Section 8.3 Orthogonal Diagonalizability;
Functions of a Matrix

ORTHOGONAL SIMILARITY

Recall from the last section that two n x n matrices A and C are said to be similar 1f there exists
an invertible matrix P such that C = P~'AP. The special case in which there is an orthogonal
matrix P such that C = P~'AP = P?AP is of special importance and has some terminology
associated with 1t.

Definition 8.3.1 If A and C are square matrices with the same size, then we say that C is
orthogonally similar o A if there exists an orthogonal matrix P such that C = P'AP.

Theorem 8.3.2  Two matrices are orthogonally similar if and only if there exist orthonormal
bases with respect to which the matrices represent the same linear operator.

\ This is the analog of Theorem 8.2.2.



The Orthogonal Diagonalization Problem Given a square matrix A, does there exist
an orthogonal matrix P for which P'AP is a diagonal matrix, and if so, how does one find
such a P? If such a matrix P exists, then A is said to be orthogonally diagonalizable, and
P 15 said to erthogonally diagonalize A.

REMARK If you think of A as the standard matrix for a linear operator, then the orthogonal
diagonalization problem is equivalent to asking whether this operator can be represented by a
diagonal matrix with respect to some orthonormal basis.



The first observation we should make about orthogonal diagonalization is that there is no
hope of orthogonally diagonalizing a nonsymmetric matrix. To see why this is so, suppose that

D = P'AP (1)
where P is orthogonal and D is diagonal. Since PTP = PPT = I, we can rewrite (1) as
A = PDP*
Transposing both sides of this equation and using the fact that D’ = D yields
AT = (PDPTY! = (P")'D"P" = PDP" = A
which shows that an orthogonally diagonalizable matrix must be symmetric. h
Of course, this still

leaves open the question of which symmetric matrices, if any, are orthogonally diagonalizable.
The following analog of Theorem 8.2.6 will help us to answer this question.



Theorem 8.3.3 Ann x n matrix A is orthogonally diagonalizable if and only if there exists
an arthonormal set of n eigenvectors of A.

Proof We will show first that if A is orthogonally diagonalizable, then there exists an orthonor-
mal sct of nn eigenvectors of A. The orthogonal diagonalizability of A implies that there exists

an orthogonal matrix P and a diagonal matrix D such that P’AP = D.

However, since the
column vectors of an orthogonal matrix are orthonormal, and since the column vectors of P are

cigenvectors of A (sce the proof of Theorem 8.2.60), we have established that the column vectors
of P form an orthonormal sct of n cigenvectors of A.

Conversely, assume that there exists an orthonormal sct {p;.
of A. We showed in the proof of Theorem 8.2.6 that the matnx

Yy eans P-} of n cigenvectors

P=[p1 p2 -+ Pal

diagonalizes A. However, in this case P is an orthogonal matrix, since its column vectors are
orthonormal. Thus, P orthogonally diagonalizes A. o



REMARK Recalling that an orthonormal set of n vectors in R" is an orthonormal basis for R",
Theorem 8.3.3 is equivalent to saying that an n x n matrix A is orthogonally diagonalizable if
and only if there is an orthonormal basis for R" consisting of eigenvectors of A.

Theorem 8.3.4
(a) A matrix is orthogonally diagonalizable if and only if it is symmetric.

(b) If A is a symmetric matrix, then eigenvectors from different eigenspaces are
orthogonal.

We will prove part (); the proof of part (a) 1s outlined in the exercises.



Prooaf (B) Let v and va be eigenvectors corresponding to distinet eigenvalues A and As, re-
spectively. The proof that v, - vs = 0} will be facilitated by using Formula (26) of Section 3.1
Lo write Ay (vy - ¥2) = (A4;¥1) - ¥2 as the matnx produoct (3;%;) v2. The rest of the proof now
consists of mampulating this expression in the nght way:
v vy = (v ) vs = (Av) Y v = {'.r]TAT]vg [v) is an cigenvector corresponding Lo 4y.]
= (v{ A)va [Symmetry of A]
= v; (Av1)
= vf{lg ¥a) [v2 is an cigenvector eorresponding Lo 4. ]
= }Lg'h'?_'f'z
= A2(¥] = ¥42) [Formula (26) of Section 3.1]
This implies that (47 — As){vy = ¥2) =0, s0 v - va = 0 as aresult of the fact that 4; £ 4. B

uvy=u.-v=v.u=vu (26)




