Documentação do código Mach-2D. Escoamento bidimensional externo sobre a parte frontal de um corpo de simetria plana ou axial.

Euler

Versão: 5.8.2.1 (Revisão - 004; Branch: REAL)

Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke

3 de Dezembro de 2012

Conteúdo

1	Descrição conceitual 1.1 Características do fluido e do escoamento									
	1.2	Condiçõe	s iniciais e de contorno	3						
2	Moo	delagem 1	matemática	3						
	2.1	Equações	de conservação para simetria plana ou axial	3						
	2.2	Equações	de conservação para coordenadas curvilíneas $\mathcal{E}n$	4						
	2.3	Condicão	inicial	4						
	2.4	Codicões	de contorno	4						
		2.4.1 Co	ontorno norte	4						
		2.4.2 Co	ontorno sul	5						
		2.4.3 Co	ontorno leste	5						
		2.4.4 Co	ontorno oeste	5						
	2.5	Grandeza	is de interesse	5						
	2.6	Proprieda	ades geométricas no sistema $\xi\eta$	6						
9	Ма			7						
ა	2 1	Interroce	numerica o dos equações de transporte em um volume elementar	7						
	ე.⊥ ეე	Integraça	do malha	6						
	3.4	Geração d	Ja mama	0						
		3.2.1 G	eração dos nos do contorno norte	ð o						
		3.2.2 G	\tilde{c}	8						
		3.2.3 G	eração dos nos intermediarios	8						
	3.3	Aproxima	ações para os termos geometricos	9						
		3.3.1 Ua	alculo de $x \in y$ nos centroides	9						
		3.3.2 Ca	alculo de r nas faces e centroides	.0						
		3.3.3 Ca	alculo das derivadas de $x \in y$ em relação a ξ	.0						
		3.3.4 Ca	alculo das derivadas de x e y em relação a η	. 1						
		3.3.5 Ca	alculo do jacobiano	.1						
	a (3.3.6 Ca	àlculo das componentes do tensor métrico	.2						
	3.4	Aproxima	ações para as variáveis nas faces	.2						
		3.4.1 Vo	olumes internos	.2						
		3.4.2 Co	σ ontorno sul (exceto os cantos)	.4						
		3.4.3 Co	$\operatorname{pontorno}$ norte (exceto os cantos)	.4						
		3.4.4 Co	$\operatorname{pontorno}$ oeste (exceto os cantos)	.5						
		3.4.5 Co	ontorno leste (exceto os cantos) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	. 5						
		3.4.6 Ca	${ m anto}~{ m SW}$	6						

	3.4.7	Canto SE	16		
	3.4.8	Canto NW	17		
	3.4.9	Canto NE	17		
3.5	Acopla	amentos pressão-velocidade (SIMPLEC) e pressão-densidade	18		
	3.5.1	Aproximações para os nós dos volumes reais	18		
	3.5.2	Aproximações para as interfaces dos volumes reais	19		
	3.5.3	Aproximações para as faces dos contornos	23		
3.6	Equaç	ão para a correção da pressão	24		
	3.6.1	Volumes internos	24		
	3.6.2	Contorno sul (exceto os cantos)	25		
	3.6.3	Contorno norte (exceto os cantos)	25		
	3.6.4	Contorno oeste (exceto os cantos)	26		
	3.6.5	Contorno leste (exceto os cantos)	26		
	3.6.6	Canto SW	27		
	3.6.7	Canto SE	27		
	3.6.8	Canto NW	28		
	3.6.9	Canto NE	28		
3.7	Cálcul	o das variáveis sobre os contornos	28		
	3.7.1	Aproximações envolvendo u	28		
	3.7.2	Aproximações envolvendo v	30		
	3.7.3	Aproximações envolvendo U e V	30		
	3.7.4	Aproximações envolvendo T	31		
	3.7.5	Aproximações envolvendo p	32		
	3.7.6	Aproximações envolvendo ρ	32		
3.8 Coeficientes e fontes do sistema linear para p' . Contribuição das C.C.					
3.9	Aprox	imações para as codições iniciais	34		
	3.9.1	Nós dos volumes	34		
	3.9.2	Faces dos volumes	34		
3.10	Coefic	ientes do SIMPLEC para as faces dos contornos	34		
	3.10.1	Contorno norte	34		
	3.10.2	Contorno sul	34		
	3.10.3	Contorno leste	34		
	3.10.4	Contorno oeste	35		
3.11	$\operatorname{Resolut}$	ıção dos sistemas lineares	35		
3.12	Resídu	10s dos sistemas lineares	35		
3.13	Aprox	imações para as grandezas de interesse	35		
	3.13.1	Distribuição do coeficiente de pressão	35		
	3.13.2	Coeficiente $C_{D_{f}}^{p}$	35		
3.14	Algori	tmo	35		
Tra	nsform	nação das equações de transporte do sistema xy para o $\xi\eta$	41		

1 Descrição conceitual

1.1 Características do fluido e do escoamento

- 1. Compressível
- $2. \ Contínuo$

Α

- 3. Não-reativo
- 4. Invíscido
- 5. Gás termicamente perfeito, isto é, a entalpi
ahe a energia interna ε por unidade de massa são funções apenas da temperatura
- 6. Sem radiação térmica
- 7. Propriedade constante: constante do gás (R_g)
- 8. Propriedades variáveis com a temperatura T:
 - c_p : calor específico a pressão constante

- c_v : calor específico a volume constante
- γ : razão entre c_p e c_v
- 9. Sem dissipação viscosa
- 10. Sem forças externas
- 11. Escoamento estacionário
- 12. Escoamento bidimensional plano ou axisimétrico

1.2 Condições iniciais e de contorno

- 1. Escoamento estacionário com transiente distorcido.
- 2. Escoamento não perturbado na entrada.
- 3. Escoamento localmente parabólico na saída.
- 4. Sem troca de calor com as paredes.
- 5. Com deslizamento do fluido sobre as paredes.
- 6. Gradiente de pressão, normal à parede, nulo.
- 7. Escoamento com simetria bidimensional plana ou axial.

2 Modelagem matemática

2.1 Equações de conservação para simetria plana ou axial

A dinâmica do escoamento é descrita através das equações de Euler com as hipóteses feitas acima. Estas equações podem ser escritas de maneira concisa, tanto para a simetria plana quanto axial (detalhes sobre as equações de Euler em diversos sistemas coordenados podem ser vistos no Apêndice B da Ref. [1]), como

$$C^{\phi} \left[\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho u\phi)}{\partial x} + \frac{1}{r} \frac{\partial(\rho r v\phi)}{\partial y} \right] = P^{\phi}, \tag{1}$$

onde t é o tempo, x e y são as coordenadas cartesianas, no caso da simetria plana, ou as coordenadas cilíndricas nas direções axial e radial, respectivamente, no caso da simetria axial, $u \in v$ são as componentes do vetor velocidade nas direções de x e y, respectivamente, $r = y^f$, onde f = 0 para a simetria plana e f = 1 para a simetria axial e ρ é o campo de densidade. As expressões para ϕ , $C^{\phi} \in P^{\phi}$ são dadas a seguir associadas aos princípios de consevação da massa, quantidade de movimento e energia.

- Equação de conservação da massa
- $\phi = 1 \tag{2}$
- $C^{\phi} = 1 \tag{3}$
- $P^{\phi} = 0 \tag{4}$
- Equação de conservação da quantidade de movimento em x

$$\phi = u \tag{5}$$

 $C^{\phi} = 1 \tag{6}$

$$P^{\phi} = -\frac{\partial p}{\partial x} \tag{7}$$

Na equação anterior, p é o campo de pressão.

• Equação de conservação da quantidade de movimento em y

$$\phi = v \tag{8}$$

 $C^{\phi} = 1 \tag{9}$

$$P^{\phi} = -\frac{\partial p}{\partial y} \tag{10}$$

• Equação de conservação da energia térmica

$$\phi = T \tag{11}$$

$$C^{\phi} = c_p \tag{12}$$

$$P^{\phi} = \frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + v \frac{\partial p}{\partial y}$$
(13)

Nas equações anteriores, T é o campo de temperatura e c_p é o calor específico à pressão constante.

O conjunto de equações obtidos da equação (1) para $\phi = 1, u, v \in T$ deve ser complementado com a equação de estado, que neste projeto é a equação de estado dos gases ideais

$$p = \rho R_q T, \tag{14}$$

onde R_g é a constante do gás.

2.2Equações de conservação para coordenadas curvilíneas $\xi\eta$

Para realizar o cálculo numérico, é conveniente que as equações de transporte (1) sejam escritas em um sistema coordenado curvilíneo que se adapte aos contornos do domínio de cálculo. Sejam $\xi \in \eta$ as coordenadas curvilíneas. Então, com base na mudança de coordenadas

$$x = x(\xi, \eta), \qquad y = y(\xi, \eta), \tag{15}$$

as equações de conservação (1) ficam reescritas como

$$C^{\phi} \left[\frac{1}{J} \frac{\partial(\rho\phi)}{\partial t} + \frac{1}{r} \frac{\partial(\rho r U\phi)}{\partial \xi} + \frac{1}{r} \frac{\partial(\rho r V\phi)}{\partial \eta} \right] = P^{\phi}, \tag{16}$$

onde J é o jacobiano da transformação

$$J = [x_{\xi}y_{\eta} - x_{\eta}y_{\xi}]^{-1}, \qquad (17)$$

UeVsão as componentes contravariantes do vetor velocidade sem normalização métrica

$$U = uy_{\eta} - vx_{\eta}, \qquad V = vx_{\xi} - uy_{\xi} \tag{18}$$

e $\alpha,\,\beta$ e γ são componentes do tensor métrico dadas por

- 1

$$\alpha = x_{\eta}^{2} + y_{\eta}^{2}, \qquad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}, \quad \mathbf{e} \quad \gamma = x_{\xi}^{2} + y_{\xi}^{2}.$$
(19)

As expressões para P^{ϕ} são dadas por

$$P^{1} = 0,$$

$$P^{u} = \frac{\partial(py_{\xi})}{\partial x_{\xi}} - \frac{\partial(py_{\eta})}{\partial x_{\xi}} = y_{\xi} \frac{\partial p}{\partial x} - y_{\eta} \frac{\partial p}{\partial x}.$$
(20)
(21)

$$P^{v} = \frac{\partial(px_{\eta})}{\partial\xi} - \frac{\partial(px_{\xi})}{\partial\eta} = x_{\eta}\frac{\partial p}{\partial\xi} - x_{\xi}\frac{\partial p}{\partial\eta}, \qquad (22)$$

$$P^{\mathrm{T}} = \frac{1}{J} \frac{\partial p}{\partial t} - u P^{u} - v P^{v}.$$
⁽²³⁾

As transformações apresentadas acima são deduzidas no Apêndice A.

$\mathbf{2.3}$ Condição inicial

- (24) \boldsymbol{p} = p_{∞}
- T_{∞} (25)T=
- (26) u_{∞} =
- 0 (27)=

Codições de contorno $\mathbf{2.4}$

2.4.1Contorno norte

- (28)p= p_{∞}
- T T_{∞} (29)=
- (30)= u_{∞} u
- (31)= 0

Figura 1: Esquema dos contornos do domínio de cálculo.

2.4.2Contorno sul

$$(\hat{\boldsymbol{n}} \cdot \nabla) p = 0 \tag{32}$$

$$(\hat{\boldsymbol{n}} \cdot \nabla) T = 0$$

$$(33)$$

$$(24)$$

$$\hat{\boldsymbol{n}} \cdot \boldsymbol{u} = 0 \tag{34}$$

2.4.3Contorno leste

Escoamento localmente parabólico:

$$(\boldsymbol{u} \cdot \nabla)\phi = 0, \qquad \phi \in \{p, T, u, v\}$$
(35)

2.4.4Contorno oeste

$$(\hat{\boldsymbol{n}} \cdot \nabla)\phi = 0, \qquad \phi \in \{p, T, u\}$$
(36)

$$v = 0 \tag{37}$$

Grandezas de interesse 2.5

As principais variáveis de interesse neste trabalho são a distribuição de pressão e temperatura sobre a superfície do corpo (propriedades locais), bem como o coeficiente de arrasto frontal (propriedade global).

A distribuição de pressão será dada em termos do coeficiente de pressão C_p , definido por

$$C_p = \frac{p - p_\infty}{q_\infty},\tag{38}$$

onde q_{∞} é a pressão dinâmica,

$$q_{\infty} = \frac{\rho_{\infty} u_{\infty}^2}{2}.$$
(39)

O coeficiente C_p e a distribuição de temperatura podem ser obtidos facilmente após a solução das equações de transporte.

O coeficiente de arrasto C_{D} é definido como

$$C_{\rm D} = \frac{F_x}{A_b q_{\infty}},\tag{40}$$

onde F_x é a componente da força do fluido sobre o corpo na direção do escoamento (neste caso axial) e A_b é a área da base do corpo.

Nas coordenadas cartesianas, a componente $F_i[2]$ da força do fluido (invíscido) sobre o corpo é dada por

$$F_i = \oint_S p \mathrm{d}A_i,\tag{41}$$

onde a integração deve ser feita sobre toda a superfície do corpo. Neste projeto, é de interesse apenas a força que age sobre a superfície frontal. Levando-se em conta que a força é causada pela pressão apenas, o coeficiente de arrasto associado à força sobre a superfície frontal é escrito como

$$C_{\rm Df} = C_{\rm Df}^p \tag{42}$$

onde C^p_{Df} é a componente do arrasto causado pela pressão na superfície frontal.

