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Abstract

The interaction between a flexible structure and the surrounding fluid gives rise to a variety of phenomena with

applications in many areas, such as, stability analysis of airplane wings, turbomachinery design, design of bridges, and

the flow of blood through arteries. Studying these phenomena requires modeling of both fluid and structure. Many

approaches in computational aeroelasticity seek to synthesize independent computational approaches for the

aerodynamic and the structural dynamic subsystems. This strategy is known to be fraught with complications

associated with the interaction between the two simulation modules. The task is to choosing the appropriate models for

fluid and structure based on the application, and to develop an efficient interface to couple the two models. In the

present article, we review the recent advancements in the field of fluid–structure interaction, with specific attention to

aeroelastic applications. One of the key aspects to developing a robust coupled aeroelastic model is the presence of an

efficient moving grid technique to account for structural deformations. Several such techniques are reviewed in this

paper. Also, the time scales associated with fluid–structure interaction problems can be very different; hence,

appropriate time stepping strategies and/or sub-cycling procedures within the individual field need to be devised. The

flutter predictions performed on an AGARD 445.6 wing at different Mach numbers are selected to highlight the state-

of-the-art computational and modeling issues.

r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

b semi-root chord

Cp pressure coefficient

Dt time step, tnþ1 � tn

E Young’s modulus of the beam

G viscous term

g specific heat ratio

H stagnation enthalpy

I moment of inertia about beam’s cross

section

J Jacobian of the inverse transformation

k turbulent kinetic energy

M Mach number

m mass ratio of the wing

p pressure

q structural displacement vector

y torsional displacement of structure

RðtÞ aerodynamic forces at a given time, t

r density of fluid

u Cartesian velocity component

U curvilinear velocity component

Uf flutter speed index

8 volume of element

w vertical deflection of structure

ws local velocity of cell boundary
_x; _y; _z grid velocity in the respective directions

Z generalized displacement of structure
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1. Introduction

The term computational aeroelasticity (CAE) gener-

ally refers to coupling high-level computational fluid

dynamic (CFD) methods with structural dynamic tools

to perform aeroelastic analysis [1,2]. Recently, CAE has

gained interest as considerable progress has been made

in CFD, computational structural dynamics (CSD), and

in computer technologies [3]. While computational

methods that study different aspects of aeroelastic

response have been studied for some time, numerous

open research issues remain to be resolved. For example,

many approaches in computational aeroelasticity seek to

synthesize independent computational approaches for

the aerodynamic and the structural dynamic subsystems.

This strategy is known to be fraught with complications

associated with the interaction between the two simula-

tion modules. Some of the issues arise from the fact that

CFD and CSD mesh systems are quite different.

Frequently, the former uses an Eulerian or spatially

fixed-coordinate system, while the latter uses a Lagran-
gian or material fixed-coordinate system. Hence, care

must be taken to develop a suitable interfacing

technique between the two modules. Also, the time

scales can be very different for the two modules;

hence one must be careful while performing coupled

calculations.

In this review, the fluid–structure interaction problem

[4] will be illustrated using the AGARD 445.6 wing by

predicting its flutter boundary. This configuration was

chosen because extensive research has been done in the

field of aeroelasticity using this model. Several flow

solvers, ranging from transonic small disturbance (TSD)

models to full three-dimensional Navier–Stokes solver

and its thin layer approximations have been coupled to

the normal modes of the structure to determine the

flutter boundary for the AGARD wing geometry.

Particularly, the interest lies in predicting the transonic

dip as this has given researchers numerous problems in

the past. This dip is important as it helps determine the

minimum velocity at which flutter can occur across the

flight envelope of a vehicle. Both linear and nonlinear
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aerodynamic models have been employed to determine

the flutter boundary. Linear analysis using transonic

small disturbance model (CAP-TSD, [5]) was found to

predict the flutter boundaries accurately at subsonic and

supersonic speeds but failed to predict the dip,

accurately, at transonic Mach numbers. Specifically,

linear analysis was found to be under-conservative in the

transonic speed regime, where it predicted a significantly

higher flutter speed. This is attributed to the highly

nonlinear effects arising from the formation and

disappearance of shock waves at this Mach number

regime as the wing undergoes unsteady, flexible motion.

Inclusion of viscous effects to the transonic small

disturbance model (CAP-TSDV, [6]) increased the

predictive capability of the model at transonic

Mach numbers.

Within nonlinear models, one can use both inviscid as

well as viscous analysis to determine the flutter

boundary. The flutter boundary obtained by solving

the unsteady Euler aerodynamics equation of motion

coupled to the normal modes of the structure (CFL3D-

Euler, [7]) was found to be over-conservative, predicting

a significantly lower flutter speed. Viscous effects such as

boundary layer thickening and/or flow separation due to

shock waves were found to be important factors in

determining the transonic dip accurately [8]. It was

shown that the inclusion of viscous effects was found to

improve the prediction of transonic dip [9–11].

Lee-Rausch and Batina [9] coupled an unsteady thin-

layer approximation of the Navier–Stokes equations

with the normal modes of structure. A moving mesh

method based on spring analogy was incorporated to

account for grid movement after each time step.

Gordnier and Melville [10] coupled an unsteady

compressible Navier–Stokes model with normal modes

of structure using a Beam-Warming type implicit time

marching scheme with sub-iterations. An overset grid

approach with algebraic mesh deformation method was

used to account for grid movement. The geometric

conservation law, which takes care of certain geometric

quantities associated with mesh movement, was invoked

as well. Liu et al. [11] coupled an unsteady RANS

(Reynolds-averaged Navier–Stokes) model with normal

modes of structure to predict the flutter boundary for

the AGARD wing. Spring analogy along with transfinite

interpolation technique was used to move the multi-

block mesh. An implicit time stepping scheme using sub-

iterations was employed here. Significant improvement

was observed for supersonic speed regimes while using

nonlinear viscous models.

Not all of the above-mentioned models incorporated

all the features essential in producing a robust CAE

model Recently, Kamakoti et al. [12–14] improved the

computational capability by incorporating all of the

features to predict the flutter boundary for an AGARD

445.6 wing at subsonic, transonic and supersonic
numbers. The aim of this paper is to review the recent

progress in the field of CAE with special interest in

analyzing closely coupled aeroelastic solvers between

Navier–Stokes flow solvers and linear structure models.

This paper will be organized as follows. In Section 2, a

review of the various classes of CAE is presented, which

includes the fully, loosely and closely coupled models.

The theoretical and numerical formulation pertaining to

the flow solver is presented in Section 3. This is followed

by the description of the structure solver in Section 4.

Section 5 focuses on the moving grid modules necessary

to account for structural deformation after every time

instant. The coupling procedure, including the necessary

interpolation and extrapolation techniques, is discussed

in Section 6. The computational setup along with

flutter results for the AGARD wing will be presented

in Section 7.
2. Range of computational aeroelastic models

Computational aeroelasticity can be classified broadly

under three major categories: fully coupled, closely

coupled, and loosely coupled analyses. Before looking at

the various CAE models in detail, it is useful to look at

the generalized equations of motion [8] to explain CAE

methodologies better.

½M�f €qðtÞg þ ½C�f _qðtÞg þ ½K �fqðtÞg ¼ fF ðtÞg, (1)

fwðx; y; z; tÞg ¼
XN

i¼1

qiðtÞffiðx; y; zÞg. (2)

Here, fwðx; y; z; tÞgis the structural displacement at any
time instant and position and fqðtÞg is the generalized

displacement vector. The matrices ½M�; ½C�; ½K� are the

generalized mass, damping, and stiffness matrices;

respectively and fi are the normal modes of the

structure, with N being the total number of modes of

the structure. The term on the right-hand side of Eq. (1),

fF ðtÞg; is the generalized force vector, which is respon-
sible for linking the unsteady aerodynamics and inertial

loads with the structural dynamics. Eq. (1) shows that

there are distinct terms representing the structures,

aerodynamics, and dynamics disciplines. This gives us

the flexibility in choosing different methods for any

particular system. For example, linear structural models

can be coupled with a 3-D unsteady RANS model, to

develop a CAE model without actually changing the

overall formulation of the equations of motion. Some of

these models are discussed next.

