
Stopping Criteria for Iterative Solution Methods
Lecture notes for ME 448/548

Gerald Recktenwald∗

February 14, 2012

1 Direct and Iterative Methods

The goal is to solve
Ax = b (1)

where A is an n × n matrix, x and b are n-element column vectors. A direct
method obtains the solution in a finite number of steps. In other words, for
a given system we know, a priori, exactly how many mathematical operations
are required to solve Ax = b by a direct method. Gaussian elimination with
backward substitution is a direct method.

The formal solution to Equation (1) is

x = A−1b (2)

It is a bad idea to compute x from Equation (2). Instead, we perform a pro-
cedure, for example Gaussian elimination with backward substitution, that has
the same effect as the multiplication A−1b but without all the round-off and
computational efficiency of a literal implementation of Equation (2)

Iterative Methods obtain a sequence of approximations to the solution

xk k = 0, 1, 2, . . .

such that (b − Axk) → 0 as k → ∞. In practice the number of iterations of
an iterative method is finite. Thus, we don’t know how many mathematical
operations are required to obtain a solution. At some point we merely declare
that the solution is close enough. What is a rational criterion for deciding when
to stop?

∗Mechanical and Materials Engineering Department,Portland State University,Portland,
OR, 97201, gerry@me.pdx.edu

1

2 Residual

The residual
r = b−Ax

is zero when x is the solution to Ax = b. For an iterative method the residual
at iteration k is

rk = b−Axk k = 0, 1, 2, . . . (3)

If an iterative methods converges then rk → 0 as k →∞.

3 Convergence

Let x∗ designate the exact solution. If the exact solution exists (i.e., if A is
nonsingular), then x∗ is obtained only after an infinite number of iterations of
an iterative method.

Substitute Ax∗ for b into Equation (3)

rk = Ax∗ −Axk = A(x∗ − xk) =⇒ x∗ − xk = A−1rk.

Therefore, the size of the error at the kth iteration is

‖x∗ − xk‖ = ‖A−1rk‖.

From the definition of matrix norms, (see, e.g., [2, p. 42])

‖A−1rk‖ ≤ ‖A−1‖‖rk‖

so
‖x∗ − xk‖ ≤ ‖A−1‖‖rk‖.

Dividing through by the scalar, ‖x∗‖, gives

‖x∗ − xk‖
‖x∗‖

≤ ‖A−1‖ ‖r
k‖

‖x∗‖
. (4)

To continue we need a replacement for
1

‖x∗‖
on the right hand side of Equa-

tion (4). Consider

‖b‖ = ‖Ax∗‖ ≤ ‖A‖‖x∗‖ =⇒ 1

‖x∗‖
≤ ‖A‖
‖b‖

(5)

Substituting the right hand side of Equation (5) into the right hand side of
Equation (4) gives

‖x∗ − xk‖
‖x∗‖

≤ ‖A−1‖‖rk‖‖A‖
‖b‖

. (6)

Introduce the condition number of A

κ(A) ≡ ‖A‖‖A−1‖

2

into Equation (6) to get

‖x∗ − xk‖
‖x∗‖

≤ κ(A)
‖rk‖
‖b‖

. (7)

Therefore, the relative error in the solution to Ax = b incurred by stopping at
iteration k can be estimated by the size of ‖rk‖/‖b‖. If A is ill-conditioned, i.e.,
if κ(A) is large, then ‖rk‖/‖b‖ is not a reliable indicator of convergence.

4 Implementation

The preceding analysis suggests that a stopping criterion is ‖r‖ < ε‖b‖, where
ε is a tolerance. Thus, the iterations continue until

‖rk‖
‖b‖

< ε (8)

ε is a small value, but much larger than machine precision. Typically 5×10−3 >
ε > 1 × 10−6, but the value of ε will depend on the problem being solved and
the cost of the iterations.

The following Matlab code snippet shows how a convergence test might be
implemented. Suppose that there is a routine called itersolver that performs
one iteration to update x from the fixed A and b and the current guess at x.

