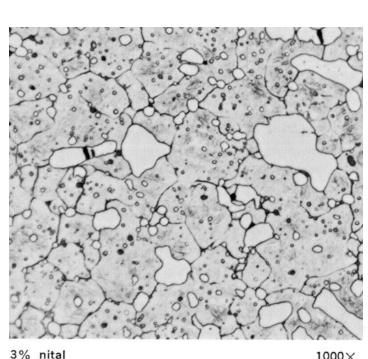
<u>AÇOS PARA FERRAMENTAS</u>

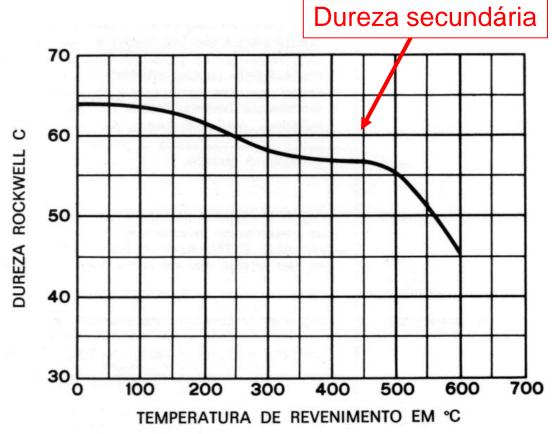
AISI (American Iron and Steel Institute)

Séries de composição química e aplicações similares

<u>SÉRIES PRINCIPAIS²</u>

•	Aços-rápidos ao molibdênio	Mx
•	Aços-rápidos ao tungstênio	Tx
•	Aços para trabalho a quente (ao Cr, W, ou Mo)	Hx
•	Aços para trabalho a frio ³ (temperáveis ao ar)	Ax
•	Aços para trabalho a frio ³ (temperáveis em óleo)	Ox
•	Aços para trabalho a frio ³ (alto C, alto Cr)	Dx
•	Aços resistentes ao choque	Sx
•	Aços baixa-liga para aplicações especiais	Lx
s 6 10 - 2	Aços baixo-C para moldes	Px
•	Aços temperáveis em água	Wx

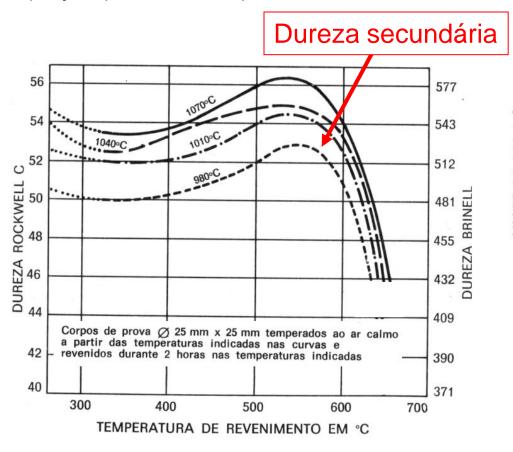

² Segundo METALS HANDBOOK, 10th ed., v. 1, p. 758-9.

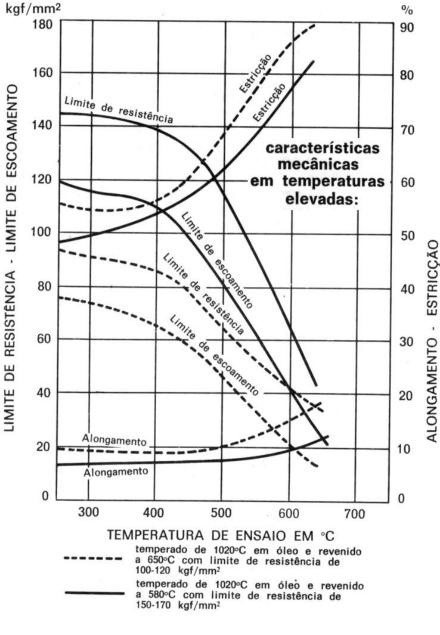

³ Trabalho a frio: utilização não implica em aquecimento prolongado ou repetido acima de 230°C.

AISI D3 (denominação Villares VC-130)

- ≥ 2,0% C- 11,5% Cr 0,2% V
- > Aplicações típicas: estampos, matrizes de forjamento, cilindros pequenos para trabalho a quente.

904 Same steel as for 903, austenitized at 1850 F (1010 C), air cooled, tempered at 400 F (204 C). Rockwell C 59.5. Structure is carbide particles in a matrix of tempered martensite. Black dots are sulfide inclusions.