2.1. Fully coupled model

In this kind of approach, the governing equations

are reformulated by combining fluid and structural
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equations of motion, which are then solved and

integrated in time simultaneously. While using a fully

coupled procedure, one must deal with fluid equations in

an Eulerian reference system, and structural equations in

a Lagrangian system. This leads to the matrices being

orders of magnitude stiffer for structure systems as

compared to fluid systems, thereby making it virtually

impossible to solve the equations using a monolithic

computational scheme for large-scale problems. Initi-

ally, Guruswamy and Byun [15,16] combined Euler flow

equations with plate finite-element structures; and later

combined the Navier–Stokes equations with shell finite-

element structure to perform fluid–structure calcula-

tions. They used a domain decomposition method,

wherein fluids and structures are solved in separate

modules. On the same note, Garcia and Guruswamy [17]

computed the transonic aeroelastic response of 3-D

wings by coupling a nonlinear-beam finite-element

model with Navier–Stokes equations. This kind of fully

coupled method has limitations on grid size, and is

currently limited to 2-D problems as they can be

computationally expensive.
2.2. Loosely coupled model

In this class of methodologies, unlike the fully coupled

analysis, the structural and fluid equations are solved

using two separate solvers. This can result in two

different computational grids (structured or unstruc-

tured), which are not likely to coincide at the boundary.

This calls for an interfacing technique to be developed,

to exchange information back and forth between the two
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modules. The loosely coupled approach has only

external interaction between the fluid and structure

modules; or the information is exchanged after partial or

complete convergence [18]. This approach is like a

multidisciplinary computing environment (MDICE,

[19]), where one effectively controls the interaction

between two commercial codes for each of the modules

by means of interfacing techniques. This gives us the

flexibility of choosing different solvers for each of the

modules but the coupling procedure leads to a loss in

accuracy as the modules are updated only after partial

or complete convergence. A typical block diagram

comprising of different solvers for fluid and structure

models as well as the interfacing methodologies is shown

in Fig. 1. This kind of a loosely coupled approach is

limited to small perturbations and problems with

moderate nonlinearity.
2.3. Closely coupled model

This is one of the most widely used methods in the

field of CAE as it not only paves way for the use of

different solvers for fluid and structure models but also

couples the solvers in a tight fashion thereby making it

an efficient method for complex nonlinear problems. In

this approach, the fluid and structure equations are

solved separately using different solvers but are coupled

into one single module with exchange of information

taking place at the interface or the boundary via an

interface module thereby making the entire CAE model

tightly coupled. The information exchanged here are the

surface loads, which are mapped from CFD surface grid
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onto the structure dynamics grid; and the displacement

field, which are mapped from structure dynamics grid

onto CFD surface grid. The transfer of surface

displacement back to the CFD module implies deforma-

tion of the CFD surface mesh and this calls for a moving

boundary technique to enable re-meshing the entire

CFD domain as we march in time. This can cause

potential problems for multi-block grids with complex

geometries and will be looked at in-depth in the

forthcoming sections.

Several models have been combined for individual

modules to arrive at a closely coupled model. From the

fluids perspective, models ranging from simple potential

flow models to complex 3-D RANS models have been

used. On the other hand, models ranging from linear

beam finite elements to nonlinear solid finite elements

have been used for structure module. The fluid and

structure models are interlinked via necessary interfa-

cing techniques, the complexity of which depends on

what two models are used for the individual modules. A

brief summary of some of the models that have been

developed in the past will be described next.

Cunningham et al. [20] developed a computational

scheme to perform transonic aeroelastic analysis by

coupling TSD potential flow equations (CAP-TSD) with

the natural vibrational modes of the structure. Viscous

effects were later incorporated into the flow solver by

including an inverse integral boundary layer model. The

equations of motion were solved on a sheared Cartesian

grid where the lifting surfaces were modeled as thin

plates. This kind of approach simplified the task of

generating grids and no moving boundary algorithm

was required as the surface velocity boundary condition

was applied at a mean plane. This technique of using

TSD formulation failed in the presence of a strong shock

or when viscous effects were dominant. To overcome

this, Schuster et al. [21] came up with a model that uses a

3-D flow solver coupled with a linear structure model to

study the aeroelastic analysis of a fighter aircraft

(ENS3DAE). Thin layer approximations to the full

three-dimensional compressible RANS equations were

used. The linear generalized mode shapes were used to

model the structure. A Beam-Warming implicit scheme

was employed for temporal integration. A grid motion

algorithm that uses an algebraic shearing technique was

introduced to account for the grid movement. A similar

method (CFL3DAE), developed by Lee-Rausch and

Batina [7,9], couples a linear, normal mode structural

dynamics model with the thin-layer three-dimensional

compressible RANS model. Time marching was accom-

plished by means of a second order accurate backward

time differencing scheme. A pseudo-time sub-iteration

method was introduced to expedite the convergence at

each time step. A moving mesh algorithm based on

spring analogy was used here. This model was used

to predict the wing flutter boundary. Reviews of the
above-mentioned models, such as, CAP-TSD,

ENS3DAE and CFL3DAE, have been reviewed by

Bennett and Edwards [22] and Huttsell et al. [23].

Liu et al. [11,24] presented an integrated CFD–CSD

code for flutter calculations based on a parallel, multi-

block, multi-grid flow solver for solving the full

Navier–Stokes equations. The flow solver is strongly

coupled with the structural modal dynamics equations.

A dual time-stepping scheme was introduced to enable

simultaneous integration of flow and structural equa-

tions without a time delay. A moving mesh method

based on transfinite interpolation (TFI, [25]) and spring

analogy [26] was also incorporated in the code. Message

passing interface (MPI) was used to enable data transfer

between the two modules. The method was used to

perform static aeroelastic analysis and wing flutter

computations on the AGARD 445.6 wing [11,27].

A three-field formulation for solving transient non-

linear aeroelastic problems was suggested by Farhat et

al. [28] where they used an Arbitrary Lagrangian and

Eulerian (ALE) method for solving the equations on a

deforming mesh system. In the case of ALE formula-

tion, separate set of equations are specified for grid

movement that are directly coupled with the ALE flow

equations. The fluid and structure equations are coupled

by the interface conditions. Unstructured meshes were

used for both fluid and structure solver. Farhat and

Lesoinne [29] improved upon the existing serial and

parallel algorithms for nonlinear transient aeroelastic

problems.

Recently, Kamakoti et al. [12,13] developed a closely

coupled CAE model based on a three-dimensional,

multi-block, structured CFD solver for the RANS

equations. Structural modal dynamic equations were

solved simultaneously and were strongly coupled with

the flow equations using fully implicit (iterative) and

semi-implicit (non-iterative) time-marching methods. A

linear structure model based on beam finite elements was

employed to perform flutter analysis on the AGARD

445.6 wing. The flow solver used was based on the full 3-

D RANS equations with well-validated turbulence

models. A suitable method to evaluate Jacobians via

the geometric conservation law was invoked in the

model as well. The solver also has capabilities to include

effects for multi-block moving boundary treatment

based on master/slave concepts and transfinite inter-

polation techniques. Robust interfacing techniques were

also embedded in the coupled solver to account for

transfer of information between the two modules.
3. Fluid solver

In this section, the description of the flow solver,

including the governing equations and overview of
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different algorithms for steady and unsteady flows, is

presented.
3.1. Governing equations for fluid equations

The three-dimensional compressible Navier–Stokes

equations in curvilinear coordinates, written in strong

conservative form, read as follows

qðJrÞ
qt

þ
q
qx

ðrUÞ þ
q
qZ

ðrV Þ þ
q
qz

ðrW Þ ¼ 0, (3)
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qh

qZ
þ q23

qh

qz

� �� �

þ
q
qz

Gh

J
q31

qh

qx
þ q32

qh

qZ
þ q33

qh

qz

� �� �

þ
q
qx

Gk

J
q11

qk

qx
þ q12

qk

qZ
þ q13

qk

qz

� �� �

þ
q
qZ

Gk

J
q21

qk

qx
þ q22

qk

qZ
þ q23

qk

qz

� �� �

þ
q
qz

Gk

J
q31

qk

qx
þ q32

qk

qZ
þ q33

qk

qz

� �� �
þ F, ð7Þ

where, u is the Cartesian velocity component, p is the

pressure, H is the stagnation enthalpy, h is the specific

enthalpy, G accounts for viscosity and F is the

dissipation function.

