TM-045 Fundamentos de
Aerodinamica

Cap. 05: Escoamentos
Incompressiveis sobre asas finitas



Introducao: downwash e arrasto
Induzido

e Uma asa finita ¢ um corpo tridimensional, de
modo que o escoamento sobre a mesma difere
em alguns aspectos do escoamento sobre um
aecrofolio, mesmo que os perfis de ambos
sejam 1dénticos.

e No caso de uma asa finita, existe um
escoamento na direcdao lateral, o que nao
ocorre para escoamentos sobre aerofolios.



Introducao: downwash e arrasto
Induzido

e O mecanismo de geracao de sustentacao em
uma asa ¢ baseado na existéncia de uma alta
pressdao no intradorso € de baixa pressao no

extradorso.




Introducao: downwash e arrasto
Induzido

e Além da sustentacao, o desbalanco entre as
pressOes no 1ntra € no extradorso cria
condi¢cdes para que O escoamento se curve
junto as bordas da asa. Assim, as linhas de
corrente no extradorso tendem a se curvar em
direcao a fuselagem do aviado; ja no intradorso,
o efeito € o contrario, com as linhas de
corrente se afastando da fuselagem.



Introducao: downwash e arrasto
Induzido

e A tendéncia do escoamento em rotacionar ao
redor das bordas das asas gera outro efeito
importante na aerodinamica de asas. Esse
escoamento gera uma esteira de vortices a
partir das pontas das asas.

e Os vortices, por sua vez, induzem a formacao
de uma pequena componente de velocidade,
vertical e para baixo, sobre a asa, chamada de
downwash ou velocidade normal induzida.



Introducao: downwash e arrasto
Induzido

e Vortices de ponta de asa




Introducao: downwash e arrasto
Induzido

e Efeito da downwash sobre o escoamento local

o - Geometric angle of attack
@ -~ Induced angle of attack
effective angle of attack
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Introducao: downwash e arrasto
Induzido

e No caso de uma asa finita, o angulo a, formado
entre a corda ¢ o vetor velocidade V_ ¢
definido como angulo geométrico de ataque.

e Uma vez que existe a velocidade normal
induzida (downwash), o vento relativo local
apresenta uma direcdo inclinada, abaixo da
dire¢do de V_, formando um angulo a, com a
mesma, chamado de angulo de ataque
induzido.



Introducao: downwash e arrasto
Induzido

e A presenca da velocidade normal induzida
(downwash) sobre a asa possui dois efeitos
principais sobre a acrodinamica da mesma:

— O angulo real de ataque ¢ o que existe entre a
corda e o vento relativo local, sendo denominado

Anrviila Aa At av\i-nﬁrlr\
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valor inferior ao angulo de ataque geométrico
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Introducao: downwash e arrasto
Induzido

— O vetor sustentacao local € perpendicular a direcao
do vento relativo local e, por 1sso, € inclinado em
relagdo a vertical por um angulo a.. Desse modo,
existe uma componente do vetor sustentacao local
na direcdo de V_, criando uma for¢a de arrasto
devido a velocidade normal induzida (downwash);
tal arrasto ¢ denominado arrasto induzido, sendo
simbolizado por D..



Introducao: downwash e arrasto
Induzido

e Nota-se, assim, que a presenca da velocidade
normal 1nduzida (downwash) sobre uma asa
finita reduz o angulo de ataque real, além de
criar uma componente de arrasto (o arrasto
induzido, D,). Verifica-se, desse modo, que o
paradoxo de D’Alembert ndo ocorre para asas
finitas.



Introducao: downwash e arrasto
Induzido

e Existem, contudo, outras formas de se explicar
a geracao do arrasto induzido.

— Tendo-se como base o escoamento tridimensional
induzido pelos vortices das pontas de asas,
observa-se uma modificacdao do campo de pressoes
sobre a asa finita, que modo que ocorre um
desbalanco entre as pressoes na direcao de V_,
provocando o arrasto induzido.



Introducao: downwash e arrasto
Induzido

— Os vortices de ponta de asa apresentam elevada
quantidade de energia cinética translacional e
rotacional. Tal energia ¢ fornecida pelos motores
da aeronave e, como ndo possul nenhuma
serventia, ¢ essencialmente perdida. Desse modo,
ha a necessidade de se gerar uma quantidade extra
de energia por parte do motor para superar essa
energia perdida, composta essencialmente pelo
arrasto induzido.



Introducao: downwash e arrasto
Induzido

e O arrasto total sobre uma asa finita subsOnica ¢
composta pela soma do arrasto induzido, Di,
com o arrasto de superficie, D, e o arrasto de
pressao, D, este ultimo devido a separacao do
escoamento (formag¢ao de esteira viscosa).

e Essas duas ultimas parcelas se devem aos
efeitos V1SCOSOS, sendo conhecidos
conjuntamente como arrasto de pertil, c,.