Utilizando as simplificações das simetrias plana e axial, $C^p_{\scriptscriptstyle\rm Df}$ é escrito como

$$C_{\rm Dr}^{p} = \frac{2^{f}}{q_{\infty} r_{b}^{f+1}} \int_{0}^{l_{r}} \left(p - p_{\infty}\right) r \frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x. \tag{43}$$

Com base no sistema coordenado $\xi\eta$ e considerando que a parede do corpo esteja sobre uma linha η estendendo-se de ξ_i a ξ_f , então é possível escrever

$$C_{\rm Df}^{p} = \frac{2^{f}}{q_{\infty} r_{b}^{f+1}} \int_{\xi_{i}}^{\xi_{f}} \left(p - p_{\infty}\right) r y_{\xi} \, \mathrm{d}\xi.$$
(44)

2.6Propriedades geométricas no sistema $\xi\eta$

Seja r o vetor posição de um ponto cujas coordenadas são (x, y). Em termos dos vetores unitários $i \in j$, nas direções do eixo x e y, respectivamente, e lembrando que $x = x(\xi, \eta)$ e $y = y(\xi, \eta)$, o vetor posição é dado por

$$\boldsymbol{r} = \boldsymbol{x}(\xi, \eta)\boldsymbol{i} + \boldsymbol{y}(\xi, \eta)\boldsymbol{j}.$$
(45)

Com base na Eq. (45), os vetores $E_{\xi} \in E_{\eta}$, tangentes às linhas de $\eta \in \xi$ constantes, respectivamente, são dados por

$$\boldsymbol{E}_{\boldsymbol{\xi}} = \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\xi}} = x_{\boldsymbol{\xi}} \boldsymbol{i} + y_{\boldsymbol{\xi}} \boldsymbol{j}, \qquad (46)$$

$$\boldsymbol{E}_{\eta} = \frac{\partial \boldsymbol{r}}{\partial \eta} = x_{\eta} \boldsymbol{i} + y_{\eta} \boldsymbol{j}.$$
(47)

Por outro lado, os vetores E^{ξ} e E^{η} , normais às linhas de ξ e η constantes, respectivamente, são dados por

$$\boldsymbol{E}^{\boldsymbol{\xi}} = \nabla \boldsymbol{\xi} = \frac{\partial \boldsymbol{\xi}}{\partial x} \boldsymbol{i} + \frac{\partial \boldsymbol{\xi}}{\partial y} \boldsymbol{j} = J(y_{\eta} \boldsymbol{i} - x_{\eta} \boldsymbol{j}), \qquad (48)$$

$$\boldsymbol{E}^{\eta} = \nabla \eta = \frac{\partial \eta}{\partial x} \boldsymbol{i} + \frac{\partial \eta}{\partial y} \boldsymbol{j} = J(-y_{\xi} \boldsymbol{i} + x_{\xi} \boldsymbol{j}), \qquad (49)$$

onde foram usadas as relações de transformação[3]

$$\frac{\partial \xi}{\partial x} = J y_{\eta}, \tag{50}$$

$$\frac{\partial \xi}{\partial y} = -Jx_{\eta},\tag{51}$$

$$\frac{\partial \xi}{\partial y} = -Jx_{\eta},$$

$$\frac{\partial \eta}{\partial x} = -Jy_{\xi},$$

$$\frac{\partial \eta}{\partial y} = -Jr_{\xi}$$
(51)
(52)

$$\frac{\partial \eta}{\partial y} = Jx_{\xi}, \tag{53}$$

lembrando que J é o jacobiano da transformação

$$J = \left[x_{\xi} y_{\eta} - x_{\eta} y_{\xi} \right]^{-1}.$$

O produto interno entre os vetores das Eqs. (46) e (49) satisfazem às seguintes propriedades

$$\boldsymbol{E}_{i} \cdot \boldsymbol{E}^{j} = \delta_{i}^{j}, \qquad \boldsymbol{E}_{i} \cdot \boldsymbol{E}_{j} = g_{ij}, \qquad \boldsymbol{E}^{i} \cdot \boldsymbol{E}^{j} = g^{ij}, \tag{54}$$

onde

$$q_{\xi\xi} = \gamma = x_{\xi}^2 + y_{\xi}^2, \tag{55}$$

 $g_{\xi\xi} = \gamma = x_{\overline{\xi}} + y_{\overline{\xi}},$ $g_{\xi\eta} = \beta = g_{\eta\xi} = x_{\xi}x_{\eta} + y_{\xi}y_{\eta},$ (56)

$$g_{\eta\eta} = \alpha = x_{\eta}^2 + y_{\eta}^2 \tag{57}$$

$$g^{\xi\xi} = J^2 \alpha = J^2 (x_n^2 + y_n^2), \tag{58}$$

$$g^{\xi\eta} = -J^2\beta = g^{\eta\xi} = -J^2(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}),$$
(59)

$$g^{\eta\eta} = J^2 \gamma = J^2 (x_{\xi}^2 + y_{\xi}^2).$$
 (60)

No sistema coordenado $\xi\eta,$ o gradiente de uma função $\phi(\xi,\eta)$ fica

$$\nabla \phi = \boldsymbol{E}^{\xi} \, \frac{\partial \phi}{\partial \xi} + \boldsymbol{E}^{\eta} \, \frac{\partial \phi}{\partial \eta}. \tag{61}$$

3 Modelagem numérica

е

3.1 Integração das equações de transporte em um volume elementar

No método dos volumes finitos, as equações de transporte devem ser integradas em cada volume elementar do domínio de cálculo e em um intervalo de tempo $[t - \Delta t, t]$. A Fig. 2 ilustra um volume elementar no sistema coordenado xy e o correspondente volume no sistema transformado $\xi\eta$. No sistema coordenado transformado,

Figura 2: Volume de controle genérico P no sistema coordenado cartesiano 2(a) e no sistema curvilíneo 2(b). a integração sobre o volume elementar e sobre o intervalo de tempo é dada pela expressão

$$\int_{t-\Delta t}^{t} \int_{\eta_s}^{\eta_n} \int_{\xi_w}^{\xi_e} 2\pi r \left[\cdots\right] \mathrm{d}\xi \, \mathrm{d}\eta \, \mathrm{d}t',\tag{62}$$

onde $[\cdots]$ representa o termo a ser integrado.

Com o auxílio da aproximação totalmente implícita para a integração temporal,

$$\frac{1}{\Delta t} \int_{t-\Delta t}^{t} \psi(t') \mathrm{d}t' = \psi(t) + \mathcal{O}(\Delta t), \tag{63}$$

e da regra do retângulo para a integração espacial,

$$\frac{1}{\Delta\xi\Delta\eta}\int_{\eta_s}^{\eta_n}\int_{\xi_w}^{\xi_e}\psi(\xi,\eta)\mathrm{d}\xi\mathrm{d}\eta = \psi(\xi_{\mathrm{P}},\eta_{\mathrm{P}}) + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2)$$
(64)

onde ψ é uma função genérica e

$$\Delta \xi = \xi_e - \xi_w, \qquad \Delta \eta = \eta_n - \eta_s, \tag{65}$$

as equações de transporte $\left(16\right)$ ficam

$$C_{\rm P}^{\phi} \left[\frac{r}{J} \frac{(\rho\phi) - (\rho\phi)^{\circ}}{\Delta t} + \frac{\partial(\rho r U\phi)}{\partial\xi} + \frac{\partial(\rho r V\phi)}{\partial\eta} \right]_{\rm P} = \left(r P^{\phi} \right)_{\rm P} + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2).$$
(66)

O índice o na Eq. (66) indica o valor da variável no instante $t - \Delta t$ e a ausência deste índice indica o valor da variável no instante t.

Para levar em conta o balanço de cada propriedade ϕ no volume elementar, as derivadas em relação a $\xi \in \eta$ na Eq. (66) são aproximadas em termos dos valores das funções nas faces, de modo que

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{P}} = \frac{\psi_e - \psi_w}{\Delta \xi} + \mathcal{O}(\Delta \xi^2) \tag{67}$$

е

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{P}} = \frac{\psi_n - \psi_s}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \tag{68}$$

o que conduz a

$$C_{\rm P}^{\phi} \left[\frac{(M_{\rm P}\phi_{\rm P}) - (M_{\rm P}\phi_{\rm P})^{\circ}}{\Delta t} + \frac{\dot{M}_{e}\phi_{e} - \dot{M}_{w}\phi_{w}}{\Delta\xi} + \frac{\dot{M}_{n}\phi_{n} - \dot{M}_{s}\phi_{s}}{\Delta\eta} \right] = r_{\rm P}P_{\rm P}^{\phi} + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta\xi^{2}) + \mathcal{O}(\Delta\eta^{2}) \quad (69)$$

onde

$$M_{\rm P} = \left(\frac{\rho r}{J}\right)_{\rm P}, \quad \dot{M}_e = \left(\rho r U\right)_e, \quad \dot{M}_w = \left(\rho r U\right)_w, \quad \dot{M}_n = \left(\rho r V\right)_n, \quad \dot{M}_s = \left(\rho r V\right)_s. \tag{70}$$

As expressões para $P_{\scriptscriptstyle \rm P}^\phi$ são

$$P_{\rm P}^{\rm l} = 0 \tag{71}$$

$$P_{\rm P}^{u} = \frac{(pg_{\xi})_n - (pg_{\xi})_s}{\Delta\eta} - \frac{(pg_{\eta})_e - (pg_{\eta})_w}{\Delta\xi}$$
(72)

$$P_{\rm P}^{v} = \frac{(px_{\eta})_{e} - (px_{\eta})_{w}}{\Delta\xi} - \frac{(px_{\xi})_{n} - (px_{\xi})_{s}}{\Delta\eta}$$
(73)

$$P_{\rm P}^{\rm T} = \frac{1}{J_{\rm P}} \frac{p_{\rm P} - p_{\rm P}^{\circ}}{\Delta t} - u_{\rm P} P_{\rm P}^{u} - v_{\rm P} P_{\rm P}^{v}.$$
(74)

3.2 Geração da malha

3.2.1 Geração dos nós do contorno norte

$$x(\xi) = l_a \left(\frac{\xi - \xi_i}{\xi_f - \xi_i}\right)^{(a_\xi)_n} + l_r - l_a, \qquad \xi_i \le \xi \le \xi_f$$

$$(75)$$

$$y(\xi) = l_b \sqrt{1 - \left(\frac{x - l_r}{l_a}\right)^2},\tag{76}$$

onde $(a_{\xi})_n$ é um parâmetro livre. Se $(a_{\xi})_n = 1$, então há uma distribuição uniforme em x, se $(a_{\xi})_n > 1$, há uma concentração de nós próximos à origem.

3.2.2 Geração dos nós do contorno sul

$$x(\xi) = l_r \left(\frac{\xi - \xi_i}{\xi_f - \xi_i}\right)^{(a_\xi)_s}, \qquad \xi_i \le \xi \le \xi_f$$
(77)

$$y(\xi) = g(x), \tag{78}$$

onde $(a_{\xi})_s$ é um parâmetro livre idêntico a $(a_{\xi})_n$.

3.2.3 Geração dos nós intermediários

Há três possibilidades para a geração dos nós intermediários:

1. Distribuição uniforme Sejam (x_i, y_i) e (x_f, y_f) pontos do contorno sul e norte, respectivamente. A distribuição de nós no segmento de reta que une estes pontos é dada por

$$x(\eta) = (x_f - x_i) \left(\frac{\eta - \eta_i}{\eta_f - \eta_i}\right) + x_i, \qquad \eta_i \le \eta \le \eta_f,$$
(79)

$$y(\eta) = (y_f - y_i) \left(\frac{\eta - \eta_i}{\eta_f - \eta_i}\right) + y_i, \qquad \eta_i \le \eta \le \eta_f.$$

$$(80)$$

2. Distribuição tipo progressão geométrica Sejam (x_i, y_i) e (x_f, y_f) pontos do contorno sul e norte, respectivamente. A distribuição de nós no segmento de reta que une estes pontos é dada por

$$\psi_k = \frac{(\psi_f - \psi_i)}{r} \left(\frac{q^{k-1} - 1}{q - 1}\right) + \psi_i, \qquad 1 \le k \le n, \qquad \psi \in \{x, y\},$$
(81)

onde n representa o número de volumes entre os contornos sul e norte,

$$r = \frac{\sqrt{\left(x_f - x_i\right)^2 + \left(y_f - y_i\right)^2}}{a_1},$$
(82)

 a_1 é a largura dos volumes contíguos ao contorno sul e q é obtido através da solução da equação

$$h(q) = q^{n} + r(1-q) - 1 = 0.$$
(83)

A solução desta equação é obtida iterativamente através do método de Newton:

$$q_{i+1} = q_i - \frac{h(q_i)}{h'(q_i)}, \quad i = 1, 2, 3, \cdots$$
(84)

onde $q_1 = 0.5$ se n > r e $q_1 = 2$ caso contrário.

3. Distribuição tipo lei de potência. Sejam (x_i, y_i) e (x_f, y_f) pontos do contorno sul e norte, respectivamente. A distribuição de nós no segmento de reta que une estes pontos é dada por

$$x(\eta) = (x_f - x_i) \left(\frac{\eta - \eta_i}{\eta_f - \eta_i}\right)^{\alpha_\eta} + x_i, \qquad \eta_i \le \eta \le \eta_f,$$
(85)

$$y(\eta) = (y_f - y_i) \left(\frac{\eta - \eta_i}{\eta_f - \eta_i}\right)^{\alpha_\eta} + y_i, \qquad \eta_i \le \eta \le \eta_f,$$
(86)

onde o coeficiente α_{η} é ajustado pela fórmula

$$\alpha_{\eta} = \frac{\log\left(\frac{\sqrt{(x_f - x_i)^2 + (y_f - y_i)^2}}{a_1}\right)}{\log\left(\eta_f - \eta_i\right)}$$
(87)

de modo que a largura dos volumes contíguos ao contorno sul seja sempre a_1 .

3.3 Aproximações para os termos geométricos

As aproximações a seguir são baseadas nas coordenadas dos vértices de um volume de controle genérico do sistema coordenado $\xi\eta$, conforme a Fig. 3.

Figura 3: Volume de controle genérico P no sistema coordenado curvilíneo

3.3.1 Cálculo de $x \in y$ nos centroides

Aproximação para as coordenadas dos centroides em todos os volumes de controle reais:

$$\psi_{\mathbf{P}} = \frac{\psi_{ne} + \psi_{nw} + \psi_{se} + \psi_{sw}}{4} + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2), \qquad \psi \in \{x, y\}.$$
(88)

É possível utilizar também um método que emprega uma média ponderada. Neste caso, o quadrilátero, Fig. 3, é divido em dois triângulos formados pelos vértices (sw, se e ne) e (sw, nw e ne). As coordenadas dos centroides dos dois triângulos são calculadas através da média aritmética das coordenadas dos seus vértices e em seguida as coordenadas do centroide do quadrilátero são calculadas com a média ponderada dos centroides dos triângulos, utilizando como peso a área de cada triângulo, ou seja,

$$\psi_{\rm P} = \frac{\frac{(\psi_{ne} + \psi_{se} + \psi_{sw})}{3} A_1 + \frac{(\psi_{ne} + \psi_{nw} + \psi_{sw})}{3} A_2}{A_1 + A_2}, \qquad \psi \in \{x, y\},\tag{89}$$

onde A_1 é a área do triângulo formado pelos vértices sw, $se \in ne$, *i.e.*,

$$A_{1} = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ (x_{se} - x_{sw}) & (y_{se} - y_{sw}) & 0 \\ (x_{ne} - x_{sw}) & (y_{ne} - y_{sw}) & 0 \end{vmatrix}$$
(90)

e A_2 é a área do triângulo formado pelos vértices sw, nw e ne, *i.e.*,

$$A_{2} = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ (x_{ne} - x_{sw}) & (y_{ne} - y_{sw}) & 0 \\ (x_{nw} - x_{sw}) & (y_{nw} - y_{sw}) & 0 \end{vmatrix}.$$
(91)

A ordem do erro desta aproximação ainda não foi avaliada.

