Vectors and Matrices in
Engineering and Mathematics;
n-Space

Linear algebra is concerned with two basic kinds of quantities: “vectors” and “matrices.” The
term “vector” has various meanings in engineering, science, and mathematics, some of which
will be discussed in this section. We will begin by reviewing the geometric notion of a vector
as it is used in basic physics and engineering, next we will discuss vectors in two-dimensional
and three-dimensional coordinate systems, and then we will consider how the notion of a vector
can be extended to higher-dimensional spaces. Finally, we will talk a little about matrices,
explaining how they arise and how they are related to vectors.
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SCALARS AND VECTORS

Engineers and physicists distinguish between two types of physical quantities—scalars, which
are quantities that can be described by a numerical value alone, and vectors, which require both
a numerical value and a direction for their complete description.

For example, temperature,
length, and speed are scalars because they are completely described by a number that tells “how
much”—say a temperature of 20°C, a length of 5 cm, or a speed of 10 m/s. In contrast, velocity,
force, and displacement are vectors because they involve a direction as well as a numerical value.
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Vectors in two dimensions (2-space) or three dimensions (3-space) can be represented geo-
metrically by arrows—the length of the arrow is proportional to the magnitude (or numerical
part) of the vector, and the direction of the arrow indicates the direction of the vector. The rail
of the arrow is called the initial point and the tip is called the terminal point.
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VECTORS IN
COORDINATE SYSTEMS

If a vector v in 2-space or 3-space is positioned with its initial point at the origin of a
rectangular coordinate system, then the vector is completely determined by the coordinates of

its terminal point, and we call these coordinates the components of v relative to the coordi-
nate system.

We will write v = (v, v) for the vector v in 2-space with components (vy, v3)
and v = (vy, vz, v3) for the vector v in 3-space with components (v;, vz, v3) (Figure 1.1.13).
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Algebraically, vectors in 2-space can now be viewed as ordered pairs of real numbers and
vectors in 3-space as ordered triples of real numbers. Thus, we will denote the set of all vectors in
2-space by R? and the set of all vectors in 3-space by R* (the “R” standing for the word “real™).
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VECTORS IN R”

Experimental Data—A scientist performs an experiment and makes n numerical
measurements each time the experiment is performed. The result of each experiment can
be regarded as a vectory = (y;. y2, ..., yu) in R" in which y,, y2,..., y, are the
measured values.

Graphical Images—One way in which color images are created on computer screens is
by assigning each pixel (an addressable point on the screen) three numbers that describe
the hue, saturation, and brightness of the pixel. Thus, a complete color image can be
viewed as a set of 5-tuples of the form v = (x, y, &, s, b) in which x and y are the screen
coordinates of a pixel and A, s, and b are its hue, saturation, and brightness.

Mechanical Systems—Suppose that six particles move along the same coordinate line
so that at time ¢ their coordinates are x;, x3, ..., Xs and their velocities are vy, vy, ..., Us,
respectively. This information can be represented by the vector

v = (x, X2, X3, X4, X5, X6, V1, V2, U3, U4, Us, Vs, 1)

in R', This vector is called the state of the particle system at time 7.

— Vectors, as above, are quantities composed of an ordered sequence of real numbers.



VECTORS IN R”

Definition 1.1.2 If n is a positive integer, then an ordered n-tuple is a
sequence of n real numbers (v, va. . ... v,). The set of all ordered n-tuples
is called n-space and is denoted by R".

REMARK You can think of the numbers in an n-tuple (v, vy, ..., v,) as either
the coordinates of a generalized point or the components of a generalized vector,
depending on the geometric image you want to bring to mind—the choice makes
no difference mathematically, since it is the algebraic properties of n-tuples that

are of concern.

We will denote n-tuples using the vector notation v = (vy, v2, ..., v,), and
we will write 0 = (0,0, ..., 0) for the n-tuple whose components are all zero.
We will call this the zero vector or sometimes the origin of R".

We will sometimes refer to R', R?,
and R? as visible space and R*, R®, ... as higher-dimensional spaces.



Definition 1.1.3 Vectors v = (v, v, ..., v ) and w = (wy, ws, ..., w,)
in R" are said to be eguivalent (also called equal) if

=W, BHh=iy, ..., U =1,

We indicate this by writing v = w.