Introducao: downwash e arrasto
Induzido

e Para angulos de ataque moderados, o
coeficiente de arrasto de perfil de uma asa
finita ¢ essencialmente o mesmo obtido para
aerofolios. Assim, definindo-se o coeficiente
de arrasto de pertil como

Df+Dp
d,S

C, =



Introducao: downwash e arrasto
Induzido

e E o0 arrasto induzido como

D.
CD,Z’ — l

q,S

e Tem-se que o coeficiente de arrasto total sobre
uma asa finita, C,,, € dado por

C,=c, -I—CD,Z.



Introducao: downwash e arrasto
Induzido

e Os valores de ¢, sao normalmente obtidos a
partir de dados experimentais, enquanto para
Cp; emprega-se a teoria de asas finitas,
apresentada neste capitulo.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Para estabelecer uma teoria acrodinamica para
asas finitas, devem ser introduzidas algumas
ferramentas aerodinamicas adicionais.

e Inicialmente, deve-se estender o conceito de
filamento de vortices, que ndao necessariamente
deve apresentar apenas um perfil reto. De um
modo geral, um filamento de vortices pode ser
Curvo.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Filamento de vortices:

Vortex filament
of strength I”



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e O filamento de vortices induz um campo de
escoamento no espaco ao redor. Se a
circulagao ¢ tomada sobre um caminho que
englobe o filamento, um valor constante I" ¢
obtido. Assim, a intensidade do filamento de
vortices ¢ definido como I.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Considerando-se um segmento do filamento
dl, sendo o raio do vetor de dl para um ponto
arbitrario P no espaco igual a r. O segmento dl
induz uma velocidade em P 1gual a

' dlxr
‘3

dV =

A |r

e Tal equacao ¢ conhecida como Lei1 de Biot-
Savart, sendo uma das fundamentais relacoes
em escoamentos mnviscidos € incompressivels.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

A Le1 de Biot-Savart ¢ um resultado geral da
teorta potencial, que descreve tanto campos
eletromagnéticos quanto escoamentos
inviscidos € iIncompressivelis.

 Pode-se, entdo, aplicar a le1 de Biot-Savart
para um filamento de vortices de comprimento
infinito, de intensidade I.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Velocidade induzida em um ponto P por um
filamento de vortices infinito




Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Nesse caso, a velocidade induzida em um
ponto P, devido ao segmento de vortices
oritentado d/, sera dado pela expressao
anteriormente apresentada de modo que, a
velocidade induzida em P por todo o filamento
de vortices sera

V:J“roo ' dixr

‘3
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Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

A magnitude da velocidade, por sua vez, ¢
dada por

[ +sin(6)
2

V_

A d-~ p

dl

e Se & for a distancia perpendicular do ponto P
ao filamento de vortices, entao
ho ho h

dl =— do
sin(@)’ tan(6)’ sin’(6)




Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Dessa forma, obtém-se

I +°°Sing‘9)dl:_L Osin(@)de
4h o

%

A d-~ p

o L

27h
e Nota-se, assim, que a solucao obtida ¢
precisamente a mesma obtida para um ponto

de vortice em um escoamento bidimensional.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Considerando-se, entao, um filamento de
vortices semi-infinito, que se estende de um
ponto A4 até +oo. Seja P um ponto pertencente
ao plano que contém A e seja perpendicular ao
filamento. Entao a velocidade induzida em P
pelo filamento de vortices semi-infinito sera

o L
4 h



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Hermann von Helmholtz (matematico, fisico ¢
medico alemao) fo1 o primeiro a utilizar o
conceito de filamentos de vortices para a
analise de  escoamentos 1nviscidos e
incompressivels. Nesse  processo, foram
estabelecidos os principios basicos do
comportamento de vortices, conhecidos como
Teoremas de Helmholtz.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Teoremas de Helmholtz:

— A 1intensidade de um filamento de vortices ¢
constante ao longo de seu comprimento.

— Um filamento de vortices ndo pode se encerrar em
um fluido; ele deve se estender até a fronteira do
fluildo (que pode ser infinita) ou formar um
caminho fechado.



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Considere uma secao de uma asa em uma
localizagdo y,, na qual a corda local ¢ ¢, o
angulo de ataque geometrico ¢ a, € a se¢cao do
acrofolio tenha um formato definido. Nessa
posicao, a sustentacdo por unidade de
comprimento € L'(y,).

 Em um outra se¢ao da asa, localizada em y,, na
qual ¢, o ¢ o formato do aerofolio possam ser
diferentes, a sustentagao sera L'(y,).



Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Nota-se, assim, que havera uma distribuicao de
sustentacao por unidade de comprimento, dada
por L'= L'(y). Por consequéncia, a circulacao
tambem sera uma funcao de y:

r(y) L'(y)
S pY,

e Observa-se, também, que a distribuicao de
sustentacao ¢ nula nas pontas das asas.




Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e Distribuicao da sustentacdo ao longo de asas
finitas:

L'=1"0) = poobael (1)

Front view
of wing




Filamento de vortices, Lel de Biot-
Savart e teoremas de Helmholtz

e A distribuicdo de sustentacao nula nas pontas
de asas (y = — b/2 ¢ y = b/2) esta relacionada a
equalizacdao entre as pressoes no extradorso e
no 1ntradorso para esses pontos €, assim,
nenhuma sustentacao ¢ gerada.



Teoria da linha sustentadora de
Prandtl

e A primeilra teoria pratica para a previsao das
propriedades aerodinamicas de asas finitas foi
desenvolvida por Ludwig Prandtl e seus

colegas em Gottingen (Alemanha), entre 1911
e 1918.

e Tal teoria ainda ¢ empregada atualmente para
calculos preliminares das caracteristicas de
asas finitas.



Teoria da linha sustentadora de
Prandtl

e Considera-se, inicialmente, um filamento de
vortices fixo em uma certa regiao do
escoamento. Tal filamento recebe, entdo, a
denominacao de vortice ligado (“bounded
vortex”) e, pelo teorema de Kutta-Joukowski,
experimenta uma for¢a de sustentagao

L'=p VI



Teoria da linha sustentadora de
Prandtl

e O vortice ligado se opoe aos vortices livres,
que se movem com os elementos de fluido em
escoamento.

e Substitui-se, entdo, a asa finita de largura b por
um vortice ligado, estendendo-se de y = —b/2
att y = b/2. No entanto, pelo teorema de
Helmholtz, um filamento de vortices ndao pode
acabar no fluido.



Teoria da linha sustentadora de
Prandtl

e Substituicao de uma asa finita por um vortice
ligado (“bounded vortex”).

Finite wing Horseshoe vortex



Teoria da linha sustentadora de
Prandtl

e Desse modo, sdo considerados dois voOrtices
livres chamados de vortices de ponta de asa
(“free-trailing vortex”) que se estendem das
pontas das asas at¢ o infinito. Ao conjunto
dado pelo vortice ligado (bounded vortex) e os
dois vortices de ponta de asa (free-trailing
vortex) da-se o nome de vortice em ferradura
(“horseshoe vortex™).



Teoria da linha sustentadora de
Prandtl

e Distribuicao da velocidade normal induzida
(downwash) ao longo do eixo y de um vortice
em ferradura (horseshoe vortex).

-'2— Trailing vortex

¥ s
o




Teoria da linha sustentadora de
Prandtl

e Considere a velocidade normal 1nduzida
(downwash) w ao longo do vortice ligado
(bounded vortex) de y = —b/2 at¢ y = b/2. Nota-
se que o vortice ligado nao induz a nenhuma
velocidade ao longo dele mesmo; observa-se,
contudo, que os vortices de ponta de asa
contribuem na formacao da velocidade normal
induzida (downwash).



Teoria da linha sustentadora de
Prandtl

e Essa velocidade pode, entao, ser avaliada por

)= r r
T 21 ) 4x(b/2— )

refere ao vortice de ponta de asa a esquerda
(posicao y = —b/2) e a segunda parcela ao
vortice de ponta de asa a direita (y = b/2).



Teoria da linha sustentadora de
Prandtl

e A velocidade normal induzida pode entdao ser
avaliada como
I b

4z (b2) -1

w(y)=

e Observa-se, contudo, que a distribuicao da
velocidade normal induzida (downwash) por
um unico vortice em ferradura (horseshoe
vortex) nao reproduz realisticamente uma asa
finita.



Teoria da linha sustentadora de
Prandtl

e Nota-se que, da expressao anterior, tem-se uma
velocidade tendendo ao infinito junto a cada
ponta de asa. Para solucionar esse problema,
ao 1mves de representar uma asa por um Unico
vortice em ferradura, substitui-se a mesma por
um grande numero de vortices em ferradura,
cada qual com um comprimento diferente de
vortice ligado, mas de modo que todos formem
uma unica linha, chamada de linha
sustentadora (“fifting line”).



Teoria da linha sustentadora de
Prandtl

e Superposicao de um numero finito de vortices

em ferradura ao longo de wuma Ilinha
sustentadora.




Teoria da linha sustentadora de
Prandtl

e Considera-se, entdo, por exemplo, um vortice
em ferradura de intensidade dI'; cujo vortice
ligado se estenda do ponto 4 ao ponto F. Um
segundo vortice em ferradura, de intensidade
dl’,, € sobreposto ao primeiro, mas se
estendendo do ponto B ao ponto E. Pode-se,
ainda sobrepor um terceiro vortice em

ferradura, de intensidade dI';, que se estende
de CaD.



Teoria da linha sustentadora de
Prandtl

e Observa-se, assim, que nos trechos AB ¢ EF, a
circulagao sera dada por dI';, nos trechos BC ¢
DE, a circulagao sera dl'+dl’, e no trecho CD
a circulagao sera dl',+dl', +dl;.