A METHOD FOR ORTHOGONALLY DIAGONALIZING A SYMMETRIC MATRIX

Orthogonally Diagonalizing an i x n Symmeitric Matrix

Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram=Schmidt process to each of these bases to produce orthonormal
bases for the eigenspaces.
Step 3. Formthematrix P =[p; p: --- p.] whose columns are the vectors constructed

in Step 2. The matrix P will orthogonally diagonalize A, and the eigenvalues on the

diagonal of ) = P'AP will be in the same order as their corresponding eigenvectors
n P.



EXAMPLE 1

Orthogonally
Diagonalizing a
Symmetric
Matrix

Find a matrix P that orthogonally diagonalizes the symmetric matrix

A=|2 4
.

Solution The characteristic equation of A is

det(Al — A) = det

A—4

—
-2

=]
R =il
—2

-2
—2

r—4

=(x—-2*A—-8)=0

Thus, the eigenvalues of A are A = 2 and A = 8.

(2)



Using the method given in Example 3 of Section 8.2, it can be shown that the vectors

Y| =

form a basis for the eigenspace corresponding to A = 2 and that

Vi3 =

A
1
0

1
1

1

and vy =

1s a basis for the eigenspace corresponding to A = 8.

...fﬂ_

.
L&}

=

and u3 =

(3)

(4)

It is applied to

each basis!

Applying the Gram-Schmidt process to
the bases {v;, v»} and {v3} yields the orthonormal bases {u;, u,} and {us}, where




Thus, A is orthogonally diagonalized by the matrix

S S Sl-
|

Si- &= Si-

As a check, we leave it for you to confirm that

P'AP =

0
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SPECTRAL DECOMPOSITION

If A 1s a symmetric matrix that 1s orthogonally diagonalized by
P=uy u --- u,]

and if A, A2, ..., A, are the eigenvalues of A corresponding to u;, us, . ... u,. then we know

that D = P’AP. where D is a diagonal matrix with the eigenvalues in the diagonal positions.
It follows from this that the matrix A can be expressed as

e 0 wsw 007 [l A |

T 0O 22 --- 0 uI I.I—,T

A= PDP =[u1 | IR u,.-,g] - . - : : =l)‘-lul )“Zul it }‘nun] 3
0 0 hnd | W] u, |




A 0 07 [ul” [uy |

T 0 Ay v 0 I.II l.l{

A = PDP =[u u, --- u.j : - o - . =[J"Iu1 }LEUE e }"nun'] .
_0 0 }‘-n_ _I.l: 1 _u;‘:._

Multiplying out using the column-row rule (Theorem 3.8.1), we obtain the formula
A= I-'L]u]u';r -I—Jw.juju;' — rrr—l—:-l.ﬂunu:' (5)

which is called a spectral decompuosifion of A or an eigenvalue decomposition of A (sometimes

abbreviated as the EVD of 4)."
spectrum: set of all eigenvalues

REMARK The spectral decomposition (5) expresses a symmetric matrix A as a lincar combi-
nation of rank 1 matrices in which the coefficients of the matrices are the eigenvalues of A.

1



EXAMPLE 2 A Geometric Interpretation of the Spectral Decomposition

The matrix
1 2
=l -
has eigenvalues A, = —3 and A, = 2 with corresponding eigenvectors

o] e

(verify). Normalizing these basis vectors yields

X2
and = —— =
1% |

X1
].]1 = =
%1 ] —

mmfﬂ“‘llu

n £ f‘hﬁllm




1 2
X1 5 X2 5
u = = ‘”:_ and oy =-— = ”I_
=l ] =% 12|l :

so a spectral decomposition of A 1s

= - 5
1 2 " 4 : 2.,
[2 w :|=.l|lllllf+}.2u2u{=(—3) 2 [:’[,—-3 —?_g]+(2) : [,Tj jif"'s']
- V3 | V3
T L o] LR
=B, L[+@); 6)
| & L& 5

onto the eigenspaces.

\ See Theorem 7.7.3.

where the 2 x 2 matrices on the right are the standard matrices fur\[the orthogonal projections

symmetric, rank 1.