q11 ¼ f 211 þ f 212 þ f 213,

q12 ¼ q21 ¼ f 11f 21 þ f 12f 22 þ f 13f 23,

q22 ¼ f 221 þ f 222 þ f 223,

q13 ¼ q31 ¼ f 11f 31 þ f 12f 32 þ f 13f 31,

q33 ¼ f 231 þ f 232 þ f 233,

q23 ¼ q32 ¼ f 31f 21 þ f 32f 22 þ f 13f 23, ð8Þ

where f ij ’s are the metric terms arising from the

transformation of coordinates from Cartesian to curvi-

linear system, and J is the Jacobian given by

J ¼ xxyZzz þ xzyxizZ þ xZyzzx

� xxyzzx � xzyZzx � xZyxzz. ð9Þ

Here, U, V and W are the components of the

contravariant velocity, given by

U ¼ f 11ðu � _xÞ þ f 12ðv � _yÞ þ f 13ðw � _zÞ,

V ¼ f 21ðu � _xÞ þ f 22ðv � _yÞ þ f 23ðw � _zÞ,

W ¼ f 31ðu � _xÞ þ f 32ðv � _yÞ þ f 33ðw � _zÞ, (10)

where _x; _y and _z are the grid velocities that are

approximated by a first-order backward time difference

scheme given by

_x ¼
x � x0

Dt
_y ¼

y � y0

Dt
_z ¼

z � z0

Dt
. (11)

Here, Dt is the time step size of the flow solver and the

superscript 0 refers to the previous time step. When

performing computations on a fixed grid, the grid

velocities, _x; _y; and _z; are zero but this is not the case
while performing computations on a grid that moves

with respect to time. In such cases, care must be taken to

preserve the geometric conservation law (GCL) as

originally formulated by Thomas and Lombard [30].

This will be discussed at length shortly.
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3.2. Navier–Stokes fluid flow solver

Several algorithms have been developed in the past to

solve the governing equations pertaining to fluids. A

time-linearized or dynamically linear model was initially

employed, in which a steady-state nonlinear solution is

used as a starting point; then a small dynamic

perturbation about this steady flow is considered, and

all subsequent flow variables and shock motion are

assumed to vary in a linear fashion. This model leads to

an order of magnitude reduction in computer resources

compared to the nonlinear model, and was found to be

sufficient for many problems. However, this method was

found to be less useful for turbomachinery problems.

This approach was then extended to determine a full

dynamically nonlinear solution, which involves solving a

nonlinear convected-wave equation for potential flow or

Euler or Navier–Stokes models. Either finite-difference

or finite-volume schemes in spatial variables was used to

convert the system of partial difference equations to

ordinary differential equations. Additional models must

be developed to account for turbulence flow features,

and for transition from laminar to turbulent flows.

Typically, algorithms for the Navier–Stokes equations

[32,33] can be broadly classified into either density- or

pressure-based methods. For both of these approaches,

the velocity field is obtained via the momentum

equations. In density-based methods, the continuity

equation is used to obtain density and the pressure is

extracted through the equation of state. It is usually

employed for compressible flows when the density is not

a constant in the continuity equation. The system of

equations is usually solved simultaneously. This method

can be extended to incompressible flows as well for low

Mach number regime. On the other hand; the pressure-

based method was initially developed for incompressible

flows [34]. In this method, the pressure is obtained via a

pressure or a pressure correction equation, which is

formulated by manipulating the continuity and momen-

tum equations.

The solution procedure for pressure-based methods is

typically sequential in nature, and hence, can adapt to a

varying number of equations without reformulating the

entire algorithm. This method can be extended to

compressible flows by taking into account the depen-

dence of density on pressure through the equation of

state [33,35]. One of the algorithms that were originally

developed for these pressure-based flow solvers was

based on SIMPLE (Semi-implicit pressure-linked equa-

tions) family of algorithms [31]. This method was

originally developed for incompressible flows and it

has been extended to solve compressible flows by

modifying the pressure correction equation to include

the effects of density on pressure [36]. Additionally, the

algorithm has been extended to body-fitted curvilinear

coordinates in order to handle arbitrarily-shaped flow
boundaries. This approach can handle flows at all speeds

without any fundamentally different treatment for any

particular flow regime. This procedure was found to be

an efficient method predominantly for steady state

computations. A modification to the SIMPLE algo-

rithm, SIMPLEC (SIMPLE-Consistent, [33]), was found

to be a robust algorithm for steady-state computations

as well. It is very similar to the SIMPLE algorithm

except for some less-significant terms omitted in the

velocity correction equations. This family of algorithms

can be extended for unsteady flow computations in a

straightforward manner using time-stepping schemes

such as the implicit or explicit Euler scheme, the

Crank–Nicolson scheme, etc. But the iterative nature

of the SIMPLE algorithm within a given time step can

make the procedure very time-consuming for unsteady

computations. An efficient method for unsteady com-

putations was proposed by Issa [37]. It is based on an

operator-splitting procedure such as the Pressure-Im-

plicit Splitting of Operators (PISO) algorithm. It was

initially proposed for Cartesian grids and primarily for

incompressible flows. It was later modified to include

compressibility effects and reformulated in curvilinear

coordinates [38]. The algorithm involves a series of

predictor and corrector steps to solve for velocity and

other scalar variables by ensuring the fact that the

splitting error is less than the discretization error. This

form of method obviates the need to iterate within a

time step thereby making the algorithm efficient for time

dependent computations. A detailed procedure of the

algorithms can be found in Thakur et al. [35].

Typically, computations can be performed using

either a staggered grid arrangement or a non-staggered

or collocated grid arrangement. In the former arrange-

ment, the velocities are stored at the cell face, rather

than at the cell centers for the collocated arrangement.

This makes the collocated grid system easier to use but it

does require some interpolation procedure to evaluate

the contravariant velocities at the cell faces. One such

interpolation scheme devised is the momentum inter-

polation scheme, proposed by Rhie and Chow [38]. Such

an interpolation scheme was proposed with steady-state

computations in mind. For unsteady computations, the

interpolation procedure introduces the time step size

factor into the formulation and there might be situations

when one might be forced to use a small time step size

based on the stability condition of the time marching

procedure. It has been shown previously [39–41] that a

small time step leads to minor oscillations in pressure

and velocity field while using the original Rhie–Chow

momentum interpolation method. Several authors

[39–41] proposed modified momentum interpolation

schemes to calculate cell-face velocity to eliminate the

effect of time step size on the solution. It was originally

proposed for Cartesian grid systems. Kamakoti et al.

[13] extended the method to make it suitable for
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curvilinear grids, which meant calculating contravariant

velocities in an appropriate manner from the Cartesian

velocity components at the cell faces. The method was

validated using both Cartesian and curvilinear grid test

cases and satisfactory results were obtained using both

grids [13].

3.3. The geometric conservation law

While transforming coordinates from Cartesian to

curvilinear systems, the Jacobian matrix is introduced.

The determinant of this Jacobian matrix represents the

cell volume in the transformed coordinates. In moving

grid problems, since the grid moves, this Jacobian

associated with each cell element must be updated in a

consistent fashion. This is done via the geometric

conservation law, originally proposed by Thomas and

Lombard [30]. The GCL is derived from the conserva-

tion of mass by setting r ¼ 1 and v ¼ 0: It can be
written as

d

dt

Z
V

d8 ¼

Z
S

ws dS, (12)

where ws is local velocity of cell boundary. The GCL can

be stated as the change in volume of each control

volume between two time instants, tn and tnþ1; must be
equal to the volume swept by the cell boundary during

that time Dt ¼ tnþ1 � tn:
The above expression is referred to as the integral

form of GCL. A differential statement of the GCL can

be derived from the integral statement of GCL. We first

perform a transformation from the Cartesian coordinate

system (x, y, z) to the body-fitted coordinate system (x;
Z; z), which leads to the following form of the integral
statement:

d

dt

Z
V

J dxdZdz ¼
Z

V

ðr:wsÞJ dxdZdz. (13)

Here, J represents the volume element in the

transformed coordinate system hence each node is

associated with a particular value of J. Therefore, the

computed value of Jmust be consistent with the value of

DV implied by the numerical scheme used for solving the

flow equations. Earlier, arbitrary procedures were used

to compute J, for e.g., instantaneous mesh distribution

at a given time instant was used to evaluate J at that

particular time, which lead to an erroneous solution.

Expanding the right-hand side of Eq. (13) and after

performing necessary manipulations, we arrive at the

following form for the differential statement of GCL.

Jt þ ðxtÞx þ ðZtÞZ þ ðztÞz ¼ 0, (14)

where, xt; Zt; zt are the metric terms given by

xt ¼ �½ _xðyZzz � yzzZÞ þ _yðzZxz � zzxZÞ þ _zðxZyz � xzyZÞ�,
Zt ¼ �½ _xðyzzx � yxzzÞ þ _yðzzxx � zxxzÞ þ _zðxzyx � xxyzÞ�,

zt ¼ �½ _xðyxzZ � yZzxÞ þ _yðzxxZ � zZxxÞ þ _zðxxyZ � xZyxÞ�.

