Section 6.3 Kernel and Range

If x = tv 1s a line through the origin of R®, and if T 1s a linear operator on R”, then the image
of the line under the transformation T 1s the set of vectors of the form

Tx)=T(tv) = tT(v)
Geometrically, there are two possibilities for this image:

1. If T(v) =0, then T'(x) = 0 for all x, so the image is the single point (.
2. I T(v) # 0, then the image is the line through the origin determined by T(v).

(See Figure 6.3.1.)
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Similarly, if X = vy + f2v; 1s a plane through the ongin of R", then the
image of this plane under the transformation T 1s the set of vectors of the form

I'(x) =Ty, +nv2) =uT(vy) +0T(v2)
There are three possibilities for this image:

1. If T(v;) = 0and T(v;) = 0, then T(x) = 0 for all x, so the image is the single point 0.
2. If T(vy) #0and T(v,) # 0, and if T(v,) and T (v,) are not scalar multiples of one
another, then the image 1s a plane through the ongin.

3. The image is a line through the origin in the remaining cases.

Detimition 6.3.1 If T: R® — R™ is a linear transformation, then the set of vectors in B"
that T maps into 0 1s called the kernel of T and i1s denoted by ker(T').
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EXAMPLE 1 Kemels of Some Basic Operators ]
¥
In each part, find the kernel of the stated linear operator on R?. 0. 0.0) -
(a) The zero operator Tpix) =0x =10 /
(b) The identity operator T;(x) = Ix = x. Figure 6.3.2

(c) The orthogonal projection T on the xvy-plane.
(d) Arotation T about a line through the ongin through an angle £.

Solution (a) The transformation maps every vector X into 0, so the kemel is all of R?: that is.
ker(Ty) = R*.

Solution (b) Since T;(x) = x. it follows that T;(x) = 0 if and only if x = 0. This implies that
ker(T;) = {0}.

Solution (¢) The orthogonal projection on the x y-plane maps a general point x = (x, v, 7) into
{x, v, ), so the points that get mapped mto 0 = (0, 0, 0) are those for which x = 0 and y = (0.
Thus, the kemel of the projection T 1s the z-axis (Figure 6.3.2).



Solution (d) The only vector whose image under the rotation is 0 is the vector 0 itself; that is,
the kernel of the rotation T is {0}. =

Operator Ilustration Standard Matrix Table 6.2.6

Rotation about the positive

1 0 0
x-axis through an angle # 7:(":' " g C;:g —CS:';E;

¥

Rotation about the positive

cosf# 0 sinf
. 0 1 ]
y-axis through an angle & —sinf® 0 cosf

A Z

Rotation about the positive
z-axis through an angle &

cosf —sinf 0
sin cosf 0

0 0 1

¥




T(0)=0

It 1s impﬂnantﬁnte that the kernel of a linear transformation always contains the vector
0 by Theorem 6.1.3; the following theorem shows that the kernel of a linear transformation is
always a subspace.

- If a nonempty set of vectors is a subspace, it must be closed under
scalar multiplication and addition.

Theorem 6.3.2 IfT: R® — R™ is alinear transformation, then the kernel of T is a subspace
of R".

Proof The kernel of T is a nonempty set since it contains the zero vector in R”. To show that it
1s a subspace of R" we must show that it is closed under scalar multiplication and addition. For
this purpose, let u and v be any vectors in ker(7), and let ¢ be any scalar. Then

Tev)=cT(v)=c0=0
so cv is in ker(7'), which shows that ker(7') 1s closed under scalar multiplication. Also,
Tu4+v)=T)+TvV)=04+0=0

sou+ visinker(7), which shows that ker(7") is closed under addition. =



KERNEL OF A MATRIX TRANSFORMATION

If Aisanm x n matrix and T4: R" — R™ is the corresponding linear transformation, then
T4(x) = Ax, so that x 1s in the kernel of T4 if and only if Ax = 0. Thus, we have the following
result.

Theorem 6.3.3 If A is an m x n matrix, then the kemmel of the corresponding linear
transformation is the solution space of Ax = 0.

EXAMPLE 2 Kemel of a Matrix Operator

In part (c) of Example 1 we showed that the kernel of the orthogonal projection of R* onto the
xy-plane is the z-axis. This can also be deduced from Theorem 6.3.3 by considering the standard

matrix for this projection, namely
1 0 Q]
A=]010
0 0 0]

It is evident from this matrix that a general solution of the system Ax = 0 is
x=0, y=(, 2=t

which are parametric equations for the z-axis. “



Definition 6.3.4 If A is an m % n matrix, then the solution space of the linear system
Ax = 0, or, equivalently, the kemel of the transformation T, is called the null space of the
matrix A and i1s denoted by null{A).

nuc(A)

EXAMPLE 3 Find the null space of the matrix

Finding the - »
Null Space of a L 2= QO 2 N
Matrix - 2 6 -5 -2 4 -3
18 0 5 10 0 15

2 6 0 8 4 18




GAUSS-JORDAN AND GAUSSIAN ELIMINATION

We have seen how easy it is to solve a linear system once its augmented matrix is in reduced

row echelon form. \

use of elementary row operations.