 Nota-se, também, a formacao de diversas
linhas de vortices livres, cuja intensidade ¢
igual a variacao de circulacdao observada na
linha sustentadora.



Teoria da linha sustentadora de
Prandtl

e Pode-se, entdo, considerar o caso de um
numero 1nfinito de vortices em ferradura
sobrepostos ao longo da linha sustentadora,
cada qual com intensidade dI.

!
-~ 157

I,
~ e
/T <
|
i
|
i

/
~
[ e
N
N

¢



Teoria da linha sustentadora de
Prandtl

e Nesse caso, a circulacao torna-se uma
distribuicao continua de I'(y) ao longo da linha
sustentadora, com valor I'; na origem. Nota-se
tambem a formacdo de wuma superficie
continua de vortices livres a jusante da linha
sustentadora.

e Essa superficie ¢ paralela a direcao de Ve sua
intensidade total ¢ nula, pois consiste em pares
de vortices livres de mesma intensidade, mas
de direcOes opostas.



Teoria da linha sustentadora de
Prandtl

e Considerando-se um pequeno segmento dy da
linha sustentadora, localizado na posi¢ao y. A
circulagao nesse ponto € I'(y) e sua variacao no
segmento dy ¢ dada por

e [d_Fj "
dy

e Além disso, a intensidade do vortice livre em y
precisa ser 1gual a variacao da circulacao dI” ao
longo da linha sustentadora.



Teoria da linha sustentadora de
Prandtl

e Considerando-se, entdo, um ponto y, sobre a
linha sustentadora; nesse caso, qualquer
segmento de linha de vortice livre dx 1nduz
uma velocidade em yp, com magnitude e
direcao dadas pela le1 de Biot-Savart. Desse
modo, a velocidade induzida dw em y, pela
linha de vortices semi-infinita em y ¢ dada por

o __dU/dy)dy
4r(y, - »)




Teoria da linha sustentadora de
Prandtl

e A velocidade 1nduzida total w por toda a
superficie de vortices livres avaliada em y, €
dada por
1 o2 (dT/dy)dy

_E bR Y=y

W(yo):

e Tal expressao permite avaliar a velocidade
normal induzida (downwash) em y, devido a
todos os vortices livres.



Teoria da linha sustentadora de
Prandtl

e Efeito da velocidade normal 1nduzida
(downwash) sobre o escoamento local de uma
asa finita

o - Geometric angle of attack
a; - induced angle of attack
ayy — effective angle of attack




Teoria da linha sustentadora de
Prandtl

e Para a posicao y,, o angulo de ataque induzido
a; pode ser avaliado como

E W(J’o)_
”

o0

* Que, no caso de angulos pequenos resulta em

&, (yo) = tan”

W(Yo)
”

o0

ai(yO): —



Teoria da linha sustentadora de
Prandtl

* Pode-se, tambeém, avaliar o, em termos da
distribuicao de circulacao I'(y) ao longo da asa:

1 Ib/z (dT/dy)dy
AV, b2y, —y

ai(yO):

e Considerando-se, entao, o angulo de ataque
efetivo a,, , verifica-se que o mesmo pode
variar ao longo do comprimento da asa, uma
vez que a velocidade normal 1nduzida
apresenta esse comportamento.



Teoria da linha sustentadora de
Prandtl

* Desse modo, tem-se que a,,= a,;,(y). Assim, o
coeficiente de sustentacao da secdo da asa
localizada em y = y,, sera

¢, =4, I:aeﬁ (J/o)_ aL:O] = 277[0‘@7 (J’o)_ aL:O]

e Nota-se que o coeficiente angular de
sustentacdo a, fo1 substituido pelo valor
teorico obtido para aerofolios finos (27).



Teoria da linha sustentadora de
Prandtl

e Observa-se também que, se a asa apresentar
tor¢do, o angulo de sustenta¢ao nula a;_, varia
com ),. Se ndo houver tor¢ao, a,_, € constante
ao longo do comprimento da asa. De todo
modo, a;_, € uma propriedade conhecida para
as secoes transversais da asa.



Teoria da linha sustentadora de
Prandtl

 Da definicao do coeficiente de sustentacido e
da aplicacdo do teorema de Kutta-Joukowski,
tem-se que

1

L' = Epochj C(yo)cl = pooVooF(yO)

e De onde se obtém

zr(yo)
Ve C(yo )

C, =



Teoria da linha sustentadora de
Prandtl

e Dessa forma, o angulo de ataque efetivo sera

o . = F()’o)
i 7Z-Vooc(y0)

e E, desse modo, o angulo de ataque geometrico
sera dado por

a(y,) = r'(y,)

1 fb/z (dT/dy)dy
o ﬂVwc(yO

)"'OQ_O(J/O)"'47Z_VOO w2y~ y



Teoria da linha sustentadora de
Prandtl

e A expressao anterior € a equacao fundamental
da teoria da linha sustentadora de Prandtl. De
tal equacdao tem-se que o angulo de ataque
geometrico ¢ a soma do angulo de ataque
efettivo com o angulo de ataque 1nduzido.
Nessa expressao, a unica 1ncognita € a
circulacao I' = I'(y,), em que y,varia de —b/2
até b/2 (envergadura da asa).