Definition 1.1.4 Ifv= (v, »,..., v,) and w = (w, uy, ..., w,) are vectors in K", and
if k 15 any scalar, then we define

V+w=i{uy+wp,vr+wr, ..., U0+ 1w, (100
kv = (kvy. kin, ..., kug) (11)
—V = {_”h — Ry eaay _vh} {I-E]

W—V=W+({—V¥Vi={w —uv,w —t,..., U — Uy) (13)
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Theorem 1.1.5 Ifu, v, and w are vectors in R®, and if k and | are scalars, then:

a) u+v=v+n (e) (k+Im=kan+lu
(b) (u+v)+w=u+(v+w) (f) kfu+4v) =ka+ kv
) u4+0=0+u=nu (g) kiln) = (k)
(d)a+{—a)=0 (h) Im=n

Theorem 1.1.6 If v is a vector in R" and k is a scalar, then:
(a) Ov=10
(b) k0 =0
c) (—1liv=—v



PARALLEL AND
COLLINEAR VECTORS

Definition 1.1.7 Two vectors in R" are said to be parallel or, alternatively, collinear if at
least one of the vectors 1s a scalar multple of the other. If one of the vectors is a positive
scalar muluple of the other, then the vectors are said to have the same direction, and if one

of them i1s a negative scalar multiple of the other, then the vectors are said to have opposite
directions.
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LINEAR COMBINATIONS

Definition 1.1.8 A vector w in R" is said to be a linear combination of the vectors

¥i. V. ..., ¥ in K" if w can be expressed in the form
W=V +2Va4+--- 4 Vg (14)
The scalars ¢y, ¢a. . ... ¢ are called the coefficients in the hinear combination. In the case

where k = 1, Formula (14) becomes w = ¢ vy, so to say that w is a linear combination of v,
is the same as saying that w 1s a scalar multple of v,.



SUBSPACES OF R”

In general, if W is a nonempty set of vectors in R", then we say that W is closed under scalar
multiplication if any scalar multiple of a vector in W is also in W, and we say that W is closed

under addition if the sum of any two vectors in W is also in W. We also make the following
definition to describe sets that have these two closure properties.

Definition 3.4.1 A nonempty set of vectors in B" is called a subspace of R" if it is closed
under scalar mulaphcation and addition.



Theorem 3.4.2 Ifvy.va, ..., ¥, are vectors in R", then the set of all linear combinations
X=HhV]y + ¥+ -+ LY, (3)

is a subspace of R".

The subspace W of R" whose vectors satisfy (3) is called the span of v, vs, ..., v, and is
denoted by

W = span{v;, v2, ..., Vs} (4)

We also say that the vectors vy, va, ..., vy span W. The scalars in (3) are called parameters,



LINEAR INDEPENDENCE

Definition 3.4.5 A nonempty set of vectors § = {v;,¥2, ..., ¥, }in R" is
said to be linearly independent if the only scalars ¢y, c1, ..., ¢, that satisfy
the equation

Vi t+ovr+---+ ¥ =10 (9)

arecy) =0,c2=0,..., ¢, = 0. If there are scalars, not all zero, that satisty
this equation, then the set is said to be linearly dependent .



REMARK Strictly speaking, the terms “linearly dependent” and “linearly inde-
pendent” apply to nonempty finite sets of vectors; however, we will also find it
convenient to apply them to the vectors themselves.

Thus, we will say that the
vectors vy, v, ..., vy are linearly independent or dependent in accordance with
whether the set § = {v,, v2, ..., v;} is linearly independent or dependent.

Also,
if S is a set with infinitely many vectors, then we will say that § is linearly inde-
pendent if every finite subset is linearly independent and is linearly dependent
if some finite subset is linearly dependent.



ALTERNATIVE NOTATIONS FOR VECTORS

Up to now we have been writing vectors in R" using the notation

v=(v,v,..., Up) (15)

We call this the comma-delimited form. However, a vector in R" is essentially just a list of
n numbers (the components) in a definite order, so any notation that displays the components
of the vector in their correct order is a valid alternative to the comma-delimited notation. For
example, the vector in (15) might be written as

v=[vy va -+ v, (16)
which is called row-vector form, or as
oy
v=|" 17
FY

which is called column-vector form. The choice of notation is often a matter of taste or conve-

nience, but sometimes the nature of the problem under consideration will suggest a particular
notation. All three notations will be used in this text.



MATRICES ®

we define a matrix to be a rect-
angular array of numbers, called the enfries of the matrix.

If a matrix has m rows and n columns, then it is said to have
size m x n, where the number of rows is always written
first. Thus, for example, the matrix in (18) has size 4 x 7.
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A matrix with one row 1s called a row vector, and a matrix
with one column is called a column vector.

You can also think of a matrix as a
list of row vectors or column vectors.
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VECTOR ALGEBRA

There are essentially three different ways to introduce vector algebra: geometrically,
analytically, and axiomatically. In the geometric approach, vectors are represented by
directed line segments, or arrows. Algebraic operations on vectors, such as addition,
subtraction, and multiplication by real numbers, are defined and studied by geometric
methods.