It can be proved that elementary row operations, when applied to the augmented matrix of a
linear system, do not change the solution set of the system. Thus, we are assured that the linear
system corresponding to the reduced row echelon form will have the same solutions as
the original system.

The procedure (or algorithm) for reducing a matrix to reduced row
echelon form is called Gauss-Jordan elimination. This algorithm consists of two parts, a
Jorward phase in which zeros are introduced below the leading 1's and then a backward phase

in which zeros are introduced above the leading 1’s.

If only the forward phase is used, then the
procedure produces a row echelon form and is called Gaussian elimination.



EXAMPLE 7

Homogencous
System with
Nontrivial
Solunons

Use Gauss—Jordan elimination to solve the homogeneous linear system

X+ 3xx; — 2x5 + 2xs = {)
21 +6x2 — S5x3— 2xa 4+ 4xs — Ixg=0

Sx3 + 10x4 + 15x =0
2x; + 6x; + 8x4 +4xs5+ 18x4 =0

The augmented matrix for the given homogeneous system is

i i -2 0 2 0 0
0 =3 =2 4 -3 @
0 3 10 0 15 0O
6 0 8 4 18 0

I

O




The reduced row echelon form is
4 2
2 0
0 0
0 0

The corresponding system of equations is

x| + 3xz2 + dx4 + 2x5 =1
X3 + 2xy = ()
..'l.‘|5=ﬂ

Solving for the leading variables we obtain

X = usz — 4..1'4 — 2.1'5
X3 = —11'4
Xa =1



If we now assign the free variables x;, x4, and x5 arbitrary values r, s, and ¢, respectively, then

we can express the solution set parametrically as
Xy==3r—4s-U, x2=r, x3=-28, xa=35, xs=1, x¢ =0

We leave it for you to show that the solution set can be expressed in vector form as

(13)

(X1, X2, X3, X4, X5, X5) =r(—3,1,0, 0,0,0) + 5(—4,0,-2,1,0,0) + f{—l. 0,0,0,1, 0) (14)

or alternatively, as

X1
X2
X3
Xy
XS

Xf

=

+ 1

(15)



EXAMPLE 3 Find the null space of the matrix

Finding the -
Null Space of a 3 -2 0 2 0
Matrix 6 -5 -2 4 -3

B
2
0O 0 5 10 0 15
2 6 0 8 4 18

Solution We will solve the problem by producing a set of vectors that spans the subspace. The
null space of A is the solution space of Ax = 0, so the stated problem boils down to solving
this linear system. The computations were performed in Example 7 of Section 2.2, where we
showed that the solution space consists of all linear combinations of the vectors

PRy Pt ey
I 0 0
0 —2 0
nel gl H=] x|* "= 3 X, = — 3%, — 4%, — 2Xs ;
0 0 1 X3 == 2%y ;
il 0_‘ L 0_ i 0_ Xg = 0.

Thus, null(A) = span{v,, v,, v3}. o



Theorem 6.3.5 IfT:R" — R™ is a linear transformation, then T maps subspaces of R"
into subspaces of R™ .

Proof Let S be any subspace of R", and let W = T'(§) be its image under 7. We want to show
that W is closed under scalar multiplication and addition; so we must show that if u and v are
any vectors in W, and if ¢ is any scalar, then ¢v and u + v are images under T of vectors in §.
To find vectors with these images, suppose that u and v are the images of the vectors ug and v
in S, respectively; that is,

u=7(u) and v=T(vp)

Since S is a subspace of R", it is closed under scalar multiplication and addition, so ¢vy and
ug + vp are also vectors in S. These are the vectors we are looking for, since

T(cvg) =cT (Vo) =cv and T(u+vy)=T(u)+T(vp) =u-+v

which shows that cv and u + v are images of vectors in §. -]

—> In other words, vector cv is the result of Tin cvy, and u + vis the result of Tin ug + v,,.



RANGE OF A LINEAR
TRANSFORMATION

We will now shift our focus from the kernel to the range of a linear transformation. The following
definition is a reformulation of Definition 6.1.1 in the context of transformations.

