REDUCED SINGULAR VALUE DECOMPOSITION

Theorem 8.6.4 (Singular Value Decomposition of a General Matrix) If A is an m X n matrix
of rank k, then A can be factored as

A=UEVT=[I.11 U2 - I.lk[l.l;_-+| l.lm]
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in which U, Z, and V have sizes m X m, m X n, and n X n, respectively.

Algebraically, the zero rows and columns of the matrix ¥ in Formula (12) are superfluous and
can be eliminated by multiplying out the expression U Z V7 using block multiplication and the
partitioning shown in that formula.



The products that involve zero blocks as factors drop out, leaving
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which is called a reduced singular value decomposition of A. In this text we will denote the
matrices on the right side of (13) by U,, £, and V|", respectively, and we will write this equation
as

A=UzT V] (14)

Note that the sizes of Uy, £, and VIT arem x k, k x k, and k x n, respectively, and that the
matrix X, is invertible, since its diagonal entries are positive.

AN

It is now a square matrix.



If we multiply out on the right side of (13) using the column-row rule of Theorem 3.8.1, then
we obtain

A=o,u,v{ +0,0,v; +---+ouv] l (15)

which is called a reduced singular value expansion of A. This result applies to all matrices,
whereas the spectral decomposition [Formula (5) of Section 8.3] applies only to symmetric
matrices.

You should also compare (15) to the column-row expansion of a general matrix A
given in Theorem 7.6.5. In the singular value expansion the u’s and v’s are orthonormal, whereas
the ¢’s and r’s in Theorem 7.6.5 need not be so.

Theorem 7.6.5 (Column-Row Expansion) If A is a nonzero matrix of rank k, then A can
be expressed as

A=cor+cr+ -+ or; (4)

where ¢y, ¢z, ..., ¢ are the successive pivot columns of A andr, ry, ..., r; are the succes-
sive nonzero row vectors in the reduced row echelon form of A.




EXAMPLE 5 Reduced Singular Value Decomposition

Find a reduced singular value decomposition and a reduced singular value expansion of the
matrix
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Solution In Example 4 we found the singular value decomposition

R~ V6 I Bl Y "
11 3 V313 0|z 437
S 3 | 2 2
] || 28 =84
G s <2 Bl YrlE & (16)
_1 U— ﬁ ﬁ 1 _00_..2 &
L8 2 73
A = U )3 vT



Since A has rank 2 (verify), it follows from (13) with k = 2 that the reduced singular value

decomposition of A corresponding to (16) is
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This yields the reduced singular value expansion
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Note that the matrices in the expansion have rank I, as expected.
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DATA COMPRESSION AND IMAGE PROCESSING

Singular value decompositions can be used to “‘compress” visual information for the purpose of
reducing its required storage space and speeding up its electronic transmission. The first step in
compressing a visual image is to represent it as a numerical matrix from which the visual image
can be recovered when needed.

For example, a black and white photograph might be scanned as a rectangular array of pixels
(points) and then stored as a matrix A by assigning each pixel a numerical value in accordance
with its gray level. If 256 different gray levels are used (0 = white to 255 = black), then the
entries in the matrix would be integers between 0 and 255. The image can be recovered from
the matrix A by printing or displaying the pixels with their assigned gray levels.



If the matrix A has size m X n, then one might store each of its mn entries individually. An
alternative procedure is to compute the reduced singular value decomposition

A=o,uV| +0,u,V] + -+ ou v (17)

in whicho; = 0> > --- > 0, and store the o’s, the u’s, and the v’s. When needed, the matrix A
(and hence the image it represents) can be reconstructed from (17). Since each u; has m entries
and each v; has n entries, this method requires storage space for

km+kn+k=k(m+n-+1)

numbers. Suppose, however, that the singular values 0,41, ..., ox are sufficiently small that
dropping the corresponding terms in (17) produces an acceptable approximation

A =0V, +0,0,vV) +---+o,u,v (18)

to A and the image that it represents. We call (18) the rank r approximation of A.

This matrix requires storage space for only

rm+rn+r=r(im+n+1)

numbers, compared to mn numbers required for entry-by-entry storage of A.



For example, the rank 100 approximation of a 1000 x 1000 matrix A requires storage for only
100(1000 + 1000 + 1) = 200,100

numbers, compared to the 1,000,000 numbers required for entry-by-entry storage of A—a com-
pression of almost 80%.
Figure 8.6.3 shows some approximations of a digitized mandrill image obtained using (18).

Rank 4
Figure 8.6.3

REMARK It can be proved that A, has rank r, that A, does not depend on the basis vectors used
in Formula (18), and that A, is the best possible approximation to A by m x n matrices of rank
r in the sense that the sum of the squares of the differences between the entries of A and A, is
as small as possible.