Teoria da linha sustentadora de
Prandtl

e A solugdo de ©I' = TI(y,) fornece trés
caracteristicas principais de uma asa finita:

— A distribuicdo de sustentacdao, obtida do teorema
de Kutta-Joukowski

L'(y,)=p,V.T(1,)

— A sustentacdo total, obtida ao se integrar a
expressao anterior sobre toda a envergadura da asa

b/2
L= L dy Per .[ b/2

b2



Teoria da linha sustentadora de
Prandtl

— Consequentemente o coeficiente de sustentagdo
sera dado por

L 2 b2
C, = = ['(y)d
=05 s b TO)
— O arrasto induzido por unidade de comprimento €
dado por
D! = L'sin(a,)

— No caso de pequenos angulos de ataque induzidos
D=L«



Teoria da linha sustentadora de
Prandtl

— E, assim, o arrasto induzido total sera

/2
D.=[" L()a(y)dv=pV.[ T

b2

b/2

b/2

— Consequentemente, o coeficiente de arrasto
induzido ¢ dado por

C,, = D. 2 I

b2
_ () a.(v)d
R () e (y)ay

b2



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Considere a distribuicao de circulacdao dada por

o)

— Tem-se, nesse caso, as seguintes observacoes:

* Iy € a circulagdo na origem.

e A circulagdo varia elipticamente com a distancia y ao
longo da largura da asa.



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

e Tem-se, nesse caso, a chamada distribuigcao eliptica de
circulacao e, consequentemente:

L'(y)=p.V,T, \/ - (2—yj2

b

e De modo que se tem uma distribuicao eliptica de
sustentacao.

e Tanto a circulagdo quanto a sustentacdo sao nulas nas
pontas das asas, ou se¢ja,

I'(b/2)=T(-5/2)=0



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Propriedades aerodinamicas de uma asa finita com
distribuicao eliptica de sustentacao:
— Velocidade normal induzida (downwash):

e Derivando-se a distribuicao de circulacao:

dl”  4I Y

dy b (1-4y?/p?)"




Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

e E substituindo-se o resultado na expressio da
velocidade induzida w, obtém-se

Lo [ Y
7b* 2 (1= 4y2 2] (y, - y)

* Adotando-se, ainda, a seguinte substituicao de variaveis:

y= %cos(&); dy = —gsin(é’) do

W(yo):_ dy



Teoria da linha sustentadora de

Prandtl
e Distribuicao eliptica de sustentacao:
e Obtém-se:
I, ¢~ cos(6)
O )=—_—20 do
W) 27[1?[0 cos(@)—cos(6,)
e Ou seja,



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Observa-se, assim, que a velocidade normal
induzida (downwash) ¢ constante ao longo do
comprimento para uma distribuicdo eliptica de
sustentacao.

— De modo semelhante, o angulo de ataque induzido
também ¢ constante ao longo do comprimento ¢
pode ser avaliado pela seguinte expressao:

_ w 1_‘O

7

o0



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Uma forma mais util para a avaliagdo de a;, no
entanto, pode ser obtida a partir da seguinte

exXpressao:
S\ /2
_ fb/Z B 4_)/
L pooVoo FOJb/Z[ b2 dy
— De onde se obtém:
b
L=pV I,—7x

4



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:
— O que conduz a
2V _SC,
i} br

L

— E dessa forma,

SC,
a, =—
b



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Uma propriedade geometrica importante para uma
asa finita ¢ a razao de aspecto, denotada por AR, ¢
definida por

— Assim, a, sera avaliado por

C,
o, =
7T AR




Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Pode-se obter, também, o coeficiente de arrasto
induzido atraves da seguinte expressao:

2
CDi — CL
" 1w AR

— Tal expressao mostra que o coeficiente de arrasto
induzido ¢ diretamente proporcional ao quadrado
do coeficiente de sustentacao.



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Observa-se, assim, que o coeficiente de arrasto
induzido aumenta rapidamente com o crescimento
do coeficiente de sustentacdo, tornando-se uma
parcela expressiva do coeficiente de arrasto total
quando os valores de C, sdo elevados (tipicos de
baixas velocidades, como a decolagem ¢ a
aterrissagem). Mesmo para velocidades de cruzeiro
relativamente elevadas, o arrasto 1nduzido
representa cerca de 25% do arrasto total.



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

—Outro  aspecto 1mportante ¢ que Cp; €
inversamente proporcional a razdo de aspecto
(AR). Assim, para se reduzir o arrasto induzido,
deve-se utilizar asas finitas com o maior valor
possivel de razao de aspecto.