Now let us see what this decomposition tells us about the image of the vector x = (1, 1)
under multplication by A. Writing x in column form, it follows that

ol 200G

and from (6) that
T ikl g7 . -
_1 2 1_ : i o [ ¥ | e T M
‘d‘x"'[z —2] [1]"(_3) -3 A [1]‘”2) 2 4 [1]
- - 1 & 3]
i 48 el &1 aE
q
==3)| J|+@|. =] :|+]|: (8)
| 9 %] 175l LS.
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—

* (8)

I 27Ti =
AX = [2 _2] [1] = (=3) + (2)

— = e -

€3
(]
5

LhlSn La|we

W e

nite  |—

[t follows from (7) that the image of (1, 1) under multiplication by A is (3, 0), and it follows from
(8) that this image can also be obtained by pmjecting (1, 1) onto the eigenspaces corresponding to

A = —3 and A, = 2 to obtain the vectors (—+, ) and (£, $) , then scaling by the eigenvalues
to obtain (% —%) and (= Z 1E’) and then adding these vectors (see Figure 8.3.1). =

Figure 8.3.1




A=)uul +iuu] +---+iuu’ (5)

REMARK The spectral decomposition (5) expresses a symmetric matrix A as a linear combi-
nation of rank 1 matrices in which the coefhicients of the matrices are the eigenvalues of A.

1

If {u;.uy, ..., u,} 1s an orthonormal basis for R", and if A can be expressed as

T

A=cuu! +cuu! +---+¢ u u’

then A 1s symmetric and has eigenvalues ¢y, ¢a, ..., C,.



POWERS OF A DIAGONALIZABLE MATRIX

There are many applications that require the computation of high powers of square matrices.
Since such computations can be time consuming and subject to roundoff error, there is consid-
erable interest in techniques that can reduce the amount of computation involved.

We will now
consider an important method for computing high powers of diagonalizable matrices (symmet-
ric matrices, for example). To explain the idea, suppose that A is an n X n matrix and P is an
invertible n x n matrix.



Alisann x n matrix and P i1s an invertible n x n matrix. Then
(P7'AP)? = (P7'AP)(P'AP) = PT'APPT'AP = P'AIAP = P'A%P

and more generally, if £ 1s any positive integer, then
(PT'AP) = P~lA*P (9)

In particular, if A is diagonalizable and P IAP = Disa diagonal matrix, then it follows from
(9) that
P~A*P = D* (10)

which we can rewrite as

A* = pp*p-! (11)



EXAMPLE 3

Powers of a
Diagonalizable
Mainx

Use Formula (11) to find A'? for the diagonalizable matrix

=g
A=|1 2.1
4 & B

Solution 'We showed in Example 4 of Section 8.2 that

2 I O 1 R I 1 b e [
PAP=| 1 0 2|1 2 1|l 1 0

I.I.I. = = = L

|
oo o=
o O
B OO




Thus,

(=2 =1 ol[1B 0 O
Al = 1 0 1 0 28 0
1 1 Ooj|jo o 28

B P 2 Dl3

0
0
1

P—l

-1
2

8190

8191
8191

0
8192
0

~16,382 |
8191

16,383

(12)

With this method most of the work is diagonalizing A. Once that work is done, it need not be
repeated to compute other powers of A. For example, to compute A'°%® we need only change

the exponents from 13 to 1000 in (12).



In the special case where A 1s a symmetric matrix with a spectral decomposition
A= llulu": + lzuzug + -4+ A,uu)

the matrix
P=[u wuw --- u,]

orthogonally diagonalizes A, so (11) can be expressed as
A% = pp*pT

We leave it for you to show that this equation can be written as

A¥ = 2fuul + Muu? + .-+ 2ku u! see Eq. (5). (13)

ft n N

from which it follows that A* is a symmetric matrix whose eigenvalues are the kth powers of
the eigenvalues of A.



Theorem 8.3.5 (Cayley-Hamilton Theorem) Every square matrix satisfies its characteristic
equation; that is, if A is an n X n matrix whose characteristic equation is

At =0
then
A"+ A" '+t I =0 (14)

The Cayley=Hamilton thecorem makes it possible to express all positive integer powers of
ann x nmatrix A interms of I, A, ..., A" by solving (14) for A".