3.3.2 Cálculo de *r* nas faces e centroides

• Simetria plana (f = 0)

Neste caso tem-se:

$$r_e = r_n = r_{\rm P} = 1.$$
 (92)

• Simetria axial (f = 1)

Aproximação para r nas faces leste de todos os volumes reais e dos volumes fictícios do contorno oeste:

$$r_e = \frac{y_{ne} + y_{se}}{2} + \mathcal{O}(\Delta\xi^2). \tag{93}$$

Aproximação para r nas faces norte de todos os volumes reais e dos volumes fictícios do contorno sul:

$$r_n = \frac{y_{ne} + y_{nw}}{2} + \mathcal{O}(\Delta \eta^2).$$
(94)

A aproximação para r nas faces oeste e sul de todos os volumes reais é dada por:

$$(r_w)_{\rm P} = (r_e)_{\rm W}, \qquad (r_s)_{\rm P} = (r_n)_{\rm S}.$$
 (95)

Nos centroides dos volumes reais, tem-se

$$r_{\rm P} = y_{\rm P}.\tag{96}$$

3.3.3 Cálculo das derivadas de x e y em relação a ξ

Para as faces norte de todos os volumes reais e dos volumes fictícios do contorno sul:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{n} = \frac{\psi_{ne} - \psi_{nw}}{\Delta \xi} + \mathcal{O}(\Delta \xi^{2}), \qquad \psi \in \{x, y\}.$$
(97)

Para as faces sul de todos os volumes reais:

$$\left(\left.\frac{\partial\psi}{\partial\xi}\right|_{s}\right)_{\mathrm{P}} = \left(\left.\frac{\partial\psi}{\partial\xi}\right|_{n}\right)_{\mathrm{S}}, \qquad \psi \in \{x, y\}.$$

$$(98)$$

Para as faces leste dos volumes reais, exceto as do contorno leste:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_e = \frac{\psi_{\rm E} - \psi_{\rm P}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
⁽⁹⁹⁾

Para as faces leste dos volumes reais do contorno leste:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_e = \frac{\psi_w - 4\psi_{\rm P} + 3\psi_e}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\},\tag{100}$$

 $\quad \text{onde} \quad$

$$\psi_w = \frac{\psi_{nw} + \psi_{sw}}{2} + \mathcal{O}(\Delta \eta^2), \qquad (101)$$

$$\psi_e = \frac{\psi_{ne} + \psi_{se}}{2} + \mathcal{O}(\Delta \eta^2).$$
(102)

Para as faces oeste dos volumes reais do contorno oeste:

$$\frac{\partial \psi}{\partial \xi}\Big|_{w} = \left(\frac{\partial \psi}{\partial \xi}\Big|_{e}\right)_{w} = \frac{-3\psi_{w} + 4\psi_{P} - \psi_{e}}{\Delta \xi} + \mathcal{O}(\Delta \xi^{2}), \qquad \psi \in \{x, y\}.$$
(103)

Para as faces oeste de todos os volumes reais:

$$\left(\left.\frac{\partial\psi}{\partial\xi}\right|_{w}\right)_{\mathrm{P}} = \left(\left.\frac{\partial\psi}{\partial\xi}\right|_{e}\right)_{\mathrm{W}}, \qquad \psi \in \{x, y\}.$$
(104)

Para os centroides de todos os volumes reais:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{P}} = \frac{\psi_e - \psi_w}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
(105)

3.3.4 Cálculo das derivadas de x e y em relação a η

Para as faces leste de todos os volumes reais e dos fictícios do contorno oeste:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{e} = \frac{\psi_{ne} - \psi_{se}}{\Delta \eta} + \mathcal{O}(\Delta \eta^{2}), \qquad \psi \in \{x, y\}.$$
(106)

Para as faces norte de todos os volumes reais, exceto as do contorno norte:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{n} = \frac{\psi_{\mathrm{N}} - \psi_{\mathrm{P}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^{2}), \qquad \psi \in \{x, y\}.$$
(107)

Para as faces norte dos volumes reais do contorno norte:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{n} = \frac{\psi_{s} - 4\psi_{\mathrm{P}} + 3\psi_{n}}{\Delta \eta} + \mathcal{O}(\Delta \eta^{2}), \qquad \psi \in \{x, y\}, \tag{108}$$

onde

$$\psi_s = \frac{\psi_{se} + \psi_{sw}}{2} + \mathcal{O}(\Delta \xi^2), \qquad (109)$$

$$\psi_n = \frac{\psi_{ne} + \psi_{nw}}{2} + \mathcal{O}(\Delta \xi^2).$$
(110)

Para as faces sul dos volumes fictícios do contorno sul:

$$\frac{\partial \psi}{\partial \eta}\Big|_{s} = \left(\frac{\partial \psi}{\partial \eta}\Big|_{n}\right)_{s} = \frac{-3\psi_{s} + 4\psi_{\mathrm{P}} - \psi_{n}}{\Delta \eta} + \mathcal{O}(\Delta \eta^{2}), \qquad \psi \in \{x, y\}.$$
(111)

Para as faces sul de todos os volumes reais:

$$\left(\frac{\partial\psi}{\partial\eta}\Big|_{s}\right)_{\mathrm{P}} = \left(\frac{\partial\psi}{\partial\eta}\Big|_{n}\right)_{\mathrm{S}}, \qquad \psi \in \{x,y\}.$$
(112)

Para os centroides de todos os volumes reais:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{P}} = \frac{\psi_n - \psi_s}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \qquad \psi \in \{x, y\}.$$
(113)

3.3.5 Cálculo do jacobiano

Para as faces leste de todos os volumes reais e dos fictícios do contorno oeste:

$$J_e = [x_{\xi}y_{\eta} - x_{\eta}y_{\xi}]_e^{-1}.$$
 (114)

Para as faces oeste de todos os volumes reais:

$$\left(J_w\right)_{\rm P} = \left(J_e\right)_{\rm W} \tag{115}$$

Para as faces norte de todos os volumes reais e dos fictícios do contorno sul:

$$J_n = [x_{\xi} y_{\eta} - x_{\eta} y_{\xi}]_n^{-1}.$$
 (116)

Para as faces sul de todos os volumes reais:

$$\left(J_s\right)_{\mathrm{P}} = \left(J_n\right)_{\mathrm{S}}.\tag{117}$$

Para os centroides de todos os volumes reais:

$$J_{\rm P} = [x_{\xi} y_{\eta} - x_{\eta} y_{\xi}]_{\rm P}^{-1}.$$
 (118)

3.3.6 Cálculo das componentes do tensor métrico

Para a face leste de todos os volumes reais e dos fictícios do contorno oeste:

$$\alpha_e = \left(x_\eta^2 + y_\eta^2\right)_e. \tag{119}$$

Para a face oeste de todos os volumes reais:

$$\left(\alpha_{w}\right)_{\mathrm{P}} = \left(\alpha_{e}\right)_{\mathrm{W}}.\tag{120}$$

Para a face leste de todos os volumes reais e dos fictícios do contorno oeste:

$$\beta_e = \left(x_\xi x_\eta + y_\xi y_\eta\right)_e. \tag{121}$$

Para a face oeste de todos os volumes reais:

$$\left(\beta_{w}\right)_{\mathbf{P}} = \left(\beta_{e}\right)_{\mathbf{W}}.\tag{122}$$

Para a face norte de todos os volumes reais e dos fictícios do contorno sul:

$$\beta_n = \left(x_\xi x_\eta + y_\xi y_\eta\right)_n. \tag{123}$$

Para a face sul de todos os volumes reais:

$$\left(\beta_s\right)_{\rm P} = \left(\beta_n\right)_{\rm S}.\tag{124}$$

Para a face norte de todos os volumes reais e dos fictícios do contorno sul:

$$\gamma_n = \left(x_\xi^2 + y_\xi^2\right)_n. \tag{125}$$

Para a face sul de todos os volumes reais:

$$\left(\gamma_s\right)_{\rm P} = \left(\gamma_n\right)_{\rm S}.\tag{126}$$

3.4 Aproximações para as variáveis nas faces

No esquema co-localizado de variáveis, as funções ϕ e suas derivadas nas faces do volume elementar devem ser expressas em termos das respectivas variáveis no nó do volume _P e seus vizinhos. O valor das variáveis nas faces é calculado de modo diferenciado para cada volume, dependendo se o volume tem ou não interfaces com os contornos do domínio de cálculo. A seguir são apresentadas as aproximações que independem das condições de contorno. As demais aproximações serão apresentadas em outra seção.

3.4.1 Volumes internos

Os "volumes internos" são aqueles que não tem interface com os contornos. Para estes volumes, a aproximação para a função ϕ nos termos advectivos (os termos do lado esquerdo da Eq. (69), exceto os da derivada temporal) sobre as faces será feita utilizando o esquema UDS com correção adiada para o CDS, isto é,

$$\phi_e = \left(\frac{1}{2} + \hat{\alpha}_e\right)\phi_{\rm P} + \left(\frac{1}{2} - \hat{\alpha}_e\right)\phi_{\rm E} + \hat{\beta}\hat{\alpha}_e\left(\phi_{\rm E}^m - \phi_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2) \tag{127}$$

$$\phi_w = \left(\frac{1}{2} + \hat{\alpha}_w\right)\phi_w + \left(\frac{1}{2} - \hat{\alpha}_w\right)\phi_P + \hat{\beta}\hat{\alpha}_w\left(\phi_P^m - \phi_W^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2)$$
(128)

$$\phi_n = \left(\frac{1}{2} + \hat{\alpha}_n\right)\phi_{\rm P} + \left(\frac{1}{2} - \hat{\alpha}_n\right)\phi_{\rm N} + \hat{\beta}\hat{\alpha}_n\left(\phi_{\rm N}^m - \phi_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2)$$
(129)

$$\phi_s = \left(\frac{1}{2} + \hat{\alpha}_s\right)\phi_s + \left(\frac{1}{2} - \hat{\alpha}_s\right)\phi_P + \hat{\beta}\hat{\alpha}_s\left(\phi_P^m - \phi_s^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2)$$
(130)

 $\quad \text{onde} \quad$

$$\hat{\alpha}_e = \frac{\operatorname{sgn} U_e}{2}, \quad \hat{\alpha}_w = \frac{\operatorname{sgn} U_w}{2}, \quad \hat{\alpha}_n = \frac{\operatorname{sgn} V_n}{2}, \quad \hat{\alpha}_s = \frac{\operatorname{sgn} V_s}{2}, \quad (131)$$

 $0 \leq \hat{\beta} \leq 1$ é a constante de acoplamento entre os esquemas UDS e CDS e o índice m indica que a variável foi obtida do último nível iterativo.

Para os demais termos, utiliza-se o esquema CDS puro, isto é, as funções nas faces ficam

$$\phi_e = \frac{\phi_{\rm E} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta\xi^2) \tag{132}$$

$$\phi_w = \frac{\phi_w + \phi_P}{2} + \mathcal{O}(\Delta \xi^2) \tag{133}$$

$$\phi_n = \frac{\phi_N + \phi_P}{2} + \mathcal{O}(\Delta \eta^2) \tag{134}$$

$$\phi_s = \frac{\phi_s + \phi_P}{2} + \mathcal{O}(\Delta \eta^2). \tag{135}$$

Inserindo-se as aproximações (127)-(135) nas equações (69) e (71)-(74), obtém-se o sistema linear

$$A_s^{\phi}\phi_{\rm s} + A_w^{\phi}\phi_{\rm W} + A_{\rm P}^{\phi}\phi_{\rm P} + A_e^{\phi}\phi_{\rm E} + A_n^{\phi}\phi_{\rm N} = b_{\rm P}^{\phi}$$
(136)

 $\quad \text{onde} \quad$

$$A_s^{\phi} = -\frac{C_{\rm P}^{\phi} \dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s\right) \tag{137}$$

$$A_{w}^{\phi} = -\frac{C_{P}^{\phi}M_{w}}{\Delta\xi} \left(\frac{1}{2} + \hat{\alpha}_{w}\right)$$

$$(138)$$

$$A_e^{\phi} = \frac{C_P^{\phi} M_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{139}$$

$$A_n^{\phi} = \frac{C_{\rm P}^{\phi} \dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right) \tag{140}$$

$$A^{\phi}_{\mathrm{P}} = \frac{C^{\phi}_{\mathrm{P}} M^{\circ}_{\mathrm{P}}}{\Delta t} - \sum_{nb} A^{\phi}_{nb}$$

$$\tag{141}$$

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi} + \mathcal{O}(\Delta t) + \left(1 - \hat{\beta}\right) \left[\mathcal{O}(\Delta \xi) + \mathcal{O}(\Delta \eta)\right] + \hat{\beta} \left[\mathcal{O}(\Delta \xi^2) + \mathcal{O}(\Delta \eta^2)\right]$$
(142)

Na Eq. (142), $\omega^{\phi}_{\scriptscriptstyle \rm P}$ é a contribuição da correção adiada:

$$\omega_{\mathrm{P}}^{\phi} = C_{\mathrm{P}}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{e}}{\Delta \xi} \hat{\alpha}_{e} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{E}}^{m} \right) + \frac{\dot{M}_{w}}{\Delta \xi} \hat{\alpha}_{w} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{W}}^{m} \right) + \frac{\dot{M}_{n}}{\Delta \eta} \hat{\alpha}_{n} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{N}}^{m} \right) + \frac{\dot{M}_{s}}{\Delta \eta} \hat{\alpha}_{s} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{S}}^{m} \right) \right].$$
(143)

Na dedução da Eq. (141), foi utilizada a equação da continuidade discretizada

$$\frac{M_{\rm P} - M_{\rm P}^{\circ}}{\Delta t} + \frac{\dot{M}_e - \dot{M}_w}{\Delta \xi} + \frac{\dot{M}_n - \dot{M}_s}{\Delta \eta} = 0, \qquad (144)$$

obtida da Eq. (69) com $\phi = 1$.

