Kelvin Functions¹

The solution to the Bessel equation $x^2w'' + xw' - ix^2w = 0$, where $i = \sqrt{-1}$, may be written in terms of modified Bessel functions as

$$w(x) = c_1 I_0(x\sqrt{i}) + c_2 K_0(x\sqrt{i})$$

The Kelvin functions, ber(x), bei(x), ker(x) and kei(x), may be defined by their relations to the modified Bessel functions $I_0(x)$ and $K_0(x)$ as given by

$$I_0(x\sqrt{i}) = \operatorname{ber}(x) + i\operatorname{bei}(x)$$
 and $K_0(x\sqrt{i}) = \ker(x) + i\operatorname{kei}(x)$

Thus it follows that w(x) may be written as

$$w(x) = c_1[\operatorname{ber}(x) + i\operatorname{bei}(x)] + c_2[\ker(x) + i\operatorname{kei}(x)]$$

where the four Kelvin functions are real functions. These Kelvin functions may be evaluated from the following infinite series:

$$ber(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{2^{4n} [(2n)!]^2}$$
 (1)

$$bei(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{2^{4n+2} [(2n+1)!]^2}$$
 (2)

$$\ker(x) = \frac{\pi}{4}\operatorname{bei}(x) - \left[\gamma + \ln\left(\frac{x}{2}\right)\right] \operatorname{ber}(x) + \sum_{n=1}^{\infty} \frac{(-1)^n x^{4n}}{2^{4n} [(2n)!]^2} \sum_{m=1}^{2n} \frac{1}{m}$$
 (3)

$$kei(x) = -\frac{\pi}{4}ber(x) - \left[\gamma + \ln\left(\frac{x}{2}\right)\right]bei(x) - \sum_{n=1}^{\infty} \frac{(-1)^n x^{4n-2}}{2^{4n-2}[(2n-1)!]^2} \sum_{m=1}^{2n-1} \frac{1}{m}$$
(4)

where γ is Euler's constant given by Abramowitz and Stegun² as

$$\gamma = \lim_{m \to \infty} \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{m} - \ln(m) \right] = 0.577215664901532860606512$$

Abramowitz and Stegun tabulate the above four Kelvin functions for $0 \le x \le 5$. These Kelvin functions have the following characteristics:

ber(x): ber(0) = 1 and oscillates with increasing amplitude as x increases

bei(x): bei(0) = 0 and oscillates with increasing amplitude as x increases

ker(x): $ker(0) = \infty$ and oscillates with decreasing amplitude as x increases

kei(x): $kei(0) = -\pi/4$ and oscillates with decreasing amplitude as x increases

This documentation of Kelvin functions and *KelvinFunctions.LIB* were provided by G. E. Myers, Department of Mechanical Engineering, University of Wisconsin-Madison, 2003.

² Abramowitz, M. and I. A. Stegun (eds.): *Handbook of Mathematical Functions*, Applied Mathematics Series 55, National Bureau of Standards, 1964. [Dover, 1965].

Kelvin functions 2

The first derivatives of ber(x), bei(x), ker(x) and kei(x) are called ber'(x), bei'(x), ker'(x) and kei'(x), respectively. These functions, found by differentiating (1) through (4), are given by

$$ber'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^{4n-1}}{2^{4n-1} (2n-1)! (2n)!}$$
 (5)

bei'(x) =
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{2^{4n+1} (2n)! (2n+1)!}$$
 (6)

$$\ker'(x) = \frac{\pi}{4} \operatorname{bei}'(x) - \left[\gamma + \ln \left(\frac{x}{2} \right) \right] \operatorname{ber}'(x) - \frac{1}{x} \operatorname{ber}(x) + \sum_{n=1}^{\infty} \frac{(-1)^n x^{4n-1}}{2^{4n-1} (2n-1)! (2n)!} \sum_{m=1}^{2n} \frac{1}{m}$$
 (7)

$$\operatorname{kei}'(x) = -\frac{\pi}{4}\operatorname{ber}'(x) - \left[\gamma + \ln\left(\frac{x}{2}\right)\right]\operatorname{bei}'(x) - \frac{1}{x}\operatorname{bei}(x) - \sum_{n=1}^{\infty} \frac{(-1)^n x^{4n-3}}{2^{4n-3}(2n-2)!(2n-1)!} \sum_{m=1}^{2n-1} \frac{1}{m}$$
(8)

Rather than tabulating these four derivatives, Abramowitz and Stegun tabulate $\operatorname{ber}_1(x)$, $\operatorname{bei}_1(x)$, $\operatorname{ker}_1(x)$ and $\operatorname{kei}_1(x)$ which are related to $\operatorname{ber}'(x)$, $\operatorname{bei}'(x)$, $\operatorname{ker}'(x)$ and $\operatorname{kei}'(x)$ as follows:

$$\sqrt{2}\operatorname{ber}_{1}(x) = \operatorname{ber}'(x) - \operatorname{bei}'(x)$$
 $\sqrt{2}\operatorname{bei}_{1}(x) = \operatorname{ber}'(x) + \operatorname{bei}'(x)$

$$\sqrt{2}\ker_1(x) = \ker'(x) - \ker'(x) \qquad \sqrt{2}\ker_1(x) = \ker'(x) + \ker'(x)$$

The *EES* user library contains *KelvinFunctions.LIB*. The suite of eight functions in *KelvinFunctions.LIB* are used to calculate values of ber(x), bei(x), ker(x), kei(x), bei'(x), bei'(x), ker'(x) and kei'(x). These values are calculated from (1) through (8), respectively.

The following *EES* program will evaluate ker(x) and ker'(x) for x = 2:

$$x = 2$$

a = Kelvin ker(x)

$$b = Kelvin ker^(x)$$

The solution is given as

$$a = -0.04166$$
 $b = -0.1066$ $x = 2.0$