(15)

Eq. (14) is solved numerically to update the Jacobian

values at each time step. It should be noted that since

GCL arises due to the numerical procedures devised

based on grid movement, its implications are expected to

be scheme dependent. Alternative forms of the GCL

have been implemented over the years to study its

impact on solution accuracy. Thomas and Lombard

implemented the GCL for density-based finite difference

schemes on structured meshes by updating the value of

the Jacobian at each time step. Shyy et al. [42,43]

implemented the GCL along the lines of Thomas and

Lombard for pressure-based finite volume schemes by

updating the Jacobian values after every time step using

a first-order backward Euler time-integration scheme.

Lesoinne and Farhat [44] developed a first order, time

accurate scheme preserving the GCL using the density-

based ALE finite volume as well as finite element schemes

on unstructured grids. Koobus and Farhat [45] pro-

posed a GCL scheme for second-order time-accurate

density-based ALE finite volume schemes. Farhat et al.

[46] summarized six different time-integration schemes

based on ALE formulation, some of them preserving the

GCL, and showed the impact the different schemes have

on solution accuracy. In this effort, we assess selected

approaches for multi-block structured grids based on

finite volume formulation and do a comparative study on

these methods. Most previously conducted studies

employed the density-based fluid flow solver; in the

present effort, the pressure-based fluid flow solver

[31,35,42] is utilized. The implications of different

implementation of GCL and the fluid flow solver are

of main interest. In this regard, four different time-

integration schemes for evaluating the Jacobian values

were investigated by Kamakoti and Shyy [47]: first-order

implicit scheme, first-order time-averaged scheme, sec-

ond-order implicit scheme and a second-order time-

averaged scheme. They concluded, using several test

cases [12,13], that a scheme consistent with the choice of

time marching scheme used for flow solver provides the

most accurate and consistent way of evaluating the

Jacobian values.

3.4. Turbulence modeling

The most widely employed two-equation model,

namely, the k-� model is used for turbulent computa-
tions. Since the standard k-� model is only valid in fully
turbulent regions, it requires additional modeling near

wall regions or in the no-slip regions. Near wall

boundaries, the local Reynolds number is of the order

of one and hence viscous effects are more dominant,
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hence the k-� model cannot be used as it is formulated
based on the assumption of high Reynolds number. Two

approaches have been proposed to handle near-wall

effects, one being the low Reynolds number model and

the other being wall-function method [48]. The former

method requires a very fine grid resolution near the wall

and hence makes the computations expensive. The latter

method is based on the assumption that there exists local

equilibrium between production and dissipation of

turbulent kinetic energy. It has been proven to be an

accurate and robust approximation. This technique uses

the law of the wall as the constitutive relation between

the velocity and the surface shear stress. The detailed

formulation of the model can be found in Shyy et al.

[49]. While using wall functions method, we need to

ensure that the node next to the wall boundary is in the

log layer. Since we use a moving grid formulation, we

need to ensure this is the case for all time steps in spite of

grid movement. This is controlled by the rigidity of mesh

movement, which is addressed in the moving grid

algorithm. A variation to the k-� model, a filter-based
k-� model [50], was investigated to improve upon the
predictive capability of the standard k-� two-equation
model. In RANS computations, the true resolution is

not only dictated by the mesh size but also by the

magnitude of eddy viscosity. These in turn affect the

local Reynolds number, which needs to be Oð1Þ

magnitude in order to resolve the flow structure

satisfactorily. Also, one should note that an excessive

eddy viscosity could smear out the flow structures within

the reach of a grid resolution. In such cases, the effective

viscosity in the model should be reduced to resolve the

structures satisfactorily. To achieve this, a filter is

imposed on the turbulence model via eddy viscosity,

which does not resolve structures smaller than the filter

size. The filter size is chosen based on the maximum grid

size in the domain. Further details about the model can

be found in Johansen et al. [50].
4. Structure solver

There are several ways to model a structure, from 3-D

finite elements to simplified beam elements and modal

analysis [51]. The complexity of the model depends on

the kind of finite element model that one uses and the

number of degrees of freedom associated with the

element. Since the aim of this paper is to address the

interaction of a complex fluid solver with a simplified

structure solver, the structure solver is modeled using

beam finite elements with only linear effects considered

[52]. This simplification allows for a good description of

the motion of the wing, without being computationally

hampered by complex nonlinear effects. Since the wing

is modeled as a linear structure, it is possible to model

the deformations as a summation of different modes of
deformation without looking at the complex interaction

of the modes. To this end, the structure or the wing is

modeled as a linear finite element structure that can

undergo bending and torsion. The Bernoulli–Euler beam

theory is enforced, which means the cross-sections

remain rigid, thereby uncoupling the bending and

torsional displacements.

The linear finite element that we choose to model the

wing is a beam that has mass, stiffness, and damping

matrices of the actual wing. Thus, the deformations

become that of a Bernoulli–Euler beam bending and

torsion, the equations for which reads as

d2

dx2
EI
d2w

dx2

� �
¼ f , (16)

where f is the distributed loading (force per unit length)

acting in the same direction as the out-of-plane

displacement (w), E is the Young’s modulus of the

beam, and I is the area moment of inertia of the beam’s

cross section. Since, the cross sections of the wing are

assumed to be rigid, there is a point at which the vertical

displacement of the beam is a result of only the bending

of the wing. This point is where the elastic axis of the

wing intersects the cross section. The generalized

displacements from bending and torsion are measured

from this point. This has been depicted in Fig. 2.

To find the equations of motion, Lagrange’s equation

was used. The equations take the form given by

d

dt

qT

q _q

� �
�
qT

qq
þ
qV

qq
¼ �

qF

q _q
þ Q, (17)

where q represents the generalized displacements,

vertical and torsional displacements, F represent the

Rayleigh dissipation function, and Q represents the

generalized forces. The kinetic energy and the potential

energy of the wing are given by T and V, respectively.

The generalized coordinates for the wing are functions

of the position of the cross section along the span of the

wing and time. Here, the generalized coordinates are

referred to as w, representing the classical generalized

coordinates of bending, and y; representing the classical
generalized coordinates of torsion. The equations of

motion that govern the structural dynamics of the wing

take the well-known form [53] given by

½M�f €qðtÞg þ ½C�f _qðtÞg þ ½K �fqðtÞg ¼ fRðtÞg, (18)

where RðtÞ is a vector containing the aerodynamic forces

associated with aerodynamic loads; and fqðtÞg; f _qðtÞg;
and f €qðtÞg are the displacement, velocity and acceleration
vectors of the finite element assembly, respectively.

4.1. Modal equations of motion

The equation of motion of the structure, given by

Eq. (18), can be solved using modal approach by

composing the solution with the eigenvectors of the
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vibration problem. The displacement, velocity and

acceleration vectors can be transformed to generalized

displacement, velocity and acceleration vectors using a

transformation matrix, as shown below

fqðtÞg ¼ ½F�fZðtÞg; f _qðtÞg ¼ ½F�f _ZðtÞg; f €qðtÞg

¼ ½F�f €ZðtÞg. ð19Þ

Here, ½F� is the modal matrix containing the

eigenvectors, orthonormalized with the mass matrix,

and fZðtÞg; f _ZðtÞg; and f €ZðtÞg are the generalized

displacement, velocity and acceleration vectors, respec-

tively. The eigenvectors are orthogonal to both mass and

stiffness matrices and if Rayleigh damping is assumed, it

is also orthogonal to the damping matrix. Pre-multi-

plying Eq. (18) by ½F�T; we get

f €ZðtÞg þ ½F�T½C�½F�f _ZðtÞg þ ½O2�fZðtÞg ¼ ½F�TfRðtÞg,

(20)

where

½F�T½K�½F� ¼ ½O2�; ½F�T½M�½F� ¼ 1. (21)

The initial conditions on fZðtÞg are obtained using

Eq. (19) at time 0, as follows

Z0 ¼ ½F�T½M�q0,

_Z0 ¼ ½F�T½M� _q0. (22)

Eq. (20) can be written as n individual equations, one for

each mode, as follows

€ziðtÞ þ 2xioi €ziðtÞ þ o2i ziðtÞ ¼ riðtÞ

riðtÞ ¼ FTi fRðtÞg

)
i ¼ 1; 2; . . . ; n

(23)

with initial conditions

xijt¼0 ¼ FTi ½M�q0,

_xijt¼0 ¼ FT
i ½M� _q0. (24)

Here oi is the natural frequency for the ith mode and xi

is the corresponding damping parameter for that mode.

