
TM 045 Fundamentos deTM-045 Fundamentos de 
Aerodinâmica

Cap. 05: EscoamentosCap. 05: Escoamentos 
incompressíveis sobre asas finitas
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Introdução: downwash e arrasto 
induzido

• Uma asa finita é um corpo tridimensional, de
modo que o escoamento sobre a mesma difereq
em alguns aspectos do escoamento sobre um
aerofólio mesmo que os perfis de ambosaerofólio, mesmo que os perfis de ambos
sejam idênticos.

• No caso de uma asa finita, existe um
escoamento na direção lateral, o que nãoq
ocorre para escoamentos sobre aerofólios.
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Introdução: downwash e arrasto 
induzido

• O mecanismo de geração de sustentação em
uma asa é baseado na existência de uma alta
pressão no intradorso e de baixa pressão no
extradorsoextradorso.
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Introdução: downwash e arrasto 
induzido

• Além da sustentação, o desbalanço entre as
pressões no intra e no extradorso criap
condições para que o escoamento se curve
junto às bordas da asa Assim as linhas dejunto às bordas da asa. Assim, as linhas de
corrente no extradorso tendem a se curvar em
di ã à f l d iã já i t ddireção à fuselagem do avião; já no intradorso,
o efeito é o contrário, com as linhas de
corrente se afastando da fuselagem.
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Introdução: downwash e arrasto 
induzido

• A tendência do escoamento em rotacionar ao
redor das bordas das asas gera outro efeitog
importante na aerodinâmica de asas. Esse
escoamento gera uma esteira de vórtices aescoamento gera uma esteira de vórtices a
partir das pontas das asas.

• Os vórtices, por sua vez, induzem a formação
de uma pequena componente de velocidade,p q p
vertical e para baixo, sobre a asa, chamada de
downwash ou velocidade normal induzida.downwash ou velocidade normal induzida.
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Introdução: downwash e arrasto 
induzido

• Vórtices de ponta de asa
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Introdução: downwash e arrasto 
induzido

• Efeito da downwash sobre o escoamento local
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Introdução: downwash e arrasto 
induzido

• No caso de uma asa finita, o ângulo α, formado
entre a corda e o vetor velocidade V∞ é∞
definido como ângulo geométrico de ataque.

• Uma vez que existe a velocidade normal• Uma vez que existe a velocidade normal
induzida (downwash), o vento relativo local
apresenta uma direção inclinada, abaixo da
direção de V∞, formando um ângulo αi com a∞ g i
mesma, chamado de ângulo de ataque
induzido.induzido.

8



Introdução: downwash e arrasto 
induzido

• A presença da velocidade normal induzida
(downwash) sobre a asa possui dois efeitos( ) p
principais sobre a aerodinâmica da mesma:

O ângulo real de ataque é o que existe entre a– O ângulo real de ataque é o que existe entre a
corda e o vento relativo local, sendo denominado
de ângulo de ataque efetivo (α ) e apresentandode ângulo de ataque efetivo (αeff ) e apresentando
valor inferior ao ângulo de ataque geométrico α:

ieff  
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Introdução: downwash e arrasto 
induzido

– O vetor sustentação local é perpendicular à direção
do vento relativo local e, por isso, é inclinado em
relação à vertical por um ângulo αi. Desse modo,
existe uma componente do vetor sustentação local
na direção de V∞, criando uma força de arrasto
devido à velocidade normal induzida (downwash);
tal arrasto é denominado arrasto induzido, sendo
simbolizado por Di.
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Introdução: downwash e arrasto 
induzido

• Nota-se, assim, que a presença da velocidade
normal induzida (downwash) sobre uma asa( )
finita reduz o ângulo de ataque real, além de
criar uma componente de arrasto (o arrastocriar uma componente de arrasto (o arrasto
induzido, Di). Verifica-se, desse modo, que o

d d D’Al b t ãparadoxo de D’Alembert não ocorre para asas
finitas.
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Introdução: downwash e arrasto 
induzido

• Existem, contudo, outras formas de se explicar
a geração do arrasto induzido.g ç
– Tendo-se como base o escoamento tridimensional

induzido pelos vórtices das pontas de asasinduzido pelos vórtices das pontas de asas,
observa-se uma modificação do campo de pressões
sobre a asa finita que modo que ocorre umsobre a asa finita, que modo que ocorre um
desbalanço entre as pressões na direção de V∞,
provocando o arrasto induzidoprovocando o arrasto induzido.
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Introdução: downwash e arrasto 
induzido

– Os vórtices de ponta de asa apresentam elevada
quantidade de energia cinética translacional e
rotacional. Tal energia é fornecida pelos motores
da aeronave e, como não possui nenhuma
serventia, é essencialmente perdida. Desse modo,
há a necessidade de se gerar uma quantidade extra
de energia por parte do motor para superar essa
energia perdida, composta essencialmente pelo
arrasto induzido.
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Introdução: downwash e arrasto 
induzido

• O arrasto total sobre uma asa finita subsônica é
composta pela soma do arrasto induzido, Di,p p , ,
com o arrasto de superfície, Df, e o arrasto de
pressão D este último devido à separação dopressão, Dp, este último devido à separação do
escoamento (formação de esteira viscosa).

