Section 7.9 Orthonormal Bases and the
Gram-Schmidt Process

ORTHOGONAL AND ORTHONORMAL BASES

a set of vectors in R” 1s said to be orthogonal 1f
cach pair of distinct vectors in the set 1s orthogonal, and 1t i1s said to be orthonormal if 1t is
orthogonal and each vector has length 1. In this section we will be concermned with orthogonal
bases and orthonormal bases for subspaces of R". Here are some examples.

EXAMPLE 2
The Standard
Basis for K" is
an Orthonormal
Basis

Recall from Example 2 of Section 7.1 that the vectors
e =(10,..., D), ewnEl, Lo Whonwy, B =000 0005:1)

form the standard basis for R". This is an orthonormal basis, since these are unit vectors and
e -e; =0ifi £ j. =



EXAMPLE 1 Converting an Orthogonal Basis to an Orthonormal Basis

Show that the vectors
vi=1(0,2,0), v->.=((3,0.3), wvy=1(—4,04)

form an orthogonal basis for R?, and convert it into an orthonormal basis by normalizing each
vector.

Solution We showed in Example 3 of Section 7.1 that these vectors are linearly independent,
so they must form a basis for R* by Theorem 7.2.6. We leave it for you to confirm that this is
an orthogonal basis by showing that

"rﬁ-"‘i’;:ﬂ, \’]"4-’3=ﬂ1. 1'1'?3:[]'

To convert the orthogonal basis {vy, ¥2, ¥3} to an orthonormal basis {q, q2, g3}, we first compute
Ivill = 2, [[v2]| = 3+/2, and ||va|| = 4+/2, and then normalize to obtain

¥i V2 I |
=_=|:-D1- lsﬂ-}! — — _'_!l]r 5 — e _"'_"1{}1_' L
1wl L=y~ w0 %) o= =ta0s)




Theorem 7.9.1 An orthogonal set of nenzero vectors in R™ is linearly independent.

Proof Let S = (v|, v2,..., vx} be an orthogonal set of nonzero vectors in R". We must show
that the only scalars that satisfy the vector equation

nvi+nve+---+nuvie=0 (1)
areti=0,=0,..., tx = 0. To do this, let v; be any vector in S; then (1) implies that
(hvi+tva+ -+ 64V) - Vi=0.v; =0
which we can rewrite as
nvi-v)+n(va-vy))+---+t(vg-v;) =0 (2)

But each pair of distinct vectors in S is orthogonal, so all of the dot products in this equation are
zero, with the possible exception of v; « v;. Thus, (2) can be simplified to

fj(?j*\"j)=0 (3)

Since we have assumed that each vector in § is nonzero, this is true of v;, so it follows that
Vi V; = ||v; I> # 0. Thus, (3) implies that t; = 0, and since the choice of j is arbitrary, the
proof is complete, S|



EXAMPLE 3
An
Orthonormal
Basis for B

Show that the vectors

N S — 2 3 & T
L e {?' 70 T}‘ Y= {?f T '.r)* V- = (?! T ?}
form an orthonormal basis for B,
Solution The vectors are orthonormal, since

Ivill = llv2ll=lvall=1 and v,-va=Vv :v3=Vva.-v3=0

and hence they are linearly independent by Theorem 7.9.1. Since we have three linearly inde-
pendent vectors in R*, they must form a basis for R>. ]



ORTHOGONAL PROJECTIONS USING ORTHONORMAL BASES

Orthonormal bases are important because they simplify many formulas and numerical calcula-
tions. For example, we know from Theorem 7.7.5 that if W is a nonzero subspace of R", and if
X is a vector in R” that is expressed in column form, then

projyx = M(M™M)~'MTx (4)

for any matrix M whose column vectors form a basis for W. In particular, if the column vectors
of M are orthonormal, then M™M = I, so (4) simplifies to

projuwx = MM ' x (5)

and Formula (27) of Section 7.7 for the standard matrix of this orthogonal projection simplifies
o

P =MMT ©)

Thus, using an orthonormal basis for W eliminates the matrix inversions in the projection
formulas, and reduces the calculation of an orthogonal projection to matrix multiplication.