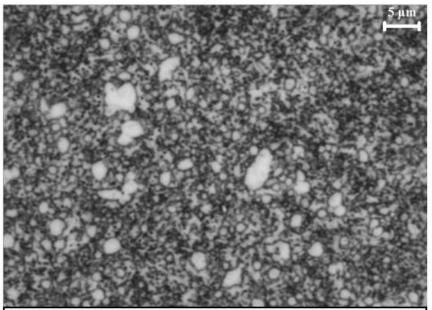



© 2008/2010 - Rodrigo Magnabosco - Slide 2

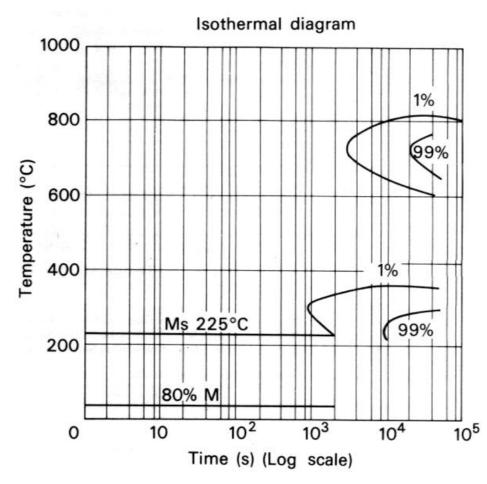
AISI H13

(denominação Villares VH-13)

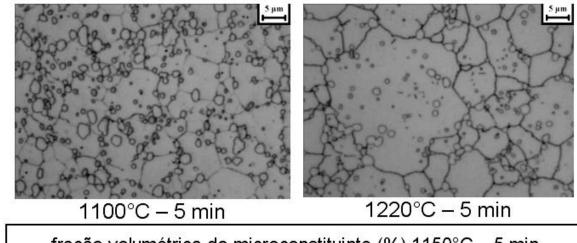
- \triangleright 0,4% C 1,0% Si 5,0% Cr 1,5% Mo 1,0% V
- Aplicações típicas: Ferramentas, matrizes, moldes e punções para trabalho a quente.



AÇOS-RÁPIDOS


AISI M2 (denominação Villares VWM2) 08%C-4%Cr-5%Mo-6%W-2%V

fração volumétrica do microconstituinte (%) condição recozida

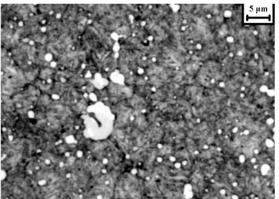

M ₆ C	M ₂₃ C ₆	MC (M = V)	ferrita
16	9	3	balanço

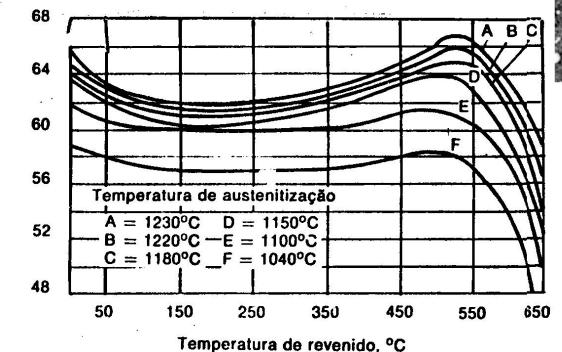
Austenitização é parcial



Austenitização parcial mantém carbonetos de elementos de liga não dissolvidos, e estes contribuem para aumentar a resistência ao desgaste.

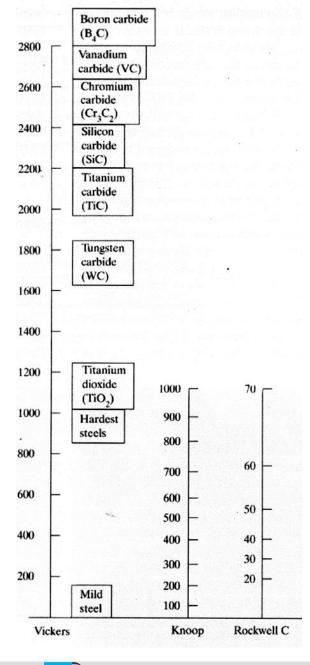
fração v	fração volumétrica do microconstituinte (%) 1150°C – 5 min				
M ₆ C	MC	martensita	austenita retida		
8	2	80	10		




Maior temperatura de austenitização leva a maior dissolução de carbonetos, levando a mais carbono e elementos de liga em solução sólida

2° revenimento é necessário para reduzir austenita retida e revenir a martensita formada no resfriamento posterior ao 1° revenimento

fração volumétrica do microconstituinte (%)					
2,5 h @ Mc MC martensita marter					
após 1° revenimento	8	2	10	80	
após 2° revenimento	8	2	*.*.*	90	



Duplo revenimento de aços rápidos

Dureza Rockwell C

METAL DURO – compósito de matriz metálica (Co) e reforço cerâmico (WC, TiC, TaC)

Figure 3.1 Structure of micrograin 94WC/6Co hardmetal, x2000. Hardness HV 1800; used for general-purpose and finish machining.