AR = b1 /S

High AR (low LOW AR thigh
induced drag) induced drag)
._‘ \\v’-’/
. , |

- ) ]




Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Nota-se, contudo, que o projeto de asas de elevada
razdo de aspecto com confiabilidade estrutural ¢
dificil. Os valores tipicos observados para
aecronaves subsonicas convencionais se€ encontram
na faixa de 6 a 8.

— Um outro aspecto relacionado a uma distribuicao
eliptica de sustentacdo ¢ obtido ao se considerar
uma asa sem torcao geometrica (o constante) e
sem tor¢cao aerodinamica (a, _, constante).



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Sob essas condigdes, tem-se que o angulo de
ataque efetivo tambeém ¢ constante € o coeficiente
de sustentacdo para uma secao local, ¢, €

¢, =4 (aeﬁ — 0‘1::0)

— Assumindo-se, também, que q, seja constante para
cada secdo, tem-se que ¢, deve ser constante
também ao longo da asa.



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— A sustentacao por unidade de comprimento ¢

L'(y)=gq.cc,

— De onde se obtém, para a corda c:

QOO Cl
— Observa-se que ¢, € ¢; sao constantes, enquanto L'
varia elipticamente ao longo do comprimento.



Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Tem-se, assim, que para a distribuicdo eliptica de
sustentagdo a corda deve variar elipticamente com
o comprimento. Desse modo, a planificacdo da asa
deve ser eliptica.




Teoria da linha sustentadora de
Prandtl

e Distribuicao eliptica de sustentacao:

— Embora uma distribuicao eliptica de sustentacio
possa parecer um caso restritivo e 1solado, na
realidade fornece uma aproximacao confidvel do

coeficiente de arrasto induzido para uma asa finita
arbitraria.



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Considere a transformacao
y= —gcos(ﬁ)

— Para a qual a coordenada na diregdo lateral ¢ dada
por 6, com 0 < § < x. Para esse caso, a distribuigcao
eliptica de sustentacdo ¢ dada por

I'(6)=T,sin(0)



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Tal expressdo indica que a distribuicdo geral de
circulacdo ao longo de uma asa finita arbitraria
possa ser avaliada por uma Série de Fourier de
senos. Assumindo-se, entao

N
r(@)=2bV, Z A sin(n6)
1

— Nesse caso, A, sdo incognitas, mas que devem
satisfazer a equagao fundamental da teoria da linha
sustentadora de Prandtl.



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Diferenciando-se a expressao anterior e aplicando-
a na expressao para a determinag¢ao do angulo de
ataque, obtém-se

2b & > sin(n6)

a(&’o): )ZA sin(né’)Jr aL=0(60)+ ZnA
1

(6,

— Nessa expressao, b, c(0,) € a;_,(6,) sdo conhecidos
da geometria ¢ da secdo da asa finita (aerofolio).



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Por sua vez, o coeficiente de sustentacao sera:

2 b2 2bh* & T :
C, = ﬁ _b/zf(y)dy = TZA" IO sin(n6)sin(0)d 6

— Ao se avaliar a integral, obtém-se:

b2
C,=A,xr—=A, 7 AR
S



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— O coeficiente de arrasto induzido, nesse caso, €
dado por

2 b/2
Coi=yg L T)e(y)dy

2 [ {ZA sin né’)} ()sin(6)d6

S




Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:
— O angulo de ataque a,(0) é:

o,(0)= Z”A sin(n6)

sin(6)

—Tem-se, assim, que o coeficiente de arrasto
induzido sera:

2
CDi_ C

=L (146
= — o 1+0)



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Nota-se que 0 >0 ¢

— Definindo-se o fator de eficiéncia e como

e:(1+§)_1

—Sendo e < 1.



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Desse modo o coeficiente de arrasto induzido sera

2
C,. = €L
D,i
mwe AR
— Lembra-se que para asas sem tor¢ao acrodinamica
nem tor¢cao geometrica, tem-se uma distribuicao de
sustentacao eliptica para asas planas elipticas,
como as que equipavam o British Spitfire,
utilizado na Segunda Guerra Mundial.




Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Supermarine Spitfire:

88



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Asas retas:

Elli




Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

— Asas elipticas apresentam distribuicao de
sustentacao mais proxima da otima, mas possuem
alto custo de manufatura.

— Asas retangulares geram uma distribuicio de
sustentacao muito distante da 6tima.

— Asas trapezoidais podem ser fabricadas de modo
que a razdo entre as cordas de ponta ¢ de base
apresentem distribuicdo de sustentagdo mais
proxima das asas elipticas.



Teoria da linha sustentadora de
Prandtl

e Distribuicao de sustentacao geral:

—Os estudos sobre asas trapezoidais foram
realizados 1nicialmente por Hermann Glauert,
sendo publicados em 1926.