In the case where A is
invertible, it also makes it possible to express A~! (and hence all negative powers of A) in terms

= 3 () PO A" by rewriting ( hV

1 n—1 (& n=2 Cn—1
Al =A™t — A% I)= (15)

(verify), from which it follows that A~ is the parenthetical expression on the left.

REMARK We are guaranteed that ¢, # 0 in (15), for otherwise A = 0 would be a root of the
characteristic equation, contradicting the invertibility of A [see parts (¢) and (&) of Theorem
7.4.4).



EXAMPLE 4

We showed in Example 2 of Section 8.2 that the characteristic polynomial of
200
A= I 3 0

=2 3

is pA =G —=2)(A=32=1>-822+21)—18

so the Cayley—Hamilton theorem implies that

A3 —8424+214A-181=0 (16)

This equation can be used to express A and all higher powers of A in terms of
I, A, and A%



A3 —8A2+21A-181=0

For example,
A’ =8A* —21A + 181

and using this equation we can write

(16)

A= AA3 =8A3 —21A%2 4+ 18A = 8(8A2 —-21A +18]) —21A%2 + 18A

= 43A% — 150A + 1447

Equation (16) can also be used to express A~ as a polynomial in A by rewriting it as

A(A* — 8A +211) = 181

from which it follows that (verify) A™' = L(A? —8A +211) =

D=1 = rI=—

0 0]
0

1

Sln =



EXPONENTIAL OF A MATRIX
(Calculus Required)

f(A) e EIA

In Section 3.2 we defined polynomial functions of square matrices. Recall from that discussion
that if A is an n x n matrix and

plx) =ay+ayx + @2x% oo G x™
then the matrix p(A) is defined as

p(A) = apl +a1A + ayA* + -+ + a, A"



Other functions of square matrices can be defined using power series. For example, if the
function f is represented by its Maclaurin series

Fo= FO 4 FOre L2 g L Dn
2! m!
on some interval, then we define f(A) to be
f(A) = f(O) + f(0)A + IO e 2

2! m!

where we interpret this to mean that the ijth entry of f(A) 1s the sum of the series of the ijth
entries of the terms on the righr..t

+n (17)

A" 4 ... (18)



['©® o, ., "0

= — AP s (18)

f(A) = fO + f(O)A+

In the special case where A is a diagonal matrix, say

Ty O v (07
0 d --- 0
A= s < =z *
0 0 == dil
and f is defined at the points d,, d>, ..., dy, each matrix on the right side of (18) is diagonal,

and hence so is f(A). In this case, equating corresponding diagonal entries on the two sides of

(18) yields
"(0 (0
S A = 1O + [ O+ L2 4o 4 L2

Thus, we can avoid the series altogether in the diagonal case and compute f(A) directly as

(@) 9 s O
0 f) --- 0

di + .- = f(ds)

f(A) = (19)

0 0 - fldn)



For example, if

B R T § e 0 0 7
A=|0 3 0|, then e*=]0 & 0
|_D' 0 —2_ _E' ] E_z_

Now let us consider how we might use these ideas to find functions of diagonalizable matrices
without summing infinite series. If A is an n x n diagonalizable matrix and P~'AP = D, where

kg W wes N

0 A -« O
D=1 ., S :

L) O e

then (10) and (18) suggest that

f(0) f"(0)

PP s (O OB AR 4 = (P AT ) w0 et
i i ﬂ
=f(ﬂ}!+f'{ﬂ}ﬂ+fT{|mDI+~--+%D"’-l—-u

= f(D)



This tells us that f(A) can be expressed as
f(A) = Pf(D)P™ (20)

which suggests the following theorem.

Theorem 8.3.6 Suppose that A is an n x n diagonalizable matrix that is diagonalized by
P and that 44, A2, ..., A, are the eigenvalues of A corresponding to the successive column
vectors af P_If [ isa real-valued function whose Maclaurin series converges on some interval
containing the eigenvalues of A, then

Praleai)l e il

0 fO» -~ 0 |
flAy=P | : : : 2 P (21)
i = = = a

[0 O Ly




EXAMPLE 5 Exponentials of Diagonalizable Matrices

Find e’ for the diagonalizable matrix

—

0
A= |1
1

0 =3
3. ]
0 3

Solution We showed in Example 8.3 of Section 8.2 that

PP =

0
1
1

0
2
0

=
1
3

B,

so applying Formula (21) with f(A) = ¢4 implies that

et =P

€
0
0

!