EXAMPLE 4
Standard Matrix
for a Projection
Using an
Orthonormal
Basis

Find the standard matrix P for the orthogonal projection of R? onto the plane through the origin
that is spanned by the orthonormal vectors v; = (0, 1,0) and v, = (-—-‘;} 0, -g-) .

Solution Writing the vectors in column form and applying Formula (6) shows that the standard
matrix for the projection 18

6 =8 15 o -1
5 0O 1 0 23 25
P=MM"'=|1 g) [_i " z]= 0O 1 0 B
5




Theorem 7.9.2

(a) If{v¥i.va. ..., ¥} is an orthonormal basis for a subspace W of R", then the
arthogonal projection of a vector X in R® onto W can be expressed as

ProjyX = (X« Vi)¥) + (X - ¥a)¥a £ -+ - 4+ (X« Vi )V (7)
(B) If{¥,. Va. ..., ¥} is an orthogonal basis for a subspace W of R", then the
arthogonal projection of a vector X in R" onte W can be expressed as
; X~ ¥ X+ ¥a X - ¥
pProj X = ——V; + L S Vi (8)
R T R T Ivell?
Proof (a) If we let
M=[vy vo --+ W]
then it follows from Formula (5) that
projyx = MM x
projwXx = MM"x  (5)




Since the row vectors of M7 are the transposes of the column vectors of M, it follows from the
row-column rule for matrix multiplication (Theorem 3.1.7) that

T'TI -K ; _‘?]_
. viX XV
Mx=| " |= . (9}
XV
viX - .

Thus, it follows from (5) and (9) that

projyXx = M(M'x) =[v; v; -+ w] [ =EVV F E V)V (X V)

X ¥ |

which proves (7).

Proof (b) Formula (8) can be derived by normalizing the orthogonal basis to obtain an orthonor-
mal basis and applying (7). We leave the details for the exercises. |



EXAMPLE 5 an Orthogonal Projection Using an Orthonormal Basis

Find the orthogonal projection of x = (1, 1, 1) onto the plane W in R> that is spanned by the
orthonormal vectors v; = (0, 1, 0) and v, = (—%,0. 3).

Solution One way to compute the orthogonal projection is to write x in column form and use
the standard matrix P for the projection that was computed in Example 4. This yields

16 o = (L
% 0 =% |[1 %
projyX = PX = 0 1 0 1] = 1
12 9 1 3
=% 0 xlbd =%

which we can write in comma-delimited form as projy, x = (3¢, 1, — 2?‘—5) .

Alternative Solution A second method for computing the orthogonal projection is to use For-
mula (7). This yields

ProjyX = (X + V)Vi + (X« v2)v2 = ()(0, 1,0) + (- 1) (=£,0, 3) = (&.1,-2)

which agrees with the result obtained using the standard matrix. @



EXAMPLE 6 An Orthogonal Projection Using an Orthogonal Basis

Find the orthogonal projection of x = (=3, 3, 1) onto the plane W in R> that is spanned by the
orthogonal vectors

vi=(0,1,—-1) and wv», =(l1,2,2)

Solution We could normalize the basis vectors and apply Formula (7) to the resulting orthonor-
mal basis for W, but let us apply (8) directly. We have

il =04+ 124+ (-1)*=2 and |w)*=1>+22+22=9

so it follows from (8) that

X+ V| XV

5 |
vi + 3= [
Ivil2 3173

'

L |

Zva = 20,1, 1) + 3(1,2,2) = (

ProjyX =
Iv2ll2



TRACE AND ORTHOGONAL PROJECTIONS

Theorem 7.9.3 If P is the standard matrix for an orthogenal projection of R® onto a
subspace of R", then tr( P) = rank( P).

Proof Suppose that P 1s the standard matnx for an orthogonal projection of R" onto a k-
dimensional subspace W. If we let {¥, va, ..., ¥;} be an orthonormal basis for W, then 1t
follows from Formula (6) and Theorem 3.8.1 that

aal T.-
¥y

P=MMT = vy ¥ --- w]| ~ | = v]vf. +‘:‘3\-‘§. +--- -I—ﬂ-'h': (10}

Definition 3.1.10 If A is a square matrix, then the frace of A, denoted by tr(A), is defined
to be the sum of the entries on the main diagonal of A.