Detinition 6.3.6 If T: R™ — R™ is a linear transformation, then the range of T, denoted

by ran{T), is the set of all vectors in R™ that are images of at least one vector in R". Stated
another way, ran{ T ) 1s the image of the domain R" under the transformation T.

AN

im(T)



EXAMPLE 4 Ranges of Some Basic Operators on R® elx. ¥ z)

¥

Describe the ranges of the following linear operators on R*. +-h 0
+ Vs

X

(a) The zero operator To(x) = x = 0. :
(b) The identity operator T;(x) = Ix = x. Figure 6.3.3
(c) The orthogonal projection T on the xy-plane.

(d} Arotation T about a line through the origin through an angle 2.

Solution (a) This transformation maps every vector in R into 0, so ran(T;) = {0].

Solution (b) This ransformation maps every vector into itself, so every vector in R” is the
image of some vector. Thus, ran(T;) = R*.

Solution (¢) This transformation maps a general point x = (x, ¥, z) into (x, ¥, 0), so the range
consisis of all points with a z-component of zero. Geometrically, ran(T) is the xv-plane (Figure
6.3.3).



Solution (d) Every vector in R* is the image of some vector under the rotation 7. For example,
to find a vector whose image is x, rotate x about the line through the angle —# to obtain a vector
w: the image of w, when rotated through the angle &, will be x. Thus, ran(7T) = R". g

Operator Ilustration Standard Matrix Table 6.2.6

Rotation about the positive ¥ : ’ U
x-axis through an angle & & § fmE =hue

0 sind  cost
Rotation about the positive

cosd 0 sinf
. 0 1 0
v-axis through an angle & —sinf# 0 cosf

Rotation about the positive

z-axis through an angle @ 0 0 )

cosl —sinf ]
sin cosf 0

v




Theorem 6.3.7 IfT: R™ — R™ is a linear transformation, then ran(T) is a subspace of R™.

— special case of Theorem 6.3.5.

RANGE OF A MATRIX TRANSFORMATION

If Ais an m x n matrix and 74: R" — R™ is the corresponding linear transformation, then
T4(x) = Ax, so that a vector b in R™ is in the range of T if and only if there is a vector x such

that Ax = b. Stated another way, b is in the range of 7 if and only if the linear system Ax = b
is consistent.

Theorem 6.3.8 If A is an m x n matrix, then the range of the corresponding linear trans-
formation is the column space of A.

If T4: R" — R™ is the linear transformation corresponding to the matrix A, then the range

of T4 and the column space of A are the same object from different points of view—the first
emphasizes the transformation and the second the matrix.



EXAMPLE 5

Range of a
Matrix Operator

In part (c) of Example 4 we showed that the range of the orthogonal projection of R* onto the
xy-plane is the xy-plane. This can also be deduced from Theorem 6.3.8 by considering the

standard matrix for this projection, namely

(1 0 0]
A=t 1 O
_O 0 0_
The range of the projection is the column space of A, which consists of all vectors of the form
1 B al = B 0 i§ ]
Ax=|01 0| |y|=x|0|+y|1l]|+2z|0]|=|»
00 0] [z 0 O_‘ 0 0

Thus, the range of the projection, in comma-delimited notation, is the set of points of the form
(x, v, 0), which is the xy-plane. o



It is important in many Kinds of problems to be able to determine whether a given vector b
in R™ 1s in the range of a linear transformation 7' : R" — R™. If A 1s the standard matrix for
T, then this problem reduces to determining whether b is in the column space of A.

EXAMPLE 6 column Space

Suppose that
'Y wf &F il 8
A=|2 -3 -1 5| and b=|-10
3 2 S M ~28

Determine whether b is in the column space of A, and, if so, express it as a linear combination
of the column vectors of A.

Solution The problem can be solved by determining whether the linear system Ax = b is
consistent. If the answer is “yes,” then b is in the column space, and the components of any
solution x can be used as coefficients for the desired linear combination; if the answer is “no,”
then b is not in the column space of A. We leave it for you to confirm that the reduced row
echelon form of the augmented matrix for the system is

1 0 1 4 -8
O 1 1 1 =2
O ¢ 0 0 0O




10 1 4 —8]  XaTT8mXgmAx (1 -8 -7 —4]
0 1 1 1 —2| XTTZTXTX A=|2 -3 -1 5§
s J xg=s;x,=t. ; ,

We can see from this matrix that the system is consistent, and we leave it for you to show that a
general solution 1s

x1=—3—5—4h .I2=—2—S—I. X3=S§, Xa4=1

Since the parameters s and ¢ are arbitrary, there are infinitely many ways to express b as a linear
combination of the column vectors of A.

