Section 8.6 Singular Value Decomposition

SINGULAR VALUE DECOMPOSITION OF SQUARE MATRICES

We know from our work in Section 8.3 that symmetric matrices are orthogonally diagonalizable
and are the only matrices with this property (Theorem 8.3.4). The orthogonal diagonalizability
of an n x n symmetric matrix A means it can be factored as

A = PDPT (1)

where P is an n x n orthogonal matrix of eigenvectors of A, and D is the diagonal matrix whose
diagonal entries are the eigenvalues corresponding to the column vectors of P. In this section
we will call (1) an eigenvalue decomposition of A (abbreviated EVD of A).

Theorem 8.3.4
(a) A matrix is orthogonally diagonalizable if and only if it is symmetric.




There are two main paths that one might follow in looking for other kinds of factorizations
of a general square matrix A: One might look for factorizations of the form

A= PJP™!

in which P is invertible but not necessarily orthogonal, or one might look for factorizations of
the form

A=UZVT

in which U and V are orthogonal but not necessarily the same.



The first path leads to fac-
torizations in which J is either diagonal (Theorem 8.2.6) or a certain kind of block diagonal

matrix, called a Jordan canonical form in honor of the French mathematician Camille Jordan
(1838-1922).
(A, 0 - 0]

1
A block diagonal matrix is a partitioned (‘block’) square matrix 0 A, -+ 0
that the main-diagonal partitions are square matrices and all 4= | . . _
off-diagonal partitions are zero matrices. 0 0 ... 4,

Jordan canonical forms, which we will not consider in this text, are important
theoretically and in certain applications, but they are of lesser importance numerically because
of the roundoff difficulties that result from the lack of orthogonality in P.

Our discussion in this
section will focus on the second path, starting with the following diagonalization theorem.

Theorem 8.2.6 An n x n matrix A is diagonalizable if and only if A has n linearly inde-
pendent eigenvectors.




Theorem 8.6.1 If A is an n x n matrix of rank k., then A can be factored as

A=Uny’
where U and V' are n x n orthogonal matrices and Z is an n % n diagonal matrix whose

main diagonal has k positive entries and n — k zeros.

Proof The matrix A’A is symmetric, so it has an eigenvalue decomposition

ATA =vDVT —— Keep in mind that V is orthogonal (V-1 =VTso VTV = 1).

where the column vectors of V are unit eigenvectors of A’A and D is the diagonal matrix whose
diagonal entries are the corresponding eigenvalues of AA.

These eigenvalues are nonnegative,
for if A is an eigenvalue of A”A and x is a corresponding eigenvector, then Formula (12) of
Section 3.2 implies that

IAX|> = Ax + AX = X + ATAX = X « AX = A(X + X) = A||x||?

from which it follows that A = 0.

Au-v=u-A'v (12)




Since Theorems 7.5.8 and 8.2.3 imply that
rank(A) = rank(A’A) = rank(D)

and since A has rank k, it follows that there are k positive entries and n — k zeros on the main
diagonal of D.

For convenience, suppose that the column vectors vy, va, ..., v, of V have been
ordered so that the corresponding eigenvalues of A’A are in nonincreasing order

MZAZ--Z22 20

Thus,

Mzlagz ozl =0 and My =dipp=-=4, =0 (2)

Theorem 7.5.8 If A isanm x n matrix, then:| | Theorem 8.2.3

(a) Similar matrices have the same determinant.
d) A and ATA have the same rank. () Similar matrices have the same rank.




Now consider the set of image vectors

[Avy, Ava, ..., Av,}
This 1s an orthogonal set, for if i £ j, then the orthogonality of v; and v; implies that

AV« AV; =V - ATAV; = v o hv; = A(v; o v;) =0 (3)
Moreover,

1AV |I* = Av; - Av; = v; - ATAv; = v; - vy = (Vi - v) = LllvilI* = &

from which it follows that l
lAvil = v (=1,2,...,n) | 4)
Vectors v are unit
\ eigenvectors of ATA.
The product Av,
may be zero!

Au-v=u-Alv (12)




i, not 1!

Since A = 0fori =1,2,...,k, it follows from (3) and (4) that
[Avy, Ava, ..., AV (3)

is an orthogonal set of k nonzero vectors in the column space of A; and since we know that the
column space of A has dimension k (since A has rank k), it follows that (5) is an orthogonal
basis for the column space of A.