As novas expressões para $P_{\scriptscriptstyle \rm P}^\phi$ são

$$P_{\rm P}^1 = 0$$
 (145)

$$P_{\rm P}^{u} = \frac{(y_{\xi})_n (p_{\rm N} + p_{\rm P}) - (y_{\xi})_s (p_{\rm P} + p_{\rm S})}{2\Delta\eta} - \frac{(y_{\eta})_e (p_{\rm E} + p_{\rm P}) - (y_{\eta})_w (p_{\rm P} + p_{\rm W})}{2\Delta\xi}$$
(146)

$$P_{\rm P}^{v} = \frac{(x_{\eta})_{e} (p_{\rm E} + p_{\rm P}) - (x_{\eta})_{w} (p_{\rm P} + p_{\rm W})}{2\Delta\xi} - \frac{(x_{\xi})_{n} (p_{\rm N} + p_{\rm P}) - (x_{\xi})_{s} (p_{\rm P} + p_{\rm S})}{2\Delta\eta}$$
(147)

$$P_{\rm P}^{\rm T} = \frac{1}{J_{\rm P}} \frac{p_{\rm P} - p_{\rm P}^{\circ}}{\Delta t} - u_{\rm P} P_{\rm P}^{u} - v_{\rm P} P_{\rm P}^{v}.$$
(148)

3.4.2 Contorno sul (exceto os cantos)

Caso ϕ_s seja desconhecido no contorno sul, este não pode mais ser aproximado com a Eq. (130), uma vez que não existe o volume S. Neste caso é necessário aplicar outra aproximação dependente das condições de contorno do problema. Isto gera uma situação inconveniente, uma vez que é necessário rededuzir os coeficientes e termos fontes dos sistemas lineares e reimplementá-los a cada novo problema. Para contornar este inconveniente, utiliza-se a seguinte identidade para ϕ_s

$$\phi_s = \phi_{\rm P} \left(\frac{1}{2} - \hat{\alpha}_s\right) + \left[\phi_s - \phi_{\rm P}^m \left(\frac{1}{2} - \hat{\alpha}_s\right)\right]. \tag{149}$$

O primeiro termo desta identidade serve como uma aproximação para ϕ_s em um escoamento advectivo dominante e é tratato implicitamente no sistema linear, ao passo que o segundo termo representa uma perturbação da condição de contorno e é tratado explicitamente. Com este procedimento, a dedução dos coeficientes do sistema linear e do termo fonte é feita apenas uma vez. Além disso, este procedimento garante que o sistema linear resultante seja diagonal dominante.

Inserindo as aproximações (127)-(129) e (149) na Eq. (69) e seguindo o mesmo procedimendo da seção anterior, obtém-se os seguintes coeficientes e termo fonte para o sistema linear (136)

$$A_s^{\phi} = 0 \tag{150}$$

$$A_w^{\phi} = -\frac{C_P^{\phi} M_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w\right) \tag{151}$$

$$A_e^{\phi} = \frac{C_{\rm P}^{\phi} \dot{M}_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{152}$$

$$A_n^{\phi} = \frac{C_{\rm P}^{\phi} \dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right) \tag{153}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} + C_{\rm P}^{\phi} \frac{\dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s\right)$$
(154)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$
(155)

onde

$$\omega_{\mathrm{P}}^{\phi} = C_{\mathrm{P}}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{e}}{\Delta \xi} \hat{\alpha}_{e} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{E}}^{m} \right) + \frac{\dot{M}_{w}}{\Delta \xi} \hat{\alpha}_{w} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{W}}^{m} \right) + \frac{\dot{M}_{n}}{\Delta \eta} \hat{\alpha}_{n} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{N}}^{m} \right) \right]
+ C_{\mathrm{P}}^{\phi} \frac{\dot{M}_{s}}{\Delta \eta} \left[\phi_{s} - \phi_{\mathrm{P}}^{m} \left(\frac{1}{2} - \hat{\alpha}_{s} \right) \right]$$
(156)

contém a contribuição da correção adiada e da condição de contorno.

Neste contorno, p_s (usado em $P_{\rm P}^{\phi}$) e ϕ_s devem ser prescritos através das condições de contorno. Os valores de p_w , p_e e p_n , usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.3 Contorno norte (exceto os cantos)

No contorno norte, é conveniente escrever

$$\phi_n = \phi_{\rm P} \left(\frac{1}{2} + \hat{\alpha}_n\right) + \left[\phi_n - \phi_{\rm P}^m \left(\frac{1}{2} + \hat{\alpha}_n\right)\right]. \tag{157}$$

De modo análogo ao feito na seção anterior, os coeficientes e o termo fonte do contorno norte ficam

$$A_s^{\phi} = -\frac{C_{\rm P}^{\phi} \dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s\right) \tag{158}$$

$$A_w^{\phi} = -\frac{C_P^{\phi} M_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w\right) \tag{159}$$

$$A_e^{\phi} = \frac{C_{\rm p}^{\phi} \dot{M}_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{160}$$

$$A_n^{\phi} = 0 \tag{161}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} - C_{\rm P}^{\phi} \frac{\dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right)$$
(162)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$
(163)

 $\quad \text{onde} \quad$

$$\omega_{\mathrm{P}}^{\phi} = C_{\mathrm{P}}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{e}}{\Delta \xi} \hat{\alpha}_{e} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{E}}^{m} \right) + \frac{\dot{M}_{w}}{\Delta \xi} \hat{\alpha}_{w} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{W}}^{m} \right) + \frac{\dot{M}_{s}}{\Delta \eta} \hat{\alpha}_{s} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{S}}^{m} \right) \right] - C_{\mathrm{P}}^{\phi} \frac{\dot{M}_{n}}{\Delta \eta} \left[\phi_{n} - \phi_{\mathrm{P}}^{m} \left(\frac{1}{2} + \hat{\alpha}_{n} \right) \right].$$
(164)

Neste contorno, p_n (usado em $P_{\rm P}^{\phi}$) e ϕ_n devem ser prescritos através das condições de contorno. Os valores de p_w , p_e e p_s , usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.4 Contorno oeste (exceto os cantos)

No contorno oeste, é conveniente escrever

$$\phi_w = \phi_{\rm P} \left(\frac{1}{2} - \hat{\alpha}_w\right) + \left[\phi_w - \phi_{\rm P}^m \left(\frac{1}{2} - \hat{\alpha}_w\right)\right]. \tag{165}$$

Seguindo o mesmo procedimento adotado no contorno sul, os coeficientes e o termo fonte ficam

$$A_s^{\phi} = -\frac{C_{\rm P}^{\phi} \dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s\right) \tag{166}$$

$$A_w^{\phi} = 0 \tag{167}$$

$$A_e^{\phi} = \frac{C_P^{\phi} M_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{168}$$

$$A_n^{\phi} = \frac{C_{\rm P}^{\phi} \dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right) \tag{169}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} + C_{\rm P}^{\phi} \frac{\dot{M}_w}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_w\right)$$
(170)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$

$$\tag{171}$$

 $\quad \text{onde} \quad$

$$\omega_{\mathrm{P}}^{\phi} = C_{\mathrm{P}}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{e}}{\Delta \xi} \hat{\alpha}_{e} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{E}}^{m} \right) + \frac{\dot{M}_{n}}{\Delta \eta} \hat{\alpha}_{n} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{N}}^{m} \right) + \frac{\dot{M}_{s}}{\Delta \eta} \hat{\alpha}_{s} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{S}}^{m} \right) \right]
+ C_{\mathrm{P}}^{\phi} \frac{\dot{M}_{w}}{\Delta \xi} \left[\phi_{w} - \phi_{\mathrm{P}}^{m} \left(\frac{1}{2} - \hat{\alpha}_{w} \right) \right].$$
(172)

Neste contorno, p_w (usado em $P_{\rm P}^{\phi}$) e ϕ_w devem ser prescritos através das condições de contorno. Os valores de p_e , p_s e p_n , usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.5 Contorno leste (exceto os cantos)

No contorno leste, é conveniente escrever

$$\phi_e = \phi_{\rm P} \left(\frac{1}{2} + \hat{\alpha}_e\right) + \left[\phi_e - \phi_{\rm P}^m \left(\frac{1}{2} + \hat{\alpha}_e\right)\right]. \tag{173}$$

De modo análogo ao feito no contorno sul, os coeficientes e o termo fonte ficam

$$A_{s}^{\phi} = -\frac{C_{\mathrm{P}}^{\phi}\dot{M}_{s}}{\Delta\eta} \left(\frac{1}{2} + \hat{\alpha}_{s}\right) \tag{174}$$

$$A_w^{\phi} = -\frac{C_P^{\phi} \dot{M}_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w\right) \tag{175}$$

$$A_e^{\phi} = 0 \tag{176}$$

$$A_n^{\phi} = \frac{C_{\mathsf{P}}^{\phi} M_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right) \tag{177}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} - C_{\rm P}^{\phi} \frac{\dot{M}_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right)$$
(178)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$

$$\tag{179}$$

 $\quad \text{onde} \quad$

$$\omega_{\rm P}^{\phi} = C_{\rm P}^{\phi} \hat{\beta} \left[\frac{\dot{M}_w}{\Delta \xi} \hat{\alpha}_w \left(\phi_{\rm P}^m - \phi_{\rm W}^m \right) + \frac{\dot{M}_n}{\Delta \eta} \hat{\alpha}_n \left(\phi_{\rm P}^m - \phi_{\rm N}^m \right) + \frac{\dot{M}_s}{\Delta \eta} \hat{\alpha}_s \left(\phi_{\rm P}^m - \phi_{\rm S}^m \right) \right]
- C_{\rm P}^{\phi} \frac{\dot{M}_e}{\Delta \xi} \left[\phi_e - \phi_{\rm P}^m \left(\frac{1}{2} + \hat{\alpha}_e \right) \right].$$
(180)

Neste contorno, p_e (usado em $P_{\rm P}^{\phi}$) e ϕ_e devem ser prescritos através das condições de contorno. Os valores de p_w , p_s e p_n , usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.6 Canto SW

Como feito nos contornos sul e o
este, ϕ_s e ϕ_w são dados, respectivamente, pelas identidades (157)
e (165). Deste modo, os coeficientes e o termo fonte ficam

$$A_s^{\phi} = 0 \tag{181}$$

$$A_w^{\phi} = 0 \tag{182}$$

$$A_e^{\phi} = \frac{C_P^{\phi} M_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{183}$$

$$A_n^{\phi} = \frac{C_{\rm P}^{\phi} \dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right) \tag{184}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} + C_{\rm P}^{\phi} \left[\frac{\dot{M}_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w \right) + \frac{\dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s \right) \right]$$
(185)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$

$$\tag{186}$$

onde

$$\omega_{\rm P}^{\phi} = C_{\rm P}^{\phi} \hat{\beta} \left[\frac{\dot{M}_e}{\Delta \xi} \hat{\alpha}_e \left(\phi_{\rm P}^m - \phi_{\rm E}^m \right) + \frac{\dot{M}_n}{\Delta \eta} \hat{\alpha}_n \left(\phi_{\rm P}^m - \phi_{\rm N}^m \right) \right]
+ C_{\rm P}^{\phi} \frac{\dot{M}_s}{\Delta \eta} \left[\phi_s - \phi_{\rm P}^m \left(\frac{1}{2} - \hat{\alpha}_s \right) \right]
+ C_{\rm P}^{\phi} \frac{\dot{M}_w}{\Delta \xi} \left[\phi_w - \phi_{\rm P}^m \left(\frac{1}{2} - \hat{\alpha}_w \right) \right].$$
(187)

Neste contorno, p_w e p_s (usados em $P_{\rm P}^{\phi}$), bem como, ϕ_w e ϕ_s devem ser prescritos através das condições de contorno. Os valores de p_e e p_n , usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.7 Canto SE

Como feito nos contornos sul e leste, ϕ_s e ϕ_e são dados, respectivamente, pelas identidades (149) e (173). Deste modo, os coeficientes e o termo fonte ficam

$$A_s^{\phi} = 0 \tag{188}$$

$$A_w^{\phi} = -\frac{C_P^{\phi} \dot{M}_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w\right) \tag{189}$$

$$A_e^{\phi} = 0 \tag{190}$$

$$A_n^{\phi} = \frac{C_P^{\phi} M_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n\right)$$
(191)

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} + C_{\rm P}^{\phi} \left[-\frac{\dot{M}_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e \right) + \frac{\dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s \right) \right]$$
(192)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$
(193)

$$\begin{aligned}
\omega_{P}^{\phi} &= C_{P}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{w}}{\Delta \xi} \hat{\alpha}_{w} \left(\phi_{P}^{m} - \phi_{W}^{m} \right) + \frac{\dot{M}_{n}}{\Delta \eta} \hat{\alpha}_{n} \left(\phi_{P}^{m} - \phi_{N}^{m} \right) \right] \\
&+ C_{P}^{\phi} \frac{\dot{M}_{s}}{\Delta \eta} \left[\phi_{s} - \phi_{P}^{m} \left(\frac{1}{2} - \hat{\alpha}_{s} \right) \right] \\
&- C_{P}^{\phi} \frac{\dot{M}_{e}}{\Delta \xi} \left[\phi_{e} - \phi_{P}^{m} \left(\frac{1}{2} + \hat{\alpha}_{e} \right) \right].
\end{aligned}$$
(194)

Neste contorno, $p_e e p_s$ (usados em $P_{\rm P}^{\phi}$), bem como, $\phi_e e \phi_s$ devem ser prescritos através das condições de contorno. Os valores de $p_w e p_n$, usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.8 Canto NW

Como feito nos contornos norte e oeste, ϕ_n e ϕ_w são dados, respectivamente, pelas identidades (157) e (165). Deste modo, os coeficientes e o termo fonte ficam

$$A_s^{\phi} = -\frac{C_{\rm P}^{\phi} \dot{M}_s}{\Delta \eta} \left(\frac{1}{2} + \hat{\alpha}_s\right) \tag{195}$$

$$A^{\phi}_{w} = 0 \tag{196}$$

$$A_e^{\phi} = \frac{C_{\rm P} M_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e\right) \tag{197}$$

$$A_{n}^{\phi} = 0$$

$$A_{n}^{\phi} = \frac{C_{P}^{\phi}M_{P}^{\circ}}{1 + 1} - \sum A_{nh}^{\phi} + C_{P}^{\phi} \left[\frac{\dot{M}_{w}}{1 + 1} \left(\frac{1}{2} + \hat{\alpha}_{w} \right) - \frac{\dot{M}_{n}}{1 + 1} \left(\frac{1}{2} - \hat{\alpha}_{n} \right) \right]$$

$$(198)$$

$$(199)$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P} M_{\rm P}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} + C_{\rm P}^{\phi} \left[\frac{M_w}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_w \right) - \frac{M_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n \right) \right]$$
(199)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$

$$\tag{200}$$

onde

$$\begin{aligned}
\omega_{\mathrm{P}}^{\phi} &= C_{\mathrm{P}}^{\phi} \hat{\beta} \left[\frac{\dot{M}_{e}}{\Delta \xi} \hat{\alpha}_{e} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{E}}^{m} \right) + \frac{\dot{M}_{s}}{\Delta \eta} \hat{\alpha}_{s} \left(\phi_{\mathrm{P}}^{m} - \phi_{\mathrm{S}}^{m} \right) \right] \\
&- C_{\mathrm{P}}^{\phi} \frac{\dot{M}_{n}}{\Delta \eta} \left[\phi_{n} - \phi_{\mathrm{P}}^{m} \left(\frac{1}{2} + \hat{\alpha}_{n} \right) \right] \\
&+ C_{\mathrm{P}}^{\phi} \frac{\dot{M}_{w}}{\Delta \xi} \left[\phi_{w} - \phi_{\mathrm{P}}^{m} \left(\frac{1}{2} - \hat{\alpha}_{w} \right) \right].
\end{aligned}$$
(201)

