Escoamentos compressiveis

Aula 04

Choques obliquos e ondas de
expansao



Mo = 1.06

Moo = 1.45

4.1 Introducao

L Detached shock wave

S

Attached oblique
shock wave

Choques normais sdo um
caso especial de uma familia
de ondas obliqguas que
ocorrem em escoamentos
supersonicos.

Choques obliqguos ocorrem
gquando o escoamento tende
a “curvar-se sobre si mesmo”.

Quando o escoamento tende
a “curvar-se afastando-se de

si”, sao formadas ondas de
expansao.



4.1 Introducao

RV-to-booster
adapter “‘jaw”

Solucao numérica para o padrdo de ondas de choque sobre o veiculo
hipersénico de pesquisa Hyper-X da NASA no instante da separagao do
veiculo lancador a Mach 7 (Griffin Anderson, Charles McClinton, e John
Weidner, “Scramjet Performance”, in Scramjet Propulsion, editado por E.
T. Curran e S. N. B. Murthy, AIAA Progress in Astronautics and
Aeronautics, vol. 189, Reston, Virginia, p. 431.)




4.1 Introducao
« Ondas obliguas: 0 escoamento
supersonico é “curvado” sobre si mesmo.

« Ondas de expansao: o escoamento
supersonico “distancia-se” de si mesmo.




4.2 Fontes de ondas obliquas

« Criadas por disturbios que se propagam
por colisoes moleculares a velocidade do
som, que eventualmente coalescem em
chogues ou que se espalham por ondas
de expansao.

» Angulo de Mach:

W=sin" 1
M



4.2 Fontes de ondas obliquas

Subsonic
V <a

Supersonic

(a)

Figure 4.5 | The propagation of disturbances in (a) subsonic and (b) supersonic flow.



4.2 Fontes de ondas obliquas




4.2 Fontes de ondas obliquas

« Se o disturbio € mais forte que uma fonte
pontual emitindo ondas sonoras, a frente
de onda torna-se mais forte que uma onda
de Mach.

e Disturbios fortes coalescem em ondas de
choque obliquas com angulo 3 se B>u.




4.3 Relacoes para choques
obliquos

« Geometria de ondas de choque obliquas:




4.3 Relacoes para choques
obliquos

» Equacao da continuidade:

P, -U, =P, U,

« Equacao do momentum (componente

tangencial):

(_p1 'ul)'wl'l'(pz'uz)'wz =0

w=Ww,
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4.3 Relacoes para choques
obliquos

« Equacao do momentum (componente
normal):

(_p1 'ul)'ul +(p2 'uz)'uz :_(_p1 +p2)

> >
PP U =p,+pP, U,
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4.3 Relacoes para choques
obliquos

« Equacao da energia:

_(pl U+ p, 'uz):_p1 '(el‘l'_l]'ul"'pz '(62"'_2]'”2

2 2
Vi v
h+—=h,+—
2 2
I/t2 l/t2
hy+—=h, +—
2 2
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4.3 Relacoes para choques
obliguos

« Para uma onda de choque obligua em um
gas caloricamente perfeito:

M, =M, 'Sin(B)

p,  (y+1)-M}

P (Y_l)'M31+2

Py 2V (32 )

P, Y+1
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4.3 Relacoes para choques
obliquos

, M+ [2/(y-1)]
M2 = 2-y/(y-1)] M7 -1

1, _ PP

I, p,p,

M
]‘42 — n2

~ sin(B-9)
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4.3 Relacoes para choques

ob
» Relacao 6—p—M:

liquos

tan(0) = 2-cot(B)- <(

M -sin*(B)-1

N

M |y+cos(2-B)]+ 2 |
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4.3 Relacoes para choques
obliquos

« Curvas 6—3—M:

90

80

70

60

50

40

30

Shock wave angle (3, degrees

20

10

k
\
LA
A\
AN Strong shock
\ \\I
0 S
™ JWeak shock __ ]
- TIM; <l — ——— — =
i M, > 1
"
My
53 B
My
2
My (0qax) forM; =5
- © |
P |
M |
] ! ] 1 ! 1 ! | |
5 10 15 20 25 30 35 40 45

Deflection angle 8, degrees

16



4.3 Relacoes para choques
obliguos

« Para um dado numero de Mach a
montante, existe um angulo de deflexao
maximo. Se a geometria fisica for tal que
0 > 0_.. entao, nao ocorrera solugcao para
uma onda de choque obliqua direta.
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4.3 Relacoes para choques
obliguos