SINGULAR VALUE DECOMPOSITION FROM THE TRANSFORMATION POINT OF VIEW

If Aisanm x n matrix and 74 : R" — R™ is multiplication by A, then the matrix

in (12) is the matrix for T4 with respect to the bases {vy, va,
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.., Uy} for

# Thus, when vectors are expressed in terms of these bases, we
see that the effect of multiplying a vector by A is

to scale the first k coordinates of the vector by the factors oy, 03, ..., 0%,
map the rest of the coordinates to zero,

and possibly to discard coordinates or append zeros, if needed, to account for a decrease or
increase in dimension,



This idea is illustrated in Figure 8.6.4 for a 2 X 3 matrix A of rank 2.

an ellipse in R2.

The cffect of multiplication
by A on the unit sphere in R’ is to collapse the three dimensions of the domain into the two
dimensions of the range and then stretch or compress components in the directions of the left
singular vectors u; and u; in accordance with the magnitudes of the factors o) and o, to produce

Unit sphere in R? Dimension collapsed
from three to two

Figure 8.6.4

Components stretched
or compressed in the
directions of the left
singular vectors




Some further insight into the singular value decomposition and reduced singular value de-

composition of a matrix A can be obtained by focusing on the algebraic properties of the linear
transformation 7Ty (X) = AX.

Since row(A)' = null(A), it follows from Theorem 7.7.4 that every
vector X in R” can be expressed uniquely as
X = Xrow(A) T Xnull(A)

where Xyow(4) 1S the orthogonal projection of x on the row space of A and xnui(4) 1S its orthogonal
projection on the null space of A.

Since Ax,yq) = 0, it follows that

Th(x) = AX = Axmw(ﬁ} " 3 Axnull(ﬂ} e Axmw{ﬂ}

Theorem 7.7.4 (Projection Theorem for Subspaces) If W is a subspace of R", then every
vector X in R" can be expressed in exactly one way as

X=X +Xz (20)

where X, isin W and x is in W,




Th(x) = AX = AXpow(a) + AXnuli(a) = AXrow(A)

This tells us three things:

1. The image of any vector in R" under multiplication by A is the same as the image of the
orthogonal projection of that vector on row(A).

2. The range of the transformation 74, namely col(A), is the image of row(A).

3. T4 maps distinct vectors in row(A) into distinct vectors in R™ (why?). Thus, even
though T4, may not be onexto-one when considered as a transformation with domain R",
it is one-to-one if its domain\is restricted to row(A).

If Al = Al, A(l;- 1) = 0. Then, [, - |, would be at
row(A) and at null(A) = row(A)™T. So, I, - I, would
be 0 (theorem 7.3.4), which is not the case.

Since the behavior of a matrix transformation T, is completely determined by its action on

row(A), it makes sense, in the interest of efficiency, to eliminate the superfluous part of the
domain and consider T as a transformation with domain row(A).

L]



The matrix for this restricted
transformation with respect to the bases {vy, va, ..., v¢} for row(A) and {u;, u,,..., u.} for
col(A) 1s the matrix

oy 0
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that occurs in the reduced singular value decomposition of A.

=) REMARK Loosely phrased, the preceding discussion tells us that

“hiding” inside of every
nonzero matrix transformation Tx there is a one-to-one matrix transformation that maps the row
space of A onto the column space of A.

Moreover, that hidden transformation is represented by
the reduced singular value decomposition of A with respect to appropriate bases.



Section 8.7 The Pseudoinverse

THE PSEUDOINVERSE

If A is an invertible n x n matrix with reduced singular value decomposition

then U;, Z,, and V; are all n x n invertible matrices (why?), so the orthogonality of U; and V),
implies that

A"l =wzruT (1)

If A is not square or if it is square but not invertible, then this formula does not apply.



Al =y Z7 Ul (1)

However,
we noted carlier that the matrix X; is always invertible, so the product on the right side of (1)
is defined for every matrix A, though it is only for invertible A that it represents A~".

If A 1s a nonzero m x n matrix, then we call the n x m matrix

AY=wzr'uf (2)

the pseudoinverse’ of A.If A = 0, then we define AT = 0.

\ Also called the Moore-Penrose inverse.

) The pseudoinverse is the same
as the ordinary inverse for invertible matrices, but it is more general in that it applies to all
matrices.



EXAMPLE 1

Finding the Pseudoinverse
from the Reduced SVD

Find the pseudoinverse of the matrix

ok 3
A=|(0 1
1 0

using the reduced singular value decomposition that was obtained in Example 5 of Section 8.6.