The solution to the above equation can be obtained for
each mode using direct integration algorithms, which

will be discussed next.
4.2. Newmark integration method

There are several ways to integrate the modal

equations of motion given by Eq. (23). The schemes

range from explicit central difference schemes to implicit

schemes such as the Houbolt, Wilson-y and Newmark
methods [53]. Two major criteria decide in choosing the

appropriate scheme for time integration: stability and

accuracy. The explicit scheme was found to be

conditionally stable is limited by the choice of time step

size [52]. Hence, one may be forced to perform iterations

of the structure solver to synchronize with the time step

of the implicit flow solver. Due to this reason, the focus

will be on implicit time integration schemes, which are

unconditionally stable. In terms of accuracy issues, both

period elongation as well as amplitude decay were

observed with both the Houbolt scheme and the Wilson-

y scheme for a small time step size [53]. However, for the
Newmark scheme, only period elongation was observed

for a small time step size and the percentage of period

elongation observed was found to be the least among

implicit schemes [53]. It has been proven that Newmark

method performs best for Dt=To0:01; where T is the

time period of vibrations and hence time step size must

be chosen appropriately to obtain best accuracy. All

these factors lead to choosing the Newmark scheme as

the time integration scheme for the structural equations

of motion [13]. A brief description of the Newmark

scheme is given next. The modal equation of motion,

Eq. (23), written at a time t þ Dt; reads as follows

€ztþDt þ 2xo€ztþDt þ o2ztþDt ¼ rtþDt. (25)

In the above expression, x; o; and rtþDt are known

beforehand. The task is to evaluate the displacement,

velocity and acceleration at the time t þ Dt: The
following expressions for velocity and displacement are

formulated at time t þ Dt first as a function of

acceleration at t þ Dt and displacement, velocity and

acceleration from previous time level t.
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_ztþDt ¼ _zt þ ½ð1� dÞ€zt þ d€ztþDt�Dt2, (26)

ztþDt ¼ zt þ _ztDt þ ½ð1
2
� aÞ€zt þ a€ztþDt�Dt2, (27)

where, a and d are parameters that are chosen based
on desired stability and accuracy. For the Newmark

scheme to be unconditionally stable, values of 0.25 and

0.5 are chosen for a and d; respectively. Eqs. (26) and
(27) are substituted back into Eq. (25) to evaluate €ztþDt

and then Eq. (26) and (27) are used to evaluate _ztþDt

and ztþDt:
5. Moving grid technique

Since the structure movement needs to be accounted

for in the fluid domain, one needs to ensure that the

entire flow domain is re-meshed appropriately. Also, an

efficient moving mesh module is very important for

performing unsteady flow calculations such as flutter

simulation of wings and turbo-machinery blades. Since

the grid needs to be updated frequently in unsteady

computations, a fast and automatic grid deformation

procedure is essential. Several models have been devel-

oped over the past decade and we will review some of the

methods in this section and point out the advantages

and disadvantages of these methods, if any.

Initially, a spring analogy method, originally pro-

posed by Batina [54] for unstructured grids and later

expanded by Robinson et al. [6] to structured grids, was

used to generate dynamic grids for structured and

unstructured meshes. This method can handle large

deformations but, being an iterative method resembling

an elliptic grid generator, it was found to be computa-

tional expensive for larger grid sizes. Schuster et al. [21]

and Bhardwaj et al. [55] used a simple algebraic shearing

technique to deform the grid by redistributing the grid

points along grid lines that are in a direction normal to

the surface. This method can cause potential problems

when the geometry becomes complex when it becomes

difficult to locate the radial direction normal to the

surface. Also, this method was limited to small

deformations and large deformations lead to poor grid

quality and crossover of grid lines. A three-stage

transfinite interpolation (TFI) method was proposed

by Eriksson [25] to re-mesh single block domains.

However, this method was not suitable for multi-block

domains. Hartwich and Agrawal [26] combined the

spring analogy method with the TFI method for

regenerating multi-block grids. Spring analogy was used

to move the boundary edges of the blocks whereas TFI

was used to re-mesh the surface and interior volume of

each block. A point-by-point match was enforced

between two abutting blocks. Potsdam and Guruswamy

[56] improved the above method and incorporated

parallelization for mesh regeneration. Another class of
methods for re-meshing purposes is solving the moving

mesh partial differential [57–59]. In this method, a mesh

equation is formulated and solved to move the nodes in

a consistent fashion by accounting for clustering of

nodes in regions of large solution variation. A monitor

function was incorporated into the equation to enable

mesh smoothing. This method was found to be

computationally expensive for complex 3-D problems.

A comparison of some of the above-mentioned methods

is shown in Table 1.

For multi-block grid movement, a method that

combines master/slave strategy and transfinite interpo-

lation techniques, was suggested by Lian et al. [62]. The

master/slave strategy was used to establish a relationship

between the moving surface points (master points)

and vertices located at the other blocks (slave points).

The movement of the master points is based on the

displacements obtained from the structure solver. The

movement of the slave points depends on the movement

of its corresponding master point. A slave point, which

has the coordinate of xs; moves when its master point
moves from x̄m to xm: A simple but effective formula
suggested by Hartwich and Agrawal [26], based on

spring analogy, is given by

~xs ¼ xs þ yð ~xm � xmÞ, (28)

where the subscripts m and s represent master and slave,

respectively, and tilde (
) indicates the new position. y is
the decay function; given by

y ¼ expf�bmin½FACMIN; dv=ð�þ dmÞ�g, (29)

where

dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxv � xmÞ

2
þ ðyv � ymÞ

2
þ ðzv � zmÞ

2

q
(30)

dm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~xm � xmÞ

2
þ ð ~ym � ymÞ

2
þ ð~zm � zmÞ

2

q
. (31)

and � is an arbitrary small number to eliminate division
by zero.

In Eq. (29), the coefficient b affects the stiffness. A
larger b causes the block to behave more like a rigid
body and a smaller value makes the body behave like a

softball. The factor, FACMIN, in Eq. (29) plays an

important role in the re-meshing part when the

displacement of the master nodes is small. Kamakoti

and Shyy [47] studied the impact of these parameters on

grid redistribution using several test cases and an

optimal choice of parameter arrived at for moving grid

computations that preserves grid quality at near wall

boundaries as well as the entire domain and arrived at

an optimal value for the two parameters affecting the

rigidity of grid movement.
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Table 1

Comparison of moving mesh algorithms [12]

Method Advantage Disadvantage

Spring analogy [6] Robust Needs more memory and CPU

Transfinite interpolation [25] Fast May not preserve original grid quality

Gordon’s TFI-based method [60] Faster and preserves grid quality May encounter crossover near the moving boundary

Spring analogy and TFI-based

method [26]

Perturbation method [61]

Moving mesh partial differential

equation [57–59]

Easy to implement and accounts

for grid quality near regions or

large gradients

Computationally expensive
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6. Interfacing procedure for fluid and structure solvers

Having looked into the three major modules required

for aeroelastic computations, namely, fluid, structure

and moving grid modules, an efficient coupling proce-

dure needs to be developed to link these individual

modules. For coupled analysis, the exchange of infor-

mation between the fluid and structure models takes

place at the common boundaries. A typical coupled fluid

structure analysis diagram is shown in Fig. 3.

The interfacing module is highlighted here for

convenience. As can be seen from the figure, for every

time step, one needs to map the surface loads, P, from

the CFD grid system onto the structural grid to obtain

the forces, F, on the CSD grid system, which are then

used to obtain the displacements, w, on the CSD grid.

These w’s need to be interpolated onto the CFD grid to

obtain the CFD surface grid.

Since the fluid and structural module can be modeled

at different levels of complexity, the fidelity of the

interfacing technique depends on how the fluid and

structure are modeled. This has been depicted in Fig. 1.

Maintaining accuracy in the data exchange process is

very important in order to obtain correct aeroelastic

results. Frequently, the structural grid is unstructured or

coarser than the CFD grid, thereby demanding accurate

interpolation techniques to transfer surface loads from

the CFD grid on to the structural grid. Several

techniques exist to carry out these interpolations/

extrapolations [64,65]. A brief description of some

of the existing techniques (Infinite-plate splines—IPS;

finite-plate splines—FPS; multiquadric-biharmonics—

MQ; thin-plate splines—TPS; Non-Uniform B-

Splines—NUBS; Inverse Isoparametric Mapping—

IIM), is described next.

