Laboratório de Ciências Térmicas

Determinação do coeficiente de arraste Aula Prática 05

Introdução

O coeficiente de arrasto é um coeficiente adimensional e é definido como sendo a relação entre a força de arrasto sobre um corpo submerso em um fluido em movimento e a pressão dinâmica calculada com a velocidade do escoamento multiplicada pela área frontal do corpo submerso:

$$C_D = \frac{F_a}{A \frac{1}{2} \rho V^2}$$

OBJETIVOS

O presente experimento tem como objetivo determinar o coeficiente de arrasto de seis corpos de formatos diferentes em três velocidades diferentes de escoamento de ar no túnel do vento.

DADOS DA BANCADA EXPERIMENTAL

Célula de Carga tipo S HBM Escala: 0 a 50 [N] Menor divisão 0,01 [N]

- Medidor de velocidade tipo Pitot com transdutor diferencial de pressão Extech HD-350

Escala: 0 a ____ [m/s] Menor divisão ____ [m/s]

- Túnel de vento - Seção útil ___ x ___ [mm] - Ventilador de ___ kW - 110 [V]

COLETA DE DADOS

Para cada tipo de furo e queda, confeccionar a seguinte tabela:

Esfera D = [mm]	Esfera D = [mm]	Cilindro L x D [mm]
$N \qquad F_m[N] \qquad V[m/s]$	$N \qquad F_m[N] \qquad V[m/s]$	N F _m [N] V [m/s]
1	1	1
2	2	2
3	3	3
Cilindro L x D [mm]	Placa x x[mm]	Placa x x[mm]
$N \qquad F_m[N] \qquad V[m/s]$	$N \qquad F_m[N] \qquad V[m/s] I$	$V = F_m[N] V[m/s]$
1	1	
2	2 2	2
3	3	3

Parâmetros fixos / Cálculos:

- Viscosidade cinemática do ar (v): 1,5 x 10⁻⁵ [m²/s]
- Massa específica do ar : $\rho = 1,15$ [kg/m³]

Esfera D = [mm]			Esfera D = [mm]				Cilindro L x D [mm]				
$ \text{Área} = [m^2] $				$ \text{Área} = [m^2] $			$ \text{Área} = [m^2] $				
N	Fa	Re	С	N	Fa	Re	С	N	Fa	Re	С
	[N]				[N]				[N]		
1				1				1			
2				2				2			
3				3				3			

Cilindro	L x	D [mm]	Placa x x[mm]			Placa x x[mm]				
$ \text{Área} = [m^2] $				$ \text{Área} = [m^2] $			$ \text{Área} = [m^2] $				
N	Fa [N]	Re	С	N	Fa [N]	Re	С	N	Fa [N]	Re	С
1				1				1			
2				2			2				
3				3				3			

- Relação de alavanca no dispositivo de suporte no túnel de vento: ____ / ___ = ____

RELATÓRIO A APRESENTAR

Apresentar um relatório completo, contendo:

- a. Introdução e objetivos.
- b. Descrição do experimento.
- c. Tabela de resultados experimentais.
- d. Memorial de cálculos (utilizar correção da vazão do medidor).
- e. Incerteza de medições.
- f. Diagrama de CD x Re destacando os pontos experimentais (anexo para esfera e cilindro).
- g. Conclusão
- h. Referências Bibliográficas.

INFORMAÇÕES GERAIS

- a. Relatório a ser realizado em grupos de até 2 integrantes.
- b. O relatório deve ser entregue, impreterivelmente, em duas semanas.

BIBLIOGRAFIA COMPLEMENTAR

a. Fox, R.W.; McDonald, A.T.; Pritchard, P.J. **Introdução à Mecânica dos Fluidos.** Editora LTC, 6ª Edição, 2006.

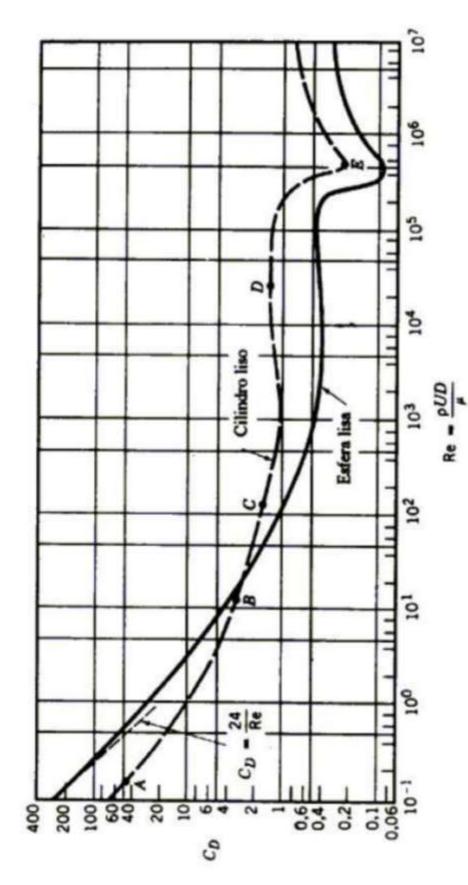


Figura 3.1 - Coeficiente de arrasto em função do número de Reynolds para cilindros e esferas.