A particularly simple way is to take s = O and t = 0,

in which case we obtain x; = =8, x; = =2, x3 = 0, x4 = 0. This yields the linear combination
" B L] i Ed B A
b=|-10|=-8|2|-2|-3|40]|-1|+40 5
L—28_ _3_ ] 2_ | 5_ b l4_

You may find it instructive to express b as a linear combination of the column vectors of A in
some other ways by choosing different values for the parameters s and 1. w



There are many problems in which one 15 concerned with the following questions about a hinear
transformation T : R" — R™:

* The Existence Question—Is every vector in B™ the image of at least one vector in R";
that 15, 15 the range of T all of R™? (See the schematic diagram in Figure 6.3.4.)

¢ The Uniqueness Question—Can two different vectors in B® have the same image in
R™? (See the schematic diagram in Figure 6.3.5.)
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Definition 6.3.9 A transformation T : R® — R™ is said to be enfe if its range is the entire
codomain R™; that 15, every vector in B™ 15 the image of at least one vector in R".

Definition 6.3.10 A transformation T: B" — R™ is said to be one-fo-one (sometimes
written 1=1) if T maps distinct vectors in R® into distinct vectors in R™.

— onto: “sobrejetora”; one-to-one: “injetora”; both: “bijetora”.

EXAMPLE 7 One-t0-One and Onto

Let T: R? — R? be the operator that rotates each vector in the x y-plane about the origin through
an angle 6. This operator is one-to-one because rotating distinct vectors through the same angle
produces distinct vectors; it is onto because any vector X in R? is the image of some vector w

under the rotation (rotate x through the angle —# to obtain w). e

EXAMPLE 8 Neither One-to-One nor Onto

Let T: R® — R be the orthogonal projection on the xy-plane. This operator is not one-to-one
because distinct points on any vertical line map into the same point in the xy-plane; it is not

onto because its range (the xy-plane) is not all of R>. ]



EXAMPLE 9 One-t0-One but Not Onto

Let T : R? — R? be the linear transformation defined by the formula 7 (x, y) = (x, y, 0). Toshow
that this linear transformation is one-to-one, consider the images of two points x; = (x, v;)
and x> = (x2, v2). lf T(x;) = T(x3), then (xy, y1, 0) = (x2, y2, 0), which implies that x; = x>
and y; = y;. Thus if x; # Xx;, then T(x,;) # T(x;), which means T maps distinct vectors into
distinct vectors. The transformation is not onto because its range is not all of R*. For exaniple,
there is no vector in R? that maps into (0, 0, 1). B

Above, itisx; =x, andy; =,
(it is incorrect in the textbook).

EXAMPLE 10 o0nto but Not One-to-One

Let 7: R* — R? be the linear transformation defined by the formula 7'(x, y, z) = (x, y). This
transformation is onto because each vector w = (x, y) in R? is the image of at least one vector
in R?; in fact, it is the image of any vector X = (x, y, z) whose first two components are the
same as those of w. The transformation is not one-to-one because two distinct vectors of the
form x; = (x, y, 2;) and X, = (x, y, z2) map into the same point (x, y). &



Theorem 6.3.11 IfT:R" — R™ is a linear transformation, then the following statements
are equivalent.

(a) T is one-to-one.

(b) ker(T) = {0}.

Proof (a) = (b) Assume that T is one-to-one. Since T is linear, we know that 7(0) = 0 by

Theorem 6.1.3. The fact that T is one-to-one implies that x = 0 is the only vector for which
T(x) =0, soker(T) = {0}.

Proof (b) = (a) Assume that ker(7") = {0}. To prove that T is one-to-one we will show that if
X; # Xa, then T(x;) # T(x»). But if x; # x5, then x; — x5 % 0, which means that x; — x» is
not in ker(7"). This being the case,

T(x; —%2)=T(x1)—T(x2) #0
Thus, T(x;) # T(x3). u



ONE-TO-ONE AND ONTO
FROM THE VIEWPOINT OF LINEAR SYSTEMS

If Aisanm x n matrix and T4 : R" — R™ is the corresponding linear transformation, then
TA(x) = Ax. Thus, to say that ker(74) = {0} (i.e., that T is one-to-one) is the same as saying
that the linear system Ax = 0 has only the trivial solution.

Also, to say that 7, is onto is the
same as saying that for each vector b in R™ there is at least one vector X in R” such that Ax = b.
This establishes the following theorems.

Theorem 6.3.12 If A is an m x n matrix, then the corresponding linear transformation
T,: R" — R"™ is one-to-one if and only if the linear system Ax = O has only the trivial
solution.