Neste contorno, $p_w \in p_n$ (usados em $P_{\rm P}^{\phi}$), bem como, $\phi_w \in \phi_n$ devem ser prescritos através das condições de contorno. Os valores de $p_e \in p_s$, usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.4.9 Canto NE

Como feito nos contornos norte e leste, ϕ_n e ϕ_e são dados, respectivamente, pelas identidades (157) e (173). Deste modo, os coeficientes e o termo fonte ficam

$$A_{s}^{\phi} = -\frac{C_{P}^{\phi}\dot{M}_{s}}{\Delta\eta} \left(\frac{1}{2} + \hat{\alpha}_{s}\right)$$

$$(202)$$

$$A_{w}^{\phi} = -\frac{C_{\mathrm{P}}^{\omega} M_{w}}{\Delta \xi} \left(\frac{1}{2} + \hat{\alpha}_{w}\right)$$

$$A_{w}^{\phi} = 0$$
(203)
(204)

$$\begin{aligned} A_e^{\phi} &= 0 \end{aligned} \tag{204} \\ A_n^{\phi} &= 0 \end{aligned} \tag{205}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ}}{\Delta t} - \sum_{nb} A_{nb}^{\phi} - C_{\rm P}^{\phi} \left[\frac{\dot{M}_e}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_e \right) + \frac{\dot{M}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_n \right) \right]$$
(206)

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} M_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} P_{\rm P}^{\phi}$$

$$\tag{207}$$

$$\omega_{\rm P}^{\phi} = C_{\rm P}^{\phi} \hat{\beta} \left[\frac{\dot{M}_w}{\Delta \xi} \hat{\alpha}_w \left(\phi_{\rm P}^m - \phi_{\rm W}^m \right) + \frac{\dot{M}_s}{\Delta \eta} \hat{\alpha}_s \left(\phi_{\rm P}^m - \phi_{\rm S}^m \right) \right]
- C_{\rm P}^{\phi} \frac{\dot{M}_n}{\Delta \eta} \left[\phi_n - \phi_{\rm P}^m \left(\frac{1}{2} + \hat{\alpha}_n \right) \right]
- C_{\rm P}^{\phi} \frac{\dot{M}_e}{\Delta \xi} \left[\phi_e - \phi_{\rm P}^m \left(\frac{1}{2} + \hat{\alpha}_e \right) \right].$$
(208)

Neste contorno, $p_e \in p_n$ (usados em $P_{\rm P}^{\phi}$), bem como, $\phi_e \in \phi_n$ devem ser prescritos através das condições de contorno. Os valores de $p_w \in p_s$, usados em $P_{\rm P}^{\phi}$, são calculados com o esquema CDS.

3.5 Acoplamentos pressão-velocidade (SIMPLEC) e pressão-densidade

3.5.1 Aproximações para os nós dos volumes reais

Considere os sistemas lineares (136) obtidos das equações do movimento para $u \in v$, isto é,

$$A^{\phi}_{\mathbf{P}}\phi_{\mathbf{P}} + \sum_{nb} A^{\phi}_{nb} \phi_{\mathbf{NB}} = \frac{M^{\circ}_{\mathbf{P}}\phi^{\circ}_{\mathbf{P}}}{\Delta t} + \omega^{\phi}_{\mathbf{P}} + r_{\mathbf{P}}P^{\phi}_{\mathbf{P}}, \qquad \phi \in \{u, v\}.$$
(209)

Dados os coeficientes A^{ϕ} e termos fontes b^{ϕ} dos sistemas lineares, caso um campo de pressão p correto seja prescrito, então o campo de velocidades $u \in v$, obtidos da Eq. (209), bem como o campo de densidade ρ , obtido da equação de estado

$$\rho = \frac{p}{R_g T},\tag{210}$$

devem satisfazer a equação da continuidade

$$\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}-\rho_{\rm P}^{\circ}}{\Delta t} + \frac{(\rho r U)_e - (\rho r U)_w}{\Delta\xi} + \frac{(\rho r V)_n - (\rho r V)_s}{\Delta\eta} = 0.$$
(211)

Ocorre que o campo de pressão não é conhecido *a priori*. Deste modo, se um campo de pressão estimado p^* for prescrito, também serão obtidos das equações (209) e (210) campos de velocidade u^* e v^* e densidade ρ^* estimados, isto é,

$$A_{\rm P}^{\phi}\phi_{\rm P}^{*} + \sum_{nb} A_{nb}^{\phi} \phi_{\rm NB}^{*} = \frac{M_{\rm P}^{\circ}\phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + r_{\rm P} \left(P_{\rm P}^{\phi}\right)^{*}, \qquad \phi \in \{u, v\}$$
(212)

е

$$\rho^* = \frac{p^*}{R_g T},\tag{213}$$

que não necessariamente satisfarão a equação da continuidade. Como a equação a continuidade deve ser sempre satisfeita, ela pode ser utilizada para determinar o desvio da pressão p', isto é,

$$p' = p - p^*. (214)$$

Mas para isto, é necessário encontrar uma relação entre os campos de densidade e de velocidade com o desvio da pressão, ou seja,

$$\rho = \rho(p'), \quad u = u(p'), \quad v = v(p').$$
(215)

Nesta seção as relações (215) serão determinadas, para que na Seç. 3.6 sejam utilizadas para determinar, a partir da equação da continuidadade, uma equação para a correção da pressão.

O acoplamento pressão-densidade é obtido diretamente da equação de estado (210)

$$\rho = \frac{p}{R_g T} = \frac{p^* + p'}{R_g T} = \rho^* + \frac{p'}{R_g T}.$$
(216)

Como a pressão será calculada nos nós dos volumes de controle, então

$$\rho_{\rm P} = \rho_{\rm P}^* + g_{\rm P} p_{\rm P}', \tag{217}$$

$$g_{\rm P} = \frac{1}{R_g T_{\rm P}}.\tag{218}$$

O acoplamento pressão-velocidade é obtido subtraindo-se a Eq. (212) da (209), o que produz

$$A_{\rm P}^{\phi}\phi_{\rm P}' + \sum_{nb} A_{nb}^{\phi} \phi_{\rm NB}' = r_{\rm P} \left(P_{\rm P}^{\phi}\right)', \qquad \phi \in \{u, v\}.$$
(219)

Na aproximação SIMPLEC[3, 4], considera-se

$$\phi_{\rm P}' = \phi_{\rm NB}',\tag{220}$$

de modo que

$$u_{\rm P} = u_{\rm P}^* + \frac{r_{\rm P} \left(P_{\rm P}^u\right)'}{A_{\rm P}^u + \sum_{nb} A_{nb}^u}$$
(221)

 \mathbf{e}

$$v_{\rm P} = v_{\rm P}^* + \frac{r_{\rm P} \left(P_{\rm P}^v\right)'}{A_{\rm P}^v + \sum_{nb} A_{nb}^v}.$$
(222)

onde

$$(P_{\rm P}^{u})' = \frac{(p'y_{\xi})_n - (p'y_{\xi})_s}{\Delta\eta} - \frac{(p'y_{\eta})_e - (p'y_{\eta})_w}{\Delta\xi}$$
(223)

$$(P_{\rm P}^{v})' = \frac{(p'x_{\eta})_{e} - (p'x_{\eta})_{w}}{\Delta\xi} - \frac{(p'x_{\xi})_{n} - (p'x_{\xi})_{s}}{\Delta\eta}, \qquad (224)$$

Nas interfaces dos volumes reais, p'_s , p'_n , p'_w e p'_e são calculados com o esquema CDS, isto é, Eqs. (132)-(135). Nas faces dos contornos estas variáveis são calculadas de acordo com as condições de contorno.

3.5.2 Aproximações para as interfaces dos volumes reais

Na seção anterior, os acoplamentos pressão-densidade e pressão-velocidade foram estabelecidos para os nós dos volumes de controle. Contudo, na equação da continuidade são necessárias as densidades e velocidades nas faces do volume de controle.

As densidades nas faces podem ser obtidas da densidades nos nós (217) por interpolação. Neste trabalho será empregado o esquema UDS com correção adiada para o CDS para realizar a interpolação, isto é,

$$\rho_e = \left(\frac{1}{2} + \hat{\alpha}_e\right)\rho_{\rm P} + \left(\frac{1}{2} - \hat{\alpha}_e\right)\rho_{\rm E} + \hat{\beta}\hat{\alpha}_e\left(\rho_{\rm E}^m - \rho_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2), \qquad (225)$$

$$\rho_{w} = \left(\frac{1}{2} + \hat{\alpha}_{w}\right)\rho_{w} + \left(\frac{1}{2} - \hat{\alpha}_{w}\right)\rho_{P} + \hat{\beta}\hat{\alpha}_{w}\left(\rho_{P}^{m} - \rho_{W}^{m}\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^{2}), \quad (226)$$

$$\rho_n = \left(\frac{1}{2} + \hat{\alpha}_n\right)\rho_{\rm P} + \left(\frac{1}{2} - \hat{\alpha}_n\right)\rho_{\rm N} + \hat{\beta}\hat{\alpha}_n\left(\rho_{\rm N}^m - \rho_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2), \qquad (227)$$

$$\rho_s = \left(\frac{1}{2} + \hat{\alpha}_s\right)\rho_{\rm s} + \left(\frac{1}{2} - \hat{\alpha}_s\right)\rho_{\rm P} + \hat{\beta}\hat{\alpha}_s\left(\rho_{\rm P}^m - \rho_{\rm s}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2).$$
(228)

Combinando a Eq. (217) com as Eqs. (225)-(228), obtém-se

$$\rho_e = \rho_e^* + \left(\frac{1}{2} + \hat{\alpha}_e\right) g_{\mathsf{P}} p'_{\mathsf{P}} + \left(\frac{1}{2} - \hat{\alpha}_e\right) g_{\mathsf{E}} p'_{\mathsf{E}} + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\xi) + \hat{\beta} \mathcal{O}(\Delta\xi^2), \tag{229}$$

$$\rho_w = \rho_w^* + \left(\frac{1}{2} + \hat{\alpha}_w\right) g_w p'_w + \left(\frac{1}{2} - \hat{\alpha}_w\right) g_P p'_P + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\xi) + \hat{\beta} \mathcal{O}(\Delta\xi^2), \tag{230}$$

$$\rho_n = \rho_n^* + \left(\frac{1}{2} + \hat{\alpha}_n\right) g_{\mathsf{P}} p_{\mathsf{P}}' + \left(\frac{1}{2} - \hat{\alpha}_n\right) g_{\mathsf{N}} p_{\mathsf{N}}' + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta \eta) + \hat{\beta} \mathcal{O}(\Delta \eta^2), \tag{231}$$

$$\rho_s = \rho_s^* + \left(\frac{1}{2} + \hat{\alpha}_s\right) g_{\scriptscriptstyle \mathrm{S}} p_{\scriptscriptstyle \mathrm{S}}' + \left(\frac{1}{2} - \hat{\alpha}_s\right) g_{\scriptscriptstyle \mathrm{P}} p_{\scriptscriptstyle \mathrm{P}}' + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\eta) + \hat{\beta} \mathcal{O}(\Delta\eta^2), \tag{232}$$

onde

$$\rho_e^* = \left(\frac{1}{2} + \hat{\alpha}_e\right)\rho_{\rm P}^* + \left(\frac{1}{2} - \hat{\alpha}_e\right)\rho_{\rm E}^* + \hat{\beta}\hat{\alpha}_e\left(\rho_{\rm E}^m - \rho_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2), \tag{233}$$

$$\rho_w^* = \left(\frac{1}{2} + \hat{\alpha}_w\right)\rho_w^* + \left(\frac{1}{2} - \hat{\alpha}_w\right)\rho_P^* + \hat{\beta}\hat{\alpha}_w\left(\rho_P^m - \rho_w^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2), \quad (234)$$

$$\rho_n^* = \left(\frac{1}{2} + \hat{\alpha}_n\right)\rho_p^* + \left(\frac{1}{2} - \hat{\alpha}_n\right)\rho_N^* + \hat{\beta}\hat{\alpha}_n\left(\rho_N^m - \rho_p^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2), \quad (235)$$

$$\rho_s^* = \left(\frac{1}{2} + \hat{\alpha}_s\right)\rho_s^* + \left(\frac{1}{2} - \hat{\alpha}_s\right)\rho_P^* + \hat{\beta}\hat{\alpha}_s\left(\rho_P^m - \rho_s^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2).$$
(236)

No caso do acoplamento pressão-velocidade, poderia-se obter a velocidade nas faces através da interpolação das velocidades nodais (221) e (222), a exemplo do que foi feito para a densidade. Entretanto, é recomendado[3] utilizar o seguinte procedimento.