• Essas duas últimas parcelas se devem aos
efeitos viscosos, sendo conhecidos
conjuntamente como arrasto de perfil, cd.
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Introdução: downwash e arrasto 
induzido

• Para ângulos de ataque moderados, o
coeficiente de arrasto de perfil de uma asap
finita é essencialmente o mesmo obtido para
aerofólios Assim definindo-se o coeficienteaerofólios. Assim, definindo se o coeficiente
de arrasto de perfil como

Sq
DD

c pf
d





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Introdução: downwash e arrasto 
induzido

• E o arrasto induzido como
D
Sq
DC i

iD


,

• Tem-se que o coeficiente de arrasto total sobre
uma asa finita, CD, é dado poru s , CD, é d do po

iDdD CcC , iDdD ,
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Introdução: downwash e arrasto 
induzido

• Os valores de cd são normalmente obtidos a
partir de dados experimentais, enquanto parap p , q p
CD,i emprega-se a teoria de asas finitas,
apresentada neste capítuloapresentada neste capítulo.

17



Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Para estabelecer uma teoria aerodinâmica para
asas finitas, devem ser introduzidas algumas, g
ferramentas aerodinâmicas adicionais.

• Inicialmente deve se estender o conceito de• Inicialmente, deve-se estender o conceito de
filamento de vórtices, que não necessariamente
deve apresentar apenas um perfil reto. De um
modo geral, um filamento de vórtices pode serg p
curvo.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Filamento de vórtices:
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• O filamento de vórtices induz um campo de
escoamento no espaço ao redor. Se ap ç
circulação é tomada sobre um caminho que
englobe o filamento um valor constante Γ éenglobe o filamento, um valor constante Γ é
obtido. Assim, a intensidade do filamento de

ó ti é d fi id Γvórtices é definido como Γ.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Considerando-se um segmento do filamento
dl, sendo o raio do vetor de dl para um ponto, p p
arbitrário P no espaço igual a r. O segmento dl
induz uma velocidade em P igual ainduz uma velocidade em P igual a

3
rdldV 



• Tal equação é conhecida como Lei de Biot

34 r

• Tal equação é conhecida como Lei de Biot-
Savart, sendo uma das fundamentais relações

t i í id i í iem escoamentos invíscidos e incompressíveis.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• A Lei de Biot-Savart é um resultado geral da
teoria potencial, que descreve tanto camposp , q p
eletromagnéticos quanto escoamentos
invíscidos e incompressíveisinvíscidos e incompressíveis.

• Pode-se, então, aplicar a lei de Biot-Savart
para um filamento de vórtices de comprimento
infinito, de intensidade Γ.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Velocidade induzida em um ponto P por um
filamento de vórtices infinito
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Nesse caso, a velocidade induzida em um
ponto P, devido ao segmento de vórticesp , g
orientado dl, será dado pela expressão
anteriormente apresentada de modo que aanteriormente apresentada de modo que, a
velocidade induzida em P por todo o filamento
d ó ti áde vórtices será


  rdlV  

 34 r
V


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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• A magnitude da velocidade, por sua vez, é
dada porp

 







 dl

r
V 2

sin
4




• Se h for a distância perpendicular do ponto P

  r4

Se h o d s c pe pe d cu do po o
ao filamento de vórtices, então

      

dhdlhlhr 2sin

;
tan

;
sin


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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Dessa forma, obtém-se
   

  0sin    










0

2 sin
4

sin
4 







d
h

dl
r

V

h
V

2




• Nota-se, assim, que a solução obtida é
precisamente a mesma obtida para um ponto
de vórtice em um escoamento bidimensional.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Considerando-se, então, um filamento de
vórtices semi-infinito, que se estende de um, q
ponto A até +∞. Seja P um ponto pertencente
ao plano que contém A e seja perpendicular aoao plano que contém A e seja perpendicular ao
filamento. Então a velocidade induzida em P

l fil t d ó ti i i fi it ápelo filamento de vórtices semi-infinito será

V 


h
V

4

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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Hermann von Helmholtz (matemático, físico e
médico alemão) foi o primeiro a utilizar o) p
conceito de filamentos de vórtices para a
análise de escoamentos invíscidos eanálise de escoamentos invíscidos e
incompressíveis. Nesse processo, foram

t b l id i í i bá i destabelecidos os princípios básicos do
comportamento de vórtices, conhecidos como
Teoremas de Helmholtz.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Teoremas de Helmholtz:
– A intensidade de um filamento de vórtices é

constante ao longo de seu comprimento.
– Um filamento de vórtices não pode se encerrar emUm filamento de vórtices não pode se encerrar em

um fluido; ele deve se estender até a fronteira do
fluido (que pode ser infinita) ou formar umfluido (que pode ser infinita) ou formar um
caminho fechado.
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Considere uma seção de uma asa em uma
localização y1, na qual a corda local é c, oç y1, q ,
ângulo de ataque geométrico é α, e a seção do
aerofólio tenha um formato definido Nessaaerofólio tenha um formato definido. Nessa
posição, a sustentação por unidade de

i t é Lꞌ( )comprimento é Lꞌ(y1).
• Em um outra seção da asa, localizada em y2, nay2

qual c, α e o formato do aerofólio possam ser
diferentes, a sustentação será Lꞌ(y2).diferentes, a sustentação será L (y2).
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Nota-se, assim, que haverá uma distribuição de
sustentação por unidade de comprimento, dadaç p p ,
por Lꞌ = Lꞌ(y). Por consequência, a circulação
também será uma função de y:também será uma função de y:

   


yLy

• Observa se também que a distribuição de

 



V

y


• Observa-se, também, que a distribuição de
sustentação é nula nas pontas das asas.