Theorem 6.3.13 If A is an m x n matrix, then the corresponding linear transformation
Ta: R" — R™ is onto if and only if the linear system Ax = b 15 consistent for every b in R".

Above, itis R™, not R". T



EXAMPLE 11 Mapping “Bigger” Spaces into “Smaller” Spaces

Let T: R" — R™ be a linear transformation, and suppose thatn > m.

If A is the standard matrix
for T', then the linear system Ax = () has more unknowns than equations and hence has nontrivial
solutions. Accordingly, it follows from Theorem 6.3.12 that 7 is not one-to-one, and hence we
have shown that if a matrix transformation maps a space R" of higher dimension into a space
R™ of smaller dimension, then there must be distinct points in R” that map into the same point

in R™.
For example, the linear transformation
T'(xy, x2, x3) = (x1 + x2, X1 — X3)

maps the higher-dimensional space R? into the lower-dimensional space R?, so you can tell
without any computation that 7" is not one-to-one. "

We observed earlier in this section that a linear transformation 7" : R" — R™ can be one-to-one
and not onto or can be onto and not one-to-one (Examples 9 and 10). The next theorem shows
that in the special case where T is a linear operator, the two properties go hand in hand—both
hold or neither holds.



Theorem 6.3.14 IfT:R" — R" is a linear operator on R", then T is one-to-one if and
only if it is onto.

Proof Let A be the standard matrix for 7. By parts (d) and (e) of Theorem 4.4.7, the system
Ax = 0 has only the trivial solution if and only if the system Ax = b is consistent for every
vector b in R”. Combining this with Theorems 6.3.12 and 6.3.13 completes the proof. =

Alternative proof:

(a)lf T is one-to-one, for x, # x,, T(x;) # T(x,). As T is a linear operator mapping the
entire domain, any vector in the domain will correspond to a distinct vector in the
codomain, covering it entirely. That is, range and codomain are the same.
Therefore, T is onto.

(b)If T is onto, range and codomain are the same. So, there is a corresponding vector
in the domain for every vector in the codomain. But two distinct vectors in the
range are not connected to the same vector in the domain, as T is a function, and
a linear operator. Therefore, T is one-to-one.



EXAMPLE 12 Examples 7 and 8 Revisited

We saw in Examples 7 and 8 that a rotation about the origin of R? is both one-to-one and onto
and that the orthogonal projection on the xy-plane in R? is neither one-to-one nor onto. The
“both™ and *“neither” are consistent with Theorem 6.3.14, since the rotation and the projection
are both linear operators. B

EXAMPLE 13 Examples 7 and 8 Revisited Using Determinants

The fact that a rotation about the origin R? is one-to-one and onto can be established algebraically
by showing that the determinant of its standard matrix is not zero. This can be confirmed using
Formula (16) of Section 6.1 to obtain

cosf —sinf

ek e sin ¢ cos

=cos’f +sin“f=1#0

The fact that the orthogonal projection of R* on the x y-plane is neither one-to-one nor onto can
be established by showing that the determinant of its standard matrix A is zero. This is, in fact,
the case, since

If det(A) # 0, A is invertible and Ax = 0 has only the trivial

' " solution. Then T, is one-to-one, by theorem 6.3.12.
det(A) =10 1
0 0

==
Il
-

If T is linear operator and one-to-one, it is also onto, by
theorem 6.3.14.




In Theorem 4.4.7 we tied together most of the major concepts developed at that point in the text.
Theorems 6.3.12, 6.3.13, and 6.3.14 now enable us to add two more results to that theorem.

Theorem 4.4.7 If A is an n x n matrix, then the following statements are equivalent.
(@) The reduced row echelon form of A is I,,.
(b) A is expressible as a product of elementary matrices.
(¢) A is invertible,
(d) Ax = 0 has only the trivial solution.
(e) Ax = b is consistent for every vector b in R".
(f) Ax = b has exactly one solution for every vector b in R".
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.
(i) det(A) #= 0.
() A = 0is not an eigenvalue of A.




A UNIFYING THEOREM

Theorem 6.3.15 If A is an n x n matrix, and if T4 is the linear operator on R® with
standard mairix A, then the following statemenis are equivalent.

(a) The reduced row echelon form of A is [,.

(B) A is expressible as a product of elemeniary matrices.
(c) A is invertible.

(d) Ax = 0 has only the trivial solution.

() Ax = b is consisient for every vector b in R".

( f) Ax = b has exacily one solution for every vector b in R".
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independeni.

(1) det(A) # 0.

() A =015 not an eigenvalue of A.

(k) T4 is one-to-one.

(I T4 15 onto.