- Para 6 < 6_. , existem dois valores de 3
previstos pel relagao 6-p—M. Como as
variacbes através da onda sao mais
severas com o0 aumento de 3, um valor de
B € denominado de solucao de choque
forte; caso contrario, se [ for pequeno,
tem-se uma solucao de choque fraco. Na
natureza, o choque fraco é favorecido e &
0 gque normalmente ocorre.
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4.3 Relacoes para choques
obliguos

* Na solucao para choque forte, 0 numero
de Mach a jusante €& subsoOnico; no
choque fraco, o Mach é supersonico, a
excecao de uma pequena regiao proxima
a' 6IIla.X'

» Para 6=0, p=mn/2 (correspondente a um
choque normal) ou B =u (correspondente
a uma onda de Mach).
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4.3 Relacoes para choques
obliguos

« Para um angulo 6 de deflexao fixo, a
medida que o numero de Mach do
escoamento livre se reduz (para
escoamentos supersonicos), o angulo de
onda aumenta (para a solucao de choque
fraco). Finalmente, existe um numero de
Mach abaixo do qual nao existe solucao
possivel (neste caso, 6 = 6_. ). Para
numeros de Mach inferiores, o choque
separa-se do corpo. 20



4.3 Relacoes para choques
obliquos

 Choques unidos e destacados de um
corpo.
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4.3 Relacoes para choques
obliquos

Detached shock

Palp; =2.82 M"l =249

palpy =7.07

Figure 9.12 Effects of increasing the upstream Mach number.

Mnl =16
Palpy =169 Palpy =28

Figure 9.13 Effect of increasing the deflection angle.

Figure 9.11 The weak and strong
shock cases.
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4.3 Relacoes para choques
obliquos

» Relacao B—6—M.
M* —1+2-7»-cos{ [4-71:-8+cos_1(x)]/3}

tan(B) = : (

1+;1M2j-tan(9)

_ —1/2
A= (M2—1)2—3-(1+YT_1M2J-(1+YT+1MZJ-tanz(e)
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4.3 Relacoes para choques
obliquos

» Relacao B—6—M.

(M2 -1) —9-(1+V;1M2).(1+7;1M2 +7;1M4j-tan2(e)
7\}

Para solucédo de choque forte: 0=0

x:

Para solugcao de choque fraco: 0=1
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4.4 Escoamento supersonico
sobre cunhas e cones
 Cones: efeito de alivio tridimensional.

« A adicao de uma terceira dimensao
permite que o0 escoamento se movimente
por novas regioes, as quais estariam
obstruidas pela presenca do corpo em
uma configuracao bidimensional.
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4.5 Choque polar

- Forma grafica de explicacao e
entendimento de ondas de choque
obliquas.

A A AT I R S Ry Fr s od
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4.5 Choque polar

» Representacao no plano hodografico:

Yy
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4.5 Choque polar

n*|x‘1
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4.5 Choque polar

 Para um dado angulo de deflexao 6, o
diagrama de choque polar é cruzado em
dois pontos B e D. Os pontos B e D
representam, respectivamente, as
solucoes para os choques fraco e forte.
Note que D esta dentro do circulo sbnico,
como esperado.
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4.5 Choque polar

* A linha OC, tracada tangente ao diagrama
de choque polar representa o angulo de
deflexdo maximo 6., para um dado M.
Para 6 > 0., nao existe solugao para
choque obliquo.

« Os pontos E e A representam o
escoamento sem deflexao. O ponto E
corresponde a solucado com choque
normal; o ponto A, a linha de Mach.
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4.5 Choque polar

» Caso se desenhe a reta que liga A aB e
sobre a mesma for localizado o ponto H,
de modo que a reta OH seja perpendicular
a AB, entao o angulo HOA é o angulo de
onda [3 correspondente a solucao de
choque no ponto B.

« Os diagramas de choque polar para
diferentes numeros de Mach formam uma
familia de curvas. O diagrama de choque
polar para M, =2,45(M, — =) & um circulo.
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4.5 Choque polar

Figure 4.17 | Shock polars for different Mach numbers.
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4.6 Reflexao regular a partir de
um contorno solido

* A onda de choque nao ¢ refletida de modo
especular.