31



Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• Distribuição da sustentação ao longo de asas
finitas:
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Filamento de vórtices, Lei de Biot-
Savart e teoremas de Helmholtz

• A distribuição de sustentação nula nas pontas
de asas (y = ‒ b/2 e y = b/2) está relacionada à(y y )
equalização entre as pressões no extradorso e
no intradorso para esses pontos e assimno intradorso para esses pontos e, assim,
nenhuma sustentação é gerada.
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Teoria da linha sustentadora de 
Prandtl

• A primeira teoria prática para a previsão das
propriedades aerodinâmicas de asas finitas foip p
desenvolvida por Ludwig Prandtl e seus
colegas em Göttingen (Alemanha) entre 1911colegas em Göttingen (Alemanha), entre 1911
e 1918.

• Tal teoria ainda é empregada atualmente para
cálculos preliminares das características dep
asas finitas.
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Teoria da linha sustentadora de 
Prandtl

• Considera-se, inicialmente, um filamento de
vórtices fixo em uma certa região dog
escoamento. Tal filamento recebe, então, a
denominação de vórtice ligado (“boundeddenominação de vórtice ligado ( bounded
vortex”) e, pelo teorema de Kutta-Joukowski,

i t f d t t ãexperimenta uma força de sustentação
 VL  
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Teoria da linha sustentadora de 
Prandtl

• O vórtice ligado se opõe aos vórtices livres,
que se movem com os elementos de fluido emq
escoamento.

• Substitui se então a asa finita de largura b por• Substitui-se, então, a asa finita de largura b por
um vórtice ligado, estendendo-se de y = ‒b/2
até y = b/2. No entanto, pelo teorema de
Helmholtz, um filamento de vórtices não podep
acabar no fluido.
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Teoria da linha sustentadora de 
Prandtl

• Substituição de uma asa finita por um vórtice
ligado (“bounded vortex”).g ( )
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Teoria da linha sustentadora de 
Prandtl

• Desse modo, são considerados dois vórtices
livres chamados de vórtices de ponta de asap
(“free-trailing vortex”) que se estendem das
pontas das asas até o infinito Ao conjuntopontas das asas até o infinito. Ao conjunto
dado pelo vórtice ligado (bounded vortex) e os
d i ó ti d t d (f t ilidois vórtices de ponta de asa (free-trailing
vortex) dá-se o nome de vórtice em ferradura
(“horseshoe vortex”).
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Teoria da linha sustentadora de 
Prandtl

• Distribuição da velocidade normal induzida
(downwash) ao longo do eixo y de um vórtice( ) g y
em ferradura (horseshoe vortex).
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Teoria da linha sustentadora de 
Prandtl

• Considere a velocidade normal induzida
(downwash) w ao longo do vórtice ligado( ) g g
(bounded vortex) de y = ‒b/2 até y = b/2. Nota-
se que o vórtice ligado não induz à nenhumase que o vórtice ligado não induz à nenhuma
velocidade ao longo dele mesmo; observa-se,

t d ó ti d t dcontudo, que os vórtices de ponta de asa
contribuem na formação da velocidade normal
induzida (downwash).
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Teoria da linha sustentadora de 
Prandtl

• Essa velocidade pode, então, ser avaliada por

     ybyb
yw










2424 

• Na expressão anterior a primeira parcela se

   yy

• Na expressão anterior, a primeira parcela se
refere ao vórtice de ponta de asa à esquerda
( i ã b/2) d l(posição y = ‒b/2) e a segunda parcela ao
vórtice de ponta de asa à direita (y = b/2).
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Teoria da linha sustentadora de 
Prandtl

• A velocidade normal induzida pode então ser
avaliada como

 
  2224 yb

byw 




• Observa-se, contudo, que a distribuição da

 24 yb 

Obse v se, co udo, que d s bu ç o d
velocidade normal induzida (downwash) por
um único vórtice em ferradura (horseshoeum único vórtice em ferradura (horseshoe
vortex) não reproduz realisticamente uma asa
fi itfinita.
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Teoria da linha sustentadora de 
Prandtl

• Nota-se que, da expressão anterior, tem-se uma
velocidade tendendo ao infinito junto a cadaj
ponta de asa. Para solucionar esse problema,
ao invés de representar uma asa por um únicoao invés de representar uma asa por um único
vórtice em ferradura, substitui-se a mesma por

d ú d ó ti f dum grande número de vórtices em ferradura,
cada qual com um comprimento diferente de
vórtice ligado, mas de modo que todos formem
uma única linha, chamada de linha,
sustentadora (“lifting line”).
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Teoria da linha sustentadora de 
Prandtl