If we now normalize these vectors to obtain an orthonormal
basis {u;, us, ..., u;} for the column space, then Theorem 7.9.7 guarantees that we can extend
this to an orthonormal basis

{l:l1+llg,...,llk. l].ri_|_1,....11,,}
for R". Since the first £ vectors in this set result from normalizing the vectors in (5), we have

Av, 1
Yo —Av; (Q=<j<k

n; = =
TolAv R

which implies that

Avi = hu,  Ave = om, ..., Ave = (6)




Now let U/ be the orthogonal matrix

U=[l.l] Hz -+ Wy UWgyy - urr]

and let £ be the diagonal matrix

— —

Vi 0
V2

T = Ak (7

Theorem 7.9.7 If W is a nonzero subspace of R", then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal
basis for W.

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.




It follows from (2) and (4) that Av; = 0 for j = &, so

TS =[dimy affomy == ufhgly W s 0
=[r""l"l'l :"-'l"i-"g ."51\";; A\-"j:_|_| .."i"f’ﬂ]=ﬂ1-"r

which we can rewrite as A = U Z VT using the orthogonality of V. =

=) It is important to keep in mind that the positive entries on the main diagonal of X are not
eigenvalues of A, but rather square roots of the nonzero eigenvalues of A’A. These numbers are
called the singular values of A and are denoted by

U|=\/‘l—l! UZ=\/A'_!"'& Jl.':\/l_k

REMARK In the special case where the matrix A is invertible, it follows that
k = rank(A) = n, so there are no zeros on the diagonal of %.



With this notation, the factorization obtained in the proof of Theorem 8.6.1 has the form

(7] U %

A=UEZV i =[u wa -+ wp Ugyy -+ Uyl ay vi | (8

0 T

= = — ==

which is called the singular value decomposition of A (abbreviated SVD of A).”
The numbers denoted by o7 = .,/Jl._ Oy = .,/}.— TR . ,/I;
are called the singular values of A.

The vectorsuy, ua, ..., u; are called left singular vectors of A

andv,, va, ..., v; are called right singular vectors of A.

The following theorem is a restatement of Theorem 8.6.1 and spells out some of the results
that were established in the course of proving that theorem.



Theorem 8.6.2 (Singular Value Decomposition of a Square Matrix) If A
is an n ¥ n matrix of rank k, then A has a singular value decomposition

A=UZV" in which:
(@) V=[vy Vi --- V,]orthogonally diagonalizes A'A.

(b) The nonzero diagonal entries of X are

E|=x/3~_1+ﬂ’1=~/l_zq---,ﬁk=v/l_k

where Ly, Az, ..., A are the nonzero eigenvalues of ATA
corresponding to the column vectors of V.

(¢) The column vectors of V are ordered so that

oy =0 =---=0o; >
.r""l‘F;' 1
d) m; = = —Avw; (E=1 )
AV || o
(e) {my,az,...,w} is an orthonormal basis for col(A).
(f){ap, w2, ..., W, Upg1, ..., Uy} 5 an extension of {uy, Wz, ..., 0}

to an orthonormal basis for R".



EXAMPLE 1 Singular Value Decomposition of a Square Matrix

Find the singular value decomposition of the matrix
L |V3 2
10 V3
Solution The first step is to find the eigenvalues of the matrix

s |V3 O [[V3 2[_| 3 2v3
12 V3|0 V3] [2v3 7
The characteristic polynomial of A’A is

A1 +9=(—=-9L—-1)

so the eigenvalues of A4 are 4| = 9 and A; = 1, and the singular values of A are

o =vM=v9=3 o=yh=+V1=1



We leave it for you to show that unit eigenvectors of A’A corresponding to the eigenvalues
M =9and 2, =1 are

J: V3
V) = : and v, = Ed
i S
respectively. Thus,
- - T
o 1[vE 2]z |_|¥
1"'"‘0_1 1_3 0 ﬁ % e % L]




S0

U=[u w]= A and V=[v w]=
[u; uy] »a [vi V2]

be Bl ¢

o7 S
2
S
2

W= “|I:?|

o ] Bl ||
& I

It now follows that the singular value decomposition of A is

J3 2 e [3 0} 1 3
0 3 3| [0 1 VA |
E 2

Eni 5
A = U z Ve

b= t-ll

You may want to confirm the validity of this equation by multiplying out the matrices on the
right side. e]



SINGULAR VALUE DECOMPOSITION OF SYMMETRIC MATRICES

A symmetric matrix A has both an eigenvalue decomposition A = PDPT and a singular value
decomposition A = UE VT, so it is reasonable to ask what relationship, if any, might exist
between the two. To answer this question, suppose that A has rank k£ and that the nonzero
eigenvalues of A are ordered so that

Al = A2l 2 -+ 2 [Ax] > 0

In the case where A is symmetric we have A’A = A®, so the eigenvalues of A’A are the squares
of the eigenvalues of A. Thus, the nonzero eigenvalues of A’A in nonincreasing order are