B

TR

Figure 4.18 | Regular reflection from a solid boundary.
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4.7 Diagramas pressao-deflexao

« Lugar geometrico (“locus”) de todas as
pressoes estaticas possiveis a jusante de
uma onda de choque obliquo em funcao
do angulo de deflexao a partir das
condicoes a jusante.
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4.7 Diagramas pressao-deflexao

Left-running wave Right-running wave
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Figure 4.21 | Pressure-deflection diagram for a given M.

35



4.7 Diagramas pressao-deflexao

 Processo de choque refletido em um
diagrama pressao-deflexao:

p
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4.8 Interseccao de choques de
familias opostas

« Assumindo-se 6, > 6,, 0 choque em A é
mais forte que o em B, de modo que o
sistema de choque AC apresenta maior
variacao de entropia que o choque BD.

———— —— —— —
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4.8 Interseccao de choques de
familias opostas

* As seguintes condicoes, contudo, devem
ser satisfeitas:
— A pressao precisa seramesmaem4eemé4’.

— As velocidades nas regioes 4 e 4 devem
apresentar a mesma direcao de propagacao,
embora possam variar em magnitude.
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4.8 Interseccao de choques de
familias opostas

>
w
e
(e
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D
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4.9 Interseccao de choques de
mesma familia

» Considere um canto de compressao, onde
O escoamento supersonico na regiao 1 é
defletido através de um angulo 6, a partir
de um ponto B.
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4.9 Interseccao de choques de
mesma familia

 Uma onda de Mach gerada em um ponto

A a montante de B intersecta o choque?
u, =V, -sinfy
. ul
sinPp =—
Vi
. al
S111 = —
H v
u,>a, e P>,
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4.9 Interseccao de choques de
mesma familia

« E uma onda de Mach gerada em um
ponto C a jusante de B intersecta o
choque?

u, =V, sin(B—0)

. u,
sin([p—0)=—
3-0)-1
. a2
sinw, = —
U, Vv,

u,<a, e P-0<u,
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4.9 Interseccao de choques de
mesma familia
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4.9 Interseccao de choques de
mesma familia

« As seqguintes condicoes devem ser
satisfeitas:

— As pressoes e as direcoes nas regioes 5 e 3
devem ser iguais.

« Como em geral nao € possivel encontrar
um unico choque CD que atenda
simultaneamente as condicoes de pressao
e angulo de deflexao, a natureza cria uma
onda fraca refletida a partir do ponto C.
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4.10 Reflexao de Mach

 Formacao de uma onda de choque
obliqguo no canto e uma onda de choque
normal na superficie superior.

M, >M,

LLLLLL LA AL Il

ST

(For M,) 45



4.11 Onda de choque destacado
a frente de um corpo rombudo

Considere um escoamento supersonico
ao redor de um corpo com nariz rombudo.
Uma forte onda de choque curva é criada
a frente do corpo, com o choque
destacado do nariz por uma distancia o.

No ponto a, 0 escoamento a montante é
normal a onda de choque; afastando-se
da linha de centro, o choque torna-se
curvo e mais fraco.
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4.11 Onda de choque destacado
a frente de um corpo rombudo
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4.11 Onda de choque destacado
a frente de um corpo rombudo
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4.11 Onda de choque destacado
a frente de um corpo rombudo

O formato da onda de choque destacado,
a distancia 0 e 0 campo de escoamento
completo entre o choque e o corpo
dependem do numero de Mach a
montante, do tamanho e do formato do
corpo. A solucao para este campo de
escoamento nao é trivial.
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4.11 Onda de choque destacado
a frente de um corpo rombudo

O problema do escoamento supersonico
sobre corpos rombudos foi o foco principal
da aerodindmica  de escoamento
supersonicos durante as decadas de 1950
e 1960, devido a necessidade do
entendimento dos escoamentos de alta
velocidade sobre misseis de nariz
rombudo e reentrada atmosférica.
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4.12 Ondas de choque
tridimensionais
« Somente as propriedades imediatamente

apds o choque podem ser calculadas
pelas relacoes vistas anteriormente.
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4.13 Ondas de expansao de
Prandtl-Meyer

« Caracteristicas das ondas de expansao:
— Ha aumento do numero de Mach.

— A pressao, a densidade e a temperatura
diminuem ao se cruzar uma onda de
expansao.

