Section 7.8 Best Approximation and Least Squares

Minimum Distance Problems

We will be concerned here with the following problem.

The Minimum Distance Problem in B® Given a subspace W and a vector b in B”, find
a vector w in W that is closest to b in the sense that ||b — w|| < ||b — w|| for every vector w
in W that is distinct from w. Such a vector w, if it exists, is called a besf approximation to
b from W (Figure 7.8.1).
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To motivate a method for solving the minimum distance problem, let us focus on R*. We
know from geometry that if b is a point in R* and W is a plane through the origin, then the
point w in W that is closest to b is obtained by dropping a perpendicular from b to W; that
is, W = projyb.

It follows from this that the distance from b to W is d = ||b — projybl|, or
equivalently, d = ||projy.bll, where W+ is the line through the origin that is perpendicular to

W (Figure 7.8.2).
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EXAMPLE 1 Distance from a Point to a Plane in R®

Use an appropriate orthogonal projection to find a formula for the distance o from the point
(X0, Yo, Zo) to the plane ax 4+ by 4 cz = 0.

Selution Letb = (xg, v, zo), let W be the given plane, and let [ be the line through the origin
that is perpendicular to W (i.e., ! is W*). The line [ is spanned by the normal n = (a, b, ¢) and
hence it follows from Formula (14) of Section 7.7 that

In + b
(Il

Substituting the components for n and b into this formula yields

d = ||projy.b| = ||proj,bll =

_ |ta. b, €) + (x0, ¥0. 20)| laxg + bvg + czal

d — e (1)
l{a, b, )| Jai b 4ot
Thus, for example, the distance from the point (—1,5,4) tothe plane x — 2y 4+ 3z =015
4 laxg + byn + czol  [(1)(—=1) + (—2)(3) + (3)(4)] 1
— — —_—— |}
Va4 b4 el 1E (=2 4 32 v 14
Iprojux = -2 (14)
ProjXj| = ————
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In light of the preceding discussion, the following theorem should not be surprising.

Theorem 7.8.1 (Best Approximation Theorem) If W is a subspace of R® and b is a point
in R®, then there is a unigue best approximation to b from W, namely w = projyb.

Proof For every vector w in W we can write there is a right angle
i _ between them.
b —w = (b — proj,b) + (proj, b — w)

The two terms on the right side of this equation are orthogonal (since the first term is in W+, and
the second term, being a difference of vectors in W, is in W). Thus, we can apply the theorem

of Pythagoras (o wrile
b — wii* = Ib — projyb]|* + [[projyb — w|*

If w # proj, b, then the second term on the right side of this equation is positive and hence
Ib — projy bl < ||b — w||*

This implies that ||b — projyb|| < ||b — w|| if w 3£ proj,b, which tells us that W = proj, b isa
best approximation to bdrom W; we leave the proof of the uniqueness as an exercise. =

smallest distance



Motivated by Figure 7.8.2, we define the distance from a point b to a subspace W in R" to

be
d = ||b — projybl| [Distance from b to W]

or equivalently,

d = ||projy. b [Distance from b to W)
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The following example extends the result in Example 1 to R".
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EXAMPLE 2 pistance from a Point to a Hyperplane

Find a formula for the distance d from a point b = (by, b,, ..., b,) in R" to the hyperplane
A Xy +@rxxr 4 A apxy = 0.

Solution Denote the hyperplane by W. This hyperplane is the orthogonal complement of
a = (a,as,...,a,), so Theorem 7.4.6 implies that W* = span{a). Thus, Formula (3) above

and Formula (14) of Section 7.7 imply that
la-bl lab)+aby+---+a,byl @)

lal Jai+ai+-+a?

d = ||projy.b|| = |Iproj,b|| =

With the appropriate change in notation, this reduces to Formula (1) in R?. o



LEAST SQUARES SOLUTIONS OF LINEAR SYSTEMS

There are many applications in which a linear system Ax = b should be consistent on theoretical
grounds but fails to be so because of measurement errors in the entries of A or b.