A = ... % A and b are defined by the problem to be solved

b = ...

x = ... % initial guess

tol = ... % Convergence tolerance, e.g. tol = 5.0e-4

normb = norm(b); % compute ||b|| only once

itermax = ... % Limit on the number of iterations

while i<itermax

r = b - A*x; % Compute residual with previous x

normr = norm(r) % Save for printing

if normr/normb < tol, break; end % Test before solving; exit loop if true

x = itersolver(A,b,x); % Update the solution

i = i + 1;

fprintf(’ %4d %12.3e\n’,i,normr);

end

Note that the convergence tolerance is tol, not eps because eps is a built-in
variable equal to machine precision, eps ∼ 2× 10−16.

5 Alternative Criterion

In CFD codes a typical stopping criterion is

‖rk‖
‖r0‖

< ε (9)

3

where r0 = b − Ax0 is the residual based on the initial guess, x0. If x0 = 0,
i.e., if the initial guess is a vector of zeros, then r0 = b. However, for any other
x0, the value of r0 may be large and unrelated to the true solution. If r0 is
artificially large then the iterations may be stopped prematurely.

Barret et. al [1, Chapter 4] consider Equation (9) to be a Dubious Criterion
and recommend against using it. However, it is widely used.

6 Nonlinear Systems of Equations

A nonlinear system of equations can be written in the familiar form

Ax = b, (10)

but now A = A(x) and b = b(x). Solution methods for nonlinear systems are
generalizations of the root-finding methods for solving scalar equations of the
form f(ξ) = 0. When a system of nonlinear equations is to be solved, the ξ
becomes a vector of unknowns, and solving Ax = b is equivalent to finding the
x that gives

f(x) = Ax− b = 0, (11)

where f(x) is a vector valued function of x. Alternatively, one can express the
nonlinear problem in terms of the residual

r = b−Ax = −f(x). (12)

An iterative method to solve Equation (10) can be written as

xk+1 = xk + ∆xk, k = 1, 2, . . . , (13)

Remember that xk is not the kth power of x. Using this equation requires a
procedure for computing the update vector ∆xk from the linearized coefficient
matrix and right-hand-side vector

Ak = A(xk), bk = b(xk).

Before the update to xk is computed, the vector fk = f(xk), or

fk = Akxk − bk, (14)

will not be zero unless xk is the solution to the nonlinear problem. Thus,
convergence of the iterative algorithm is monitored by checking ‖fk‖, which,
because ‖y‖ is always positive for any y, is equal to ‖rk‖. The logic of the
iterative solution to Equation (10) is contained in Algorithm 1

4

Algorithm 1 Iterative Solution of Nonlinear Systems

initialize: x = x(0)

for k = 0, 1, 2, . . .
Ak = A(xk) Linearize A
bk = b(xk) and b
fk = Akxk − bk
if ‖fk‖ is small enough, stop
∆xk+1 = . . . Compute the update
xk+1 = xk + ∆xk

end

Two very important observations:

1. The non-linear system must use iterations to approach the solution. There
is no direct method to solve Ax = b when A = A(x) and/or b = b(x).

2. The update step, ∆xk+1 requires work equivalent to solving Ax = b.
In other words, each step of the iterative solver requires solution of a
linear(ized) system of equations.

6.1 Inner and Outer Iterations

Iterative methods are often used to compute the update ∆xk+1 from the current
estimates of the linearized coefficients Ak and right hand side bk. This leads to
iterations within iterations.

Outer Iterations: Each step of the updating the non-linear system
of equations Akxk+1 = bk is called an outer iteration.

Inner Iterations: Each step of the iterative solver applied to the
frozen coefficients Ak and bk for finding xk+1 is called an inner iter-
ation.

We need two different iteration counters. In §1 through §5, k was the counter
for the inner iterations. In practice, this is not a problem because the iterative
solver has internal variables that are not shared with the rest of the code.

Note that we only really care about the residual of the outer iterations. We
don’t want to spend too much effort on the inner iterations because during
the next outer iterations the Ak+1 and bk+1 are different than Ak and bk. In
practice, the inner iterations need to be repeated enough that the update ∆xk+1

moves the non-linear solution in the right direction.

5

References

[1] R. Barret, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadel-
phia, 1994.

[2] G. Golub and J. M. Ortega. Scientific Computing: An Introduction with
Parallel Computing. Academic Press, Inc., Boston, 1993.

6

