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Escoamentos compressíveis

Aula 04

Choques oblíquos e ondas de 
expansão
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4.1 Introdução

• Choques normais são um 
caso especial de uma família 
de ondas oblíquas que 
ocorrem em escoamentos 
supersônicos.

• Choques oblíquos ocorrem 
quando o escoamento tende 
a “curvar-se sobre si mesmo”.

• Quando o escoamento tende 
a “curvar-se afastando-se de 
si”, são formadas ondas de 
expansão.
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4.1 Introdução

Solução numérica para o padrão de ondas de choque sobre o veículo 
hipersônico de pesquisa Hyper-X da NASA no instante da separação do 
veículo lançador a Mach 7 (Griffin Anderson, Charles McClinton, e John 
Weidner, “Scramjet Performance”, in Scramjet Propulsion, editado por E. 
T. Curran e S. N. B. Murthy, AIAA Progress in Astronautics and
Aeronautics, vol. 189, Reston, Virginia, p. 431.)
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4.1 Introdução
• Ondas oblíquas: o escoamento 

supersônico é “curvado” sobre si mesmo.
• Ondas de expansão: o escoamento 

supersônico “distancia-se” de si mesmo.
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4.2 Fontes de ondas oblíquas

• Criadas por distúrbios que se propagam 
por colisões moleculares à velocidade do 
som, que eventualmente coalescem em 
choques ou que se espalham por ondas 
de expansão.

• Ângulo de Mach:

M

1
sin 1−=µ



6

4.2 Fontes de ondas oblíquas
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4.2 Fontes de ondas oblíquas
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4.2 Fontes de ondas oblíquas

• Se o distúrbio é mais forte que uma fonte 
pontual emitindo ondas sonoras, a frente 
de onda torna-se mais forte que uma onda 
de Mach.

• Distúrbios fortes coalescem em ondas de 
choque oblíquas com ângulo β se .µ>β
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4.3 Relações para choques 
oblíquos

• Geometria de ondas de choque oblíquas:
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4.3 Relações para choques 
oblíquos

• Equação da continuidade:

• Equação do momentum (componente 
tangencial):

2211 uu ⋅ρ=⋅ρ

( ) ( ) 0222111 =⋅⋅ρ+⋅⋅ρ− wuwu

21 ww =
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4.3 Relações para choques 
oblíquos

• Equação do momentum (componente 
normal):

2
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2

111 upup ⋅ρ+=⋅ρ+
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12

4.3 Relações para choques 
oblíquos

• Equação da energia:
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4.3 Relações para choques 
oblíquos

• Para uma onda de choque oblíqua em um 
gás caloricamente perfeito:
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4.3 Relações para choques 
oblíquos
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4.3 Relações para choques 
oblíquos

• Relação θ−β−M:
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4.3 Relações para choques 
oblíquos

• Curvas θ−β−M:
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4.3 Relações para choques 
oblíquos

• Para um dado número de Mach a 
montante, existe um ângulo de deflexão 
máximo. Se a geometria física for tal que  
θ > θmax então, não ocorrerá solução para 
uma onda de choque oblíqua direta.
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4.3 Relações para choques 
oblíquos

• Para θ < θmax, existem dois valores de β
previstos pel relação θ−β−M. Como as 
variações através da onda são mais 
severas com o aumento de β, um valor de 
β é denominado de solução de choque 
forte; caso contrário, se β for pequeno, 
tem-se uma solução de choque fraco. Na 
natureza, o choque fraco é favorecido e é
o que normalmente ocorre.
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4.3 Relações para choques 
oblíquos

• Na solução para choque forte, o número 
de Mach a jusante é subsônico; no 
choque fraco, o Mach é supersônico, à
exceção de uma pequena região próxima 
a θmax.

• Para                     (correspondente a um 
choque normal) ou          (correspondente 
a uma onda de Mach). 

2,0 π=β=θ

µ=β
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4.3 Relações para choques 
oblíquos

• Para um ângulo θ de deflexão fixo, à
medida que o número de Mach do 
escoamento livre se reduz (para 
escoamentos supersônicos), o ângulo de 
onda aumenta (para a solução de choque 
fraco). Finalmente, existe um número de 
Mach abaixo do qual não existe solução 
possível (neste caso, θ = θmax). Para 
números de Mach inferiores, o choque 
separa-se do corpo. 
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4.3 Relações para choques 
oblíquos

• Choques unidos e destacados de um 
corpo.
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4.3 Relações para choques 
oblíquos
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4.3 Relações para choques 
oblíquos

• Relação β−θ−M:
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4.3 Relações para choques 
oblíquos

• Relação β−θ−M:

Para solução de choque forte:

Para solução de choque fraco:
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4.4 Escoamento supersônico 
sobre cunhas e cones

• Cones: efeito de alívio tridimensional.
• A adição de uma terceira dimensão 

permite que o escoamento se movimente 
por novas regiões, as quais estariam 
obstruídas pela presença do corpo em 
uma configuração bidimensional.
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4.5 Choque polar

• Forma gráfica de explicação e 
entendimento de ondas de choque 
oblíquas.
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4.5 Choque polar

• Representação no plano hodográfico:
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4.5 Choque polar



29

4.5 Choque polar

• Para um dado ângulo de deflexão θ, o 
diagrama de choque polar é cruzado em 
dois pontos B e D. Os pontos B e D 
representam, respectivamente, as 
soluções para os choques fraco e forte. 
Note que D está dentro do círculo sônico, 
como esperado.
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4.5 Choque polar

• A linha OC, traçada tangente ao diagrama 
de choque polar representa o ângulo de 
deflexão máximo θmáx para um dado ......      
Para θ > θmáx, não existe solução para 
choque oblíquo.

• Os pontos E e A representam o 
escoamento sem deflexão. O ponto E 
corresponde à solução com choque 
normal; o ponto A, à linha de Mach.

*

1M
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4.5 Choque polar

• Caso se desenhe a reta que liga A a B e 
sobre a mesma for localizado o ponto H, 
de modo que a reta OH seja perpendicular 
a AB, então o ângulo HOA é o ângulo de 
onda β correspondente à solução de 
choque no ponto B.

• Os diagramas de choque polar para 
diferentes números de Mach formam uma 
família de curvas. O diagrama de choque 
polar para                               é um círculo.( )∞→= 1

*

1 45,2 MM
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4.5 Choque polar
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4.6 Reflexão regular a partir de 
um contorno sólido

• A onda de choque não é refletida de modo 
especular.
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4.7 Diagramas pressão-deflexão

• Lugar geométrico (“locus”) de todas as 
pressões estáticas possíveis a jusante de 
uma onda de choque oblíquo em função 
do ângulo de deflexão a partir das 
condições a jusante.
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4.7 Diagramas pressão-deflexão
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4.7 Diagramas pressão-deflexão

• Processo de choque refletido em um 
diagrama pressão-deflexão:
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4.8 Intersecção de choques de 
famílias opostas

• Assumindo-se θ2 > θ3, o choque em A é
mais forte que o em B, de modo que o 
sistema de choque AC apresenta maior 
variação de entropia que o choque BD.
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4.8 Intersecção de choques de 
famílias opostas

• As seguintes condições, contudo, devem 
ser satisfeitas:
– A pressão precisa ser a mesma em 4 e em 4’.
– As velocidades nas regiões 4 e 4’ devem 

apresentar a mesma direção de propagação, 
embora possam variar em magnitude.
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4.8 Intersecção de choques de 
famílias opostas
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4.9 Intersecção de choques de 
mesma família

• Considere um canto de compressão, onde 
o escoamento supersônico na região 1 é
defletido através de um ângulo θ, a partir 
de um ponto B.
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4.9 Intersecção de choques de 
mesma família

• Uma onda de Mach gerada em um ponto 
A a montante de B intersecta o choque?
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4.9 Intersecção de choques de 
mesma família

• E uma onda de Mach gerada em um 
ponto C a jusante de B intersecta o 
choque?
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4.9 Intersecção de choques de 
mesma família
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4.9 Intersecção de choques de 
mesma família

• As seguintes condições devem ser 
satisfeitas:
– As pressões e as direções nas regiões 5 e 3 

devem ser iguais.

• Como em geral não é possível encontrar 
um único choque CD que atenda 
simultaneamente às condições de pressão 
e ângulo de deflexão, a natureza cria uma 
onda fraca refletida a partir do ponto C.
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4.10 Reflexão de Mach

• Formação de uma onda de choque 
oblíquo no canto e uma onda de choque 
normal na superfície superior.
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4.11 Onda de choque destacado 
à frente de um corpo rombudo

• Considere um escoamento supersônico 
ao redor de um corpo com nariz rombudo. 
Uma forte onda de choque curva é criada 
à frente do corpo, com o choque 
destacado do nariz por uma distância δ.