Nt ... a8 50
and the singular values of A in nonincreasing order are
J12 2 _ f42
0= J*-1 = |A], 2= }*2 = |A2ly ..., ok = lg = |Ax]

This shows that the singular values of a symmetric matrix A are the absolute values of the
nonzero eigenvalues of A; and it also shows that if A is a symmetric matrix with nonnegative
eigenvalues, then the singular values of A are the same as its nonzero eigenvalues,

]



EXAMPLE 2 Obtaining .a Singular Value Dec.n‘mposmnn
from an Eigenvalue Decomposition

It follows from the computations in Example 2 of Section 8.3 that the symmetric matrix

a<[; ]

has the eigenvalue decomposition

[ 3

A = PDPT =

S-S~

b i)

|
&J” il
Sc S



A= PDPT =
0 2

S S

Sk 54

> i)
I
W
o
ol e

S~ &=

We can find a singular value decomposition of A using the following procedure to “shift” the
negative sign from the diagonal factor to the second orthogonal factor:

S I 2
o 3 B3 o1 0|18 “E| change of signal
ol g g L 0 L LE -
% Rl o5 &
. 5 5 55_ T
__LL[OZ] 2 g [y
7 m, .

Alternatively, we could have shifted the negative sign to the first orthogonal factor (verify). This
technique works for any symmetric matrix. 5|

]



Theorem 8.6.3 (Polar Decomposition) If A is an n x n matrix of rank k, then A can be
factored as

A= PQ (9)

where P is an n x n positive semidefinite matrix of rank k, and Q is an n x n orthogonal
matrix. Moreover; if A is invertible (rank n), then there is a factorization of form (9) in which
P is positive definite.

REMARK A factorization A = PQ in which Q is orthogonal and P is positive semidefinite is
called a polar decomposition” of A.

Proof Rewrite the singular value decomposition of A as
A=UzVvT =usvTuvT = wzuhHwv?h) = PO (10)

The matrix Q = UV is orthogonal because it is a product of orthogonal matrices (Theorem
6.2.3), and the matrix P = UX U7 is symmetric (verify).

Theorem 6.2.3

(c) A product of orthogonal matrices is orthogonal.




Also, the matrices Zand P = UZ U’
are orthogonally similar, so they have the same rank and same eigenvalues. This implies that P
has rank £ and that its eigenvalues are nonnegative (since this is true of ).

Thus, P is a positive
semidefinite matrix of rank k (see the remark following Theorem 8.4.3). Furthermore, if A is
invertible, then there are no zeros on the diagonal of X (see the remark preceding Example 1),
so the eigenvalues of P are positive, which means that P is positive definite. o

Theorem 8.4.3 If A is a symmetric matrix, then:
(a) x'Ax is positive definite if and only if all eigenvalues of A are positive.
(b) xTAX is negative definite if and only if all eigenvalues of A are negative.

(¢) xTAx is indefmite if and only if A has at least one positive eigenvalue and at least
one negative eigenvalue.

REMARK The three classifications in Definition 8.4.2 do not exhaust all of the possibilities.
For example, a quadratic form for which x’Ax > 0 if x # 0 is called positive semidefinite,
and one for which x’Ax < 0 if x # 0 is called negative semidefinite.

By adjusting the proof of Theorem 8.4.3 appropriately,
one can prove that x’Ax is positive semidefinite if and only if all eigenvalues of A are nonnegative
and is negative semidefinite if and only if all eigenvalues of A are nonpositive.




EXAMPLE 3 Find a polar decomposition of the matrix

Polar Decomposition
3
A V3 2
0 3

and interpret it geometrically.

Solution We found a singular value decomposition of A in Example 1. Using the matrices U,
V, and X in that example and the expressions for P and Q in Formula (10) we obtain

(22 =Ll g[2E 4] [3 28]
Pp=UsyUT = 2 2 2 A 2
1 43 [ﬂ 1] . 3 3
. 2 2 L] L 2 2 _ L, 2 2
and
_xji _%__% 3] s AT
eyt ? 2 = 2 2
¢ 1 VA O I/ | B |
Ll ~ 0 B DS - 2 B <A

J3i 2
0 43

A

Il
~
o



To understand what this equation says geometrically, let us rewrite it as

i T IT « B e j
L =l|¥8 0| |2 2|5 3
| J3
o 1flo v3] |£ 3[4 £ an
A (factored) = P e,

The right side of this equation tells us that multiplication by A is the same as multiplication by Q
followed by multiplication by P.