Using this result, the additive property of the trace, and Formula (27) of Section 3.1, we obtain
tr(P) =tr (viv]) +tr(vavl) + -+ +tr (vev]) \
trtav’) =tr(va’ ) =u . v
=(Viv)+(V2eV2)+ -+ (Vi + W)

= Ve ]I® + [IV2ll* + - - - + [IVllP
=141+---+1=k=dim(W)

But the range of a matrix transformiation is the column space of the matrix, so it follows from
this computation that tr(P) = dim(col(P)) = rank(P). o

\

The subspace W is the range of P and the range of P is its column space.
As the column space and the row space have the same dimension, the proof is complete.

Theorem 3.8.1 (Column-Row Rule) If A has size m x s and B has size s x n, and if these
matrices are partitioned into column and row vectors as

A=|C1 C ++- &l and B =

then
AB =¢ry + ¢ra + -+ - + G4 (2)




EXAMPLE /
Using the Trace
to Find the
Rank of an

Orthogonal
Projection

We showed in Example 4 that the standard matrix P for the orthogonal projection onto the plane

spanned by the vectors v; = (0, 1,0) and v, = (—%,0, %) is

16 12
s 0 =35
P = 0 1 0
12 9
= Y =

Since the plane is two-dimensional, the matrix P must have rank 2, which is confirmed by the
computation

rank(P) = tr(P) = 32 + 1 + 5 =2 G



LINEAR COMBINATIONS OF ORTHONORMAL BASIS VECTORS

If W 1s a subspace of R", and if w 15 a vector in W, then projyw = w. Thus, we have the
following special case of Theorem 7.9.2.

Theorem 7.9.4

(a) If{vy.va. ..., ¥t is an orthonormal basis for a subspace W of R", and if w is a
vector in W, then

W= (W-V)¥ +(W-Va)¥a+ -+ (W- ¥ )V (11)
(B) If{vq, ¥a, ..., ¥} i5s an orthogonal basis for a subspace W of R", and if w is a
vector in W, then
: W - - ¥
= 1lr]'.f]+ ﬁvz+~~~+“r k'ﬂ: (12)

¥ 3
¥l I |y v 1=



(&) If{vq, V2, ..., ¥} 15 an orthogonal basis for a subspace W of R", and if w is a
vectar in W, then

l.'l-'-'l-’]‘r_l_l'l-'-'l-’g I +w-1-'k
> 1 11’1 ERL I
vl vzl Ivil®

Vi (12)

Recalling Formula (5) of Section 7.7, observe that the terms on the right side of (12) are the
orthogonal projections onto the lines spanned by v, ¥2, ..., ¥4, sothat Formula (12) decomposes
each vector w in the k-dimensional subspace W into a sum of £ projections onto one-dimensional
subspaces. Figure 7.9.1 illustrates this idea in the case where W is R*.

- Figure 7.9.1

[0),X = ——=2& d
PTO), lal? (9)




EXAMPLE 8 Linear Combinations of Orthonormal Basis Vectors

Express the vector w = (1, 1, 1) in R? as a linear combination of the orthonormal basis vectors

=49 n=G.39. w=@3-9

Solution We showed in Example 3 that the given vectors form an orthonormal basis for R>.

Thus, w can be expressed as a linear combination of v, v,, and v; using Formula (11). We
leave it for you to confirm that

1

11 5
W-Vi=—=, W-:V=-=, W-:V3=3
Thus, it follows from Formula (11) that
T 1l 5
W= —?‘iﬁ -+ TT: -+ ?1"3.
or expressed in component form,
— L 2. 5 2 Wr2 3 SN UE B 2 2
W= T{ ’ ?'?)+?(?*?*?)+?{?*?* ?}



FINDING ORTHOGONAL AND ORTHONORMAL BASES

The following theorem, which 1s the main result in this section, shows that every nonzero
subspace of R" has an orthonormal basis. The proof of this theorem is especially important
because it provides a method for converting any basis for a subspace of R" into an orthogonal

basis.

