Solução da equação de Poisson 1D com coordenada generalizada

Guilherme Bertoldo

8 de Agosto de 2012

1 Introdução

Ao se resolver a equação de Poisson unidimensional

$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = f(x), \quad 0 \le x \le 1, \tag{1}$$

sujeita às condições de contorno

$$T(0) = T_w \qquad e \qquad T(1) = T_e, \tag{2}$$

com o método dos volumes finitos, é conveniente utilizar malhas não-uniformes com maior concentração de nós nas regiões onde o termo fonte f(x) mais varia. A distribuição não-uniforme de nós pode ser feita com uma transformação de variáveis do tipo

$$x = x(\xi),\tag{3}$$

que mapeia o domínio transformado $\xi_i \leq \xi \leq \xi_f$ no domínio original $0 \leq x \leq 1$ de forma unívoca.

Ao se aplicar a transformação (3) ao problema de valor de contorno (1)-(2) obtém-se

$$\frac{\mathrm{d}}{\mathrm{d}\xi} \left(J \frac{\mathrm{d}T}{\mathrm{d}\xi} \right) = \frac{f(x(\xi))}{J}, \quad \xi_i \le \xi \le \xi_f, \tag{4}$$

sujeita a

$$T(\xi_i) = T_w \qquad e \qquad T(\xi_f) = T_e, \tag{5}$$

onde

$$J = \left(\frac{\mathrm{d}x}{\mathrm{d}\xi}\right)^{-1},\tag{6}$$

representa o jacobiano da transformação.

O domínio transformado, ou domínio computacional, pode ser então discretizado de maneira uniforme. Neste caso, todos os volumes do domínio computacional serão de faces centradas entre nós e de nós centrados entre faces, enquanto no domínio original, nenhuma destas características é garantida. Daí surge a seguinte questão: ao se aplicar esquemas numéricos de segunda ordem de acurácia no domínio computacional à equação transformada, a solução numérica também terá segunda ordem de acurácia? O objetivo deste trabalho é responder esta pergunta.

2 Modelo numérico

Deseja-se resolver o problema de valor de contorno (4)-(5) com base no método dos volumes finitos. Para isso, o domínio transformado $0 \le \xi \le n$ é discretizado em n volumes uniformes de comprimento $\Delta \xi = 1$. Com esta discretização as faces oeste dos volumes estarão localizadas em

$$\xi_w = 0, 1, 2, \cdots, n - 1, \tag{7}$$

as faces leste em

$$\xi_e = 1, 2, \cdots, n \tag{8}$$

e o centroide de cada volume em

$$\xi_P = \frac{1}{2}, \frac{3}{2}, \cdots, n - \frac{1}{2}.$$
(9)

Integrando-se a eq. (4) em um volume elementar deste domínio, isto é,

$$\int_{\xi_w}^{\xi_e} \frac{\mathrm{d}}{\mathrm{d}\xi} \left(J \frac{\mathrm{d}T}{\mathrm{d}\xi} \right) \mathrm{d}\xi = \int_{\xi_w}^{\xi_e} \frac{f(x(\xi))}{J} \mathrm{d}\xi,\tag{10}$$

 $obt\acute{e}m\text{-}se$

$$J_e \left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_e - J_w \left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_w = \frac{f(x(\xi_P))}{J_P} \Delta\xi + \mathcal{O}(\Delta\xi^3),\tag{11}$$

onde foi usada a aproximação

$$\int_{\xi_w}^{\xi_e} g(\xi) \mathrm{d}\xi = g(\xi_P) \Delta \xi + \mathcal{O}(\Delta \xi^3).$$
(12)

2.1 Aproximação para as derivadas nas faces

Como se deseja determinar T sobre os nós dos volumes elementares, isto é, sobre ξ_P , é preciso expressar as derivadas nas faces em termos dos valores nodais de T. As expressões para as derivadas dependem se o volume é de fronteira ou interno. Destas aproximações resultará um sistema linear da forma

$$a_P T_P + a_E T_E + a_W T_W = b_P, (13)$$

cujos coeficientes a_P , a_E , a_W e o termo fonte b_P serão especificados a seguir.