Solution In Example 5 of Section 8.6 we obtained the reduced singular value decomposition
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Thus, it follows from (2) that
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Theorem 8.7.1 If A s an m x n matric with full column rank, then

At =(ATA T {3

Proof Let A = U, %, V,T be a reduced singular value decomposition of A. Then
ATA =wzTuhw T, v = viZiv]

Since A has full column rank, the matrix A”A is invertible (Theorem 7.5.10) and V, isann x n
orthogonal matrix. Thus,

(ATA) ' = v B2y]
from which it follows that

(ATA)AT = vigP2vDHn s v = mErvii vz =visflvT =AY =

Theorem 7.5.10 If A is an m x n matrix, then the following statements are equivalent.
(@) Ax = 0 has only the trivial solution.
(b) Ax = b has at most one solution for every b in R".
(¢) A has full column rank.
(d) A’A is invertible.




EXAMPLE 2 pseudoinverse in the Case of Full Column Rank

We computed the pseudoinverse of

=
1
0

in Example 1 using singular value decomposition. However, A has full column rank so its
pseuodoinverse can also be computed from Formula (3). To do this we first compute
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This agrees with the result obtained in Example 1.
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PROPERTIES OF THE PSEUDOINVERSE

The following theorem states some algebraic facts about the pseudonverse, the proofs of which
are left as exercises.

Theorem 8.7.2 If A* is the pseudoinverse of an m x n matrix A, then:
(a) AATA=A
() ATAAT = AT
() (AAT) = AAt
@) (ATA) = ATA
(e) (AT)t =(Ah)
(fIATT=A

Formula (2) should be o 1T
used in the proofs. AT=VEIU (2)



The next theorem states some properties of the pseudoinverse from the transformation point
of view. We will prove the first three parts, and leave the last two as exercises.

Theorem 8.7.3 IfA+t = Vi ET'U] is the pseudoinverse of an m x n matrix A of rank k,
and if the cofumn vectors of Uy and V) are uy, wa, ..., u; and vy, va, ..., ¥g, respectively,
then:

(@) A7y is in row(A) for every vectory in R™.
1

[f.’-':l !’1+11j=;'|i'|' {I=1,E+,k;|
i

(c) Aty = 0 forevery vector ¥ in null{(AT).
(@) AAT is the orthogonal projection of R™ onto col(A).

(€) ATA is the orthogonal projection of R" onto row(A).



(@) ATy isinrow(A) for every vectory in R™.

Proaf (a) If v 1s a vector in B™, then 1t follows from (2) that
Aty =W 20Ty = V(=7 UTy)

s0 A1y must be a linear combination of the column vectors of V. Since Theorem 8.6.5 states
that these vectors are in row(A), it follows that A%y is in row(A).

Theorem 8.6.5 If A is an m x n matrix with rank k, and if A = UEZVT is the singular
value decomposition given in Formula (12), then:

(@) {wy,us,...,u}is an orthonormal basis for col{A).
(b) {wpyy, ..., 0y} is an orthonormal basis for col(A)* = null(AT).

() {¥1, V2, ..., ¥i} is an orthonormal basis for row(A).

() {Visls ..., Yo} is an orthonormal basis for row(A)t = null(A).




l
b) Atu; = —v; (1 i==}172 99N k)
ai
Proof (b) Multiplying A* on the right by Uf; yields
At =vZ v, = vz

The result now follows by comparing corresponding column vectors on the two sides of this
equatiorn.

Theorem 8.6.5 If A is an m x n matrix with rank k, and if A = UEZVT is the singular
value decomposition given in Formula (12), then:

(@) {wy,us,...,u}is an orthonormal basis for col{A).
(b) {wpyy, ..., 0y} is an orthonormal basis for col(A)* = null(AT).

() {¥1, V2, ..., ¥i} is an orthonormal basis for row(A).

() {Visls ..., Yo} is an orthonormal basis for row(A)t = null(A).




() A%y = 0 forevery vectory in null(A”).

Proof (c¢) If ¥ is a vector in null{A7), then ¥ is orthogonal to each vector in col(A), and, in
particular, it 1s orthogonal to each column vectorof Lfy = [u; wuy --- wg]. This implies that
Uy = 0 (why?), and hence that

Aty=VZ U y=WEHUTy=0 o

Theorem 8.6.5 If A is an m x n matrix with rank k, and if A = UEZVT is the singular
value decomposition given in Formula (12), then:

(@) {wy,us,...,u}is an orthonormal basis for col{A).
(b) {wpyy, ..., 0y} is an orthonormal basis for col(A)* = null(AT).

() {¥1, V2, ..., ¥i} is an orthonormal basis for row(A).

() {Visls ..., Yo} is an orthonormal basis for row(A)t = null(A).




EXAMPLE 3 Orthogonal Projection Using the Pseudoinverse

Use the pseudoinverse of

E
A=10
1

=
1
0

to find the standard matrix for the orthogonal projection of R? onto the column space of A.