Theorem 7.9.5 Every nonzero subspace of R® has an orthonormal basis. -

Proof Let W be a nonzero subspace of R", and let {w,, ws, ..., wi} be any basis for W. To
prove that W has an orthonormal basis, it suffices to show that W has an orthogonal basis, since

such a basis can then be converted into an orthonormal basis by normalizing the vectors.

The following sequence of steps will produce an orthogonal basis {v;, v, ..., vi} for W:

Step 1. Letvy =w;.



Step 2. As illustrated in Figure 7.9.2, we can obtain a vector v; that is orthogonal to v; by
computing the component of w, that is orthogonal to the subspace W, spanned by v;.

By applying Formula (8) in Theorem 7.9.2 and Formula (24) of Section 7.7, we can
express this component as

Wo-¥)

vy [1?

Of course, if v2 = 0, then v; is not a basis vector. But this cannot happen, since it

would then follow from (13) and Step 1 that

W - \'1 L
VilE T il

which states that w, is a scalar multiple of w,, contradicting the linear independence of

the basis vectors {wy, Wa, ..., Wi}.

V2 = W2 — PIOjy, W2 = W2 —

(13)

w1 = Wi

=W - Pme “’2

Figure 7.9.2




Step 3. To obtain a vector v that is orthogonal to v; and v,, we will compute the component
of wj that is orthogonal to the subspace W; that is spanned by v, and v, (Figure 7.9.3).
By applying Formula (8), we can express this component as

- : W3-V W3 «¥a
¥3 = W3 — PI0]y, W3 = W3 — ¥1 — ¥2
: vy ]I% v |l*
As in Step 2, the linear independence of {w;, w2, ..., W} ensures that vz # 0. We leave

the details as an exercise.

Figure 7.9.3



Step 4. To obtain a vector v4 thatis orthogonal to vy, v, and v3, we will compute
the component of wy that is orthogonal to the subspace W5 spanned by
Vi, V2, and v3. By applying Formula (8) again, we can express this
component as

Wa-V) WsV2 W4 V3

R A T RGN TATE

V4 = W4 — Projy, Wag = Wy — V3

Steps Stok. Continuing in this way produces an orthogonal set {v,, v5, ..., Vi}
after k steps. Since W is k-dimensional, this set is an orthogonal basis
for W, which completes the proof. o

The proof of this theorem provides an algorithm, called the Gram-Schmidt
orthogonalization process, for converting an arbitrary basis for a subspace of R"
into an orthogonal basis for the subspace.

If the resulting orthogonal vectors are
normalized to produce an orthonormal basis for the subspace, then the algorithm
is called the Gram~Schmidt process.



EXAMPLE 9 The vectors w; = (1,1, 1), ws = (0, 1, 1), and w3 = (0,0, 1)
form a basis for R* (verify). Use the Gram—-Schmidt orthogonalization process to
transform this basis into an orthogonal basis, and then normalize the orthogonal
basis vectors to obtain an orthonormal basis for R°.

Solution Let {v,, v2, vi} denote the orthogonal basis produced by the Gram-
Schmidt orthogonalization process, and let {q,, q2, q3} denote the orthonormal
basis that results from normalizing vy, v2, and v3. To find the orthogonal basis
we follow the steps in the proof of Theorem 7.9.5:

Stepl. Letvi =wi=(1,1,1).
Wi = ¥
vy |2

.l

— (0. l, l) = %(1. 1! l) = (_f* %' %)

Step 2. Letv; = w; — Pm.iw. W) = Wy — \3



Wi+ ¥ " Wi - TE‘F
1 — 2
¥ (]2 I¥2[1°

=©0,0,)-3(1,1,)-3(-%1.4)=(0.-3. 1)

Step 3. Let vz = w3 — projy, w3 = w; —

Thus, the vectors
Vi =[1!1?1:|:l v2={_%?%1 %}1 ?3_—-{{}1——I 1

form an orthogonal basis for £7. The norms of these vectors are

Mil=+3, [vall =%, fvs = +

so0 an orthonormal basis for B is given by




an orthonormal basis for B is given by

REMARK In this example we first found an orthogonal basis and then normalized at the end
to produce the orthonormal basis.