• No ponto a, o escoamento a montante é
normal à onda de choque; afastando-se 
da linha de centro, o choque torna-se 
curvo e mais fraco.
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4.11 Onda de choque destacado 
à frente de um corpo rombudo
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4.11 Onda de choque destacado 
à frente de um corpo rombudo
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4.11 Onda de choque destacado 
à frente de um corpo rombudo

• O formato da onda de choque destacado, 
a distância δ e o campo de escoamento 
completo entre o choque e o corpo 
dependem do número de Mach a 
montante, do tamanho e do formato do 
corpo. A solução para este campo de 
escoamento não é trivial.
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4.11 Onda de choque destacado 
à frente de um corpo rombudo

• O problema do escoamento supersônico 
sobre corpos rombudos foi o foco principal 
da aerodinâmica de escoamento 
supersônicos durante as décadas de 1950 
e 1960, devido à necessidade do 
entendimento dos escoamentos de alta 
velocidade sobre mísseis de nariz 
rombudo e reentrada atmosférica.
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4.12 Ondas de choque 
tridimensionais

• Somente as propriedades imediatamente 
após o choque podem ser calculadas 
pelas relações vistas anteriormente.
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Características das ondas de expansão:
– Há aumento do número de Mach.
– A pressão, a densidade e a temperatura 

diminuem ao se cruzar uma onda de 
expansão.

– Um leque de expansão é uma região de 
expansão contínua, composta por um número 
infinito de ondas de Mach, limitada a 
montante por µ1 e a jusante por µ2.
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Características das ondas de expansão:
– As linhas de corrente através de uma onda de 

expansão são linhas suaves e curvas.
– Uma vez que a expansão ocorre através de 

uma sucessão contínua de ondas de Mach e 
que dS = 0 para cada onda de Mach, então a 
expansão é isentrópica.
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4.13 Ondas de expansão de 
Prandtl-Meyer
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Equação de Prandtl-Meyer: obtida a partir 
das variações infinitesimais que ocorrem 
através de uma onda muito fraca 
(essencialmente uma onda de Mach)
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4.13 Ondas de expansão de 
Prandt-Meyer

• Equação de Prandtl-Meyer:

• Aspectos gerais:
– Trata-se de uma equação aproximada para 

um dθ finito, mas que se torna uma igualdade 
verdadeira quando dθ→ 0.

V

dV
Md 12 −=θ
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Aspectos gerais:
– É derivada tendo-se como base apenas a 

geometria, onde a física real é aquela 
associada à definição de ondas de Mach. 
Trata-se, contudo, de uma relação geral, 
válida para gases perfeitos, gases 
quimicamente reativos e gases reais.
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Aspectos gerais:
– Trata apenas de um ângulo de expansão 

infinitesimalmente pequeno, dθ. Para 
analizar-se toda a expansão de Prandtl-
Meyer, há a necessidade de integrar a 
expressão obtida para todo o ângulo θ2.
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Função de Prandtl-Meyer (para um gás 
caloricamente perfeito):

( ) ( ) 1tan1
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4.13 Ondas de expansão de 
Prandtl-Meyer

• Cálculos para ondas de expansão de 
Prandtl-Meyer:

1. Obter v(M1).

2. Calcular v(M2), utilizando os valores de θ2

e v(M1).
3. Obter M2 a partir do valor de v(M2).
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4.13 Ondas de expansão de 
Prandtl-Meyer

4. Lembrando-se que a expansão é um 
fenômeno isentrópico, tem-se que:
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4.14 Teoria de choque-expansão

• A teoria de ondas de choque e de ondas 
de expansão permitem o cálculo exato de 
forças aerodinâmicas sobre diversos tipos 
de aerofólios supersônicos bidimensionais 
cujos perfis são formados por segmentos 
de reta.
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4.14 Teoria de choque-expansão

• Considerando-se um aerofólio simétrico 
em forma de diamante (losango):
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4.14 Teoria de choque-expansão

• Formação de uma onda de choque 
oblíquo na região frontal.

• Formação de ondas de expansão na 
porção central.

• Formação de uma onda de choque 
oblíquo na região de saída.
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4.14 Teoria de choque-expansão

• Para o ângulo de ataque zero, a única 
força aerodinâmica sobre o aerofólio será
o arrasto (D). Assim:

[ ]∫∫ ⋅−= dSpD de x componente

( ) tppD ⋅−= 32
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4.14 Teoria de choque-expansão

• Sabe-se que para o escoamento invíscido
bidimensional sobre uma asa de 
comprimento infinito a velocidades 
subsônicas, tem-se arrasto nulo.

• Por sua vez, para escoamentos invíscidos
supersônicos, o arrasto por unidade de 
comprimento é finito.
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4.14 Teoria de choque-expansão

• Esta nova fonte de arrasto encontrada 
para escoamentos supersônicos é
chamada de onda de arrasto, estando 
relacionada à perda de pressão total e ao 
aumento de entropia através das ondas 
de choque oblíquas  criadas pelo 
aerofólio.
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4.14 Teoria de choque-expansão