Solution The pseudoinverse of A was computed in Example 2. Using that result we see that
the orthogonal projection of R? onto col(A) is
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PSEUDOINVERSE AND LEAST SQUARES

The pseudoinverse is important because it provides a way of using singular value decompositions
to solve least squares problems.

Recall that the least squares solutions of a linear system Ax = b
are the exact solutions of the normal equation A’Ax = A”b. In the case where A has full column
rank the matrix A”A is invertible and there is a unique least squares solution

x = (ATA)""A"b = A*Db 4)

Thus, in the case of full column rank the least squares solution can be obtained by multiplying b
by the pseudoinverse of A.

In the case where A does not have full column rank the matrix A”A
is not invertible and there are infinitely many solutions of the normal equation, each of which is
a least squares solution of Ax = b.

However, we know that among these least squares solutions
there is a unique least squares solution in the row space of A (Theorem 7.8.3), and we also know
that it is the least squares solution of minimum norm. The following theorem generalizes (4).



Theorem 8.7.4 If A is an m x n matrix, and b is any vector in R™, then
X = .:"-'l+|]

is the least squares solution of AX = b thar has minimum norm.

Proof We will show first that x = A™b satisfies the normal equation A’Ax = A”b and hence

1s a least squares solution. For this purpose, let A = U, 2, VIT be a reduced singular value
decomposition of A, so

A*b =wZ7'UD
Thus,

(ATDHAYDD =V ZVIViET' UTb = V2227 UTb = VS U] b = ATb
which shows that x = A*b satisfies the normal equation A7Ax = A”b.

To show that x = A™b is the least squares solution of minimum norm, it suffices to show
that this vector lies in the row space of A (Theorem 7.8.3). But we know this to be true by part
(a) of Theorem 8.7.3. ]



Some of the ideas we have been discussing are illustrated by the Strang diagram in Figure
8.7.1. The linear system Ax = b represented in that diagram is inconsistent, since b is not in

col(A). We have split x and b into orthogonal terms as
X = Xrow(4) + Xnuii(4) and b = beoicay + byypeamy

and have denoted X.ow(4) by X for brevity. This vector is the least squares solution of minimum
norm and is an exact solution of the equation Ax = bgg4); that is,

AXT = begia)
row(A)  Ax col(A)
/ Ax*
X i m hcnl{ﬂ] b
- -] hv &
'\"'--_._,______4__..'-"/’
m
A*b
\ null(A) : null(AT)

Figure 8.7.1 X pull(4) Bruncar)



To solve this equation for x™, we can first multiply through by the pseudoinverse A™ to obtain
AtTAxT = A+bm1( A)

and then use Theorem 8.7.3(e) and the fact that X™ = X;ow(4) is in the row space of A to obtain
xT = H+hm1m )

Thus, A maps X™ into b4y and A" recovers x* from beoj4).
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Figure 8.7.1 X null(A) null(AT)
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CONDITION NUMBER AND NUMERICAL CONSIDERATIONS

Singular value decomposition plays an important role in the analysis and solution of linear
systems that are difficult to solve accurately because of their sensitivity to roundoff error.

In
the case of a consistent linear system Ax = b this typically occurs when the coefficient matrix
is “nearly singular” in the sense that one or more of its singular values is close to zero. Such
linear systems are said to be ill conditioned.

A good measure of how roundoff error will affect
the accuracy of a computed solution is given by the ratio of the largest singular value of A to
the smallest singular values of A. This ratio, called the condition number of A, is denoted by

cond(A) = Z—i (5)

The larger the condition number, the more sensitive the system to small roundoff errors.



The basic method for finding least squares solutions of a linear system AX = b is to solve the
normal equations A’Ax = ATb exactly. However, the singular values of A’A are the squares
of the singular values of A (Exercise 21 of Section 8.6), so cond(AA) is the square of the
condition number of A. Thus, if Ax = b 1s ill conditioned, then the normal equations are even
worse!

In theory, one could determine the condition number of A by finding the singular value
decomposition and then use that decomposition to compute the pseudoinverse and the least
squares solution x = A™b if the system is not ill conditioned.

While all of this sounds reasonable, the difficulty is that the singular values of A are the
square roots of the eigenvalues of A’A, and calculating those singular values directly from
the problematical A’A may produce an inaccurate estimate of the condition number as well
as an inaccurate least squares solution.



Fortunately, there are methods for finding singular
value decompositions that do not involve computing with A’A. These produce some of the
best algorithms known for finding least squares solutions of linear systems and are discussed in
books on numerical methods of linear algebra.

Two standard books on the subject are Matrix
Computations, by G. H. Golub and C. F. Van Loan, Johns Hopkins University Press, Baltimore,
1996; and Numerical Recipes in C, The Art of Scientific Computing, by William H. Press, Saul
A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Cambridge University Press, New
York, 1999,



