TDMA-2D solvers
 Report

Guilherme Bertoldo

July 24, 2011

This report presents results of pallelization of a line-by-line TDMA solver for a linear system $A x=b$, where A is a 5-diagonal matrix or a 9-diagonal matrix. Parallelization was implemented using OpenMP.

TDMA-2D 5-diagonals

Solver tdma2d5 was developed to solve a bidimentional problem with n_{x} volumes in the x-direction and n_{y} volumes in the y-direction totalizing $N=n_{x} n_{y}$ unknowns. This solver was tested for a fabricated linear system whose solution was known. Once the solver was verified, it was measured the time t_{1} required by a single processor to solve a linear system of $n_{x}=n_{y}=2^{n}$ unknowns $\left(N=2^{2 n}\right)$, where $n=2,3, \ldots, 11$. Then the procedure was repeated using two processors instead of one, producing a different time t_{2}. Times t_{1} and t_{2} were measured three times (fig. 1) using an intrinsic timer of OpenMP (OMP_GET_WTIME()). One should expect that with two processors time t_{2} would be a half of t_{1}, however fig. 1 shows that t_{2} is about 70% of t_{1} for $N=n_{x} n_{y}$ higher than 10^{3}. For smaller values of N, multiprocessing may be worse than single processing. This occurs because there is a time consumption spent to organize the threads that will share the work. For small values of N this organizing time is comparable to the working time. Another important observation is that time measurement may have a big fluctuation. This may be caused by the system use of one of the processors during the calculation. So this numerical experiment should be repeated in a computer with more than two cores.

Figure 1: Time ratio versus linear system size for tdma2d5

TDMA-2D 9-diagonals

The same comments made to solver tdma2d5 are valid to tdma2d9, but now, A is a 9 -diagonal matrix. The measurements are presented in fig. 2.

Figure 2: Time ratio versus linear system size for tdma2d9