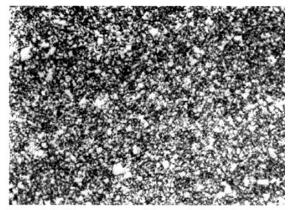


Figure 3.2 Microstructure of fine-grain 94WC/6Co grade, x1500. Hardness HV 1750; used for finish machining.

Figure 3.3 Microstructure of medium-grain 94WC/6Co sintered carbide, x1500. Hardness HV 1575; used for general-purpose machining.

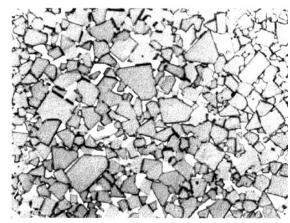


Figure 3.4 Microstructure of coarse-grain 89WC/11Co grade, x1500. Hardness HV 1140; used for rock-drilling and heavy impact.

Table 12.1 Typical properties of alumina and alumina/zirconia cutting-tool ceramics

Composition, alumina, per cent	99.5+	90	
zirconia, per cent		10	
Average grain size, µm	2	1	
Transverse rupture strength, N/mm²	750	700	
Density, g/cm ³	3.97	4.12	
Hardness, HV	2000	1900	

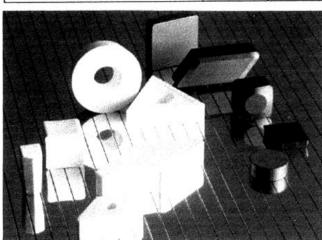
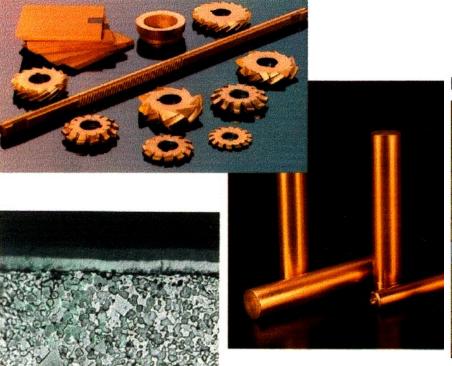
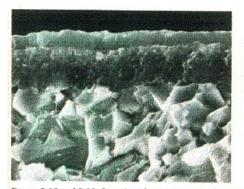



Figure 12.1 Hertel white (alumina) and black (mixed alumina and titanium carbide) ceramic cutting inserts.

CERÂMICAS



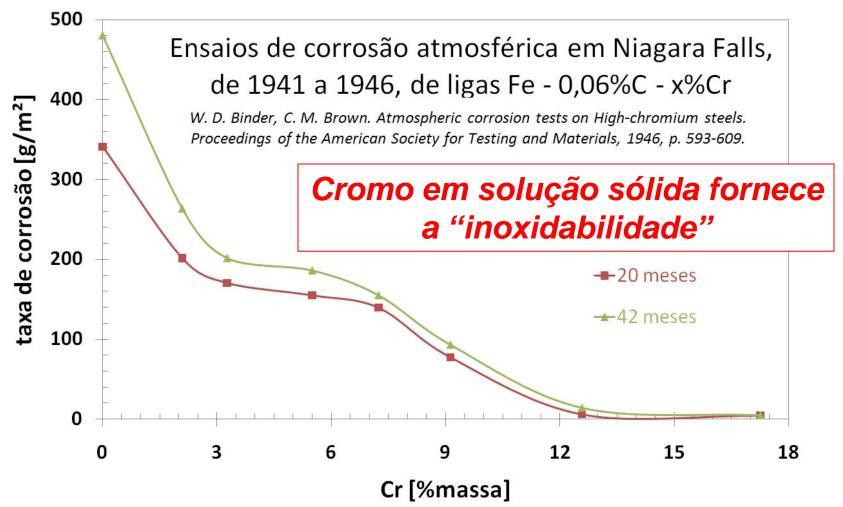


Durezas Comparativas de Superfície.

Buchas de bronze fosforoso	75 HRB	138 Vickers
Aço com superfície cementada	60 HRC	700 Vickers
Aço carbono temperado	63 HRC	800 Vickers
Aço rápido temperado	66 HRC	860 Vickers
Aço rápido nitretado	70 HRC	960 Vickers
Carboneto de tungstênio		2800 Vickers
Nitreto de titânio	-	3000 Vickers
Carboneto de titânio		3200 Vickers (Estimado)
Óxido de alumínio		3100 Vickers (Estimado)
Carboneto de silício		3300 Vickers (Estimado)
Diamante		6000 Vickers (Estimado)

Etched microsection x1500 and scanning electron micrograph x5000 of TiC+TiN multilayercoated steel-cutting hardmetals. By courtesy of Berna-Bernex AG, Switzerland.