In such cases,
a common scientific procedure is to look for vectors that come as close as possible to being

solutions in the sense that they minimize ||b — Ax||. Accordingly, we make the following
definition.

Definition 7.8.2 If A is an m x n matrix and b is a vector in B™, then a vector X in R" is
called a best approximate solufion or a least squares solution of Ax = b if

b — AX|| = |Ib— Ax|| (5)

for all x in B". The vector b — AX is called the least squares error vector, and the scalar
IIb — Ax|| is called the least squares error.



e

REMARK To understand the terminology in this definition, let b — Ax = (&), €2, ..., e,). The
components of this vector can be interpreted as the errors that result in the individual components
when X 15 used as an approximate solution, Since a best approximate solution minimizes

Ib— Ax| = (¢ + &2 +--- + 32 e[?z (6)

this solution also minimizes 7 + 3 + - - - + &2, which is the sum of the squares of the errors in
the components, and hence the term least sguares solution.

—> Be careful: e, e,, ..., e, above are components of b — Ax ;
they are not components of the standard unit vectors.



FINDING LEAST SQUARES SOLUTIONS OF LINEAR SYSTEMS

Our next objective is to develop a method for finding least squares solutions of a linear system
Ax = b of m equations in n unknowns. To start, observe that Ax is in the column space of A
forall x in R”, so ||b — Ax|| is minimized when

AX = projeab 7
(Figure 7.8.3).

Since proj )b is a vector in the column space of A, system (7) is consistent
and its solutions are the least squares solutions of Ax = b, Thus, we are guaranteed that every
linear system AX = b has at least one least squares solution.

b
Ib - AxI||
0
Ax
Ib - AxJl is minimized
PrOJcoia) b when AX = proj b.
Figure 7.8.3 oW ’ leokiA)




AX = proja, b 7)

As a practical matter, least squares solutions are rarely obtained by solving (7), since this equa-
tion can be rewritten in an alternative form that eliminates the need to calculate the orthogonal
projection. To see how this can be accomplished, rewrite (7) as

b — AX = b — proj_.,b (8)
and multiply both sides of this equation by A” to obtain
AT(b — Ax) = AT (b — proj.y4,b) 9)

Since the orthogonal complement of col{A) is null{ A7), it follows from Formula (24) of Section
1.7 that

b — proj. .y = Projaucar)b
This implies that b — proj_, b is in the null space of AT, and hence that

AT (b — proj,b) =0

X = projy X + projy.X  (24)




Thus, (9) can be rewritten as A” (b — Ax) = 0 or, alternatively, as

ATdAx = ATh (10)

This is called the normal equation or normal system associated with Ax = b. The individual
equations in (10) are called the normal equations associated with Ax = b.

Using this termi-
nology, the problem of finding least squares solutions of Ax = b has been reduced to solving
the associated normal system exactly. The following theorem provides the basic facts about
solutions of the normal equation.



Theorem 7.8.3

(a) The least squares solutions of a linear system AX = b are the exact solutions of the

normal equation
A'"Ax=A"b (11)
(b) If A has full column rank, the normal equation has a unique solution, namely
X=(A"TA)""'ATp (12)

(¢) If A does not have full column rank, then the normal equation has infinitely many
solutions, but there is a unique solution in the row space of A. Moreover, among all
solutions of the normal equation, the solution in the row space of A has the smallest
norm.



AAx = A'b (11)

Proof(a) We have already established that every least squares solution of Ax = b satisfies (11).
Conversely, if x satisfies (11), then this vector also satisfies the equation

ATb=—Ax) =0

This implies that b — Ax is orthogonal to the row vectors of AT, and hence to the column vectors
of A, and hence to the column space of A. It follows from this that the equation

b= Ax+ (b — Ax)

expresses b as the sum of a vector in coliA) and a vector orthogonal to col{A), which implies
that AX = proj_ ;b by Theorem 7.7.4. Thus, x is a least squares solution of Ax = h.

Proaf (k) If A has full column rank, then Theorem 7.5.10 implies that A'A is invertible, so (12)
15 the unigue solution of (11).