2.1.1 Volume da fronteira oeste

Neste caso as derivadas nas faces são aproximadas por

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_e = \frac{T_E - T_P}{\Delta\xi} + \mathcal{O}(\Delta\xi^2) \tag{14}$$

е

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_{w} = \frac{-8T_{w} + 9T_{P} - T_{E}}{3\Delta\xi} + \mathcal{O}(\Delta\xi^{2}),\tag{15}$$

que combinadas à eq. (4) produzem

$$a_P T_P + a_E T_E = b_P + \mathcal{O}(\Delta \xi^2), \tag{16}$$

onde

$$a_P = -\frac{J_e + 3J_w}{\Delta\xi},\tag{17}$$

$$a_E = \frac{J_e + J_w/3}{\Delta\xi},\tag{18}$$

$$b_P = \frac{f_P}{J_P} \Delta \xi - \frac{8}{3} \frac{T_w J_w}{\Delta \xi}.$$
(19)

2.1.2 Volume da fronteira leste

Neste caso as derivadas nas faces são aproximadas por

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_{w} = \frac{T_P - T_W}{\Delta\xi} + \mathcal{O}(\Delta\xi^2) \tag{20}$$

е

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_e = \frac{8T_e - 9T_P + T_W}{3\Delta\xi} + \mathcal{O}(\Delta\xi^2),\tag{21}$$

que combinadas à eq. (4) produzem

$$a_P T_P + a_W T_W = b_P + \mathcal{O}(\Delta \xi^2), \tag{22}$$

 $\quad \text{onde} \quad$

$$a_P = -\frac{3J_e + J_w}{\Delta\xi},\tag{23}$$

$$a_W = \frac{J_e/3 + J_w}{\Delta\xi},\tag{24}$$

$$b_P = \frac{f_P}{J_P} \Delta \xi - \frac{8}{3} \frac{T_e J_e}{\Delta \xi}.$$
(25)

2.1.3 Volumes internos

Neste caso as derivadas nas faces são aproximadas por

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_e = \frac{T_E - T_P}{\Delta\xi} + \mathcal{O}(\Delta\xi^2) \tag{26}$$

 \mathbf{e}

$$\left. \frac{\mathrm{d}T}{\mathrm{d}\xi} \right|_{w} = \frac{T_P - T_W}{\Delta\xi} + \mathcal{O}(\Delta\xi^2) \tag{27}$$

que combinadas à eq. (4) produzem

$$a_P T_P + a_E T_E + a_W T_W = b_P + \mathcal{O}(\Delta \xi^2), \tag{28}$$

 $\quad \text{onde} \quad$

$$a_P = -\frac{J_e + J_w}{\Delta\xi},\tag{29}$$

$$a_E = \frac{J_e}{\Delta\xi},\tag{30}$$

$$a_W = \frac{J_w}{\Delta\xi},\tag{31}$$

$$b_P = \frac{f_P}{J_P} \Delta \xi. \tag{32}$$

2.2 Cálculo das propriedades geométricas

2.2.1 Cálculo de x_P

Há duas opções para o cálculo de x_P , (i) exatamente, através da relação $x(\xi)$, ou (ii) aproximadamente, através da fórmula

$$x_P = \frac{x_w + x_e}{2} + \mathcal{O}(\Delta \xi^2). \tag{33}$$

No caso (ii) os volumes do domínio original serão de nós centrados entre faces, ao passo que no caso (i) é possível que os volumes não sejam de faces centradas entre nós e nem de nós centrados entre faces.

2.2.2 Cálculo do jacobiano em x_P

$$J_P = (x_{\xi})_P^{-1} = \left(\frac{x_e - x_w}{\Delta\xi}\right)^{-1} + \mathcal{O}(\Delta\xi^2).$$
(34)

2.2.3 Cálculo do jacobiano nas faces

1. Face da fronteira oeste

$$J_w = \left(\frac{-3x_w + 4x_P - x_e}{\Delta\xi}\right)^{-1} + \mathcal{O}(\Delta\xi^2).$$
(35)

2. Face da fronteira leste

$$J_e = \left(\frac{x_w - 4x_P + 3x_e}{\Delta\xi}\right)^{-1} + \mathcal{O}(\Delta\xi^2).$$
(36)