Figures 3.18 and 3.19 Scanning electron micrographs x5000 of two Sandvik Coromant grades, each successively coated with titanium carbide and aluminium oxide ceramic Al₂O₃. Note how the TiC coating, initially ultrafinegrained, becomes increasingly coarser - though still much finer than the substrate - as the coating progresses.


Recobrimentos

para aumentar a resistência ao desgaste

Aços inoxidáveis

Bibliografia complementar:

•Sedriks, A. J., 1996, "Corrosion of stainless steels". Wiley-Interscience: New York, 1996

Aços Inoxidáveis

~12% Cr mínimo em solução sólida na matriz leva a formação de película passiva:

filme de óxidos hidratados, de estrutura próxima a de um gel, protegendo o aço do contato com a solução corrosiva.

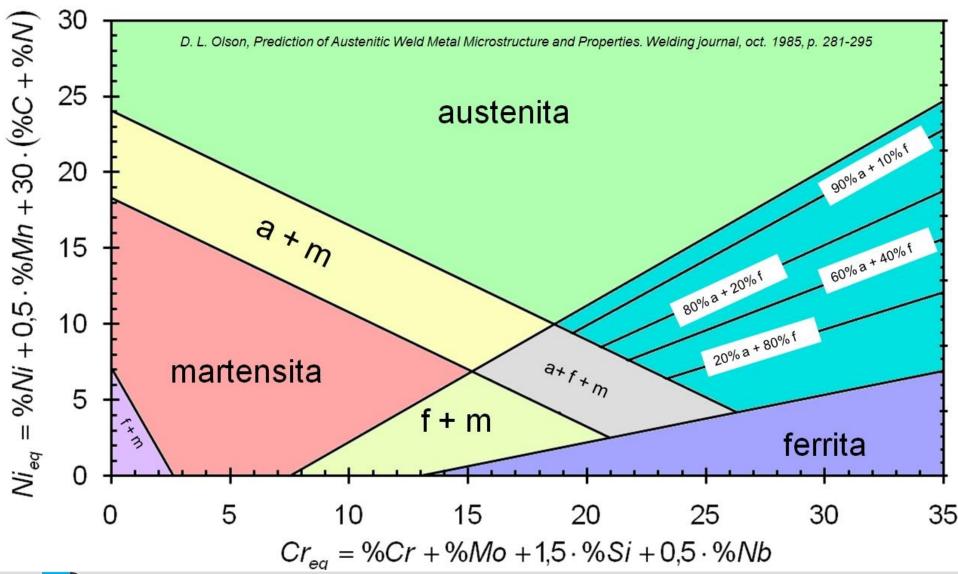
excelente aderência à superfície pequena espessura alta capacidade de auto-regeneração

Associados pelo menos ao mínimo teor de **cromo**, **níquel**, **molibdênio e nitrogênio** melhoram a qualidade das **películas passivas**.

Cromo e Níquel equivalentes

Elementos estabilizadores da ferrita

$$Cr_{eq} = \%Cr + \%Mo + 1.5 \cdot \%Si + 0.5 \cdot \%Nb$$


Elementos estabilizadores da austenita

$$Ni_{eq} = \%Ni + 0.5 \cdot \%Mn + 30 \cdot (\%C + \%N)$$

Diagrama de Schaeffler

(descreve microestruturas brutas de solidificação resfriadas de 1050 C)