— Uma vez que asas com bordos de ataque e de fuga
retos sdo mais faceis de serem manufaturados do
que asas elipticas, a maioria dos avidoes empregam
asas trapezoidais ao inves de asas elipticas.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— O coeficiente de arrasto induzido para uma asa
finita com distribuicdo de sustentacdo geral ¢
inversamente proporcional a razdo de aspecto.

— Nota-se que o valor de AR, que tipicamente varia
entre 6 ¢ 22 para avioes subsonicos € aquaticos,
apresenta um efeito muito maior sobre o Cp; que 0
valor de 0.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

016

0.2

0.08
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Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Observa-se, assim, que o fator primario de projeto
para minimizar o arrasto induzido nao ¢ o de se
obter uma distribuicido de sustentacdo mais
proxima possivel da eliptica, mas sim tornar a
razao de aspecto a maior possivel.

— A determinag¢dao de que Cp; € Inversamente
proporcional a AR ¢ um dos principais resultados
da teoria da linha sustentadora de Prandtl.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Em 1915, Prandtl verificou tal resultado através de
uma serie de experimentos classicos sobre o0s
coeficientes de sustentacao e de arrasto para 7 asas
retangulares de diferentes razdes de aspecto.

— Arrasto total para asas finitas:
C,

C,=c,+
P re AR




Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Dados do experimento classico de Prandtl para
asas retangulares
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Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Assumindo-se duas asas de diferentes razoes de
aspecto AR, e AR,, tem-se
C, C,

me AR, e AR,

— Assumindo-se que as asas tenham o mesmo C,; €
que apresentem a mesma secdo de aerofolio
(mesmo c,), tem-se entao

2 |
CDIZCD2+CL : -
’ ~ rmel| AR, AR,

Cpi=c, +

Cp,=c,+




Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— A expressao anterior pode ser utilizada para mudar
a escala dos dados de uma asa com uma dada razao
de aspecto AR, para o caso correspondente para
uma razao de aspecto AR,.

— Isso foi1 realizado por Prandtl para os dados por ele
coletados, considerando-se como referéncia uma
asa de razdo de aspecto 3:

C?(1 1
C. =C.. +—L| -
b D2 72'8[5 ARJ



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Dados dos experimentos de Prandtl reescalados
para uma razao de aspecto 5.
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Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Existem duas diferencas essenciais entre as
propriedades de um aerofolio e de asas finitas: a
primeira se refere a geragao do arrasto induzido; a
segunda, ao coeficiente angular da sustentacao.

— O coeficiente angular da sustentacdo, para um
aerofolio, ¢ dado por
dc,

a,=—-

da



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— No caso de uma asa finita, define-se o coeficiente
angular como

dC,
da

— Ao se comparar o coeficiente angular de uma asa
finita a0 de um aerofdlio, observa-se que a < a,,.

a =



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Para essa avaliacao, deve-se recordar que embora o
angulo de ataque geométrico seja a, no caso de
uma asa finita tem-se um angulo de ataque efetivo
0o MENOT que 0.

— Nesse caso, considere uma asa eliptica sem tor¢ao;
desse modo, tanto o; quanto a,,serdo constantes ao
longo da largura da asa e, desse modo C; = c,.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Assumindo-se que seja plotado um grafico de C,
versus a,, . Nesse caso, como se estd empregando
o angulo de ataque efetivo, o coeficiente angular
da sustentacdo coincide com aquele observado
para uma asa infinita, sendo designado por a,,.

— No entanto, o usual ¢ a plotagem do grafico
levando-se em consideracao o angulo de ataque
geometrico, de modo que o coeficiente angular
real, a, € menor que a,, uma vez que 0o < QL.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:
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Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Recordando-se que para sustentacdo nula nao
existem efeitos induzidos, tem-se que o, = C,; = 0.
Desse modo, quando C; = 0, tem-se que a = a,; .
Tem-se, assim, que a;_., € 0 mesmo para asas
finitas ou infinitas.

— Os valores de a e de g, estdo relacionados através
da seguinte expressao, para asas finitas elipticas:

ac, ___ a,
do I+a,/m AR



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— No caso de uma asa finita geral, a expressao a ser
empregada €:
dy

“1+(a, /7 4R) (1+7)

— Nessa expressao, T ¢ uma func¢ao dos coeficientes
de Fourier 4,. Os valores de t foram calculados
inicialmente por Glauert nos anos 1920 e
apresentam valores, na maioria das vezes, entre

0,05 e 0,25.

A



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Nota-se que para asas de baixa razao de aspecto,
pode existir uma diferenca significativa entre a, €
a. Contudo, a medida que AR — «©, a — a,.

— Ha uma reducao no valor de dC,/da a medida que
AR se reduz. Esse efeito fo1 observado por Prandtl
em 1915, experimentalmente.



Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:
— Variacao do coeficiente de sustentacao com o

angulo de ataque (experimento de Prandtl, 1915).
” /f/ﬁk
oA
T = '{1 ’/j:/ 7y
MY/ 48
22l
7ZaRN
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Teoria da linha sustentadora de
Prandtl

e Efeito da razao de aspecto:

— Variacao do coeficiente de sustentacao com o
angulo de ataque (dados reescalados para AR = 5).
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Asas enflechadas

e A maioria das aeronaves modernas de alta

velocidade apresenta asas enflechadas.

e A opc¢ao por essa geometria esta relacionac
com a determinacdo do chamado numero c

Mach critico (M_,). Tal valor esta relacionad

A
C
O

ao numero de Mach do escoamento nao
perturbado (M_) para o qual sobre o aerofolio

(ou asa), no ponto de minima pressao sobre

a

geometria, o0 escoamento se torna sOnico

(atinja Mach unitario).



M,.=03

M,=M.,=0.61

M.,=0.65>M,
%—-

Local M, = 0.435

G

(a)

Local M, =0.772

M.,.=0.5
— ®

(b)

Local M, = 1.0

(c)

== "=« Sonic line where M = 1
\
\

27 M1
”

(d)

Asas enflechadas

A medida que o numero de Mach
cresce, localmente tem-se valores
se aproximando da unidade. Em
um dado momento, o numero de
Mach sobre o aerofdlio € unitario.
Neste ponto, tem-se o chamado
“nimero de Mach critico”,
denotado por M_,.. Se a velocidade
do escoamento for aumentada
ainda mais, ha a formacao de uma
linha s6nica sobre o aerofolio.



Asas enflechadas

e Umn dos mais importantes problemas na
acrodinamica de altas velocidades ¢ a
determinacao do numero de Mach critico para
um dado aerofolio ou asa. Isto ocorre pois,
para numeros de Mach ligeirramente superiores
ao critico, o aerofolio experimenta um

dramatico aumento no coeficiente de arrasto.
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Asas enflechadas

Sound barrier
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Asas enflechadas

e Sejam p, € p, as pressdes estaticas do
escoamento livre € do ponto A (local de
minima pressao sobre o aerofolio ou asa),
respectivamente. Para um  escoamento
1sentropico, a pressao total ¢ constante e nesse
caso,

Pa _ PA/PO :{1+[(7/_1)/2]'Mi }7/(71)
P poo/po 1+[(7_1)/2]'Mj




Asas enflechadas

e O coeficiente de pressao no ponto A € definido

como
2 (|p
Cp, = 4 _1
P 7-Mi(poo j

e Obtém-se, entao:

2
5 1+— M

Cp = —1
RNV




Asas enflechadas

e No caso em que se tenha no ponto A numero
de Mach unitario, o coeficiente de pressao ¢
chamado de coeficiente critico de pressao e
nesse €aso:

.

(4 ’Y_I,,’) \y—l

Cp.. = C —1
yMczr 1_|_




Asas enflechadas

e Nota-se, assim, que o coeficiente critico de
pressao ¢ uma funcao do numero de Mach
critico.

C,

(-

 ——
Thin airfoil

Thick airfoil
Thick CpO —

Thin C,,y —»




Asas enflechadas

e O escoamento sobre um aerofolio fino € pouco
perturbado em relacdo ao escoamento livre.
Assim, a expansao na superficie superior ¢
suave € o valor do coef. de pressdo ¢ um valor
de pequena magnitude.

Ao contrario, no caso de um escoamento sobre
aerofolio espesso, a perturbacdao em relacao ao
escoamento livre ¢ maior.



Asas enflechadas

e Neste caso, a expansao sobre a superficie
superior ¢ pronunciada € o coef. de pressao
apresenta um valor absoluto mais elevado.

e Do esquema anterior, nota-se que um numero
de Mach critico maior esta relacionado a um
coef. de pressio menor.

14

e Assim, para avioes de alta velocidade, ¢
desejavel possuir um numero de Mach critico
o mais elevado possivel.



Asas enflechadas

e Duas propostas classicas sao feitas de modo a
aumentar o valor do numero de Mach critico
(e, consequentemente, o numero de Mach de
divergéncia):

— Reduzir a espessura do aerofolio.

— Rotacionar a asa (usar asa enflechada).
e Em ambos 0s casos, como consequéncia tem-

se a reducao da razdo espessura/corda para a
asa.



Asas enflechadas

Segment of
Y straight wing

Cr = 1.41C|

Segment of
swept wing

(a)

(b)

Figure 9.18 | By sweeping the wing, a streamline effectively sees a thinner airfoil, hence increasing the critical
Mach number of the wing.
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Asas enflechadas
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Figure 9.17 | Variation of minimum wing drag
coefficient versus Mach number with airfoil thickness
ratio as a parameter. The wing is swept, with a sweep
angle of 47 degrees. (From Loftin, Quest for
Performance, NASA SP 468, 1985.)
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Asas enflechadas

Figure 9.19 | A typical example of a swept-wing aircraft. The North American F-86 Sabre of Korean War fame.
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