The method of IPS is one of the most widely used

interpolation techniques and is used by software
programs such as PATRAN/NASTRAN. It is based

on superposition of the solutions for the PDE of

equilibrium for an infinite plate. For a set of N discrete

points with coordinates xi; there is a deflection, H,

associated with each point that defines the vertical

position coordinate of the surface on which the point

lies. For a one-dimensional problem, the equation for

the deflection reads as follows

HðxÞ ¼
XN

i¼1

fAi þ biðx � xiÞ
2
þ Fiðx � xiÞ

2 lnðx � xiÞ
2
g,

(32)

where, Ai; Bi and Fi are the coefficients that need to be

determined. One calculates the values of the loads by

solving the equation of the IPS. On the other hand, the

MQ method is an interpolation technique that repre-

sents an irregular surface by making use of the quadratic

basis functions. The equation for this method reads as

HðxÞ ¼
XN

i¼1

ai½ðx � xiÞ
2
þ r2�1=2, (33)

where r is a user-defined parameter that controls the

shape of the basis functions from a flat, sheet-like

function to a narrow, cone-like function. Another

methodology that is close to the MQ method is the

TPS method. It characterizes an irregular surface by

using functions that minimizes the energy functional.

The different between TPS and MQ method is the

equation solved. The governing equation for TPS

method is

HðxÞ ¼
XN

i¼1

aijx � xij
2 log jx � xij. (34)

In case of the FPS method, one uses uniform plate

bending elements to represent a platform by a number of
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quadrilateral or triangular elements. The NUBS method

makes use of the fact that a 3-D surface can be

represented by a tensor product of 2 splines. The use

of polynomial B-splines is recommended here in order to

do the surface blending in two and three dimensions.

Finally, the IIM method is based on FEM scheme where

an isoparametric element uses shape functions to

perform interpolation. The key advantages and limita-

tions of these interpolation methods have been tabulated

in Table 2.

Guruswamy [63] reviewed interfacing techniques

based on specific finite element techniques employed

for the structural model. The FE models considered

were modal model, beam finite elements, plate/shell
Table 2

Summary of representative interface techniques (revised from [64,65])

Interpolation method Advantages

Infinite plate spline (IPS) Grid need not be a rec

Interpolation function

everywhere

Multi-quadratic-biharmonic (MQ) Infinitely differentiable

Computationally efficie

Thin plate spline (TPS) Since splines are invaria

and rotational, it is a u

moving and flexible su

Finite plate spline (FPS) Can accommodate chan

meshes

Conserves work done b

Non-uniform B-splines (NUBS) Low-memory requirem

Inverse isoparametric mapping (IIM) Low-memory requirem

Most accurate among

interpolation

CFD P 
Map pressu
FEM grid 

Interpolate
CFD grid

Move 
Grid 

Fluid/Stru
Interfac

Fig. 3. Coupled fluid–struct
finite elements, wing-box FE model and the detailed FE

model. For the modal analysis, where the structural

modes are evaluated using the Raleigh–Ritz approach, a

simple bilinear interpolation method proved to be an

accurate method for structured mesh systems. For the

case when the structure mesh had irregular meshes, an

area coordinate approach was used.

When beam structures were employed, load vectors

were used along with the shape functions to output

transverse displacement, twist and bending along the

elastic axis for different span-wise locations. Kamakoti

et al. [13] used a bilinear interpolation technique to map

loads from CFD surface mesh to a temporary structure

mesh and then extracted the load vector on the beam
Limitations

tangular array Minimum of 3 grid points required

is differentiable Noncoincident points are required

Extrapolations are linear

function

nt

No minimum number of grid points

required but 3 are preferred for

accuracy

nt to translation

seful tool for

rfaces

No minimum number of grid points

required but 3 are preferred for

accuracy

ges in models or Only 2-D application was looked at

y external forces

ent Four curves and four data points

required

Points cannot be coincident

ent Valid for 2-D interpolations only

all methods for No extrapolation possible

F
re to

 to 

CSD 

cture 
e 

W

ure flow diagram [63].
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element. To do this, the top and bottom surface of the

wing were treated as two-dimensional surfaces. A linear

extrapolation procedure was employed to transfer the

displacements from the beam model back to the original

CFD grid to obtain the new CFD surface mesh. The

Bernoulli–Euler beam theory was assumed meaning the

cross-section of the wing remains unchanged. The new

location of the CFD surface grid points were determined

by assuming a rigid link connecting each CFD grid point

to the beam element. The links are assumed to be

perpendicular to the elastic axis as shown in Fig. 4.

The state of the beam at any instant along the

spanwise direction is given by

ws ¼ fw1 w2 w3jy1 y2 y3gT,

where w represents the vertical deflection and y the twist
at each spanwise section and subscripts 1, 2, 3 denote

displacements in the x, y and z directions, respectively.

Since there was only deflection in the vertical plane and

rotation about the elastic axis, the deflection of a CFD

grid point P can be written as

wP ¼ wPT þ wPR , (35)

where wPT is the translation component and wPR is

the rotational component. The translation and rotation

component corresponding to CFD spanwise grid
X

Fig. 5. Schematic to demonstrate th

Finite el

CFD eleme

. . .

...

. . .

Fig. 4. Sample CFD mesh superimposed o
locations were obtained by performing a linear inter-

polation using CSD spanwise grid points. Once the

translation and rotation component for each CFD

spanwise grid location is obtained, an extrapolation

technique was used to obtained the new locations of the

CFD surface grid. This is demonstrated through Fig. 5.

In the schematic, quantities with subscript 0 denote the

original location of the CFD surface grid points and

subscript 1 denotes the new location. By knowing w and

y at each CFD grid spanwise location, the new location
is obtained using Eqs. (36) and (37)

x1 ¼ x0 cos yþ z0 sin y, (36)

z1 ¼ z0 cos y� x0 sin yþ w. (37)

When plate or shell elements were used as the finite

element structures, a node-to-element approach was

used where shape functions were used to define the

coordinates and planar displacements of the element.

Another method found to be effective for plate/shell

elements was the virtual surface method where a

mapping matrix is used to exchange information

between the two grids. More details of this approach

can be found in Guruswamy [63]. When the wing is

modeled as a wing-box, where only the components

between the spars and ribs were considered for modeling
Z

w (y,t) 

 Θ (y,t) 

(xo,zo) 

(x1,z1) 

Elastic Axis 

e extrapolation procedure [12].

ement nodes

nt nodes

Rigid links 

. . . .

...

. . . .

n the discretized beam structure [12].
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purposes, a discrepancy might occur as there is a

discontinuity in surface at the leading and trailing

edges. In such cases, forces were lumped onto structural

nodes and bending and twisting moment conservation

is enforced. Deflection at the FEM nodes were

obtained by using transformation functions by assuming

that the wing is chordwise rigid. Brown [66] proposed a

method that combines the node-to-element approach

used for plate/shell FE and the lumped method for

wing-box structures. For detailed FE models, where

the interior of the FE grid could be irregular and

the surface elements could take both triangular and

quadrilateral elements, the area coordinate method

of the virtual surface method was found to be an

efficient one.
7. Aeroelastic computations using AGARD 445.6 wing

In this section, the computational procedure, includ-

ing the computational setup, for performing fluid–struc-

ture interaction computations will be discussed. The

different methodologies will be discussed by applying

the methodology to predict the flutter boundary for a

three-dimensional wing geometry.
7.1. Computational procedure

The overall procedure for carrying out computational

aeroelastic computations can be divided into the

following major steps.
1.
 Constructing the geometry for aeroelastic computa-

tions and also to supply appropriate boundary

conditions and initial conditions.
2.
 Perform steady-state CFD computation to obtain

initial guess for starting coupled computations.
3.
 Perform unsteady CFD computations using steady

state result as initial guess and obtain necessary

aerodynamic forces on the surface of the wing.
4.
 Map aerodynamic forces onto the structural mesh.
5.
 Perform CSD computation to obtain the deformation

of the geometry.
6.
 Map the displacements onto CFD surface grid.
7.
 Re-mesh CFD grid based on the deformation

obtained from the CSD calculations using the moving

boundary module.
8.
 Repeat steps 3–7 using current solution as the initial

guess for the subsequent steps.