0

2
e

0

0
0

¥/

£

P—l

S
1
1

IEI.ll'

e

=

—1
0
1

_,E'

—

0
1
0

EE:

0

[ ¢!
()
0

-
E-J‘

(2e' —e¥ 0 2e' —2e¥]
- &

EEEI i Er




In the special case where A is a symmetric matrix with a spectral decomposition
A = Auu| + 20,03 +--+Auu
the matrix
P=[uy u - u,]
orthogonally diagonalizes A, so (20) can be expressed as
f(A) = Pf(D)P"
We will ask you to show in the exercises that this equation can be written as
f(A) = fuul + fO)uul +---+ f(3,)u,ul (22)

(Exercise P3), which tells us that f(A) is a symmetric matrix whose eigenvalues can be obtained
by evaluating f at the eigenvalues of A.



DIAGONALIZATION AND LINEAR SYSTEMS

The problem of diagonalizing a square matrix A is closely related to the problem of solving the
linear system Ax = b. For example, suppose that A is diagonalizable and P~'AP = D. If we
define a new vector y = P~'x, and if we substitute

x = Py (23)

in AX = b, then we obtain a new linear system APy = b in the unknown y.

Multiplying both sides of this equation by P~! and using the fact that P~'AP = D yields
Dy = P~'b

Since this system has a diagonal coefficient matrix, the solution for y can be read off immediately,
and the vector x can then be computed using (23).

Many algorithms for solving large-scale linear systems are based on this idea. Such algorithms
are particularly effective in cases in which the coefficient matrix can be orthogonally diagonalized
since multiplication by orthogonal matrices does not magnify roundoff error.



THE NONDIAGONALIZABLE CASE

In cases where A is not diagonalizable it is still possible to achieve considerable simplification
in the form of P7'AP by choosing the matrix P appropriately. We will consider two such
theorems for matrices with real entries that involve orthogonal similarity. The proofs will be
omitted.

The first theorem, due to the German mathematician Issai Schur (1875-1941), states
that every square matrix A with real eigenvalues is orthogonally similar to an upper triangular
matrix that has the eigenvalues of A on the main diagonal.



Theorem 8.3.7 (Schur’s Theorem) If A is ann x n matrix with real entries
and real eigenvalues, then there is an orthogonal matrix P such that P'AP

15 an upper triangular matrix of the form

Ay X X .. T
0 Ay = - X
PAP=10 0 i3 --- x (24)
0o 0 0 --- A,
inwhich &y, Aa. ..., A, are the eigenvalues of the matrix A repeated accord-

ing fo multiplicity.

It 15 common to denote the upper triangular matrix i (24) by § (for Schur), in
which case that equation can be rewntten as

A= PSPT

which 1s called a Schur decomposifion of A.

(23)



The next theorem, due to the German mathematician Gerhard Hessenberg
(1894-1925), states that every square matrix with real entries is orthogonally
similar to a matrix in which each entry below the firstsubdiagonal is zero (Figure
8.3.2). Such a matrix is said to be in upper Hessenberg form.

Figure 8.3.2

X

X X X X
XX X X X

X X

First subdiagonal }

Theorem 8.3.8 (Hessenberg’s Theorem) Every square matrix with real en-
tries is orthagonally similar to a maitrix in upper Hessenberg form; that is, if

A is an n % n matrix, then there is an orthogonal matrix P such that P'AP

15 a matrix of the form

B ®OK K|
¥ X b
Bl 0 x »Ow X
0 0 b4 ¥

_ﬁﬂ' 0] 0 x X

(26)



REMARK The diagonal entries in (26) will usually not be the eigenvalues of A.

Cw W ® K K

®oOx O

T 0 % . x x x
PAP=; . . . (26]

o 0 -2 x ® x

‘ﬂ' 0 -.- 0 =x X

It 15 common to denote the upper Hessenberg matnx in (26) by H (for Hessenberg), in which
case that equation can be rewritien as

A = PHP' (27)

which is called an upper Hessenberg decomposition of A.

In many numerical LU- and QR-algorithms the initial matrix 1s first converted to upper
Hessenberg form, thereby reducing the amount of computation in the algorithm itself. Some
computer programs have built-in commands for finding Schur or Hessenberg decompositions.