Suponha que se deseja determinar a fórmula para o acoplamento pressão-velocidade para a velocidade ϕ_e na face leste. Ao invés de se fazer a interpolação sobre as velocidades de volumes vizinhos $\phi_{\rm P}$ e $\phi_{\rm E}$, faz-se a interpolação entre os sistemas lineares das equações do movimento para os volumes vizinhos,

$$\left(A_{\mathbf{P}}^{\phi}\right)_{\mathbf{P}}\phi_{\mathbf{P}} + \left(\sum_{nb} A_{nb}^{\phi} \phi_{\mathbf{NB}}\right)_{\mathbf{P}} = \frac{M_{\mathbf{P}}^{\circ}\phi_{\mathbf{P}}^{\circ}}{\Delta t} + \omega_{\mathbf{P}}^{\phi} + r_{\mathbf{P}}P_{\mathbf{P}}^{\phi}, \qquad \phi \in \{u, v\}$$
(237)

е

$$\left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{E}}\phi_{\mathrm{E}} + \left(\sum_{nb} A_{nb}^{\phi} \phi_{\mathrm{NB}}\right)_{\mathrm{E}} = \frac{M_{\mathrm{E}}^{\circ}\phi_{\mathrm{E}}^{\circ}}{\Delta t} + \omega_{\mathrm{E}}^{\phi} + r_{\mathrm{E}}P_{\mathrm{E}}^{\phi}, \qquad \phi \in \{u, v\}.$$

$$(238)$$

Somando as Eqs. (237) e (238) e aplicando as seguintes aproximações

$$\left(A_{\mathbf{P}}^{\phi}\right)_{\mathbf{P}}\phi_{\mathbf{P}} + \left(A_{\mathbf{P}}^{\phi}\right)_{\mathbf{E}}\phi_{\mathbf{E}} = \left[\left(A_{\mathbf{P}}^{\phi}\right)_{\mathbf{P}} + \left(A_{\mathbf{P}}^{\phi}\right)_{\mathbf{E}}\right]\phi_{e} + \mathcal{O}(\Delta\xi^{2}), \tag{239}$$

$$M_{\rm P}^{\circ}\phi_{\rm P}^{\circ} + M_{\rm E}^{\circ}\phi_{\rm E}^{\circ} = [M_{\rm P}^{\circ} + M_{\rm E}^{\circ}]\phi_{e}^{\circ} + \mathcal{O}(\Delta\xi^{2}), \qquad (240)$$

$$r_{\rm P}P_{\rm P}^{\phi} + r_{\rm E}P_{\rm E}^{\phi} = 2r_e P_e^{\phi} + \mathcal{O}(\Delta\xi^2), \qquad (241)$$

 $obt \acute{e}m$ -se

$$\left[\left(A_{\mathbf{p}}^{\phi}\right)_{\mathbf{p}} + \left(A_{\mathbf{p}}^{\phi}\right)_{\mathbf{E}}\right]\phi_{e} + \left(\sum_{nb}A_{nb}^{\phi}\phi_{\mathbf{NB}}\right)_{\mathbf{p}} + \left(\sum_{nb}A_{nb}^{\phi}\phi_{\mathbf{NB}}\right)_{\mathbf{E}} = \frac{M_{\mathbf{p}}^{\circ} + M_{\mathbf{E}}^{\circ}}{\Delta t}\phi_{e}^{\circ} + \omega_{\mathbf{p}}^{\phi} + \omega_{\mathbf{E}}^{\phi} + 2r_{e}P_{e}^{\phi}, \quad \phi \in \{u, v\}, \quad (242)$$

onde P_e^{ϕ} representa a aproximação de P^{ϕ} na face leste. Para se obter o acoplamento pressão-velocidade, assume-se que um campo de pressão p^* tenha sido aplicado na equação do movimento (242), o que conduz a

$$\left[\left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{P}} + \left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{E}}\right]\phi_{e}^{*} + \left(\sum_{nb}A_{nb}^{\phi}\phi_{\mathrm{NB}}^{*}\right)_{\mathrm{P}} + \left(\sum_{nb}A_{nb}^{\phi}\phi_{\mathrm{NB}}^{*}\right)_{\mathrm{E}} = \frac{M_{\mathrm{P}}^{\circ} + M_{\mathrm{E}}^{\circ}}{\Delta t}\phi_{e}^{\circ} + \omega_{\mathrm{P}}^{\phi} + \omega_{\mathrm{E}}^{\phi} + 2r_{e}\left(P_{e}^{\phi}\right)^{*}, \quad \phi \in \{u, v\}.$$
(243)

Subtraindo a Eq. (243) da Eq. (242) e utilizando a aproximação SIMPLEC

$$\phi_{\rm NB}' = \phi_e',\tag{244}$$

 $obt\acute{e}m$ -se

$$\left[\left(A_{\mathrm{P}}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{\mathrm{P}} + \left(A_{\mathrm{P}}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{\mathrm{E}}\right]\phi_{e}' = 2r_{e}\left(P_{e}^{\phi}\right)', \qquad \phi \in \{u, v\}.$$
(245)

Ou, de maneira mais explícita,

$$\phi_{e} = \phi_{e}^{*} + \frac{2r_{e} \left(P_{e}^{\phi}\right)'}{\left[\left(A_{P}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{P} + \left(A_{P}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{E}\right]}, \qquad \phi \in \{u, v\}.$$
(246)

onde ϕ_e^* é obtido da Eq. (243)

$$\phi_e^* = \frac{\frac{M_{\rm P}^\circ + M_{\rm E}^\circ}{\Delta t} \phi_e^\circ - \left(\sum_{nb} A_{nb}^\phi \ \phi_{\rm NB}^*\right)_{\rm P} - \left(\sum_{nb} A_{nb}^\phi \ \phi_{\rm NB}^*\right)_{\rm E} + \omega_{\rm P}^\phi + \omega_{\rm E}^\phi + 2r_e \left(P_e^\phi\right)^*}{\left[\left(A_{\rm P}^\phi\right)_{\rm P} + \left(A_{\rm P}^\phi\right)_{\rm E}\right]}, \qquad \phi \in \{u, v\}.$$
(247)

Equações análogas às Eqs. (246) e (247) são obtidas para as demais faces substituindo os índices $e \in E$ pelos índices das faces correspondentes. Por conveniência, são repetidas as aproximações para a face norte

$$\phi_{n} = \phi_{n}^{*} + \frac{2r_{n} \left(P_{n}^{\phi}\right)'}{\left[\left(A_{P}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{P} + \left(A_{P}^{\phi} + \sum_{nb} A_{nb}^{\phi}\right)_{N}\right]}, \qquad \phi \in \{u, v\}.$$
(248)

onde ϕ_n^* é obtido de

$$\phi_n^* = \frac{\frac{M_{\rm P}^\circ + M_{\rm N}^\circ}{\Delta t} \phi_n^\circ - \left(\sum_{nb} A_{nb}^\phi \ \phi_{\rm NB}^*\right)_{\rm P} - \left(\sum_{nb} A_{nb}^\phi \ \phi_{\rm NB}^*\right)_{\rm N} + \omega_{\rm P}^\phi + \omega_{\rm N}^\phi + 2r_n \left(P_n^\phi\right)^*}{\left[\left(A_{\rm P}^\phi\right)_{\rm P} + \left(A_{\rm P}^\phi\right)_{\rm N}\right]}, \qquad \phi \in \{u, v\}.$$
(249)

As aproximações para a face oeste 1 podem ser obtidas lembrando-se que a face oeste do volume $_{P}$ é igual a face leste do volume $_{w}$, isto é,

$$\left[\phi_{w}\right]_{\mathrm{P}} = \left[\phi_{e}\right]_{\mathrm{W}}.\tag{250}$$

Raciocínio análogo vale para a face sul,

$$\left[\phi_s\right]_{\rm P} = \left[\phi_n\right]_{\rm S}.\tag{251}$$

 P_e^{ϕ} e $P_n^{\phi},$ usados nas Eqs. (246)-(249), são dados por

$$P_e^u = \left[y_{\xi} \frac{\partial p}{\partial \eta} - y_{\eta} \frac{\partial p}{\partial \xi} \right]_e, \qquad (252)$$

$$P_e^v = \left[x_\eta \frac{\partial p}{\partial \xi} - x_\xi \frac{\partial p}{\partial \eta} \right]_e, \qquad (253)$$

$$P_n^u = \left[y_{\xi} \frac{\partial p}{\partial \eta} - y_{\eta} \frac{\partial p}{\partial \xi} \right]_n, \qquad (254)$$

$$P_n^v = \left[x_\eta \frac{\partial p}{\partial \xi} - x_\xi \frac{\partial p}{\partial \eta} \right]_n.$$
(255)

Nas Eqs. (246) e (248), envolvendo $P^{\phi'}$, as derivadas

$$\left. \frac{\partial p'}{\partial \eta} \right|_{e} = \left. \mathbf{e} - \left. \frac{\partial p'}{\partial \xi} \right|_{n}$$

$$\tag{256}$$

são desprezadas, equanto as demais são aproximadas com o esquema CDS, isto é,

$$\left. \frac{\partial p'}{\partial \xi} \right|_{e} = \frac{p'_{\rm E} - p'_{\rm P}}{\Delta \xi} \quad e \quad \left. \frac{\partial p'}{\partial \eta} \right|_{n} = \frac{p'_{\rm N} - p'_{\rm P}}{\Delta \eta}, \tag{257}$$

de modo que as desejadas equações para o acoplamento pressão-velocidade para as velocidades nas interfaces dos volumes reais ficam

$$u_e = u_e^* + d_e^u \left(p_{\rm P}' - p_{\rm E}' \right), \qquad (258)$$

$$v_e = v_e^* + d_e^v \left(p'_{\rm E} - p'_{\rm P} \right), \tag{259}$$

$$u_n = u_n^* + d_n^u (p'_N - p'_P), \qquad (260)$$

$$v_n = v_n^* + d_n^v \left(p_{\rm P}' - p_{\rm N}' \right), \tag{261}$$

onde

$$d_{e}^{u} = \frac{2r_{e}(y_{\eta})_{e}/\Delta\xi}{(A_{p}^{u} + \sum_{nb} A_{nb}^{u})_{p} + (A_{p}^{u} + \sum_{nb} A_{nb}^{u})_{E}},$$

$$2r_{e}(x_{e})/\Delta\xi$$
(262)

$$d_{e}^{v} = \frac{2r_{e}(x_{\eta})_{e}/\Delta\zeta}{(A_{P}^{v} + \sum_{nb} A_{nb}^{v})_{P} + (A_{P}^{v} + \sum_{nb} A_{nb}^{v})_{E}},$$
(263)

$$d_{n}^{u} = \frac{2r_{n}(g_{\xi})_{n}/\Delta\eta}{(A_{p}^{u} + \sum_{nb} A_{nb}^{u})_{p} + (A_{p}^{u} + \sum_{nb} A_{nb}^{u})_{N}},$$
(264)

$$d_n^v = \frac{2T_n (X\xi)_n / \Delta \eta}{(A_P^v + \sum_{nb} A_{nb}^v)_P + (A_P^v + \sum_{nb} A_{nb}^v)_N}.$$
 (265)

¹Desde que a face oeste seja uma interface entre volumes reais.

As velocidades contravariantes nas faces ficam

$$U_e = U_e^* + d_e^U (p'_P - p'_E), \qquad (266)$$

$$U_w = U_w^* + d_w^U (p'_w - p'_P), \qquad (267)$$

$$V_n = V_n^* + d_n^V \left(p_{\rm P}' - p_{\rm N}' \right), \qquad (268)$$

 $V_s = V_s^* + d_s^V (p_s' - p_P'), \qquad (269)$

onde

$$d_{e}^{U} = d_{e}^{u} (y_{\eta})_{e} + d_{e}^{v} (x_{\eta})_{e}, \qquad (270)$$

$$d_{w}^{U} = d_{w}^{u} (y_{\eta})_{w} + d_{w}^{v} (x_{\eta})_{w}, \qquad (271)$$

$$d_n^V = d_n^v (x_{\xi})_n + d_n^u (y_{\xi})_n, \qquad (272)$$

$$d_{s}^{V} = d_{s}^{v} (x_{\xi})_{s} + d_{s}^{u} (y_{\xi})_{s}$$
(273)

е

$$U_{e}^{*} = u_{e}^{*} (y_{\eta})_{e} - v_{e}^{*} (x_{\eta})_{e}, \qquad (274)$$

$$U_{w}^{*} = u_{w}^{*} (y_{\eta})_{w} - v_{w}^{*} (x_{\eta})_{w}, \qquad (275)$$

$$U_{w}^{*} = u_{w}^{*} (y_{\eta})_{w} - v_{w}^{*} (x_{\eta})_{w}, \qquad (275)$$

$$V_n^* = v_n^* (x_{\xi})_n - u_n^* (y_{\xi})_n, \qquad (276)$$

$$V_s^* = v_s^* (x_{\xi})_s - u_s^* (y_{\xi})_s.$$
(277)

Para simplificar o cálculo das velocidades u_e^* , u_n^* , v_e^* e v_n^* é conveniente definir as variáveis

$$\Sigma_{\mathbf{P}}^{\phi^*} = \left(\sum_{nb} A_{nb}^{\phi} \phi_{\mathrm{NB}}^*\right)_{\mathbf{P}}, \quad \phi \in \{u, v\}.$$

$$(278)$$

Na implementação do código, é importante que os termos $A_{nb}^{\phi} \phi_{\rm NB}^*$ da Eq. (278) sejam eliminados quando se referirem a volumes fora do domínio de cálculo, por mais que nestes casos $A_{nb}^{\phi} = 0$. Sendo assim, tem-se

1. Volumes internos

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm SW}^{\phi} \phi_{\rm SW}^* + A_{\rm S}^{\phi} \phi_{\rm S}^* + A_{\rm SE}^{\phi} \phi_{\rm SE}^* + A_{\rm W}^{\phi} \phi_{\rm W}^* + A_{\rm E}^{\phi} \phi_{\rm E}^* + A_{\rm NW}^{\phi} \phi_{\rm NW}^* + A_{\rm N}^{\phi} \phi_{\rm N}^* + A_{\rm NE}^{\phi} \phi_{\rm NE}^*$$
(279)

2. Volumes do contorno sul (exceto os cantos)

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm W}^{\phi} \phi_{\rm W}^* + A_{\rm E}^{\phi} \phi_{\rm E}^* + A_{\rm NW}^{\phi} \phi_{\rm NW}^* + A_{\rm N}^{\phi} \phi_{\rm N}^* + A_{\rm NE}^{\phi} \phi_{\rm NE}^*$$
(280)

3. Volumes do contorno norte (exceto os cantos)

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm sw}^{\phi} \phi_{\rm sw}^* + A_{\rm s}^{\phi} \phi_{\rm s}^* + A_{\rm sE}^{\phi} \phi_{\rm sE}^* + A_{\rm w}^{\phi} \phi_{\rm w}^* + A_{\rm E}^{\phi} \phi_{\rm E}^*$$
(281)

4. Volumes do contorno oeste (exceto os cantos)

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm S}^{\phi} \phi_{\rm S}^* + A_{\rm SE}^{\phi} \phi_{\rm SE}^* + A_{\rm E}^{\phi} \phi_{\rm E}^* + A_{\rm N}^{\phi} \phi_{\rm N}^* + A_{\rm NE}^{\phi} \phi_{\rm NE}^*$$
(282)

5. Volumes do contorno leste (exceto os cantos)

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm sw}^{\phi} \phi_{\rm sw}^* + A_{\rm s}^{\phi} \phi_{\rm s}^* + A_{\rm w}^{\phi} \phi_{\rm w}^* + A_{\rm Nw}^{\phi} \phi_{\rm Nw}^* + A_{\rm N}^{\phi} \phi_{\rm N}^*$$
(283)

6. Volume do canto SW

$$\Sigma_{\rm P}^{\phi^*} = A_{\rm E}^{\phi} \phi_{\rm E}^* + A_{\rm N}^{\phi} \phi_{\rm N}^* + A_{\rm NE}^{\phi} \phi_{\rm NE}^* \tag{284}$$

- 7. Volume do canto SE $\Sigma_{\rm P}^{\phi^*} = A_{\rm W}^{\phi} \phi_{\rm W}^* + A_{\rm NW}^{\phi} \phi_{\rm NW}^* + A_{\rm N}^{\phi} \phi_{\rm N}^* \tag{285}$
- 8. Volume do canto NW $\Sigma_{\rm P}^{\phi^*} = A_{\rm s}^{\phi} \phi_{\rm s}^* + A_{\rm se}^{\phi} \phi_{\rm se}^* + A_{\rm E}^{\phi} \phi_{\rm E}^*$ (286)
- 9. Volume do canto NE