• Superposição de um número finito de vórtices
em ferradura ao longo de uma linhag
sustentadora.
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Teoria da linha sustentadora de 
Prandtl

• Considera-se, então, por exemplo, um vórtice
em ferradura de intensidade dΓ1 cujo vórtice1 j
ligado se estenda do ponto A ao ponto F. Um
segundo vórtice em ferradura de intensidadesegundo vórtice em ferradura, de intensidade
dΓ2, é sobreposto ao primeiro, mas se

t d d d t B t E P destendendo do ponto B ao ponto E. Pode-se,
ainda sobrepor um terceiro vórtice em
ferradura, de intensidade dΓ3, que se estende
de C a D.
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Teoria da linha sustentadora de 
Prandtl

• Observa-se, assim, que nos trechos AB e EF, a
circulação será dada por dΓ1, nos trechos BC eç p 1,
DE, a circulação será dΓ1+dΓ2 e no trecho CD
a circulação será dΓ1+dΓ2 +dΓ3a circulação será dΓ1+dΓ2 +dΓ3.

• Nota-se, também, a formação de diversas
linhas de vórtices livres, cuja intensidade é
igual à variação de circulação observada nag
linha sustentadora.
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Teoria da linha sustentadora de 
Prandtl

• Pode-se, então, considerar o caso de um
número infinito de vórtices em ferradura
sobrepostos ao longo da linha sustentadora,
cada qual com intensidade dΓcada qual com intensidade dΓ.
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Teoria da linha sustentadora de 
Prandtl

• Nesse caso, a circulação torna-se uma
distribuição contínua de Γ(y) ao longo da linhaç (y) g
sustentadora, com valor Γ0 na origem. Nota-se
também a formação de uma superfícietambém a formação de uma superfície
contínua de vórtices livres a jusante da linha

t t dsustentadora.
• Essa superfície é paralela à direção de V∞ e suap p ∞

intensidade total é nula, pois consiste em pares
de vórtices livres de mesma intensidade, masde vórtices livres de mesma intensidade, mas
de direções opostas. 48



Teoria da linha sustentadora de 
Prandtl

• Considerando-se um pequeno segmento dy da
linha sustentadora, localizado na posição y. A, p ç y
circulação nesse ponto é Γ(y) e sua variação no
segmento dy é dada porsegmento dy é dada por

dydd 



 



• Além disso a intensidade do vórtice livre em y

dy
dy

d 







• Além disso, a intensidade do vórtice livre em y
precisa ser igual à variação da circulação dΓ ao
l d li h t t dlongo da linha sustentadora.
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Teoria da linha sustentadora de 
Prandtl

• Considerando-se, então, um ponto y0 sobre a
linha sustentadora; nesse caso, qualquer; , q q
segmento de linha de vórtice livre dx induz
uma velocidade em y0 com magnitude euma velocidade em y0 com magnitude e
direção dadas pela lei de Biot-Savart. Desse

d l id d i d id d lmodo, a velocidade induzida dw em y0 pela
linha de vórtices semi-infinita em y é dada por

 
 yy

dydyddw





04
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Teoria da linha sustentadora de 
Prandtl

• A velocidade induzida total w por toda a
superfície de vórtices livres avaliada em y0 ép y0
dada por

 


21 b dydyd   
 




2

2
0

0 4
1 b

b yy
dydydyw



• Tal expressão permite avaliar a velocidade
normal induzida (downwash) em y devido anormal induzida (downwash) em y0 devido a
todos os vórtices livres.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da velocidade normal induzida
(downwash) sobre o escoamento local de uma( )
asa finita
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Teoria da linha sustentadora de 
Prandtl

• Para a posição y0, o ângulo de ataque induzido
αi pode ser avaliado comoi p

   








  ywyi 01

0 tan

• Que, no caso de ângulos pequenos resulta em

  



 V

yi 0

Que, o c so de gu os peque os esu e

   


ywy 0  



V

yi 0
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Teoria da linha sustentadora de 
Prandtl

• Pode-se, também, avaliar αi em termos da
distribuição de circulação Γ(y) ao longo da asa:ç ç (y) g

   





2

0
1 b

i
dydydy

• Considerando-se, então, o ângulo de ataque

  
 2

0
0 4 bi yyV
y



Co s de do se, e o, o gu o de que
efetivo αeff , verifica-se que o mesmo pode
variar ao longo do comprimento da asa umavariar ao longo do comprimento da asa, uma
vez que a velocidade normal induzida

t t tapresenta esse comportamento.
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Teoria da linha sustentadora de 
Prandtl

• Desse modo, tem-se que αeff = αeff (y). Assim, o
coeficiente de sustentação da seção da asaç ç
localizada em y = y0 será

        00000 2   LeffLeffl yyac 

• Nota-se que o coeficiente angular de
sustentação a foi substituído pelo valorsustentação a0 foi substituído pelo valor
teórico obtido para aerofólios finos (2π).
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Teoria da linha sustentadora de 
Prandtl