3. Faces internas

$$J_e = \left(\frac{x_E - x_P}{\Delta\xi}\right)^{-1} + \mathcal{O}(\Delta\xi^2), \tag{37}$$

$$(J_w)_P = (J_e)_W. aga{38}$$

2.3 Cálculo das grandezas de interesse

Há três variáveis de interesse, T(x = 1/2) (variável local), a média de T(x) sobre todo o domínio (variável global) e a norma l_1 de $|T_P - T(x_P)|$, onde T(x) é a solução analítica e T_P a solução numérica. A média da função T é calculada como

$$\overline{T} = \int_0^1 T(x) dx = \int_0^n T(x(\xi)) J^{-1} d\xi$$
$$= \sum_P \frac{T_P}{J_P} \Delta \xi + \mathcal{O}(\Delta \xi^2),$$
(39)

onde a soma deve ser feita sobre o centroide todos os volumes do domínio computacional. O valor de T(x = 1/2)é obtido através de interpolação da solução numérica T_P com um polinômio de grau dois, uma vez que não é possível garantir que exista um nó sobre x = 1/2. A norma l_1 de $|T_P - T(x_P)|$ é dada por

$$R_{l_1} = \sum_{P} |T_P - T(x_P)|.$$
(40)

3 Análise de casos

Neste estudo o termo fonte da equação de Poisson é dado por

$$f(x) = a_0 + a_1 x + a_2 x^2, (41)$$

o que conduz às seguintes soluções analíticas

$$T(x) = \frac{a_2 x^4 + 2a_1 x^3 + 6a_0 x^2}{12} - \frac{(12T_w - 12T_e + a_2 + 2a_1 + 6a_0) x}{12} + T_w,$$
(42)

$$\overline{T} = \frac{60\,T_w + 60\,T_e - 3\,a_2 - 5\,a_1 - 10\,a_0}{120} \tag{43}$$

е

$$T\left(x=\frac{1}{2}\right) = \frac{96\,T_w + 96\,T_e - 7\,a_2 - 12\,a_1 - 24\,a_0}{192}.\tag{44}$$

A transformação de coordenadas é dada por

$$x(\xi) = c_1 \left(\frac{\xi}{n}\right) + (1 - c_1) \left(\frac{\xi}{n}\right)^{c_2}.$$
(45)

Com base nestas informações, os casos a serem estudados são dados a seguir. Em todos eles, fez-se $T_w = 1$ e $T_e = 2$.

1. Caso 1. Termo fonte nulo com malha uniforme no domínio original.

$$a_0 = 0 \tag{46}$$

$$a_1 = 0 \tag{47}$$

$$a_2 = 0 \tag{48}$$

$$c_1 = 1 \tag{49}$$

$$c_2 = 0 \tag{50}$$

Neste caso espera-se que a solução numérica seja igual à analítica para todas as variáveis de interesse.

2. Caso 2. Termo fonte nulo com malha não-uniforme no domínio original e x_P calculado exatamente.

$$a_0 = 0 \tag{51}$$

 $a_1 = 0 \tag{52}$

$$a_2 = 0 \tag{53}$$

 $c_1 = 1/2$ (54)

$$c_2 = 2$$
 (55)

Neste caso espera-se que a solução numérica seja igual à analítica para todas as variáveis de interesse, exceto para \overline{T} , pois T será uma função quadrática de ξ .

3. Caso 3. Termo fonte não-nulo com malha não-uniforme no domínio original e x_P calculado exatamente.

$$a_0 = 1$$
 (56)

$$a_1 = 1$$
 (57)

$$a_2 = 1$$
 (58)

$$c_1 = 1/2$$
 (59)

$$c_2 = 3$$
 (60)

Neste caso os volumes do domínio original não são de faces centradas entre nós nem de nós centrados entre faces.

4. Caso 4. Termo fonte não-nulo com malha não-uniforme no domínio original e x_P calculado aproximadamente.

$$a_0 = 1 \tag{61}$$

$$a_1 = 1 \tag{62}$$

- $a_2 = 1$ (63)
- $c_1 = 1/2$ (64)
- $c_2 = 3$ (65)

Neste caso os volumes do domínio original são de nós centrados entre faces.

4 Resultados

Os resultados apresentados a seguir foram obtidos com o código Poisson1D-revisão-2.

4.1 Caso 1

Verificou-se que a solução numérica é igual à analítica para todas as variáveis de interesse, como esperado.

4.2 Caso 2

Verificou-se que a solução numérica é igual à analítica para todas as variáveis de interesse, exceto para \overline{T} , como esperado.