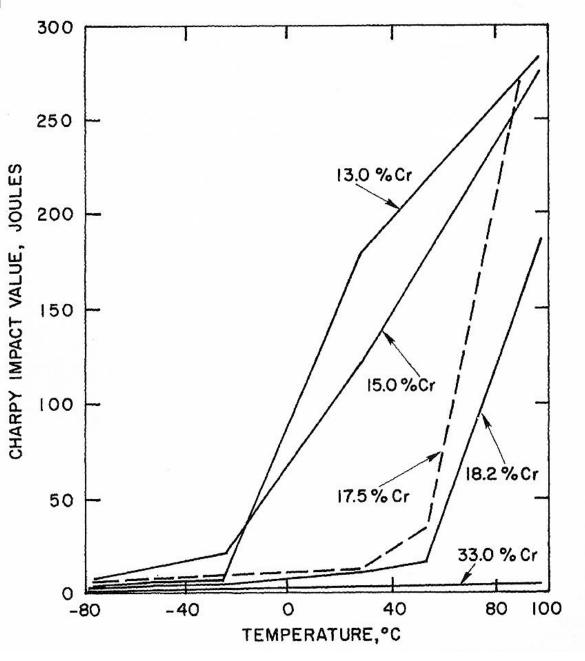
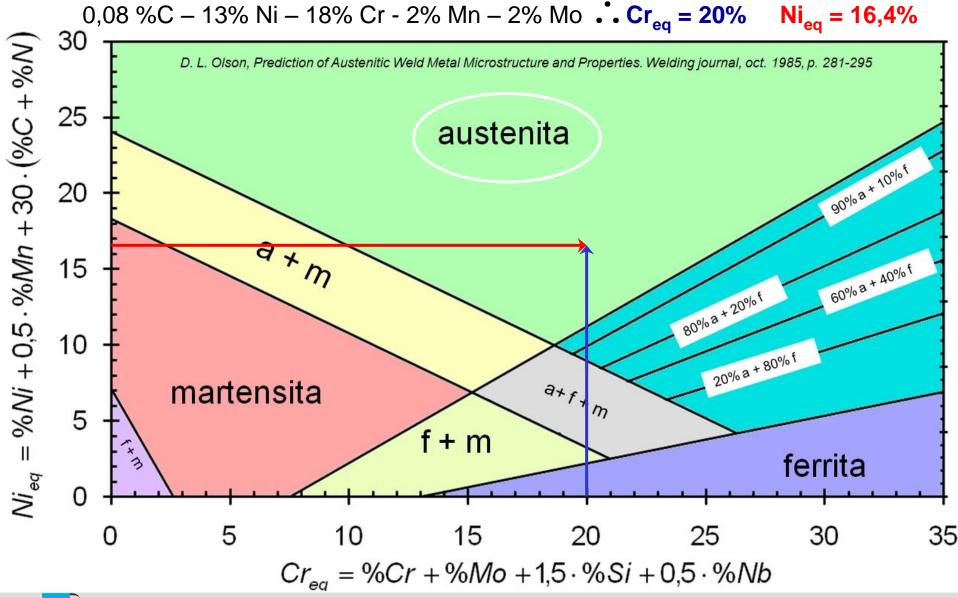


Diagrama de Schaeffler

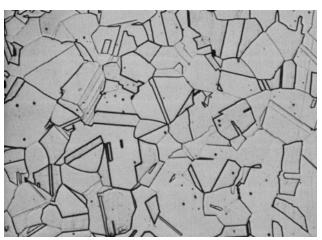
0,17 %C - 1% Mn - 13% Cr .: $Cr_{eq} = 13\%$ $Ni_{eq} = 5,6\%$ 30 $Ni_{eq} = \%Ni + 0.5 \cdot \%Mn + 30 \cdot (\%C + \%N)$ D. L. Olson, Prediction of Austenitic Weld Metal Microstructure and Properties. Welding journal, oct. 1985, p. 281-295 25 austenita 90°10 2 + 10°10 f 20 a+m 60% a + 40% f 15 80% a+20% f 10 20% a + 80% f a+f+mmartensita 5 ferrita 5 20 25 30 35 $Cr_{eq} = \%Cr + \%Mo + 1.5 \cdot \%Si + 0.5 \cdot \%Nb$


Aumento do teor de Cr em aços de estrutura CCC (ferríticos e/ou martensíticos) leva a fragilização...

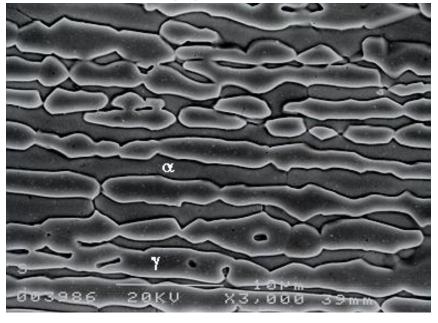
... a solução: aços de estrutura CFC.

AUSTENÍTICOS

Diagrama de Schaeffler


FERRÍTICOS (100x)

AISI 409

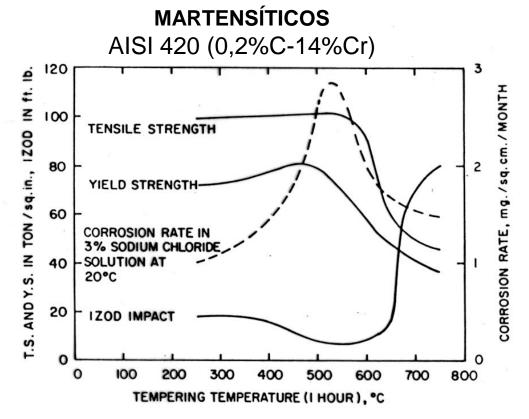

type 409 (0.045 C, 11 Cr, 0.50 Ti) 100×

AUSTENÍTICOS (250x)