• Observa-se também que, se a asa apresentar
torção, o ângulo de sustentação nula αL=0 variaç , g ç L 0
com y0. Se não houver torção, αL=0 é constante
ao longo do comprimento da asa De todoao longo do comprimento da asa. De todo
modo, αL=0 é uma propriedade conhecida para

õ t i das seções transversais da asa.
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Teoria da linha sustentadora de 
Prandtl

• Da definição do coeficiente de sustentação e
da aplicação do teorema de Kutta-Joukowski,p ç ,
tem-se que

1    00
2

2
1 yVcycVL l   

• De onde se obtém
 2 
 0

02
ycV
ycl





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Teoria da linha sustentadora de 
Prandtl

• Dessa forma, o ângulo de ataque efetivo será
 0 y 
  0

0

0







 Leff ycV
y 




• E, desse modo, o ângulo de ataque geométrico
será dado porse d do po

   
     








2

00
0

0
1 b

L
dydydyyy       




 2
0

00
0

0 4 bL yyV
y

ycV
y


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Teoria da linha sustentadora de 
Prandtl

• A expressão anterior é a equação fundamental
da teoria da linha sustentadora de Prandtl. De
tal equação tem-se que o ângulo de ataque
geométrico é a soma do ângulo de ataquegeométrico é a soma do ângulo de ataque
efetivo com o ângulo de ataque induzido.
N ã ú i i ó it éNessa expressão, a única incógnita é a
circulação Γ = Γ(y0), em que y0 varia de ‒b/2
até b/2 (envergadura da asa).
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Teoria da linha sustentadora de 
Prandtl

• A solução de Γ = Γ(y0) fornece três
características principais de uma asa finita:p p
– A distribuição de sustentação, obtida do teorema

de Kutta-Joukowskide Kutta Joukowski

   00 yVyL  

– A sustentação total, obtida ao se integrar a

   00 yy 

expressão anterior sobre toda a envergadura da asa

   dyyVdyyLL
bb

 
22


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   dyyVdyyLL
bb  


22




Teoria da linha sustentadora de 
Prandtl

– Consequentemente o coeficiente de sustentação
será dado por

 dyy
SVSq

LC
b

bL 



2

2

2

– O arrasto induzido por unidade de comprimento é
dado por

q 

dado por
 iii LD sin

– No caso de pequenos ângulos de ataque induzidos

iii LD 
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Teoria da linha sustentadora de 
Prandtl

– E, assim, o arrasto induzido total será

       bb


22        dyyyVdyyyLD

b

b ii

b

bi  


2

2

2

2


– Consequentemente, o coeficiente de arrasto
i d id é d dinduzido é dado por

   dDC
b

i  
22    dyyy

SVSq
C

b i
i

iD 



2, 
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Considere a distribuição de circulação dada porç ç p

 
221 




y  0

21 






b
yy

– Tem-se, nesse caso, as seguintes observações:
• Γ0 é a circulação na origem.
• A circulação varia elipticamente com a distância y ao

longo da largura da asa.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
• Tem-se, nesse caso, a chamada distribuição elíptica de

circulação e, consequentemente:
22  y  0

21 





  b
yVyL 

• De modo que se tem uma distribuição elíptica de
sustentação.

• Tanto a circulação quanto a sustentação são nulas nas
pontas das asas, ou seja,

   
64
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Propriedades aerodinâmicas de uma asa finita comp

distribuição elíptica de sustentação:
– Velocidade normal induzida (downwash):Velocidade normal induzida (downwash):

• Derivando-se a distribuição de circulação:

  21222
0

41
4

by
y

bdy
d








 y
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
• E substituindo-se o resultado na expressão da

velocidade induzida w, obtém-se

  
 20 b

dy      


2
0

21222
0

0
41b

dy
yyby

y
b

yw


• Adotando-se, ainda, a seguinte substituição de variáveis:

   bb      dbdyby sin
2

;cos
2


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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
• Obtém-se:

   
   










0
0

0
cos

2
d

b
w

• Ou seja,

        0
0

0 coscos2 b

j ,

   
b

w
2

0
0



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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Observa-se, assim, que a velocidade normal, , q

induzida (downwash) é constante ao longo do
comprimento para uma distribuição elíptica dep p ç p
sustentação.

– De modo semelhante o ângulo de ataque induzidoDe modo semelhante, o ângulo de ataque induzido
também é constante ao longo do comprimento e
pode ser avaliado pela seguinte expressão:pode ser avaliado pela seguinte expressão:




w
i

0

68
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Uma forma mais útil para a avaliação de αi, nop ç i,

entanto, pode ser obtida a partir da seguinte
expressão:p

dyyVL
b

21
2

241 




  dy
b

VL
b 2 20 1 




 

– De onde se obtém:
bVL 
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– O que conduz aq

b
CSV L

2
0

– E dessa forma,
b0

2


b
CS L

i 
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Uma propriedade geométrica importante para umap p g p p

asa finita é a razão de aspecto, denotada por AR, e
definida porp

S
bAR

2



– Assim, αi será avaliado por
S

AR
CL

i 
 

71
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Pode-se obter, também, o coeficiente de arrasto, ,

induzido através da seguinte expressão:

C 2

AR
CC L

iD 

2

, 

– Tal expressão mostra que o coeficiente de arrasto
induzido é diretamente proporcional ao quadrado
do coeficiente de sustentação.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Observa-se, assim, que o coeficiente de arrasto, , q

induzido aumenta rapidamente com o crescimento
do coeficiente de sustentação, tornando-se umaç ,
parcela expressiva do coeficiente de arrasto total
quando os valores de CL são elevados (típicos deq L ( p
baixas velocidades, como a decolagem e a
aterrissagem). Mesmo para velocidades de cruzeirog ) p
relativamente elevadas, o arrasto induzido
representa cerca de 25% do arrasto total.p
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Outro aspecto importante é que CD i ép p q D,i

inversamente proporcional à razão de aspecto
(AR). Assim, para se reduzir o arrasto induzido,( ) , p ,
deve-se utilizar asas finitas com o maior valor
possível de razão de aspecto.p p
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Teoria da linha sustentadora de 
Prandtl

i ib i lí i d• Distribuição elíptica de sustentação:
– Nota-se, contudo, que o projeto de asas de elevada

razão de aspecto com confiabilidade estrutural é
difícil. Os valores típicos observados para

b ô i i i taeronaves subsônicas convencionais se encontram
na faixa de 6 a 8.
U t t l i d di t ib i ã– Um outro aspecto relacionado a uma distribuição
elíptica de sustentação é obtido ao se considerar
uma asa sem torção geométrica (α constante) euma asa sem torção geométrica (α constante) e
sem torção aerodinâmica (αL=0 constante).
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Sob essas condições, tem-se que o ângulo deç , q g

ataque efetivo também é constante e o coeficiente
de sustentação para uma seção local, cl éç p ç , l

 00  Leffl ac 

– Assumindo-se, também, que a0 seja constante para
d ã dcada seção, tem-se que cl deve ser constante

também ao longo da asa.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– A sustentação por unidade de comprimento éç p p

  lccqyL 

– De onde se obtém, para a corda c:

   
lcq
yLyc




– Observa-se que q∞ e cl são constantes, enquanto Lꞌ
varia elipticamente ao longo do comprimento

lcq

varia elipticamente ao longo do comprimento.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Tem-se, assim, que para a distribuição elíptica de, , q p ç p

sustentação a corda deve variar elipticamente com
o comprimento. Desse modo, a planificação da asap , p ç
deve ser elíptica.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição elíptica de sustentação:
– Embora uma distribuição elíptica de sustentaçãoç p ç

possa parecer um caso restritivo e isolado, na
realidade fornece uma aproximação confiável dop ç
coeficiente de arrasto induzido para uma asa finita
arbitrária.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Considere a transformaçãoç

 cos
2
by 

– Para a qual a coordenada na direção lateral é dada
θ 0 θ di ib i

 
2

y

por θ, com 0 ≤ θ ≤ π. Para esse caso, a distribuição
elíptica de sustentação é dada por

    sin0
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Tal expressão indica que a distribuição geral dep q ç g

circulação ao longo de uma asa finita arbitrária
possa ser avaliada por uma Série de Fourier dep p
senos. Assumindo-se, então

N

N A ã i ó i d

   
N

n nAVb
1

sin2 

– Nesse caso, An são incógnitas, mas que devem
satisfazer à equação fundamental da teoria da linha

d d P d lsustentadora de Prandtl.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Diferenciando-se a expressão anterior e aplicando-p p

a na expressão para a determinação do ângulo de
ataque, obtém-seq ,

         
   

N

nL

N

n
nAnnAb

000 i
sinsin2





          nLnc 1 0

00
10

0 sin 

– Nessa expressão, b, c(θ0) e αL=0(θ0) são conhecidos
da geometria e da seção da asa finita (aerofólio).
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Por sua vez, o coeficiente de sustentação será:, ç

       
Nb

L dnAbdyyC
22

sinsin22 
       




nbL dnA
S

dyy
SV

C
1

02
sinsin 

– Ao se avaliar a integral, obtém-se:

b2

ARA
S
bACL  1

2

1 
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– O coeficiente de arrasto induzido, nesse caso, é, ,

dado por

   b2 2

     dyyy
SV

C

N

b

b iiD
2

2

2

2, 







      


dnA
S
b

i

N

n sinsin2
0

1

2

  








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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– O ângulo de ataque αi(θ) é:g q i( )

   
 

N

i
nAn sin      ni An

1 sin 


– Tem-se, assim, que o coeficiente de arrasto
induzido será:

  1
2

, AR
CC L

iD

85

 
, AR



Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Nota-se que δ ≥ 0 eq ≥

2

 








N

nAn
2 1
 









A

n

– Definindo-se o fator de eficiência e como

  1

Sendo e ≤ 1

  11  e

– Sendo e ≤ 1.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Desse modo o coeficiente de arrasto induzido será

A
CC L

iD

2



– Lembra-se que para asas sem torção aerodinâmica
é i di ib i d

AReiD ,

nem torção geométrica, tem-se uma distribuição de
sustentação elíptica para asas planas elípticas,

i B i i h S i ficomo as que equipavam o British Spitfire,
utilizado na Segunda Guerra Mundial.
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Supermarine Spitfire:p p
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Asas retas:
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Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Asas elípticas apresentam distribuição dep p ç

sustentação mais próxima da ótima, mas possuem
alto custo de manufatura.