In the exercises we will ask you to show that the multiplication
by the orthogonal matrix Q produces a rotation about the origin through an angle of —30° (or
330°) and that the multiplication by the symmetric matrix P stretches R” by a factor of A; = 3 in
the direction of its unit eigenvector u; = (+/3/2, 1/2) and by a factor of A; = 1 in the direction
of its unit eigenvector u, = (—1/2, +/3/2) (i.e., no stretching).

On the other hand, the left side
of (11) tells us that multiplication by A produces a dilation of factor V3 followed by a shear
of factor 2/+/3 in the x-direction.

\ Geometrical interpretation.



305

7

o/

Unit square
rotated —30°

Figure 8.6.1

Thus, the dilation followed by the shear must have the same
effect as the rotation followed by the expansions along the eigenvectors (Figure 8.6.1).

Line along u,

%

\. Ikr\;ﬁage

\ Line along u,

N~

Image of purple edge obtained
by projecting onto the lines
along u; and u,, scaling by
factor 3 in the direction of u,,
by factor 1 in the direction of
u,, then adding.

Image of green edge obtained
by projecting onto the lines
along u; and 1, scaling by
factor 3 in the direction of u,,
by factor 1 in the direction of
u,, then adding.

V3

(2+3,43)

:

>

- %7

The rotation and scalings produce
the same image of the unit square
as dilating by a factor of V3 and
then shearing by a factor of 2/43
in the x-direction.

Graphical effects in
different vectors.



SINGULAR VALUE DECOMPOSITION OF NONSQUARE MATRICES

Thus far we have focused on singular value decompositions of square matrices. However, the
real power of singular value decomposition rests with the fact that it can be extended to general
m x n matrices. To make this extension we define the main diagonal of an m x n matrix
A = [a;;] to be the line of entries for which i = j. In the case of a square matrix, this line
runs from the upper left corner to the lower right corner, but if n > m or m > n, then the main
diagonal is as pictured in Figure 8.6.2.

K K X
i A X N
X X X X X X X ke
KON N ER s
X K X " ORR 6 P B
- " X HERE
ol

Figure 8.6.2 Main diagonal

If A is an m x n matrix, then A”A is an n x n symmetric matrix and hence has an eigenvalue
decomposition, just as in the case where A is square. Except for appropriate size adjustments to
account for the possibility thatn > m orm < n, the proof of Theorem 8.6.1 carries over without
change and yields the following generalization of Theorem 8.6.2.



Theorem 8.6.4 (Singular Value Decomposition of a General Matrix) If A is an m x n matrix
of rank k, then A can be factored as

A=UZVi i =[m uw --- |y --- Uy

I
|

Oim—iy =k | Oim—i) % (m=B) :
| - T

(12)

in which U, Z, and V have sizes m x m, m X n, and n x n, respectively, and in which:



. T =
o1 0 0! Ml
I VI
0 ) 0 I o
1 Okx(n-k) :
: l .
A=UEVT=[I.11 Uy =-- [Ij;ll.lj;+| l.lm] : : "t"{
0O O G‘k_:_ —
i Vit1
G{m—i] x k : O{m k)% (n=k) :
- | - v;:"'
(12)

(@) V=[vi va --- V,]orthogonally diagonalizes A"A.

(b) The nonzero diagonal entries of X are oy = /A1, 02 = Jha, .. .. 00 = o/ Ag, where
As Aa, .., A are the nonzero eigenvalues of A'A corresponding to the column
vectors of V.

(¢) The column vectors of V are ordered so that oy = 05 = --- = o = ().

:‘11?,' 1 :
d) u; = syt (] T
1AVl o
(e) {uap,ua,...,w} is an orthonormal basis for col(A).
(fyfay, oo, ..., 0, Uy, ..., W, } is an extension of (U, Ua, ..., 0} to an erthonormal

basis for R™.



EXAMPLE 4 Singular Value Decomposition of a Matrix That Is Not Square

Find the singular value decomposition of the matrix

B
A=10
_l

-
l
0—

Solution The first step is to find the eigenvalues of the matrix

.
o 2. 1

I e s

‘“‘”’[l 1 [}:[ :} _[1 2]

The characteristic polynomial of A’A is

1
0
1

AM—dr+3=(=-3)(r-1)

so the eigenvalues of ATA are A; =3 and A, = 1 and the singular values of A in order of
decreasing size are

ﬂ.|=\x}"_|:“/§1 9‘1=\/l_2="-’,]_=l



We leave it for you to show that unit eigenvectors of A’A corresponding to the eigenvalues
AMi=3and A, =1 are

V2] 2

2 2
V) = and vy =

N2 _2

2 %

respectively. These are the column vectors of V, and

4y 11¢ 'ﬁ_ﬁ =g, A3 0
- 5 : - 5
l 3 o 1 A
u; = —A‘\F[ — £ 0 1 " = —5'-@ U = —A‘Vg = (1) 0 1 - - _'T:J'E'
(ef) 3 V2 6 a2 2 E
_I 0_ o el JE 1 0 S LR ﬁ
T -

arim
— —

are two of the three column vectors of U.