AISI 316

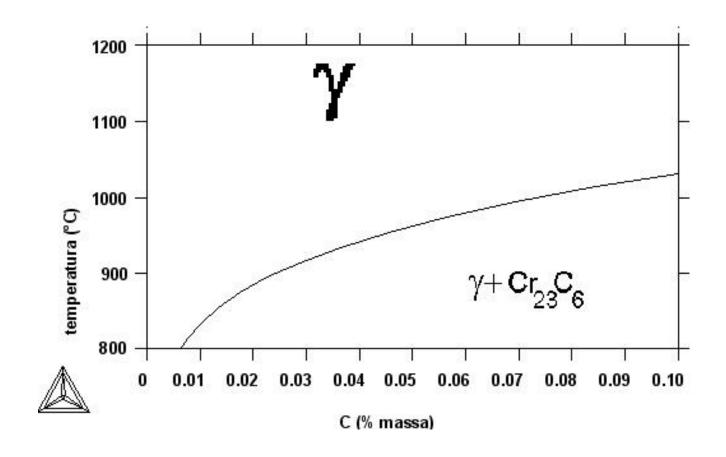
DÚPLEX FERRITA-AUSTENITA

ENDURECÍVEIS POR PRECIPITAÇÃO

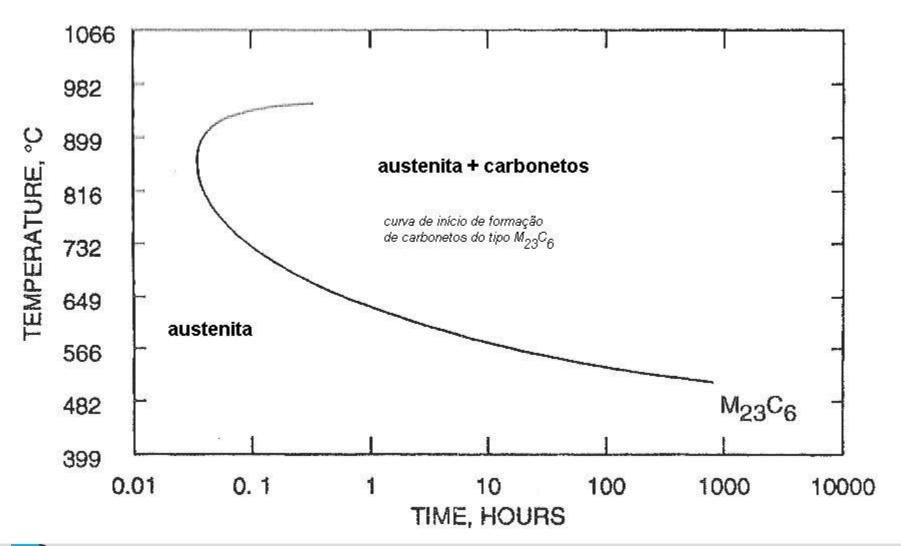

Tipos de precipitados:

Fases de Laves

Ni₃(Al,Ti)


Carbonetos

able 2.16 Basic heat treatments of precipitation-hardening stainless steels				
Martensitic	Semiaustenitic	Austenitic		
Solution anneal in austenite region. Rapidly cool to room temperature to produce a martensitic	Solution anneal in austenite region. Rapidly cool to room temperature to produce metastable	Solution anneal in austenite gion. Rapidly cool to room tempe ture to produce stable aus-		
structure.	austenite.	tenite.		
Age at temperatures in the range 480-620°C to produce precipitation hardening.	 Cool to about -73°C to trans- form metastable austenite to martensite. 	 Age at temperatures in the range of 700-800°C to pro- duce precipitation hardening 		
	OR	*		
	 Temper at about 760°C to re- duce carbon content of aus- tenite by precipitating car- 			
	bide; then cool to room tem- perature to transform aus- tenite to martensite.			
	 Age at temperatures in the range 450-579°C to produce precipitation hardening. 			



O limite de solubilidade de carbono na austenita é baixo...

