UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA TMEC083 – DINÂMICA DE MÁQUINAS

TÍTULO DO PROJETO

RELATÓRIO DO PROJETO

NOME DOS INTEGRANTES DA EQUIPE

TÍTULO DO PROJETO

Projeto apresentado como requisito parcial à aprovação junto à disciplina TMEC083 – Dinâmica de Máquinas, do Curso de Engenharia Mecânica, ministrado pelo Departamento de Mecânica, da Universidade Federal do Paraná.

CURITIBA

MÊS - ANO

SUMÁRIO

1.INTRODUÇÃO	
1.1.DESCRIÇÃO DO MECANISMO	7
1.2.IDENTIFICAÇÃO DA CADEIA CINEMÁTICA	7
1.3.IDENTIFICAÇÃO DOS PARÂMETROS DA DINÂMICA	8
2.ANÁLISE CINEMÁTICA	9
2.1.ANÁLISE GERAL	9
2.2.ANÁLISE DOS PONTOS DE INTERESSE	9
3.ANÁLISE ESTÁTICA	10
3.1.PRINCÍPIO DOS TRABALHOS VIRTUAIS	10
3.2.GRÁFICO DO TORQUE DE ACIONAMENTO	10
4.ANÁLISE DINÂMICA	11
4.1.APRESENTAÇÃO DA EQUAÇÃO DO MOVIMENTO	11
4.2.ENERGIA CINÉTICA	11
4.3.INÉRCIA GENERALIZADA	
4.4.TERMO CENTRÍPETO	
4.5.FORÇAS CONSERVATIVAS	
4.6.FORÇAS NÃO CONSERVATIVAS	
4.7.GRÁFICOS	
4.8.ESTUDOS DE COMPORTAMENTO	
5.VOLANTES	
5.1.DEFINIÇÃO	
5.2.PROCEDIMENTO DE CÁLCULO	
5.3.EXEMPLO	
6.BALANCEAMENTO	
6.1.DEFINIÇÃO	
6.2.PROCEDIMENTO	
6.3.EXEMPLO	
7.CONCLUSÕES E COMENTÁRIOS	
REFERÊNCIAS	
1.1.DESCRIÇÃO DO MECANISMO	
1.2.IDENTIFICAÇÃO DA CADEIA CINEMÁTICA	
1.3.IDENTIFICAÇÃO DOS PARÂMETROS DA DINÂMICA	
2.ANÁLISE CINEMÁTICA	
2.1.ANÁLISE GERAL	8
2.2.ANÁLISE DOS PONTOS DE INTERESSE	
3.ANÁLISE ESTÁTICA	9
3.1.PRINCÍPIO DOS TRABALHOS VIRTUAIS	9
3.2.GRÁFICO DO TORQUE DE ACIONAMENTO	9
4.ANÁLISE DINÂMICA	

4.1.APRESENTAÇÃO DA EQUAÇÃO DO MOVIMENTO	10
4.2.ENERGIA CINÉTICA	
4.3.INÉRCIA GENERALIZADA	
4.4.TERMO CENTRÍPETO	
4.5.FORÇAS CONSERVATIVAS	10
4.6.FORÇAS NÃO CONSERVATIVAS	
4.7.GRÁFICOS	
4.8.ESTUDOS DE COMPORTAMENTO	11
5.VOLANTES	12
5.1.DEFINIÇÃO	
5.2.PROCEDIMENTO DE CÁLCULO	12
5.3.EXEMPLO	
6.BALANCEAMENTO	
6.1.DEFINIÇÃO	
6.2.PROCEDIMENTO	
6.3.EXEMPLO	
7.CONCLUSÕES E COMENTÁRIOS	14
2.REFERÊNCIAS	

NOMENCLATURA

Identificar os símbolos utilizados na análise (comprimentos, variáveis primárias e secundárias,...).

Símbolo	Variável	Unidade SI
C ₁	comprimento do elo de entrada	mm
C_6	ângulo entre os comprlmentos C₃ e C₄	grau
q	ângulo entre os elos C1 e C2; variável primária	grau
qp	Velocidade primária	m/s
Α	Ângulo entre os elos C1 e C2	grau
В	Deslocamento do elo C4 em relação ao C3	mm

1. INTRODUÇÃO

1.1. DESCRIÇÃO DO MECANISMO

Breve descrição do funcionamento do mecanismo (incluir imagens).