—Um leque de expansdao €& uma regiao de
expansao continua, composta por um numero
infinito de ondas de Mach, Ilimitada a
montante por u, e a jusante por W,.
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4.13 Ondas de expansao de
Prandtl-Meyer

« Caracteristicas das ondas de expansao:

— As linhas de corrente através de uma onda de
expansao sao linhas suaves e curvas.

—Uma vez que a expansao ocorre atravées de
uma sucessao continua de ondas de Mach e
que dS = 0 para cada onda de Mach, entao a
expansao € isentropica.
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4.13 Ondas de expansao de
Prandtl-Meyer
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4.13 Ondas de expansao de
Prandtl-Meyer

 Equacao de Prandtl-Meyer: obtida a partir
das variacoes Iinfinitesimais que ocorrem
através de uma onda muito fraca
(essencialmente uma onda de Mach)
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4.13 Ondas de expansao de
Prandt-Meyer

« Equacao de Prandtl-Meyer:

o= 1Y
Vv

» Aspectos gerais:

— Trata-se de uma equacao aproximada para
um do finito, mas que se torna uma igualdade
verdadeira quando d6 — 0.
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4.13 Ondas de expansao de
Prandtl-Meyer

» Aspectos gerais:

—E derivada tendo-se como base apenas a
geometria, onde a fisica real €& aquela
associada a definicao de ondas de Mach.
Trata-se, contudo, de uma relacao geral,
valida para gases perfeitos, g@ases
gquimicamente reativos e gases reais.
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4.13 Ondas de expansao de
Prandtl-Meyer

» Aspectos gerais:

— Trata apenas de um angulo de expansao
infinitesimalmente  pequeno, d6. Para
analizar-se toda a expansao de Prandtl-
Meyer, ha a necessidade de integrar a
expressao obtida para todo o angulo 6,

58



4.13 Ondas de expansao de
Prandtl-Meyer

 Funcao de Prandtl-Meyer (para um gas
caloricamente perfeito):

V(M )= /Y—_I_ltan_1 \/Y—_l(Mz —1)—tan_1 VM -1
y—1 y+1

0, :V(Mz)_V(M1)
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4.13 Ondas de expansao de
Prandtl-Meyer

Calculos para ondas de expansao de
Prandtl-Meyer:

. Obter v(M,).

. Galcular v(M,), utilizando os valores de 6,
e v(M,).

. Obter M, a partir do valor de v(M,).
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4.13 Ondas de expansao de
Prandtl-Meyer

4. Lembrando-se que a expansao &€ um
fendmeno isentropico, tem-se que:

1v/(y-1)

1+Y—_1M22
1+TM12 P> 1+y—_1
2

1+Y—_1

T M,
TZ
M;
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4.14 Teoria de choque-expansao

* A teoria de ondas de choque e de ondas
de expansao permitem o calculo exato de
forcas aerodinamicas sobre diversos tipos
de aerofolios supersonicos bidimensionais
cujos perfis sao formados por segmentos
de reta.
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4.14 Teoria de choque-expansao

 Considerando-se um aerofdlio simétrico
em forma de diamante (losango):

Figure 4.35 | Symmetrical diamond-wedge airfoil.
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4.14 Teoria de choque-expansao

« Formacao de uma onda de choque
obliguo na regiao frontal.

 Formacao de ondas de expansao na
porcao central.

 Formacao de uma onda de choque
obliquo na regiao de saida.
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4.14 Teoria de choque-expansao

 Para o angulo de ataque zero, a unica
forca aerodinamica sobre o aerofolio sera
o arrasto (D). Assim:

D = componente x de [— ﬁ p-dS ]

D=(p2—p3)-t
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4.14 Teoria de choque-expansao

« Sabe-se que para o escoamento inviscido
bidimensional sobre uma asa de
comprimento infinito a  velocidades
subsobnicas, tem-se arrasto nulo.

» Por sua vez, para escoamentos inviscidos
supersonicos, o arrasto por unidade de
comprimento é finito.
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4.14 Teoria de choque-expansao

 Esta nova fonte de arrasto encontrada
para escoamentos  supersdnicos €
chamada de onda de arrasto, estando
relacionada a perda de pressao total e ao
aumento de entropia através das ondas
de choque obliquas criadas pelo
aerofolio.
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4.14 Teoria de choque-expansao
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