4.3 Caso 3

```
A malha para n = 4 é dada abaixo. Observe que, no domínio original, os volumes não são de
face centrada entre nós, nem de nós centrados entre faces. Ainda assim, os resultados das
tabelas a seguir mostram que a ordem aparente de todas as variáveis de interesse convergem
para dois.
```

XW	xp	xe	Jw	Jp	Je
0.000000000000E+00	6.34765625000000E-02	1.3281250000000E-01	8.25806451612903E+00	7.52941176470588E+00	6.64935064935065E+00
1.3281250000000E-01	2.13867187500000E-01	3.1250000000000E-01	6.64935064935065E+00	5.56521739130435E+00	4.53097345132743E+00
3.1250000000000E-01	4.34570312500000E-01	5.8593750000000E-01	4.53097345132743E+00	3.65714285714286E+00	2.95953757225434E+00
5.8593750000000E-01	7.72460937500000E-01	1.000000000000E+00	2.95953757225434E+00	2.41509433962264E+00	2.01574803149606E+00

Resultados para a média de T(x) em diversas malhas

módia do T	IIa		cim
1 21222002004024100E+00	þo	11	51M
1.3132396264634190E+00		4	201
1.3423983835966953E+00		8	S02
1.3484811209631331E+00	2.2611266123121716E+00	16	S03
1.3496813237641385E+00	2.3414425125938556E+00	32	S04
1.3499288520712776E+00	2.2776127767149061E+00	64	S05
1.3499833355039752E+00	2.1837040125709941E+00	128	S06
1.3499959778218615E+00	2.1075566059228881E+00	256	S07
1.3499990126774093E+00	2.0585612422553505E+00	512	S08
1.3499997554612595E+00	2.0306134958169304E+00	1024	S09
1.3499999391515891E+00	2.0156667704741387E+00	2048	S10
1.3499999848235533E+00	2.0078949356632063E+00	4096	S11
1.3499999962042526E+00	2.0047196320845599E+00	8192	S12
1.3499999990694247E+00	1.9898955011456418E+00	16384	S13
1.3499999998218095E+00	1.9290791497722304E+00	32768	S14
Resultados para T(x=0.5)	em diversas malhas		
T(x=0.5)	 թՄ	n	sim
1.2704636554883322E+00	*	4	S01

1.2764753971559861E+00		8	S02		
1.2766282079299931E+00	5.2979648460338087E+00	16	S03		
1.2762458346523109E+00	NaN	32	S04		
1.2761004811923031E+00	1.3954162895553948E+00	64	S05		
1.2760573695310873E+00	1.7534153540605482E+00	128	S06		
1.2760457535388727E+00	1.8919657632598650E+00	256	S07		
1.2760427045677167E+00	1.9297179842212526E+00	512	S08		
1.2760419286951774E+00	1.9744309317361866E+00	1024	S09		
1.2760417324271878E+00	1.9829947699258228E+00	2048	S10		
1.2760416831461485E+00	1.9937203100565357E+00	4096	S11		
1.2760416707778106E+00	1.9943810401331989E+00	8192	S12		
1.2760416677219883E+00	2.0170191017266634E+00	16384	S13		
1.2760416669911674E+00	2.0639707183501574E+00	32768	S14		
lesultados para a norma I	L_inf de T-Ta em diversa	as malhas	3		

-

max T-Ta	Uq	n	sim
2.3374527783371901E-02	-	4	S01
4.5401531671964701E-03		8	S02
7.0232806222736421E-04	2.2950072577559064E+00	16	S03
1.9901787469334131E-04	2.9307692624840631E+00	32	S04
5.8727048064088905E-05	1.8430271230667838E+00	64	S05
1.5904540997979666E-05	1.7119795101015289E+00	128	S06
4.1358132385482804E-06	1.8634108930992406E+00	256	S07
1.0543506272497893E-06	1.9332711769432354E+00	512	S08
2.6616617865293790E-07	1.9670100968408679E+00	1024	S09
6.6863330205890747E-08	1.9835709550247516E+00	2048	S10
1.6756066756329346E-08	1.9918706754947484E+00	4096	S11
4.1834338215807065E-09	1.9947329411866785E+00	8192	S12
1.0681797668610216E-09	2.0128650800017023E+00	16384	S13
3.2788616266543613E-10	2.0731803529766646E+00	32768	S14

4.4 Caso 4

A malha para n = 4 é dada abaixo. Observe que, no domínio original, os volumes são de nós centrados entre faces. Ainda assim, os resultados das tabelas a seguir mostram que a ordem aparente de todas as variáveis de interesse convergem para dois.