In the analytic approach, vectors and vector operations are described entirely in terms
of numbers, called components. Properties of the vector operations are then deduced from
corresponding properties of numbers. The analytic description of vectors arises naturally
from the geometric description as soon as a coordinate system is introduced.

In the axiomatic approach, no attempt is made to describe the nature of a vector or of
the algebraic operations on vectors. Instead, vectors and vector operations are thought
of as undefined concepts of which we know nothing except that they satisfy a certain set of
axioms. Such an algebraic system, with appropriate axioms, is called a linear space or a
linear vector space. The algebra of directed line segments and the
algebra of vectors described by components are merely two examples of linear spaces.

source: Calculus (Vol. 1), 2. ed., T.M. Apostol
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The study of vector algebra from the axiomatic point of view is perhaps the most
mathematically satisfactory approach to use since it furnishes a description of vectors that
is free of coordinate systems and free of any particular geometric representation.

In this, we base our treatment on the
analytic approach, and we also use directed line segments to interpret many of the results
geometrically.



The vector space of n-tuples of real numbers

One can consider an n-tuple of real numbers
(Hlﬂ oy v v s !'Hﬂ)

for any integer n > 1. Such an n-tuple is called an n-dimensional point or an n-dimensional
vector, the individual numbers a, , a,, . . ., a, being referred to as coordinates or components
of the vector. The collection of all n-dimensional vectors is called the vector space of
n-tuples, or simply n-space. We denote this space by V,, .

To convert V, into an algebraic system, we introduce equality of vectors and two vector
ﬂperations called addition and mufn;ufimffﬂn b_{p scalars. The word “*scalar’ i1s used here as
a synonym for “‘real number.”



DEFINITION. Two vectors A and B in V, are called equal whenever they agree in their
respective components. Thatis,if A = (a,, ay, ...,a,)and B = (b, by, ..., b,), thevector
equation A = B means exactly the same as the n scalar equations

a, = b,, as="b,, ..., a,=0b,.
The sum A + B is defined to be the vector obtained by adding corresponding components:
A+ B=(a,+b,a,+ by,...,a,+b,).

If ¢ is a scalar, we define cA or Ac to be the vector obtained by multiplying each component
of A by c:

cA = (ca,, ca,,...,ca,).



The dot product

DEFINITION. If A = (ay,...,a,)and B=(b,, ..., b,) are two vectors in V,, their dot
product is denoted by A - B and is defined by the equation

Thus, to compute 4 - B we multiply corresponding components of 4 and B and then
add all the products. This multiplication has the following algebraic properties.

THEOREM 12.2.  For all vectors A, B, C in V, and all scalars c, we have the following

properties:
(a) A-B=B-4 (commutative law),
(b) A-(B+C)=A-B+ A-C (distributive law),
(¢c) c(A-B)=(cA)- B= A" (cB) (homogeneity),
(d)A-A>0 if A#O0 (positivity),

) A-A=0 if A=0.



Length or norm of a vector

DEFINITION. If A is a vector in V., , its length or norm is denoted by || A| and is defined by
the equation
Al = (4 - A)Y2.

The fundamental properties of the dot product lead to corresponding properties of norms.

THEOREM 12.4. If A is a vector in V,, and if ¢ is a scalar, we have the following properties:
(a) 4]l > 0 if A#O (positivity),
(b) l4) =0 if 4=0,
(©) llcdl = |c| 4] (homogeneity).

Orthogonality of vectors

DEFINITION. Two vectors A and Bin V, are called perpendicular or orthogonal if A - B = 0.



Angle between vectors in n-space

DEFINITION. Let A and B be two vectors in V,,. If both A and B are nonzero,
the angle 0 between A and B is defined by the equation

A-B

0 = arccos — .
|All || B

Note: The arc cosine function restricts 6 to the interval 0 < 8 < ». Note also that
6 =17 when 4-B = 0.



The unit coordinate vectors

DEFINITION. In V,, the n vectors E; = (1,0,...,0), E, =(0,1,0,...,0),..., E, =

(0,0, ...,0,1)are called the unit coordinate vectors. It is understood that the kth component
of E, is 1 and all other components are 0.

The name “‘unit vector” comes from the fact that each vector E; has length 1. Note that

these vectors are mutually orthogonal, that is, the dot product of any two distinct vectors
is zero,

E-E; =0 if ks#j.



THEOREM 12.6. Every vector X = (xy, ..., x,) in V, can be expressed in the form
X — IIEI + x E 2 x E
Moreover, this representation is unique. That is, if

=2 q,E; and X =2 k.

k=1 k=1

then x,, = y, foreach k =1,2,...,n.



A sum of the type > ¢4, is called a linear combination of the vectors A4,,..., 4,.
Theorem 12.6 tells us that every vector in V, can be expressed as a linear combination of
the unit coordinate vectors.