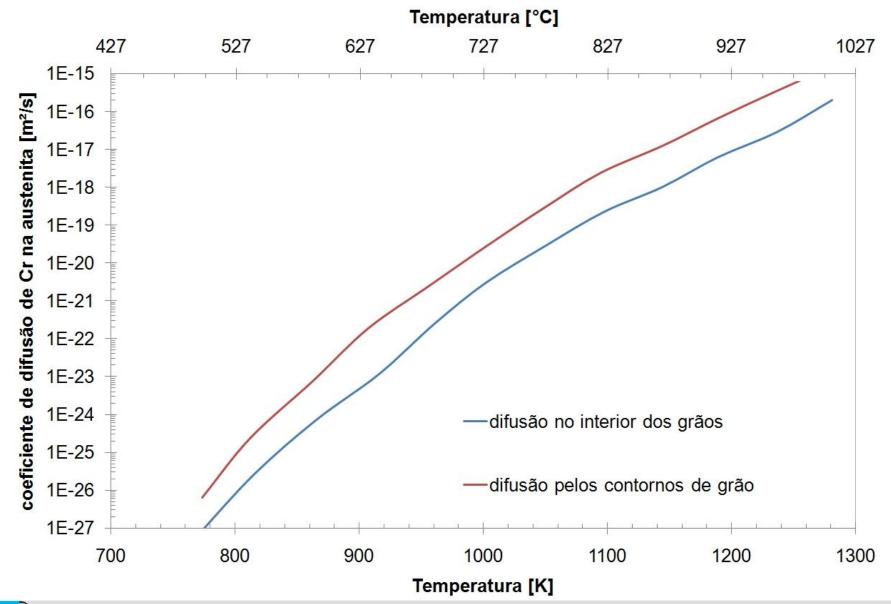
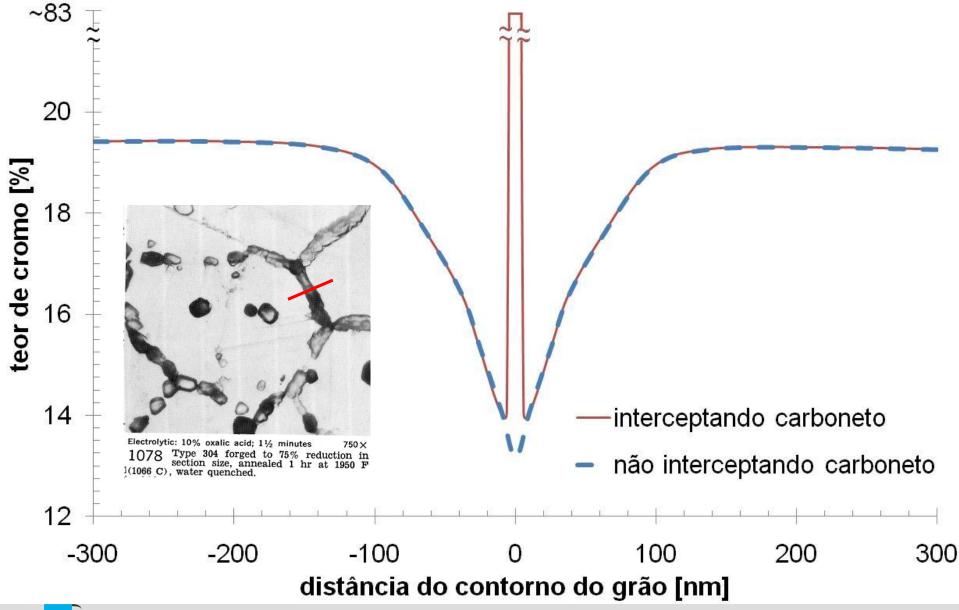
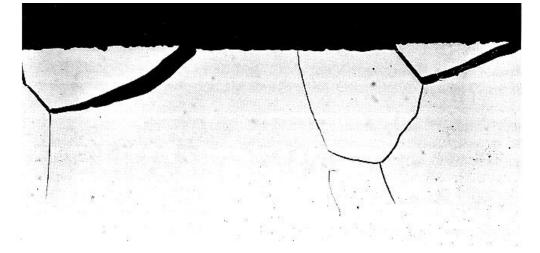


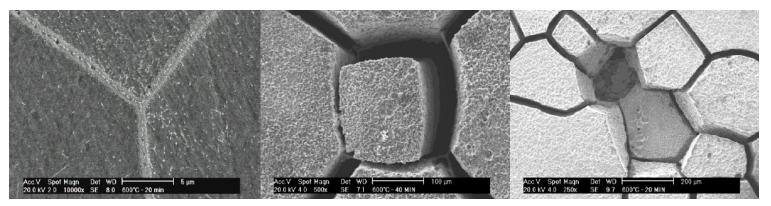
Diagrama Tempo-Temperatura-Precipitação para um aço AISI 316



A formação de carbonetos de cromo depende de difusão...



Sensitização e corrosão intergranular



Corrosão intergranular causada por **SENSITIZAÇÃO** (precipitação de carbonetos de cromo, ou de fases ricas em cromo, nos contornos de grão).

Figure 6.1 Intergranular attack in a sensitized austenitic alloy produced by exposure to a boiling sulfuric acid–ferric sulfate solution. Prolonged exposure causes grains to detach from surface. (Magnification = $100 \times$.)