A closer look at the above-mentioned steps along with

the grid generation details and time scale issues

concerned with the different solvers will be looked

at next.
7.2. Computational setup

7.2.1. Geometry definition

The geometry used as the test bed for aeroelastic

computations is the well-documented AGARD (Advi-

sory Group for Aerospace Research and Development)

445.6 wing [67]. This is the first AGARD standard

aeroelastic configuration. It was first tested in the

Transonic Dynamics Tunnel at the NASA Langley

Research Center [68]. The AGARD 445.6 wing is a

swept back wing with a quarter-chord sweep angle of

45� with a NACA 65A004 airfoil (4% thickness) cross-

section. It has a panel aspect ratio of 1.65 and a taper

ratio of 0.66. The root chord of this model is 1.833 feet

with a semi-span of 2.5 feet. The wing tested at NASA

Langley was a semi-span, wall-mounted model made

with laminated mahogany. A schematic of the AGARD

wing is shown in Fig. 6.

7.2.2. CFD grid

A CFD mesh is generated around the AGARD 445.6

wing by placing the wing in the middle of the

computational domain, which has dimensions of 18�

9� 9 units. The geometry could be generated by using

the CAD module of any commercial mesh-generating

software such as ICEMCFD or PATRAN, etc. For

CFD meshing purposes, ICEMCFD was found to be a

robust software and hence was used to construct the

CFD mesh around the wing. The entire computational

domain was a 10 block domain with an O-grid employed

around the wing to preserve grid orthogonality near the

wing [12]. Since it is a very thin wing, care needs to taken

while generating mesh around the wing tip and trailing

edge to avoid any cross-over of grid lines or negative

Jacobians. Two grids of different mesh density were

used for carrying out the computations: Grid I had a

total of 322,622 points with 4838 points distributed over

the wing surface (118 points in the chordwise direction

and 41 points in the spanwise direction); Grid II had a

total of 800,000 points with 12,000 points distributed on

the surface of the wing (200 points along the chordwise

direction and 60 points along the spanwise direction).

The entire computational domain and grid distribution

near the leading and trailing edges are shown in Figs. 7

and 8, respectively.

7.2.3. Structure grid

For the structure solver, since beam elements were

used [12], a ten-element beam mesh spanning the semi-

span of the wing was constructed. However, in order to

make the interpolation and extrapolation procedures

between the CFD and structure mesh efficient and

easier, an intermediate surface mesh was generated with

QUAD4-type elements. Equal width spanwise elements,

four per beam element, along the spanwise direction

were used to generate this intermediate mesh. The
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Fig. 7. Overview of the multi-block CFD grid [12].

Fig. 6. Schematic of the AGARD 445.6 wing used in the wind tunnel [68].
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QUAD4 elements, however, were non-uniform along

the chordwise direction to comply with the geometry.

This intermediate surface mesh on the AGARD wing

was generated using PATRAN. It had 2400 elements

surrounding the wing (60 along the chordwise direction

and 40 equal width elements along the spanwise

direction). The intermediate or temporary mesh is

shown in Fig. 9.

7.3. Time scales and choice of time step size for the

coupled problem

There are several time scales associated with the

aeroelastic problem due to the interdisciplinary nature

of the problems itself. Three major time scales can
be defined for the given problem: diffusive time

scale, convective time scale, and time scale due to

vibration of structure. The first two scales are associated

with the flow solver and the last scale is associated

with the structure. They are defined, respectively, as

follows

Dtd ¼
rdL2

G
(38)

Dts ¼
1

f s
, (39)

Dtc ¼
dL

un
. (40)
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Fig. 9. Schematic of the FEM grid on the AGARD wing [12].

Fig. 8. CFD surface grid along with grid distributions at the leading and trailing edges [12].
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Here, dL is the local mesh size, u� is the local

characteristic speed, f s is the modal frequency of the

structure and G is the diffusion coefficient. For time

accurate resolution of unsteady computations, the

specified time step must be of the same order of

magnitude as the smallest characteristic time scale. In

addition, one must address the stability and accuracy

issues of the different solvers while arriving at a time

step size. If a fully implicit scheme is employed, like the

backward Euler for flow solver or the Newmark method

for the structure solver, there is not limitation on the

time step size but if one uses an explicit scheme, like a

central difference scheme, or a semi-implicit scheme, the

choice of an appropriate time step is limited by a

stability bound. When the PISO algorithm is used as the
flow solver, it being a semi-implicit scheme, it is limited

by a stability condition based on two dimensionless

parameters associated with the diffusive and convective

time scales [69]. The structure solver, which uses an

implicit time marching scheme, does not have a stability

limit on the choice of time step size. Hence, the choice of

time step was determined solely based on the stability

condition of the flow solver.

The two non-dimensional parameters are defined as

follows. The parameter associated with the convective

time scale is the CFL (or Courant) number, which is

defined as

CFL ¼
u�Dt

dL
. (41)
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In curvilinear coordinates, the CFL number can be

written as

CFL ¼
Dt

J
maxðU ;V ;W Þ, (42)

where J is the Jacobian and U, V, W are the

contravariant velocities. The corresponding dimension-

less parameter for the diffusion time scale is given by

D ¼
GDt

rdL2
, (43)

which, written in curvilinear coordinates, reads as

follows

D ¼
GDt

rJ
max

q11
J

;
q22
J

;
q33
J


 �
. (44)

The stability condition for unsteady flows can be

stated in terms of these dimensionless parameters CFL

and D, i.e., the larger of these parameters should be of

the order of magnitude 1 for stability purposes. This

CFL number needs to be in the Oð1Þ magnitude range

for the PISO algorithm to be stable. Two time step sizes

of 5� 10�5 and 1� 10�5 seconds were chosen for grid I

whereas only time step size of 1� 10�5 s was used for
Fig. 10. Diffusive (left) and convective (right) nondimensional parame

sizes for M ¼ 0:96 case [12].
grid II to study the effect of time step size on solution

[12]. Contour plots of CFL numbers for the 3 cases for

M ¼ 0:96; are shown in Fig. 10. Only the region

surrounding the wing tip is shown, as this is the region

with minimum grid spacing. The CFL numbers in all

other regions are well below Oð1Þ magnitude. It can be

seen from the plot that CFL numbers for all cases are in

the Oð1Þ magnitude range. The CFL numbers for the

higher time step case for grid I resulted in higher CFL

numbers as expected. It can also be seen that the order

of magnitude of CFL numbers for grid I with time step

5� 10�5 and grid II with time step size 1� 10�5 are in

comparable ranges. This arises because of the fineness in

grid spacing for grid II compared to grid I, which allows

for a higher choice of time step size for this configura-

tion. Time step sizes of 5� 10�5 and 1� 10�5 s were

chosen for grid I and grid II, respectively, for all of our

computations.
7.4. Flutter boundary prediction for AGARD wing

The coupled CAE solver is demonstrated by predict-

ing the flutter boundary for the AGARD 445.6 wing at
ter at wing tip spanwise location for different grids and time step
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three different Mach numbers [12,14]. The Mach

numbers considered were 0.67, 1.072 and 0.96, respec-

tively. Steady-state solution at an angle of attack of 0�

was used as the initial condition to start the unsteady

computations. The computations can be started with

either an initial displacement and zero initial vibrational

velocity or zero displacement and nonzero initial

vibrational velocity. The wing then starts oscillating in

time resulting in either a damped, or diverging, or

neutral vibrations. An initial vibrational velocity was

used for the case demonstrated here to study the

oscillations of the wing.

The aim was to determine the flutter speed index (FSI)

for the wing at the different Mach numbers considered.

The flutter speed index is defined as

U f ¼
U1

boa
ffiffiffi
m

p , (45)

where U1 is the freestream velocity, b is the half root

chord, oa is the first torsional mode frequency and m is
the mass ratio of the wing. It represents the condition at

which the oscillation is neither growing nor decaying. If

the speed index U is smaller than U f ; the motion is
stable and if U is greater than U f ; then the motion is
unstable. Unsteady computations were run for a series

of dynamic pressures to determine the flutter point. The

freestream density and Mach number were held constant

as the dynamic pressure was varied to determine the

flutter point, thereby leading to a variation in Reynolds

number and temperature in order to provide a consistent

set of flow conditions. The Reynolds number was in

the range 5:96� 105 to 6:72� 105 for the various
Fig. 11. Generalized displacement versus time for three
dynamic pressures considered. This change in Reynolds

number did not produce a significant effect on the flow

solutions.

The growth and decay of the generalized displacement

of the structure was studied to arrive at the flutter point.