Alternatively, we could have normalized each orthogonal
basis vector as soon as it was calculated, thereby generating the orthonormal basis step by step.

For hand calculation, it is usually better to do the normalization at the end, since this tends to
postpone the introduction of bothersome square roots.



EXAMPLE 1 0 Orthonormal Basis for a Plane in R*

Use the Gram-Schmidt process to construct an orthonormal basis for the plane x 4+ y 4+ 2z =0
in R>.

Solution First we will find a basis for the plane, and then we will apply the Gram—Schmidt
process to that basis. Any two nonzero vectors in the plane that are not scalar multiples of one
another will serve as a basis.

One way to find such vectors is to use the method of Example 7
in Section 1.3 to write the plane in the parametric form

X==h—=0,y=h,2I=0n
The parameter values f;y = 1, 1, =0 and 1, = 0, 1 = 1 produce the vectors
w;=(=1,1,00 and w;=(-1,0,1)

in the given plane. Now we are ready to apply the Gram-Schmidt process.



First we construct the orthogonal basis vectors

Vi=W = (—1. Lﬂ)

Wo + V]
vy I?

and then normalize these to obtain the orthonormal basis vectors

vi=(=1,0,1)- 3(-1,1,0) = (-4, -1,1)

Vo =Wy —

i R _l 1
v=rmi- 7%




A PROPERTY OF THE GRAM-SCHMIDT PROCESS

In the exercises we will ask you to show that the vector v; that is produced at the jth step of the
Gram-Schmidt process is expressible as a linear combination of w, wa, ..., W;.

Thus, not only
does the Gram-Schmidt process produce an orthogonal basis {vy, va, ..., v;} for the subspace W

spanned by {w;, ws, ..., wi}, butit also creates the basis in such a way that at each intermediate

stage the vectors {vy, v2,..., v;} form an orthogonal basis for the subspace of R" spanned by
{W1, Wa, ..., W]

Moreover, since v; is constructed to be orthogonal to span(vy, va, ..., Vj-1},

the vector v; must also be orthogonal to span{w;, w2, ..., wW;_}, since the two subspaces are
the same.

[n summary, we have the following theorem.



Theorem 7.9.6 If§ = {w,. ws, ..., wi} is a basis for a nonzero subspace of R", and if

8" = vy, ¥2, .... v} is the corresponding orthogonal basis produced by the Gram=Schmid:
process, then:

(@) {¥i, ¥a,....V;}ixan orthogonal basis for span{wy, Wa, ..., W;} ar the jth srep.
(B) ¥; is orthogonal to span{w,, Wa, ..., W;_} af the jthsrep (j = 2).

REMARK This theorem remains true if the orthogonal basis vectors are normalized at each
step, rather than at the end of the process; that is, {q, qa2, ..., q;]} is an orthonormal basis for
span{wj, w2, ..., w;} and q; is orthogonal to span{w;, wa, ..., w;_}.



EXTENDING ORTHONORMAL SETS TO ORTHONORMAL BASES ®

Recall from part (b) of Theorem 7.2.2 that a linearly independent set in a nonzero subspace W
of R" can be enlarged to a basis for W. The following theorem is an analog of that result for
orthogonal bases and orthonormal bases.

Theorem 7.9.7 If W is a nonzero subspace of R", then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal
basis for W.

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.

We will prove part (b); the proof of part (a) 1s similar.

Proof (b) Supposc that § = {v,, v2,..., v,} is an orthonormal sct of vectors in W. Part (b) of

Theorem 7.2.2 tells us that we can enlarge S to some basis §' = {v;, va, ..., Vo Wettiiioes Wi}
for W. If we now apply the Gram=Schmidt process to the set S’, then the vectors vy, va, ..., Vg
will not be altered since they are already orthonormal, and the resulting set

S" - [vli V2, 000y Vo Veg1aenny ‘.k}
will be an orthonormal basis for W. o