Carlos Augusto Serna-Giraldo, Resistência à corrosão intergranular do aço inoxidável ferrítico UNS S43000 : avaliação por método de reativação eletroquímica, efeito de tratamento isotérmico e mecanismo de sensitização. Tese (Doutorado em Engenharia), São Paulo, EP-USP, 2006, 197p.

Ligas resistentes à corrosão e oxidação

Material	Tensile Strength (psi)	Yield Strength (psi)	% Elongation	Strengthening Mechanism	Applications
Pure Ni (99.9% Ni)	50,000	16,000	45	Annealed	Corrosion resistance
	95,000	90,000	4	Cold-worked	Corrosion resistance
Ni-Cu alloys:					
Monel 400 (Ni-31.5% Cu)	78,000	39,000	37	Annealed	Valves, pumps, heat exchangers
Monel K-500 (Ni-29.5% Cu-2.7% Al-0.6% Ti)	150,000	110,000	30	Aged	Shafts, springs, impellers
Ni superalloys:					
Inconel 600 (Ni-15.5% Cr-8% Fe)	90,000	29,000	49	Carbides	Heat-treatment equipment
Hastelloy B-2 (Ni-28% Mo)	130,000	60,000	61	Carbides	Corrosion resistance
DS-Ni (Ni-2% ThO ₂)	71,000	48,000	14	Dispersion	Gas turbines
Fe-Ni superalloys:					
Incoloy 800 (Ni-46% Fe-21% Cr)	89,000	41,000	37	Carbides	Heat exchangers
Co superalloys:					
Stellite 6B (60% Co-30% Cr-4.5% W)	177,000	103,000	4	Carbides	Abrasive wear resistance

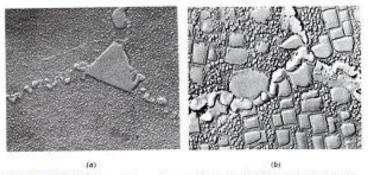
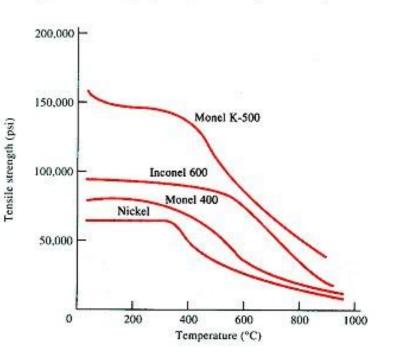



FIGURE 13-13 (a) Microstructure of a superalloy, with carbides at the grain boundaries and γ' precipitates in the matrix (×15,000). (b) Microstructure of a superalloy aged at two temperatures, producing both large and small cubical γ' precipitates (×10,000). (From Metals Handbook, Vol. 9, 9th Ed., American Society for Metals, 1985.)

Exercícios de fixação de conceitos

Para a fabricação de uma broca, foi escolhido o aço rápido AISI M2. Após a confecção da broca foram realizados os seguintes tratamentos térmicos, sobre o material na condição de fornecimento, recozida:

- 1) Austenitização a 1100 C por 10 minutos.
- 2) Resfriamento ao ar agitado.
- 3) Revenimento a 550 C por 2,5 horas, seguido de resfriamento rápido.
- 4) Novo revenimento a 550 C por 2,5 horas, seguido de resfriamento rápido.

Com base nestas informações, pergunta-se:

- ➤ Quais as alterações microestruturais no aço em cada uma das quatro etapas de tratamentos térmicos? Indique-as num ciclo térmico traçado em escala.
- ➤ O que cada uma das microestruturas discutidas no item anterior fornece à ferramenta em termos de comportamento mecânico em uso?
- ➤ Quais seriam as conseqüências (nos procedimentos de tratamento térmico, nas microestruturas resultantes e no comportamento mecânico em uso) de reduzir a temperatura de austenitização de 1100 C para 920 C?

Exercícios de fixação de conceitos

- 1. De que maneira pode-se endurecer um aço inoxidável ferrítico? Justifique sua resposta.
- 2. Duas chapas de aço inoxidável austenítico soldadas e expostas em um meio corrosivo sofrem corrosão na região da solda. Por que isto ocorre? Qual(is) a(s) solução(ões) para evitar a corrosão?
- 3. Responda com base nas informações dadas sobre o aço inoxidável martensítico AISI 420:
- Quais os tratamentos térmicos para obtenção de máxima resistência mecânica, sabendo que na condição de fornecimento o material está recozido?
- Quais as mudanças estruturais que ocorrem no material após os tratamentos térmicos descritos no 1 item?
- Como as mudanças estruturais descritas no 2 item afetam a resistência à corrosão e a tenacidade deste material?
- Como devem ser os tratamentos térmicos deste aço para obtenção da maior resistência à corrosão juntamente com a menor fragilidade possíveis? O que acontecerá, neste caso, com a resistência mecânica?