The flutter point was obtained by running a solution for

a significantly long period of time to arrive at a neutrally

stable solution, where the amplitude of oscillations of

the generalized displacement of the structure is neither

growing nor decaying. The flutter boundary estimation

was first demonstrated using the grid configuration I

(350K points) for M ¼ 0:96 case. The generalized
displacements for three different choices of dynamic

pressure ratios (1.03, 0.98 and 0.905) using a time step

size of 5� 10�5 s are shown in Fig. 11. The dynamic

pressure ratio was measured with respect to the

experimental dynamic pressure at which neutrally

stable flutter was predicted, which occurs at a value of

2935N/m2 (61.3 lbf/ft2) for the Mach number of 0.96. It

can be seen from the plot that the amplitude ratio

decreases with decrease in dynamic pressure. Amplitude

growth is seen for two of the dynamic pressure ratios

(1.03 and 0.98) whereas amplitude decay is seen for a

dynamic pressure ratio of 0.905. Critical flutter speed is

the speed at which neutrally stable oscillations are

produced or when the amplification factor is 1. Thus,

from the above findings, the critical flutter speed is

bound to occur at a dynamic pressure ratio between 0.98

and 0.905, which was found to be 0.96 by performing

additional computations. The corresponding flutter

speed index was found to be 0.297, as compared to the

experimental value of 0.308.
different dynamic pressures for Dt ¼ 5� 10�5 [12].
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A grid refinement study was then performed using

grid configuration II (800K) [12]. A time step size of

10�5 s was used in this case to preserve CFL stability

condition. The corresponding dynamic pressure ratio

pertaining to an amplification factor of 1.0, implying

neutrally stable condition, was found to be 0.99. The

FSI evaluated based on this value of dynamic pressure

ration was 0.305, which was in excellent agreement with

experiment. Hence, refining the grid increased the

computed flutter speed, although grid independence

was not yet achieved. Similar findings were reported in

Gordnier and Melville [10] as well. They showed that a

finer mesh resolution improved the flutter boundary

prediction, which is in agreement with the findings

shown in this review.

The impact of wing shape change on flow features is

demonstrated next. Two points, the point of maximum

and minimum tip deflection, are chosen to demonstrate

the impact of shape change on the pressure distribution

on the wing surface. Particularly, the supersonic region

is highlighted at these time instants for the two grid

configurations. This was demonstrated by plotting the

pressure contours on the surface of the wing and by

evaluating the critical pressure coefficient corresponding

to the freestream Mach number. The critical pressure

coefficient is defined as [70] follows

cpcr ¼
2

gM2

1þ ðg� 1=2ÞM2

1þ ðg� 1Þ=2

� �g=ðg�1Þ

� 1

" #
, (46)

where M is the freestream Mach number and g is the
specific heat ratio. Based on M ¼ 0:96; the critical
pressure coefficient was found to be �0.0697. A pressure

coefficient below this critical pressure coefficient con-

stitutes the supercritical region or the region of super-

sonic flow on the surface of the wing. The pressure

coefficient contours for both grid configurations at the

maximum and minimum deflection points are shown in

Fig. 12. Only the supercritical region is shown in the

plot. Slight differences in pressure contours are seen
Fig. 12. Surface pressure contours indicating supercritical region or r

[14].
between the two deflection points for both grids. The

finer mesh resolution enhanced the low-pressure region

better over the wing. Additional plots of the flow field

can be found in Kamakoti [12].

Similar computations were performed for two other

Mach numbers of 0.678 and 1.072. Similar approach,

like the one used for the M ¼ 0:96 case, was used to
arrive at the FSI. The FSI for a subsonic Mach number

of 0.678 using coarser of the two grids was found to be

0.419, and using finer of the two grids was found to be

0.417. The experimental value of FSI for this Mach

number was 0.4174. Hence both grid configurations

were found to be in excellent comparison with experi-

ment. Similar results have been published in the past for

this Mach number case. However, for the M ¼ 1:072
case, the FSI evaluated using grid I (350K points) was

found to be 0.41, and using grid II (800K points) was

found to be 0.44. The experimental value of FSI for this

Mach number was evaluated to be 0.32. It was observed

that refining the grid deviates more from the experiment.

Results published by other researchers [7,9–11] also

showed a much bigger deviation at supersonic Mach

numbers. In particular, Liu et al. [11] evaluated the FSI

to be 0.46 for this Mach number and his result was the

closest to the experimental value at that time, unless one

uses a linear model [5,6], which was known to fail at

around M ¼ 1:0 thereby failing to predict the transonic
dip. The computed results shown here lied well within

the range of computed results presented by other

authors. The reason for a difference between experiment

and numerical results can be attributed to the absence of

fuselage modeling in the computations. Also, the

experiment included boundary-layer transition, which

was not modeled in any of the computations shown

here.

A summary of the flutter points for different choice of

grids and time step sizes, along with comparison to

experiment and numerical results, is shown in Table 3.

The comparison is also demonstrated via Fig. 13. The

plot is also zoomed in at M ¼ 0:96 for clarity and is
egion of supersonic flow on the surface of the wing ðM ¼ 0:96Þ
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Table 3

Comparison of critical flutter speed and dynamic pressure with

experiment and other numerical results

Mach

number

Model FSI

0.678 Experiment [68] 0.4174

Euler and normal modes [7] 0.417

TSD-linear and normal modes [6] 0.430

RANS and beam (modes) with GCL

[12]

0.419

RANS and beam (modes) with GCL

[14]

0.417

0.96 Experiment [68] 0.3095

Euler and normal modes [7] 0.275

NS and normal modes [9] 0.294

TSD-nonlinear and normal modes [22] 0.284

RANS and normal modes [11] 0.300

NS and normal modes with GCL [10] 0.319

RANS and beam (modes) with GCL

[12]

0.297

RANS and beam (modes) with GCL

[12]

0.305

1.072 Experiment [68] 0.3201
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shown in Fig. 14. It can be observed from the figure that

the approach presented here compared reasonably well

with both experimental as well as prior numerical results

in spite of the simplicity of the structure model used and

the first-order accuracy of the flow solver.
8. Conclusions

Recent advances in the field of computational

aeroelasticity were reviewed. Particularly, the three

major models pertaining to CAE, namely, flow solver,

structure solver and moving mesh algorithm, were

studied in depth thereby giving a flair for arriving at

suitable models for performing fluid–structure interac-

tion calculations. Specifically, a closely-coupled ap-

proach was discussed in detail as it was found to be an

efficient and accurate way to couple flow and structure

solvers. It also gives us the flexibility in choosing

different solvers for fluids and structures depending on

the complexity of the applications looked at. In this

review, the emphasis is on the interaction between a

complex flow solver and a simplified structure model.

Such a model is used as a basis to probe into the various

issues involved with developing a computational aero-

elastic module.

The advantages of using a non-iterative flow solver

were discussed. Also, the different time scales associated

with the different solvers and how they impact on the

choice of time step size of the overall computations were

studied. The importance of having a robust moving

mesh module was reviewed in detail. The impact of

different parameters associated with the moving mesh

module was also highlighted.

Since the computations need to be performed on a

dynamically moving mesh, the geometric properties
.8 0.9 1 1.1 1.2
umber
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need to be conserved as the mesh configuration changes

with time. This was ensured via the geometric conserva-

tion law, which, when implemented in curvilinear

coordinates, meant updating the Jacobians associated

with the cell volumes in a consistent fashion. Four

different schemes for updating Jacobian values were

examined in an attempt to arrive at a robust choice for

performing moving grid computations. It was concluded

that the impact of GCL on the solution accuracy is not

only governed by the formal order of accuracy of the

discretization scheme but also on the time marching

scheme employed by the flow solver. Another aspect

discussed was the need to modify the original Rhie–-

Chow momentum interpolation scheme to account for

time-dependent effects in the formulation.

Flutter prediction results for a variety of Mach

numbers have been discussed and have been compared

with experiment and several numerical methodologies.

The flutter boundary was predicted by varying the

dynamic pressure and by studying the generalized

displacement of the structure. Impact of grid resolution

on flutter prediction and how it improves upon the

flutter speed index for transonic Mach numbers was also

discussed.

To conclude, we have shown that the computational

methodology that couples a linear structure solver and a

complex flow solver can exhibit capabilities to predict

flutter characteristics in an accurate manner. The

simulations have given insight into the flow physics

associated with performing a fluid–structure interaction

computation over elastic bodies. It has also given insight

into several numerical issues encountered while carrying

out these computations and what needs to be done to

overcome this. Future challenges lies in developing

higher-order aeroelastic methods with the inclusion of

separated flow effects and detailed structure modeling
including nonlinear effects for other aeroelastic applica-

tions. One of the fields gaining interest is the reduced-

order modeling (ROM) technique, which is an efficient

way to accurately model larger systems.
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