Note that u; and u; are orthonormal, as expected. We
could extend the set {u,, uz} to an orthonormal basis for R’ using the method of Example 2 of
Section 7.4 and the Gram—Schmidt process directly.



However, the computations will be easier

if we first remove the messy radicals by multiplying u; and u; by appropriate scalars. Thus, we
will look for a unit vector us that is orthogonal to

\/Eu;= 1 and «/§u3= -1

To satisfy these two orthogonality conditions, the vector u; must be a solution of the homoge-
neous linear system

[2 1 1] 2 » g

0 -1 1 . ; [}_

We leave it for you to show that a general solution of this system is
H.r| 7 EH
x| =t 1

X3 |




Normalizing the vector on the right yields

[
R
U3 = ﬁ
[
L A
Thus, the singular value decomposition of A is
By g (| T s
[ 1 3 VA | |48 0| T8 &
pis, ﬁ _3.-"_5 I 2 2
0 1|=|% 5 o 0 1 s 73
|1 9 JE 5 L L 9 81l T
L6 2 3
A = U > v

You may want to confirm the validity of this equation by multiplying out the matrices on the
right side. o



SINGULAR VALUE DECOMPOSITION AND THE FUNDAMENTAL SPACES OF A MATRIX

Theorem 8.6.5 If A is an m x n matrix with rank k, and if A = UZ VT is the singular
value decomposition given in Formula (12), then:

(a) {wy, gz, ..., m} is an orthonormal basis for col(A).
(b) {Wpyy, ..., Uy} is an orthonormal basis for col(A)*t = null(A7T).
(c) {¥y.Va, ..., V) is an orthonormal basis for row( A).

() {Vig1, ..., Va} is an orthonormal basis for row(A)" = null(A).

Proofs (a) and (b) We already know from Theorem 8.6.4 that {u;, u,, ..., u;} is a basis for
col(A) and that {u;, ws, ..., u, } 1s an extension of that basis to an orthonormal basis for R™.
Since each of the vectors in the set {uzyg, ..., u,, )} is orthogonal to each of the vectors in
the set {u;, uy, ..., u}, it follows that each of the vectors in {ugy;, ..., u,} is orthogonal to
span{u;, us, ..., u} = col(A). Thus, {u,..., u,, } 1s an orthonormal set of m — k vectors in
col(A)* = null(A"). But the dimension of null(A”) is m — k [see Formula (5) of Section 7.5],
SO {Wgsp, ..., Uy} must be an orthonormal basis for null(A™).

Specifically, if A is an m x n matrix with rank &, then

dim(row(A)) =k, dim(null(A)) =n -k

dim(col(A)) =k, dim(null(AT)) =m —k ()




Proofs (¢) and (d) The vectors vy, V3, ..., v, form an orthonormal set of eigenvectors of A7A
and are ordered so that the corresponding eigenvalues of A”A (all of which are nonnegative) are

in the nonincreasing order
(ATA)Vk+1 = 7\’k+1vk+1 = O'

MZA=o2A 20 since A, = 0.
We know from Theorem 8.6.4 that the first & of these eigenvalues are positive and the-subsequent

n — k are zero. Thus, {Vi41, ..., V,} is an orthonormal set of n — k vectors in the null space of
ATA, which is the same as the null space of A (Theorem 7.5.8). Since the dimension of null(A) is

n — k [see Formula (5) of Section 7.5], it follows that {vi., ..., v,} is an orthonormal basis for
null(A).

Moreover, since each of the vectors in the set {V¢.4.1, ..., V,} 1s orthogonal to each of the
vectors in the set {vy, v2, ..., v}, it follows that each of the vectors in the set {vy, v2, ..., Vi}
is orthogonal to span{vj4, ..., vo} = null(A). Thus, {vy, v, ..., ¥} is an orthonormal set of
k vectors in null(A)* = row(A). But row(A) has dimension k, so {vy, V2, ..., vz} must be an
orthonormal basis for row(A). o

Theorem 7.5.8 If A isanm x n matrix, then:
(a) A and A'A have the same null space.
(b) A and A"A have the same row space.
(c) A" and A'A have the same column space.
(d) A and A'A have the same rank.