– Asas retangulares geram uma distribuição de
sustentação muito distante da ótimasustentação muito distante da ótima.

– Asas trapezoidais podem ser fabricadas de modo
que a razão entre as cordas de ponta e de baseque a razão entre as cordas de ponta e de base
apresentem distribuição de sustentação mais
próxima das asas elípticaspróxima das asas elípticas.

90



Teoria da linha sustentadora de 
Prandtl

• Distribuição de sustentação geral:
– Os estudos sobre asas trapezoidais foramp

realizados inicialmente por Hermann Glauert,
sendo publicados em 1926.p

– Uma vez que asas com bordos de ataque e de fuga
retos são mais fáceis de serem manufaturados doretos são mais fáceis de serem manufaturados do
que asas elípticas, a maioria dos aviões empregam
asas trapezoidais ao invés de asas elípticasasas trapezoidais ao invés de asas elípticas.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– O coeficiente de arrasto induzido para uma asap

finita com distribuição de sustentação geral é
inversamente proporcional à razão de aspecto.p p p

– Nota-se que o valor de AR, que tipicamente varia
entre 6 e 22 para aviões subsônicos e aquáticosentre 6 e 22 para aviões subsônicos e aquáticos,
apresenta um efeito muito maior sobre o CD,i que o
valor de δvalor de δ.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Observa-se, assim, que o fator primário de projeto, , q p p j

para minimizar o arrasto induzido não é o de se
obter uma distribuição de sustentação maisç ç
próxima possível da elíptica, mas sim tornar a
razão de aspecto a maior possível.p p

– A determinação de que CD,i é inversamente
proporcional à AR é um dos principais resultadosproporcional à AR é um dos principais resultados
da teoria da linha sustentadora de Prandtl.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Em 1915, Prandtl verificou tal resultado através de,

uma série de experimentos clássicos sobre os
coeficientes de sustentação e de arrasto para 7 asasç p
retangulares de diferentes razões de aspecto.

– Arrasto total para asas finitas:Arrasto total para asas finitas:

CcC L
2


ARe

cC dD 

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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Dados do experimento clássico de Prandtl parap p

asas retangulares
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Assumindo-se duas asas de diferentes razões de

aspecto AR1 e AR2, tem-se
22 CC

A i d h C
2

2,
1

1, ;
ARe
CcC

ARe
CcC L

dD
L

dD 


– Assumindo-se que as asas tenham o mesmo CL e
que apresentem a mesma seção de aerofólio
( ) ã(mesmo cd), tem-se então








2 11CCC L
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

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




21

2,1, ARARe
CC L
DD 



Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– A expressão anterior pode ser utilizada para mudarp p p

a escala dos dados de uma asa com uma dada razão
de aspecto AR2 para o caso correspondente parap 2 p p p
uma razão de aspecto AR1.

– Isso foi realizado por Prandtl para os dados por eleIsso foi realizado por Prandtl para os dados por ele
coletados, considerando-se como referência uma
asa de razão de aspecto 5:asa de razão de aspecto 5:
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Dados dos experimentos de Prandtl reescaladosp

para uma razão de aspecto 5.

99



Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Existem duas diferenças essenciais entre asç

propriedades de um aerofólio e de asas finitas: a
primeira se refere à geração do arrasto induzido; ap g ç ;
segunda, ao coeficiente angular da sustentação.

– O coeficiente angular da sustentação para umO coeficiente angular da sustentação, para um
aerofólio, é dado por

d
d
dca l0
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– No caso de uma asa finita, define-se o coeficiente,

angular como
dCL

A fi i l d
d
dCa L

– Ao se comparar o coeficiente angular de uma asa
finita ao de um aerofólio, observa-se que a < a0.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Para essa avaliação, deve-se recordar que embora oç , q

ângulo de ataque geométrico seja α, no caso de
uma asa finita tem-se um ângulo de ataque efetivog q
αeff, menor que α.

– Nesse caso considere uma asa elíptica sem torção;Nesse caso, considere uma asa elíptica sem torção;
desse modo, tanto αi quanto αeff serão constantes ao
longo da largura da asa e desse modo CL = cllongo da largura da asa e, desse modo CL cl.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Assumindo-se que seja plotado um gráfico de CLq j p g L

versus αeff . Nesse caso, como se está empregando
o ângulo de ataque efetivo, o coeficiente angularg q , g
da sustentação coincide com aquele observado
para uma asa infinita, sendo designado por a0.p , g p 0

– No entanto, o usual é a plotagem do gráfico
levando-se em consideração o ângulo de ataquelevando se em consideração o ângulo de ataque
geométrico, de modo que o coeficiente angular
real a é menor que a0 uma vez que α ff < αreal, a, é menor que a0, uma vez que αeff < α.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Recordando-se que para sustentação nula nãoq p ç

existem efeitos induzidos, tem-se que αi = CD,i = 0.
Desse modo, quando CL = 0, tem-se que α = αeff ., q L , q eff
Tem-se, assim, que αL=0 é o mesmo para asas
finitas ou infinitas.