 $\Sigma_{\rm p}^{\phi^*} = A_{\rm sw}^{\phi} \phi_{\rm sw}^* + A_{\rm s}^{\phi} \phi_{\rm s}^* + A_{\rm w}^{\phi} \phi_{\rm w}^* \tag{287}$

As aproximações para $P_e^{\phi^*}$ e $P_n^{\phi^*}$ são dadas abaixo²

$$P_e^u = \left[y_{\xi} \frac{\partial p}{\partial \eta} - y_{\eta} \frac{\partial p}{\partial \xi} \right]_e = \left(y_{\xi} \right)_e \frac{1}{2} \left[\left(\frac{\partial p}{\partial \eta} \right)_{\mathrm{P}} + \left(\frac{\partial p}{\partial \eta} \right)_{\mathrm{E}} \right] - \left(y_{\eta} \right)_e \frac{p_{\mathrm{E}} - p_{\mathrm{P}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2) + \mathcal{O}(\Delta \eta^2), \quad (288)$$

$$P_e^v = \left[x_\eta \frac{\partial p}{\partial \xi} - x_\xi \frac{\partial p}{\partial \eta} \right]_e = (x_\eta)_e \frac{p_{\rm E} - p_{\rm P}}{\Delta \xi} - (x_\xi)_e \frac{1}{2} \left[\left(\frac{\partial p}{\partial \eta} \right)_{\rm P} + \left(\frac{\partial p}{\partial \eta} \right)_{\rm E} \right] + \mathcal{O}(\Delta \xi^2) + \mathcal{O}(\Delta \eta^2), \quad (289)$$

$$P_{n}^{u} = \left[y_{\xi} \frac{\partial p}{\partial \eta} - y_{\eta} \frac{\partial p}{\partial \xi} \right]_{n} = \left(y_{\xi} \right)_{n} \frac{p_{N} - p_{P}}{\Delta \eta} - \left(y_{\eta} \right)_{n} \frac{1}{2} \left[\left(\frac{\partial p}{\partial \xi} \right)_{P} + \left(\frac{\partial p}{\partial \xi} \right)_{N} \right] + \mathcal{O}(\Delta \xi^{2}) + \mathcal{O}(\Delta \eta^{2}), \quad (290)$$

$$P_n^v = \left[x_\eta \frac{\partial p}{\partial \xi} - x_\xi \frac{\partial p}{\partial \eta} \right]_n = \left(x_\eta \right)_n \frac{1}{2} \left[\left(\frac{\partial p}{\partial \xi} \right)_{\rm P} + \left(\frac{\partial p}{\partial \xi} \right)_{\rm N} \right] - \left(x_\xi \right)_n \frac{p_{\rm N} - p_{\rm P}}{\Delta \eta} + \mathcal{O}(\Delta \xi^2) + \mathcal{O}(\Delta \eta^2).$$
(291)

O esquema para o cálculo de $\left(\frac{\partial p}{\partial \eta}\right)_{\mathbf{P}}$ é o seguinte

1. Volumes do contorno sul

$$\left(\frac{\partial p}{\partial \eta}\right)_{\rm P} = \frac{p_{\rm P} + p_{\rm N}}{2} - \left[p_s\right]_{\rm P} \tag{292}$$

onde $[p_s]_{\scriptscriptstyle \mathrm{P}}$ é obtido das condições de contorno.

2. Volumes do contorno norte

$$\left(\frac{\partial p}{\partial \eta}\right)_{\rm P} = \left[p_n\right]_{\rm P} - \frac{p_{\rm P} + p_{\rm S}}{2} \tag{293}$$

onde $[p_n]_{\scriptscriptstyle \mathrm{P}}$ é obtido das condições de contorno.

3. Demais volumes

$$\left(\frac{\partial p}{\partial \eta}\right)_{\rm P} = \frac{p_{\rm N} - p_{\rm s}}{2}.$$
(294)

De modo similar, o esquema para o cálculo de $\left(\frac{\partial p}{\partial \xi}\right)_{\rm p}$ é o seguinte

1. Volumes do contorno oeste

$$\left(\frac{\partial p}{\partial \xi}\right)_{\rm P} = \frac{p_{\rm P} + p_{\rm E}}{2} - \left[p_w\right]_{\rm P},\tag{295}$$

onde $\left[p_w\right]_{\scriptscriptstyle \mathrm{P}}$ é obtido das condições de contorno.

2. Volumes do contorno leste

$$\left(\frac{\partial p}{\partial \xi}\right)_{\rm P} = \left[p_e\right]_{\rm P} - \frac{p_{\rm P} + p_{\rm W}}{2},\tag{296}$$

onde $\left[p_e\right]_{\scriptscriptstyle \mathrm{P}}$ é obtido das condições de contorno.

3. Demais volumes

$$\left(\frac{\partial p}{\partial \xi}\right)_{\rm P} = \frac{p_{\rm E} - p_{\rm W}}{2}.$$
(297)

3.5.3 Aproximações para as faces dos contornos

1. Contorno sul

Por analogia às Eqs. (258)-(261) e (266)-(269), o acoplamento pressão-velocidade nas faces do contorno sul é dado por

$$u_s = u_s^* + d_s^u \left(p_{\rm P}' - p_s' \right) \tag{298}$$

$$v_s = v_s^* + d_s^v \left(p_s' - p_P' \right)$$
(299)

$$V_s = V_s^* + d_s^V (p_s' - p_P')$$
(300)

onde d^u_s e d^v_s devem ser prescritos de acordo com as condições de contorno e d^V_s é dado por

$$d_s^V = d_s^v \left(x_\xi \right)_s + d_s^u \left(y_\xi \right)_s.$$
(301)

²O asterisco foi omitido para não sobrecarregar a notação.

2. Contorno norte

Por analogia às Eqs. (258)-(261) e (266)-(269), o acoplamento pressão-velocidade nas faces do contorno norte é dado por

$$u_n = u_n^* + d_n^u \left(p_n' - p_P' \right) \tag{302}$$

$$v_n = v_n^* + d_n^v \left(p_{\rm P}' - p_n' \right) \tag{303}$$

$$V_n = V_n^* + d_n^V (p_P' - p_n')$$
(304)

onde d_n^u e d_n^v devem ser prescritos de acordo com as condições de contorno e d_n^V é dado por

$$d_{n}^{V} = d_{n}^{v} \left(x_{\xi} \right)_{n} + d_{n}^{u} \left(y_{\xi} \right)_{n}.$$
(305)

3. Contorno oeste

Por analogia às Eqs. (258)-(261) e (266)-(269), o acoplamento pressão-velocidade nas faces do contorno oeste é dado por

$$u_w = u_w^* + d_w^u \left(p_w' - p_P' \right) \tag{306}$$

$$v_w = v_w^* + d_w^v \left(p_{\rm P}' - p_w' \right) \tag{307}$$

$$U_w = U_w^* + d_w^U (p'_w - p'_p) \tag{308}$$

onde d_w^u e d_w^v devem ser prescritos de acordo com as condições de contorno e d_w^U é dado por

$$d_{w}^{U} = d_{w}^{u} (y_{\eta})_{w} + d_{w}^{v} (x_{\eta})_{w}.$$
(309)

4. Contorno leste

Por analogia às Eqs. (258)-(261) e (266)-(269), o acoplamento pressão-velocidade nas faces do contorno leste é dado por

$$u_e = u_e^* + d_e^u \left(p_{\rm P}' - p_e' \right) \tag{310}$$

$$v_e = v_e^* + d_e^v (p'_e - p'_P)$$
(311)

$$U_e = U_e^* + d_e^U \left(p_{\rm P}' - p_e' \right) \tag{312}$$

onde d_e^u e d_e^v devem ser prescritos de acordo com as condições de contorno e d_e^U é dado por

$$d_{e}^{U} = d_{e}^{u} \left(y_{\eta} \right)_{e} + d_{e}^{v} \left(x_{\eta} \right)_{e}.$$
(313)

3.6 Equação para a correção da pressão

3.6.1 Volumes internos

Como apontado na seção anterior, a equação da continuidade

$$\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}-\rho_{\rm P}^{\circ}}{\Delta t} + \frac{(\rho r U)_e - (\rho r U)_w}{\Delta \xi} + \frac{(\rho r V)_n - (\rho r V)_s}{\Delta \eta} = 0, \tag{314}$$

pode ser transformada em uma equação para a correção da pressão. Para realizar esta transformação é necessário conhecer as fórmulas de acoplamento pressão-densidade e pressão-velocidade. Além disso, é necessário linearizar os termos que envolvam produtos de densidade e da velocidade para que se possa obter um sistema linear. A linearização utilizada será a seguinte, proposta por Maliska[3],

$$(\rho r U)_{e} = \rho_{e}^{m} r_{e} U_{e} + \rho_{e} r_{e} U_{e}^{m} - \rho_{e}^{m} r_{e} U_{e}^{m}, \qquad (315)$$

$$(\rho r U)_w = \rho_w^m r_w U_w + \rho_w r_w U_w^m - \rho_w^m r_w U_w^m, \qquad (316)$$

$$(\rho r V)_n = \rho_n^m r_n V_n + \rho_n r_n V_n^m - \rho_n^m r_n V_n^m, \qquad (317)$$

$$(\rho r V)_s = \rho_s^m r_s V_s + \rho_s r_s V_s^m - \rho_s^m r_s V_s^m, \qquad (318)$$

onde o índice m indica o valor da variável obtido da última iteração.

Inserindo-se as aproximações (315)-(318) na equação da continuidade (314) e levando-se em conta o acoplamento pressão-densidade (217) e (229)-(232), bem como o acoplamento pressão-velocidade (266)-(269), obtém-se o seguinte sistema linear para a correção da pressão

$$A_{\rm P}^{p'}p_{\rm P}' + A_{w}^{p'}p_{\rm W}' + A_{e}^{p'}p_{\rm E}' + A_{s}^{p'}p_{\rm S}' + A_{n}^{p'}p_{\rm N}' = b_{\rm P}^{p'}, \qquad (319)$$

$$A_{\rm P}^{p'} = g_{\rm P} \left[\frac{r_{\rm P}}{J_{\rm P} \Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{e}\right) r_{e} U_{e}^{m} - \left(\frac{1}{2} - \hat{\alpha}_{w}\right) r_{w} U_{w}^{m}}{\Delta \xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{n}\right) r_{n} V_{n}^{m} - \left(\frac{1}{2} - \hat{\alpha}_{s}\right) r_{s} V_{s}^{m}}{\Delta \eta} \right] + \frac{\rho_{e}^{m} r_{e} d_{e}^{U} + \rho_{w}^{m} r_{w} d_{w}^{U}}{\Delta \xi} + \frac{\rho_{n}^{m} r_{n} d_{n}^{V} + \rho_{s}^{m} r_{s} d_{s}^{V}}{\Delta \tau}, \qquad (320)$$

$$A_w^{p'} = \frac{\Delta\xi}{\Delta\xi} \Delta\eta \qquad (321)$$

$$A_{e}^{p'} = \frac{-\rho_{e}^{m} r_{e} d_{e}^{U} + \left(\frac{1}{2} - \hat{\alpha}_{e}\right) r_{e} U_{e}^{m} g_{\mathrm{E}}}{\Delta \xi}, \qquad (322)$$

$$A_{s}^{p'} = \frac{-\rho_{s}^{m} r_{s} d_{s}^{V} - \left(\frac{1}{2} + \hat{\alpha}_{s}\right) r_{s} V_{s}^{m} g_{\text{B}}}{\Delta \eta},$$
(323)

$$A_{n}^{p'} = \frac{-\rho_{n}^{m} r_{n} d_{n}^{V} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right) r_{n} V_{n}^{m} g_{N}}{\Delta \eta}, \qquad (324)$$

$$b_{P}^{p'} = -\left[\frac{r_{P}}{J_{P}}\frac{\rho_{P}^{*}-\rho_{P}^{\circ}}{\Delta t} + \frac{\rho_{e}^{m}r_{e}U_{e}^{*}-\rho_{w}^{m}r_{w}U_{w}^{*}}{\Delta\xi} + \frac{\rho_{n}^{m}r_{n}V_{n}^{*}-\rho_{s}^{m}r_{s}V_{s}^{*}}{\Delta\eta}\right] + \frac{(\rho_{e}^{m}-\rho_{e}^{*})r_{e}U_{e}^{m}-(\rho_{w}^{m}-\rho_{w}^{*})r_{w}U_{w}^{m}}{\Delta\xi} + \frac{(\rho_{n}^{m}-\rho_{n}^{*})r_{n}V_{n}^{m}-(\rho_{s}^{m}-\rho_{s}^{*})r_{s}V_{s}^{m}}{\Delta\eta}.$$
(325)

3.6.2 Contorno sul (exceto os cantos)

Neste contorno é conveniente que o termo

$$-\frac{(\rho r V)_s}{\Delta \eta},\tag{326}$$

da equação da continuidade, seja discretizado separadamente dos demais, uma vez que esse depende das condições de contorno. Assim, a discretização da equação restante, isto é,

$$\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}-\rho_{\rm P}^{\circ}}{\Delta t} + \frac{(\rho r U)_e - (\rho r U)_w}{\Delta \xi} + \frac{(\rho r V)_n}{\Delta \eta} = 0,$$
(327)

se torna independente do problema.

Ao se aplicar a mesma discretização da seção anterior à Eq. (327), obtém-se os seguintes coeficientes e termo fonte para o sistema linear

$$A_{\mathbf{P}}^{p'} = g_{\mathbf{P}} \left[\frac{r_{\mathbf{P}}}{J_{\mathbf{P}}\Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{e}\right)r_{e}U_{e}^{m} - \left(\frac{1}{2} - \hat{\alpha}_{w}\right)r_{w}U_{w}^{m}}{\Delta\xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{n}\right)r_{n}V_{n}^{m}}{\Delta\eta} \right] + \frac{\rho_{e}^{m}r_{e}d_{e}^{U} + \rho_{w}^{m}r_{w}d_{w}^{U}}{\Delta\xi} + \frac{\rho_{n}^{m}r_{n}d_{n}^{V}}{\Delta\tau},$$

$$(328)$$

$$A_{w}^{p'} = \frac{-\rho_{w}^{m} r_{w} d_{w}^{U} - \left(\frac{1}{2} + \hat{\alpha}_{w}\right) r_{w} U_{w}^{m} g_{w}}{\Delta \varepsilon},$$
(329)

$$A_{e}^{p'} = \frac{-\rho_{e}^{m} r_{e} d_{e}^{U} + \left(\frac{1}{2} - \hat{\alpha}_{e}\right) r_{e} U_{e}^{m} g_{\mathrm{E}}}{\Delta \xi},$$
(330)

$$A_s^{p'} = 0, (331)$$

$$A_{n}^{p'} = \frac{-\rho_{n}^{m} r_{n} d_{n}^{V} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right) r_{n} V_{n}^{m} g_{N}}{\Delta \eta}, \qquad (332)$$

$$b_{P}^{p'} = -\left[\frac{r_{P}}{J_{P}}\frac{\rho_{P}^{*} - \rho_{P}^{\circ}}{\Delta t} + \frac{\rho_{e}^{m}r_{e}U_{e}^{*} - \rho_{w}^{m}r_{w}U_{w}^{*}}{\Delta\xi} + \frac{\rho_{n}^{m}r_{n}V_{n}^{*}}{\Delta\eta}\right] + \frac{(\rho_{e}^{m} - \rho_{e}^{*})r_{e}U_{e}^{m} - (\rho_{w}^{m} - \rho_{w}^{*})r_{w}U_{w}^{m}}{\Delta\xi} + \frac{(\rho_{n}^{m} - \rho_{n}^{*})r_{n}V_{n}^{m}}{\Delta\eta}.$$
(333)

Os coeficientes e termo fonte do termo (326) devem ser adicionados aos desta seção.