Proof (¢) If A does not have full column rank, then A’A is not invertible (Theorem 7.5.10), so
(11) 1s a consistent linear system whose coefficient matrix does not have full column rank. This

being the case, it follows from part () of Theorem 7.7.7 that (11) has infinitely many solutions
but has a unique solution in the row space of A’A.

Moreover, that theorem also tells us that the
solution in the row space of A’A is the solution with smallest norm. However, the row space of

AA is the same as the row space of A (Theorem 7.5.8), so we have proved the final assertion
of the theorem. o

Theorem 7.7.7 Suppose that A is an m »x n matrix and b is in the column space of A.

(a) If A has full column rank, then the system Ax = b has a unigue solurion, and that
solution is in the row space of A.

(b) If A does not have full column rank, then the system Ax = b has infinitely many
solutions, but there is a unigue solution in the row space of A. Moreover, among all
solutions of the system, the solution in the row space of A has the smallest norm.



EXAMPLE 3 1cas Squares Solutions

Find the least squares solutions of the linear system

X — .111:"-1-
dny + 2xx =1
—=2x) 4+ dx2 =3

Solution The motrix form of the system 15 Ax = b, where

- —

T 4
A=| 3 2| and b=]1
7 4 3

Since the columns of A are not scalar multiples of one another, the matrix has full column

rank. Thus, it follows from Theorem 7.8.3 that there is a unique least squares solution given by
Formula (12}, We leave it for you to confirm that

: - 3 14 —3
! e o
r“"[—1 2 4:| e '[-3 21]




(ATA)"! = [

X =(ATA)"'ATDb =

14 -3
-3 2]

[

Thus, the least squares solution is

7 Y

|
ARy 2N

o

17
95

143
285 _




ORTHOGONALITY PROPERTY OF LEAST SQUARES ERROR VECTORS

Before considering another example, it will be helpful to develop some of the properties of
least squares error vectors. For this purpose, consider a linear system Ax = b, and recall from
Formula (30) of Section 7.7 that b can be wrillen as

b = proj gyl + Projuyarb
from which it follows that
b — Ax = (proj b — AX) + proj,ganb (13)
However, we know from (7) that X 15 a least squares solution of AX = b f and only 1f
proj.q b — Ax =10
which, together with (13), implies that X is a least squares solution of Ax = b if and only if

h — u“.i e pmjw"Hr]h '[]"I'II']'

b = booiay + Pauncary  (30)




This shows that every least squares solution X of Ax = b has the same error vector, namely
least squares error vector = b — AX = proj .4y b (15)
Thus, the least squares error can be written as
least squares error = [|b — AX| = ||pmjm““;]h|r (16)

Moreover, since the least squares error vector lies in null{ A7), and since this space is orthogonal
to col(A), we have also established the following result.

Theorem 7.8.4 A vector X is a least squares solution of Ax = b if and only if the error
vector b — AX is orthogonal to the column space of A.



EXAMPLE 4 Least Squares Solutions and Their Error Vector

Find the least squares solutions and least squares error for the linear system

3+ 2xvm— x3= 2
Xp — 4x3 4 3ny = -2
X1+ 10xy —Tx3 = |1

Selution The matrix form of the system is Ax = b, where

R [ o
Am|T =4 3| snd b | =0
T 1 |

Since it 1s not evident by inspection whether A has full column rank {(in fact it does not), we will
simply proceed by solving the associated normal system AAx = ATb. We leave it for you to
confirm that

BE & B = 5
ATA=|12 120 —=84| and AThb=| 22
| -7 —84 59 —15




Thus, the augmented matrix for the normal system is

11 B’ =Ty §
|

12 120 -84 22

-7 -84 59 -15

We leave it for you to confirm that the reduced row echelon form of this matrix is

4.3
L0 313
g ! 13
0 1 -%'s
0 0 01i0

.l.'|=£—%!