Sempre que for necessário, aplicar citações de referências bibliográficas, cujas instruções podem ser encontradas em (Portal da Informação, 2013)

1.2. IDENTIFICAÇÃO DA CADEIA CINEMÁTICA

Apresentar o esquema da cadeia cinemática, identificando dimensões constantes.

Construir o grafo do mecanismo.

Calcular o número de graus de liberdade de acordo com o critério de Gruebler..

Identificar a variável primária e as variáveis secundárias (DOUGHTY, 1988).

Indicar o intervalo de existência da variável primária.

1.3. IDENTIFICAÇÃO DOS PARÂMETROS DA DINÂMICA

Valores das massas e momentos de inércia dos elos.

Constante da mola e do amortecedor.

Forças e momentos externos e de acionamento.

2. ANÁLISE CINEMÁTICA

2.1. ANÁLISE GERAL

Apresentar as equações para obtenção da posição, determinante da matriz Jacobiana, coeficientes de velocidade e suas derivadas.

2.2. ANÁLISE DOS PONTOS DE INTERESSE

Apresentar a cadeia cinemática, contendo o sistema global, o(s) sistema(s) local(is) e os pontos de interesse.

Apresentar as equações de posição, coeficientes de velocidade e suas derivadas, de cada ponto de interesse.

3. ANÁLISE ESTÁTICA

3.1. PRINCÍPIO DOS TRABALHOS VIRTUAIS

Obter a equação referente ao trabalho virtual das forças externas aplicadas no mecanismo e obter a expressão que calcula o torque de acionamento para cada posição da variável primária.

3.2. GRÁFICO DO TORQUE DE ACIONAMENTO

Gráfico T x q, exibindo a contribuição de cada elemento que produz torque.

4. ANÁLISE DINÂMICA

4.1. APRESENTAÇÃO DA EQUAÇÃO DO MOVIMENTO

4.2. ENERGIA CINÉTICA

Expressão da energia cinética dos componentes móveis.

4.3. INÉRCIA GENERALIZADA

4.4. TERMO CENTRÍPETO

4.5. FORÇAS CONSERVATIVAS

Expressões da energia potencial elástica e gravitacional.

4.6. FORÇAS NÃO CONSERVATIVAS

Expressões das forças / torques externos e do amortecedor.

4.7. GRÁFICOS

Gráfico da posição e da velocidade primárias em relação ao tempo.

4.8. ESTUDOS DE COMPORTAMENTO

Apresentar estudos envolvendo a variação de algum parâmetro (rigidez, amortecimento, aplicação das forças externas) e observação do resultado.

5. VOLANTES

5.1. DEFINIÇÃO

Definir volante, apresentar sua finalidade e citar aplicações (exemplos).

5.2. PROCEDIMENTO DE CÁLCULO

Descrever o procedimento matemático para aplicação de um volante em um mecanismo.

5.3. EXEMPLO

Apresentar um exemplo de cálculo do balanceamento, mostrando o torque de acionamento antes e depois da instalação do volante (opcional).

6. BALANCEAMENTO

6.1. DEFINIÇÃO

Definir balanceamento e apresentar aplicações (exemplos).

6.2. PROCEDIMENTO

Descrever o procedimento matemático para balancear um mecanismo.

6.3. EXEMPLO

Apresentar um exemplo de cálculo do balanceamento, mostrando as reações nos mancais fixos antes e depois do balanceamento (opcional).

7. CONCLUSÕES E COMENTÁRIOS

Comentar sobre:

- resultados obtidos com o trabalho;
- contribuição deste projeto no aprendizado da disciplina;
- dificuldades encontradas;
- sugestões para condução de trabalhos futuros.

REFERÊNCIAS

(seguir padrão dos exemplos abaixo)

DOUGHTY, S. Mechanics of Machines. New York: Wiley, 1988.

PORTAL da Informação. **Orientação para Normalização de Trabalhos Acadêmicos**, 2013. Disponível em: http://www.portal.ufpr.br/normalizacao.html>. Acesso em: 08 nov. 2013.