto no estado recozido
- Soldagem por resistência

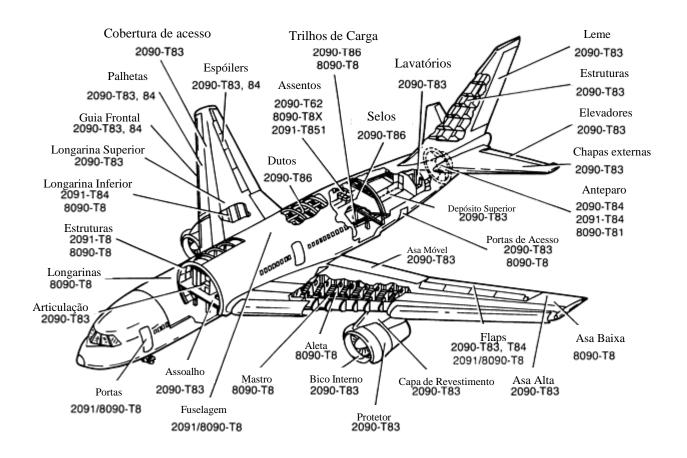
LIGAS TRATÁVEIS TERMICAMENTE - DURALUMÍNIO (2017)-

4% Cu, 0,5% Mg e 0,7% Mn

- Aplicações na indústria aeronáutica
- Resistência à tração no estado recozido: 180 MPa
- Resistência à tração depois de envelhecida: 430 MPa


- DURALUMÍNIO (2024)-

4,4% Cu e 1,5% Mg


- Aplicações na indústria aeronáutica (substituiu a 2017)
- Resistência à tração no estado recozido: 200MPa

	iist. osão quin. dabil.				Proprie	dades mecâr	nicas	_
AA	Resis corro Maqu Sold	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
2024	C B-C B-C	A92024	4,4Cu, 1.5Mg, 0.6Mn	Tratado termic. (T4)	470	325	20	Estruturas aeronauticas, rebites, jantes de camião, parafusos

EVOLUÇÃO DAS LIGAS DE ALUMÍNIO NA AERONÁUTICA

LIGAS DE ALUMÍNIO NA AERONÁUTICA

	iist. osão quin.	Soldabil.	Tabii.			_			
AA	Resist. corroså Maquir	Solo	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
2090				2.7Cu,0.25Mg 2.25Li,0.12Zr	Trat. termic. e def. frio (T83)	455	455	5	Estruturas aeronauticas e de tanques criogénicos
8090					Trat. termic. e def. frio (T651)	465	360		Estruturas aeronauticas e outras de elevado carregamento

LIGAS TRATÁVEIS TERMICAMENTE

- GRUPO ALUMÍNIO - SILÍCIO - MAGNÉSIO (6XXX)-

- Facilidade de fabricação
- Boa combinação de resistência mecânica e à corrosão
- Fácilidade de estampagem
- Bom acabamento
- Aplicações na Automotiva

	ist. osão	duin.	dabil.				Proprie	dades mecâ	nicas	
AA	Resist	Maqu	Solo	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
6061	В	C-D	Α	A96061	1.0Mg, 0.6Si, 0.3Cu	Tratado termic. (T4)	240	145	22-25	Camiões, canoas, automóveis, mobiliário, tubagens

LIGAS TRATÁVEIS TERMICAMENTE

- GRUPO ALUMÍNIO ZINCO MAGNÉSIO (7XXX) -
- Com ou sem Cobre
- São as mais tenazes de todas as ligas de Al
- Relação resistência / peso (σ/ρ) superior a de muitos aços de alta resistência.
- São de difícil fabricação

	ist. osão quin.	dabil.				Proprie	dades mecâr	nicas	_
AA	Resist corrosâ Maquir	Solo	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
7075	C B-D	D	A97075	5.6Zn,2.5Mg, 1.6Cu,0.23Cr	Tratado termic. (T6)	570	505	11	Estruturas aeronauticas e outras de elevado carregamento

LIGAS DE Al-Li

- Atrativo para indústria aeroespacial
- Propriedades comparadas às ligas de Al usuais, porém com:
- Entre 6-10% inferior em densidade
- 15-20% mais rígido
- Boa resistência à fadiga e à propagação de trincas

	ist. osão quin.	quin. dabil.				nicas	<u></u>		
AA	Resist corrosí Maquir	Sold	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
2090				2.7Cu,0.25Mg 2.25Li,0.12Zr	Trat. termic. e def. frio (T83)	455	455	5	Estruturas aeronauticas e de tanques criogénicos
8090					Trat. termic. e def. frio (T651)	465	360		Estruturas aeronauticas e outras de elevado carregamento

- Ligas binárias
- Ligas ternárias ou com mais elementos

PROCESSOS DE FABRICAÇÃO CONVENCIONAIS

- Fundição em areia
- Fundição sob pressão
- Fundição em molde permanente

- GRUPO ALUMÍNIO - COBRE (2XX.X)-

- O Cobre é o principal constituinte endurecedor
- Aumenta a resistência à tração
- Até 5,65% de Cobre é tratável termicamente
- Cobre diminui a contração e melhora a usinabilidade
- Essas ligas tem baixa resistência à corrosão
- A introdução de Si melhora a fundibilidade

	sist. rrosão aquin.	Jabil.				Proprie	dades mecâr	nicas	
AA	Res corr Mac	Solc	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
295.0			A02950	4.5Cu, 1.1Si	Tratado	221	110	8,5	Volantes, jantes de camiões e
					termic. (T4)				aviões, carters