As a check, let us verify that all least squares solutions produce the same least squares error
vector and the same least squares ermor. To see that this 1s so, we first compute |

= — --2 |- = = -.ll- é-
2 3 2 =1 Sl 21 G f
1 5
—3—'—43ﬁ+§:=—3'—5=—3
| L 10 -7 ) | n s
" o - L ~ e L 6 N

— o —

Since b — Ax does not depend on ¢, all least squares solutions produce the same error veclor.
The resulting least squares ermor 15

- axl = ()’ + (-3)* + (-3)' = 6

We leave it for you to confirm that the error vector is orthogonal to the column vectors of the

matrix
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in agreement with Theorem 7.8.4. B



FITTING A CURVE TO EXPERIMENTAL DATA

A common problem in experimental work is to obtain a mathematical relationship between two

variables x and y by “fitting” a curve y = f(x) of a specified form to a set of points in the plane
that correspond to experimentally determined values of x and y, say

(.1'1. }'|). (.Iz. }'z). TR (.‘-I'n. )‘n)

The curve y = f(x) is called a mathematical model for the data. The form of the function f
1s sometimes determined by a physical theory and sometimes by the pattern of the data.
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For
example, Figure 7.8.5 shows some data patterns that suggest polynomial models. Once the form
of the function has been decided on, the idea is to determine values of coefficients that make
the graph of the function fit the data as closely as possible. In this section we will be concerned
exclusively with polynomial models, but we will discuss some other kinds of mathematical
models in the exercises.
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We will begin with linear models (polynomials of degree 1), For this purpose let x and v be

given variables, and assume that there 1s evidence 1o suggest that the vanables are related by a
linear equation

v=a+ bx (17}
where a and b are to be determined from two or more data points
{-'Ih J"|:|r {I}. .]"11}1 voaow gy |:.Ji'ﬂ.. .Frl::l

If the data happen to fall exactly on a ling, then the coordinates of each point will satisfy (17),
and the unknown coefficients will be a solution of the linear system

_}I|:ﬂ+bl'|

y: =a+ bx 1)

Yo = a + bx,



We can write this system in matrnix form as

.
»2

L Yn_

or more compac ll)’ as

M\':y
where
..l -TI-
] X2
M= :
bErel

¥
Y

(19)

(20)

(21)



If there are measurement errors in the data, then the data points will typically

not lie on a line, and (20} will be inconsistent. In this case we look for a least
squares approximaten o the values of @ and & by solving the normal system

MMy=M"y (22)

If the x-coordinates of the data points are not all the same, then M will have

rank 2 (full column rank), and the normal system will have a unigue least squares
solution

v = (MTM)Y"'MTy (23)
Theorem 7.8.3
(a) The least squares solutions of a linear system AX = b are the exact solutions of the
normal equation
A"Ax= A"Db (11)

(b) If A has full column rank, the normal equation has a unique solution, namely

x=(ATA)"'ATp (12)




The line ¥ = a + bx that results from this solution is called the feast squares
line af best fit to the data or, alternatively, the regression line. Referring to the
equations in (18), we see that this line minimizes

S=[w—=(a+bx)F+[r—=(a+bx)P 44w —(a+bx)]? (24

The differences in Equation (24) are called residuals, so, in words, the feast

sguares line of best fit minimizes the sum of the sguares of the residuals (Figure
7.8.6).
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Figure 7.8.6



EXAMPLE 5 Find the least squares line of best fit to the four points (O, 1},
(1,3),(2,4), and (3, 4).

Solution The first step is o vse the data to build the matrices M and ¥ in (21).
This yields

]
|
]
B SN 4|

Wt b = £

Since the x-coordinates of the data points are not all the same, the normal system
has a unique solution, and the coefhcients for the least squares line of best fit
can be obtained from Formula (23). We leave it for you to confirm that

. 1 1 1
M"M:[' ] ;

<

0 <L 233 6 14

=[4 6] and (M'M)™! =

sl= Slv
Sie Slw

o
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Thus, applying Formula (23) yields

— N

v = [‘;] = (MM)"'MTy =

ks

Thus, the approximate values of @ and b are @ = 1.5 and b = 1, and the lecast squares straight
line fit to the data is y = 1.5 + x. This line and the data points are shown in Figure 7.8.7.
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