We describe this by saying that the unit coordinate vectors
E,, ..., E,spanthe space V,. We also say they span V, uniquely because each representa-
tion of a vector as a linear combination of E,, ..., E, is unique. Some collections of
vectors other than E,, ..., E, also span V, uniquely.



When vectors are expressed as linear combinations of the unit coordinate vectors,
algebraic manipulations involving vectors can be performed by treating the sums » x,.E,
according to the usual rules of algebra. The various components can be recognized at any
stage in the calculation by collecting the coefficients of the unit coordinate vectors. For
example, to add two vectors, say A = (a,,...,a,)and B = (b,, ..., b,), we write

A=EH1EE£, B=zbk‘EkT
k=1

k=1

and apply the linearity property of finite sums to obtain

A+B=3 aE+3 biEy =3 (4 + boEy.

k=1

The coefficient of E; on the right is the kth component of the sum 4 + B.



LINEAR SPACES

Briefly, a linear space is a set of elements of any kind on which certain operations (called
addition and multiplication by numbers) can be performed.

In defining a linear space, we
do not specify the nature of the elements nor do we tell how the operations are to be per-
formed on them.

Instead, we require that the operations have certain properties which
we take as axioms for a linear space. We turn now to a detailed description of these axioms.



The definition of a linear space

Let V denote a nonempty set of objects, called elements. The set V is called a linear
space if 1t satisfies the following ten axioms which we list in three groups.

Closure axioms

AXIOM 1. CLOSURE UNDER ADDITION. For every pair of elements x and y in V there
corresponds a unique element in V called the sum of x and y, denoted by x + y.

AXIOM 2. CLOSURE UNDER MULTIPLICATION BY REAL NUMBERS. For every x in V and
every real number a there corresponds an element in V called the product of a and x, denoted
by ax.



Axioms for addition

AXIOM 3. COMMUTATIVE LAW. For all x and y in V, we have x + y = y + x.

AXIOM 4. ASSOCIATIVELAW. Forallx,y,andzinV,wehave(x +y)+z=x+4+(y + 2).

AXIOM 5. EXISTENCE OF ZERO ELEMENT. There is an element in V, denoted by O, such that
x+O0O=x  forallxinV.

AXIOM 6. EXISTENCE OF NEGATIVES. For every x in V, the element (—1)x has the property

x+(=Dx=0.



Axioms for multiplication by numbers
AXIOM 7. ASSOCIATIVE LAW. For every x in V and all real numbers a and b, we have
a(bx) = (ab)x .
AXIOM 8. DISTRIBUTIVE LAW FOR ADDITION IN V. For all x and y in V and all real a,
we have

a(x + y) =ax + ay .

AXIOM 9. DISTRIBUTIVE LAW FOR ADDITION OF NUMBERS. For all x in V and all real

a and b, we have
(@ + b)x = ax + bx.

AXIOM 10. EXISTENCE OF IDENTITY. For every x in V, we have lx = x.



Linear spaces, as defined above, are sometimes called real linear spaces to emphasize
the fact that we are multiplying the elements of V by real numbers. If real number is re-
placed by complex number in Axioms 2, 7, 8, and 9, the resulting structure is called a com-

plex linear space.

Sometimes a linear space is referred to as a linear vector space or simply
a vector space; the numbers used as multipliers are also called scalars. A real linear space
has real numbers as scalars; a complex linear space has complex numbers as scalars.



Examples of linear spaces

EXAMPLE 1. Let V' = R, the set of all real numbers, and let x 4+ y and ax be ordinary
addition and multiplicatiﬂn of real numbers.

EXAMPLE 2. Let V' = C, the set of all complex numbers, define x 4+ y to be ordinary
addition of complex numbers, and define ax to be multiplication of the complex number x
by the real number a. Even though the elements of V" are complex numbers, this is a real
linear space because the scalars are real.

EXAMPLE 3. Let V' = V,, the vector space of all n-tuples of real numbers, with addition
and multiplication by scalars defined in the usual way in terms of components.



The following examples are called function spaces. The elements of V' are real-valued
functions, with addition of two functions fand g defined in the usual way:

(f + g)x) = flx) + g(x)

for every real x in the intersection of the domains of fand g. Multiplication of a function
f by a real scalar a is defined as follows: af is that functiod whose value at each x in the
domain of fis af(x). The zero element is the function whose values are everywhere zero.
The reader can easily verify that each of the following sets is a function space.

EXAMPLE 5. The set of all functions defined on a given interval.

EXAMPLE 6. The set of all polynomials.

EXAMPLE 9. The set of all functions differentiable at a given point.

EXAMPLE 10. The set of all functions integrable on a given interval.