– Os valores de a e de a0 estão relacionados através
da seguinte expressão para asas finitas elípticas:da seguinte expressão, para asas finitas elípticas:

a
adCL 0
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– No caso de uma asa finita geral, a expressão a serg , p

empregada é:
0a

é f d fi i
    


11 0

0

ARa
a

– Nessa expressão, τ é uma função dos coeficientes
de Fourier An. Os valores de τ foram calculados
i i i l Gl 1920inicialmente por Glauert nos anos 1920 e
apresentam valores, na maioria das vezes, entre
0 05 0 250,05 e 0,25.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Nota-se que para asas de baixa razão de aspecto,q p p ,

pode existir uma diferença significativa entre a0 e
a. Contudo, à medida que AR→∞, a→ a0., q , 0

– Há uma redução no valor de dCL/dα à medida que 
AR se reduz Esse efeito foi observado por PrandtlAR se reduz. Esse efeito foi observado por Prandtl
em 1915, experimentalmente.
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Variação do coeficiente de sustentação com oç ç

ângulo de ataque (experimento de Prandtl, 1915).
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Teoria da linha sustentadora de 
Prandtl

• Efeito da razão de aspecto:
– Variação do coeficiente de sustentação com oç ç

ângulo de ataque (dados reescalados para AR = 5).
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Asas enflechadasAsas enflechadas

• A maioria das aeronaves modernas de alta
velocidade apresenta asas enflechadas.p

• A opção por essa geometria está relacionada
com a determinação do chamado número decom a determinação do chamado número de
Mach crítico (Mcr). Tal valor está relacionado
ao número de Mach do escoamento não
perturbado (M∞) para o qual sobre o aerofóliop ( ∞) p q
(ou asa), no ponto de mínima pressão sobre a
geometria, o escoamento se torna sônicogeometria, o escoamento se torna sônico
(atinja Mach unitário). 110



Asas enflechadasAsas enflechadas
• À medida q e o número de Mach• À medida que o número de Mach

cresce, localmente tem-se valores
se aproximando da unidade Emse aproximando da unidade. Em
um dado momento, o número de
Mach sobre o aerofólio é unitário.Mach sobre o aerofólio é unitário.
Neste ponto, tem-se o chamado
“número de Mach crítico”,,
denotado por Mcr. Se a velocidade
do escoamento for aumentada
ainda mais, há a formação de uma
linha sônica sobre o aerofólio.
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Asas enflechadasAsas enflechadas

• Um dos mais importantes problemas na
aerodinâmica de altas velocidades é a
determinação do número de Mach crítico para
um dado aerofólio ou asa Isto ocorre poisum dado aerofólio ou asa. Isto ocorre pois,
para números de Mach ligeiramente superiores

íti fóli i tao crítico, o aerofólio experimenta um
dramático aumento no coeficiente de arrasto.
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Asas enflechadasAsas enflechadas
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Asas enflechadasAsas enflechadas

• Sejam p∞ e pA as pressões estáticas do
escoamento livre e do ponto A (local dep (
mínima pressão sobre o aerofólio ou asa),
respectivamente Para um escoamentorespectivamente. Para um escoamento
isentrópico, a pressão total é constante e nesse
caso,
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Asas enflechadasAsas enflechadas

• O coeficiente de pressão no ponto A é definido
como
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Asas enflechadasAsas enflechadas

• No caso em que se tenha no ponto A número
de Mach unitário, o coeficiente de pressão é, p
chamado de coeficiente crítico de pressão e
nesse caso:nesse caso:
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Asas enflechadasAsas enflechadas

• Nota-se, assim, que o coeficiente crítico de
pressão é uma função do número de Machp ç
crítico.
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Asas enflechadasAsas enflechadas

• O escoamento sobre um aerofólio fino é pouco
perturbado em relação ao escoamento livre.p ç
Assim, a expansão na superfície superior é
suave e o valor do coef de pressão é um valorsuave e o valor do coef. de pressão é um valor
de pequena magnitude.

• Ao contrário, no caso de um escoamento sobre
aerofólio espesso, a perturbação em relação aop p
escoamento livre é maior.
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Asas enflechadasAsas enflechadas

• Neste caso, a expansão sobre a superfície
superior é pronunciada e o coef. de pressãop p p
apresenta um valor absoluto mais elevado.

• Do esquema anterior nota se que um número• Do esquema anterior, nota-se que um número
de Mach crítico maior está relacionado a um
coef. de pressão menor.

• Assim, para aviões de alta velocidade, éAssim, para aviões de alta velocidade, é
desejável possuir um número de Mach crítico
o mais elevado possívelo mais elevado possível.
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Asas enflechadasAsas enflechadas

• Duas propostas clássicas são feitas de modo a
aumentar o valor do número de Mach crítico
(e, consequentemente, o número de Mach de
divergência):divergência):
– Reduzir a espessura do aerofólio.
– Rotacionar a asa (usar asa enflechada).

• Em ambos os casos, como consequência tem-, q
se a redução da razão espessura/corda para a
asaasa.
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Asas enflechadasAsas enflechadas
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Asas enflechadasAsas enflechadas
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Asas enflechadasAsas enflechadas

123