- GRUPO ALUMÍNIO - SILÍCIO (3XX.X e 4XXX.X)-

São largamente utilizadas

O Si aumenta a fluidez, reduz a contração e melhora a Soldabilidade dificultando, entretanto, a usinagem.

	ist. osão quin.	dabil.				Proprie	dades mecâr	nicas	_
AA	Resist corros Maquir	Solo	UNS	Composição	Condição	Rm (MPa)	Re (MPa)	A%	Aplicações/Características
356.0			A03560	7.0Si, 0.3Mg	Tratado termic. (T6)	228	164	3,5	Caixas de transmissão, blocos de motor

- GRUPO ALUMÍNIO - MAGNÉSIO (5XX.X)-

Boas propriedades mecânicas

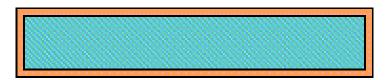
Apresentam a maior resistência à tração de todas as

ligas fundidas e são as mais leves.

Apresentam boa Usinabilidade e Resistência à Corrosão

A soldabilidade não é boa

Tem alta tendência a se oxidar durante a fusão


- GRUPO ALUMÍNIO - ESTANHO (8XX.X)-

Usada na fabricação de buchas e mancais

Apresenta grande resistência à fadiga e à corrosão

PROPRIEDADES QUÍMICAS DO AI - CORROSÃO -

- O Alumínio é resistente à corrosão quando exposto ao ar, devido à formação espontânea de Al₂O₃ na superfície.
- A adição de elementos de liga geralmente retarda a formação do óxido, não melhorando a resistência à corrosão.

Alumínio com uma camada de Al₂O₃.

PROPRIEDADES DA ALUMINA (Al₂O₃)

- é estável
- transparente
- inerte
- protege o Al dos meios agressivos

A proteção do Al pode ser melhorada por anodização.

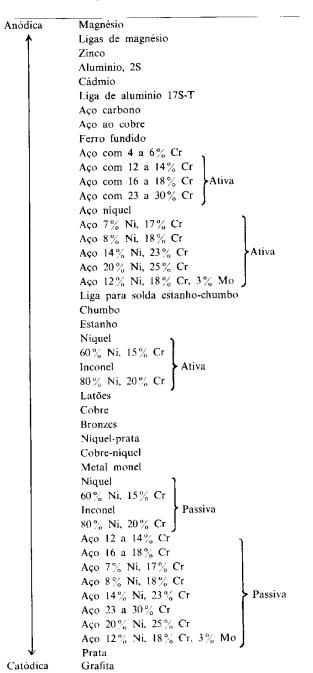
PRODUTOS DA CORROSÃO

São incolores e não-tóxicos

- Pela alta resistência à corrosão torna-se largamente usado na indústria química e alimentícia (embalagens)
- Geralmente, o Al puro tem maior resistência à corrosão que suas ligas.

SOLVENTES DO ÓXIDO E DO METAL

- Compostos com Mercúrio
- Ácidos fortes HCI, HF (menos HAC, HNO₃, H₂SO₄)
- Soluções aquosas que contém Hg e Cu
- NaOH


COMPORTAMENTO DO ALUMÍNIO E SUAS LIGAS COM OUTROS METAIS

- CORROSÃO GALVÂNICA-

? QUE ACONTECE QUANDO COLOCADOS 2 METAIS JUNTOS NUM EQUIPAMENTO QUÍMICO OU AMBIENTE AGRESSIVO QUE CONSTITUA UM ELETRÓLITO (EX: ÁGUA E SAL)?

- Deve-se analisar a série Galvânica
 - Quanto mais separados na série, maior a ação eletroquímica quando em contato.

SERIE GALVÂNICA

PREVENÇÃO DA CORROSÃO GALVÂNICA

Evitar contato metal-metal coloca-se entre os mesmos um material não-condutor (isolante)

Usar InibidoresUsa-se principalmente quando o Al é usado em equipamentos químicos em contato com líquidos agressivos.

ANODIZAÇÃO

Consiste em reforçar a camada de oxidação por processo eletrolítico (4-100 µm).

A peça de Alumínio tratada é o ânodo (onde ocorre a oxidação).

O íon oxidante que se libera sobre a peça pode ser impregnado através de corantes.

PRÉ-TRATAMENTO PARA ANODIZAÇÃO

Desengraxe

Fosqueamento

Neutralização

SELAGEM - ANODIZAÇÃO-

Fechamento dos poros da camada anódica através da hidratação do óxido de Alumínio.

PRINCIPAIS BANHOS PARA ANODIZAÇÃO

- Alumilite (H₂SO₄)
- Bengough (H₂CrO₄)
- Eloxal $(H_2C_2O_4.2H_2O)$