XW	xp	xe	Jw	Jp	Je
0.000000000000E+00	6.6406250000000E-02	1.3281250000000E-01	7.52941176470588E+00	7.52941176470588E+00	6.400000000000E+00
1.3281250000000E-01	2.2265625000000E-01	3.1250000000000E-01	6.400000000000E+00	5.56521739130435E+00	4.41379310344828E+00
3.1250000000000E-01	4.4921875000000E-01	5.8593750000000E-01	4.41379310344828E+00	3.65714285714286E+00	2.90909090909091E+00
5.8593750000000E-01	7.9296875000000E-01	1.000000000000E+00	2.90909090909091E+00	2.41509433962264E+00	2.41509433962264E+00

Resultados para a média de T(x) em diversas malhas

-			-	
	média de T	pU	n	sim
	1.3433615189321957E+00		4	S01
	1.3503954096583459E+00		8	S02
	1.3505173110742266E+00	5.8505361343662896E+00	16	S03
	1.3501942455946283E+00	NaN	32	S04
	1.3500575551097318E+00	1.2409137834490462E+00	64	S05
	1.3500155710013713E+00	1.7029975658386372E+00	128	S06
	1.3500040442541152E+00	1.8648578937449887E+00	256	S07
	1.3500010302374932E+00	1.9352261764910161E+00	512	S08
	1.3500002599710315E+00	1.9682578580880978E+00	1024	S09
	1.3500000652962427E+00	1.9842915494865461E+00	2048	S10
	1.3500000163580397E+00	1.9920330272166304E+00	4096	S11
	1.3500000040979991E+00	1.9969973789207709E+00	8192	S12
	1.350000010132127E+00	1.9907212357185353E+00	16384	S13
	1.350000002796546E+00	2.0721874610345155E+00	32768	S14

Resultados para T(x=0.5) em diversas malhas -----

	T(x=0.5)	Սզ	n	sim
1.285509	94411718575E+00	-	4	S01
1.280434	1625684925E+00		8	S02
1.277644	47868804559E+00	8.6354476272638747E-01	16	S03
1.276503	30507214044E+00	1.2887129569036977E+00	32	S04
1.276165	52183183894E+00	1.7568496852185251E+00	64	S05
1.276073	36117956732E+00	1.8827854778992521E+00	128	S06
1.276049	98215642788E+00	1.9450810229620565E+00	256	S07
1.276043	37225198371E+00	1.9637141706342893E+00	512	S08
1.276042	21833025306E+00	1.9863863028362083E+00	1024	S09
1.27604:	L7960977815E+00	1.9910283727348548E+00	2048	S10
1.27604:	L6990599712E+00	1.9964777478110447E+00	4096	S11
1.27604:	L6747760168E+00	1.9985436253660271E+00	8192	S12
1.27604:	L6686807365E+00	1.9942389021869420E+00	16384	S13
1.27604:	L6672068917E+00	2.0481079260637980E+00	32768	S14
Resultados	s para a norma I	, inf de T-Ta em divers	as malhas	5

sessitudos para a norma L_Ini de |1-1a| em diversas mainas

	**		
max I-Ia	pU	n	sım
9.0307046830599980E-03		4	S01
4.4672084548198487E-03		8	S02
1.5903948914222088E-03	6.6566781107014694E-01	16	S03
4.7947939676062923E-04	1.3727226502072776E+00	32	S04
1.3163266407523189E-04	1.6752254030032543E+00	64	S05

3.4483326478262910E-05	1.8401757054895542E+00	128	S06
8.8246229517086050E-06	1.9207558826627189E+00	256	S07
2.2320672472542213E-06	1.9605385148607031E+00	512	S08
5.6128207415184761E-07	1.9803116104442759E+00	1024	S09
1.4073215459653454E-07	1.9901772812731813E+00	2048	S10
3.5230627304372319E-08	1.9950131752574658E+00	4096	S11
8.8194103131655766E-09	1.9980411987699080E+00	8192	S12
2.1861510379750371E-09	1.9933609574409188E+00	16384	S13
5.9011640018979961 E-10	2.0552259559650667E+00	32768	S14

5 Conclusão

Com base nos resultados numéricos obtidos para os casos estudados neste trabalho, pode-se afirmar que ao se aplicar esquemas numéricos de segunda ordem de acurácia no domínio computacional à equação transformada, a solução numérica também terá segunda ordem de acurácia, mesmo que os volumes do domínio original não sejam de faces centradas entre nós, nem de nós centrados entre faces.