3.6.3 Contorno norte (exceto os cantos)

Seguindo o mesmo procedimento da seção anterior, os coeficientes e termo fonte ficam

$$A_{\rm P}^{p'} = g_{\rm P} \left[\frac{r_{\rm P}}{J_{\rm P} \Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_e\right) r_e U_e^m - \left(\frac{1}{2} - \hat{\alpha}_w\right) r_w U_w^m}{\Delta \xi} - \frac{\left(\frac{1}{2} - \hat{\alpha}_s\right) r_s V_s^m}{\Delta \eta} \right]$$

$$+ \frac{\rho_e^m r_e d_e^U + \rho_w^m r_w d_w^U}{\Delta \xi} + \frac{\rho_s^m r_s d_s^V}{\Delta \eta}, \tag{334}$$

$$A_{w}^{p'} = \frac{-\rho_{w}^{m} r_{w} d_{w}^{U} - \left(\frac{1}{2} + \hat{\alpha}_{w}\right) r_{w} U_{w}^{m} g_{w}}{\Delta \xi},$$
(335)

$$A_{e}^{p'} = \frac{-\rho_{e}^{m} r_{e} d_{e}^{U} + \left(\frac{1}{2} - \hat{\alpha}_{e}\right) r_{e} U_{e}^{m} g_{\mathrm{E}}}{\Delta \xi},$$
(336)

$$A_{s}^{p'} = \frac{-\rho_{s}^{m} r_{s} d_{s}^{V} - \left(\frac{1}{2} + \hat{\alpha}_{s}\right) r_{s} V_{s}^{m} g_{s}}{\Delta \eta}, \qquad (337)$$

$$A_n^{p'} = 0, (338)$$

$$b_{\rm P}^{p'} = -\left[\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}^{*} - \rho_{\rm P}^{*}}{\Delta t} + \frac{\rho_{e}^{m}r_{e}U_{e}^{*} - \rho_{w}^{m}r_{w}U_{w}^{*}}{\Delta\xi} - \frac{\rho_{s}^{m}r_{s}V_{s}^{*}}{\Delta\eta}\right] + \frac{(\rho_{e}^{m} - \rho_{e}^{*})r_{e}U_{e}^{m} - (\rho_{w}^{m} - \rho_{w}^{*})r_{w}U_{w}^{m}}{\Delta\xi} - \frac{(\rho_{s}^{m} - \rho_{s}^{*})r_{s}V_{s}^{m}}{\Delta\eta}.$$
(339)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$\frac{(\rho r V)_n}{\Delta \eta},\tag{340}$$

devem ser adicionados aos desta seção.

3.6.4 Contorno oeste (exceto os cantos)

Os coeficientes e o termo fonte são

$$A_{\mathbf{P}}^{p'} = g_{\mathbf{P}} \left[\frac{r_{\mathbf{P}}}{J_{\mathbf{P}}\Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{e}\right)r_{e}U_{e}^{m}}{\Delta\xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{n}\right)r_{n}V_{n}^{m} - \left(\frac{1}{2} - \hat{\alpha}_{s}\right)r_{s}V_{s}^{m}}{\Delta\eta} \right]$$

$$\rho_{e}^{m}r_{e}d_{e}^{U} = \rho_{n}^{m}r_{n}d_{n}^{V} + \rho_{s}^{m}r_{s}d_{s}^{V}$$
(2.11)

$$+ \frac{1}{\Delta\xi} + \frac{1}{\Delta\eta}, \qquad (341)$$

$$p' = 0. \qquad (342)$$

$$\begin{aligned}
A_w^{p'} &= 0, \\
A_e^{p'} &= \frac{-\rho_e^m r_e d_e^U + \left(\frac{1}{2} - \hat{\alpha}_e\right) r_e U_e^m g_{\rm E}}{\Delta \xi},
\end{aligned} \tag{342}$$
(343)

$$A_{s}^{p'} = \frac{-\rho_{s}^{m} r_{s} d_{s}^{V} - (\frac{1}{2} + \hat{\alpha}_{s}) r_{s} V_{s}^{m} g_{s}}{\Delta \eta},$$
(344)

$$A_{n}^{p'} = \frac{-\rho_{n}^{m}r_{n}d_{n}^{V} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right)r_{n}V_{n}^{m}g_{\mathrm{N}}}{\Delta\eta},$$
(345)

$$b_{\rm P}^{p'} = -\left[\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}^* - \rho_{\rm P}^\circ}{\Delta t} + \frac{\rho_e^m r_e U_e^*}{\Delta\xi} + \frac{\rho_n^m r_n V_n^* - \rho_s^m r_s V_s^*}{\Delta\eta}\right] \\ + \frac{(\rho_e^m - \rho_e^*) r_e U_e^m}{\Delta\xi} + \frac{(\rho_n^m - \rho_n^*) r_n V_n^m - (\rho_s^m - \rho_s^*) r_s V_s^m}{\Delta\eta}.$$
(346)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$-\frac{(\rho r U)_w}{\Delta \xi},\tag{347}$$

devem ser adicionados aos desta seção.

3.6.5 Contorno leste (exceto os cantos)

Os coeficientes e o termo fonte são

$$\begin{aligned}
A_{P}^{p'} &= g_{P} \left[\frac{r_{P}}{J_{P} \Delta t} - \frac{\left(\frac{1}{2} - \hat{\alpha}_{w}\right) r_{w} U_{w}^{m}}{\Delta \xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{n}\right) r_{n} V_{n}^{m} - \left(\frac{1}{2} - \hat{\alpha}_{s}\right) r_{s} V_{s}^{m}}{\Delta \eta} \right] \\
&+ \frac{\rho_{w}^{m} r_{w} d_{w}^{U}}{\Delta \xi} + \frac{\rho_{n}^{m} r_{n} d_{n}^{V} + \rho_{s}^{m} r_{s} d_{s}^{V}}{\Delta \eta},
\end{aligned}$$
(348)

$$A_{w}^{p'} = \frac{-\rho_{w}^{m} r_{w} d_{w}^{U} - \left(\frac{1}{2} + \hat{\alpha}_{w}\right) r_{w} U_{w}^{m} g_{w}}{\Delta \xi},$$
(349)

$$A_{e}^{p'} = 0, (350)$$

$$A_s^{p'} = \frac{p_s r_s a_s}{\Delta \eta}, \tag{351}$$

$$A_{n}^{p'} = \frac{-\rho_{n}^{m}r_{n}d_{n}^{v} + (\frac{1}{2} - \hat{\alpha}_{n})r_{n}V_{n}^{m}g_{N}}{\Delta\eta}, \qquad (352)$$

$$b_{\rm P}^{p'} = -\left[\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}^{*} - \rho_{\rm P}^{\circ}}{\Delta t} - \frac{\rho_{w}^{m}r_{w}U_{w}^{*}}{\Delta\xi} + \frac{\rho_{n}^{m}r_{n}V_{n}^{*} - \rho_{s}^{m}r_{s}V_{s}^{*}}{\Delta\eta}\right] - \frac{(\rho_{w}^{m} - \rho_{w}^{*})r_{w}U_{w}^{m}}{\Delta\xi} + \frac{(\rho_{n}^{m} - \rho_{n}^{*})r_{n}V_{n}^{m} - (\rho_{s}^{m} - \rho_{s}^{*})r_{s}V_{s}^{m}}{\Delta\eta}.$$
(353)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$\frac{(\rho r U)_e}{\Delta \xi},\tag{354}$$

devem ser adicionados aos desta seção.

3.6.6 Canto SW

Os coeficientes e o termo fonte são

$$A_{\rm P}^{p'} = g_{\rm P} \left[\frac{r_{\rm P}}{J_{\rm P}\Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_e\right)r_e U_e^m}{\Delta\xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_n\right)r_n V_n^m}{\Delta\eta} \right] + \frac{\rho_e^m r_e d_e^U}{\Delta\xi} + \frac{\rho_n^m r_n d_n^V}{\Delta\eta}, \tag{355}$$
$$A_{\rm P}^{p'} = 0, \tag{356}$$

$$\begin{aligned}
A_{w}^{p'} &= 0, \\
A_{e}^{p'} &= \frac{-\rho_{e}^{m} r_{e} d_{e}^{U} + \left(\frac{1}{2} - \hat{\alpha}_{e}\right) r_{e} U_{e}^{m} g_{\mathrm{E}}}{\Delta \xi}, \\
\end{aligned} \tag{356}$$
(357)

$$A_s^{p'} = 0,$$
 (358)

$$A_{n}^{p'} = \frac{-\rho_{n}^{m} r_{n} d_{n}^{V} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right) r_{n} V_{n}^{m} g_{N}}{\Delta \eta},$$
(359)

$$b_{\rm P}^{p'} = -\left[\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}^* - \rho_{\rm P}^\circ}{\Delta t} + \frac{\rho_e^m r_e U_e^*}{\Delta\xi} + \frac{\rho_n^m r_n V_n^*}{\Delta\eta}\right] + \frac{(\rho_e^m - \rho_e^*) r_e U_e^m}{\Delta\xi} + \frac{(\rho_n^m - \rho_n^*) r_n V_n^m}{\Delta\eta}.$$
 (360)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$-\frac{(\rho r V)_s}{\Delta \eta} - \frac{(\rho r U)_w}{\Delta \xi},\tag{361}$$

devem ser adicionados aos desta seção.

3.6.7 Canto SE

Os coeficientes e o termo fonte são

$$A_{\rm P}^{p'} = g_{\rm P} \left[\frac{r_{\rm P}}{J_{\rm P}\Delta t} - \frac{\left(\frac{1}{2} - \hat{\alpha}_w\right)r_w U_w^m}{\Delta\xi} + \frac{\left(\frac{1}{2} + \hat{\alpha}_n\right)r_n V_n^m}{\Delta\eta} \right] + \frac{\rho_w^m r_w d_w^U}{\Delta\xi} + \frac{\rho_n^m r_n d_n^V}{\Delta\eta}, \tag{362}$$

$$A_{w}^{p'} = \frac{-\rho_{w}^{m} r_{w} d_{w}^{U} - \left(\frac{1}{2} + \hat{\alpha}_{w}\right) r_{w} U_{w}^{m} g_{w}}{\Delta \xi},$$
(363)

$$\begin{array}{rcl}
A_e^{p'} &=& 0, \\
A_e^{p'} &=& 0, \\
\end{array} \tag{364}$$
(365)

$$A_{n}^{p'} = 0, \qquad (366)$$

$$A_{n}^{p'} = \frac{-\rho_{n}^{m}r_{n}d_{n}^{V} + (\frac{1}{2} - \hat{\alpha}_{n})r_{n}V_{n}^{m}g_{N}}{\Delta n}, \qquad (366)$$

$$b_{\rm P}^{p'} = -\left[\frac{r_{\rm P}}{J_{\rm P}}\frac{\rho_{\rm P}^* - \rho_{\rm P}^{\circ}}{\Delta t} - \frac{\rho_{w}^m r_w U_w^*}{\Delta \xi} + \frac{\rho_n^m r_n V_n^*}{\Delta \eta}\right] - \frac{(\rho_w^m - \rho_w^*) r_w U_w^m}{\Delta \xi} + \frac{(\rho_n^m - \rho_n^*) r_n V_n^m}{\Delta \eta}.$$
 (367)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$\frac{(\rho r U)_e}{\Delta \xi} - \frac{(\rho r V)_s}{\Delta \eta},\tag{368}$$

devem ser adicionados aos desta seção.

3.6.8 Canto NW

Os coeficientes e o termo fonte são

$$A_{\mathbf{p}}^{p'} = g_{\mathbf{p}} \left[\frac{r_{\mathbf{p}}}{J_{\mathbf{p}}\Delta t} + \frac{\left(\frac{1}{2} + \hat{\alpha}_{e}\right)r_{e}U_{e}^{m}}{\Delta\xi} - \frac{\left(\frac{1}{2} - \hat{\alpha}_{s}\right)r_{s}V_{s}^{m}}{\Delta\eta} \right] + \frac{\rho_{e}^{m}r_{e}d_{e}^{U}}{\Delta\xi} + \frac{\rho_{s}^{m}r_{s}d_{s}^{V}}{\Delta\eta}, \tag{369}$$

$$\begin{aligned}
A_w^p &= 0, \\
A_e^{p'} &= \frac{-\rho_e^m r_e d_e^U + (\frac{1}{2} - \hat{\alpha}_e) r_e U_e^m g_{\rm E}}{\Delta \xi}, \\
\end{aligned} (370)$$

$$A_{s}^{p'} = \frac{-\rho_{s}^{m} r_{s} d_{s}^{V} - \left(\frac{1}{2} + \hat{\alpha}_{s}\right) r_{s} V_{s}^{m} g_{s}}{\Delta \eta}, \qquad (372)$$

$$\begin{aligned}
A_n^{p'} &= 0, \\
b_n^{p'} &= -\left[\frac{r_{\rm P}}{r_{\rm P}}\frac{\rho_{\rm P}^* - \rho_{\rm P}^\circ}{\rho_{\rm P}} + \frac{\rho_e^m r_e U_e^*}{\rho_e^m r_e U_e^*} - \frac{\rho_s^m r_s V_s^*}{\rho_s^m r_s V_s^*}\right] + \frac{(\rho_e^m - \rho_e^*) r_e U_e^m}{\rho_e^m r_e U_e^m} - \frac{(\rho_s^m - \rho_s^*) r_s V_s^m}{\rho_s^m r_s V_s^m}.
\end{aligned}$$
(373)

$$b_{\mathbf{p}}^{p'} = -\left[\frac{r_{\mathbf{p}}}{J_{\mathbf{p}}}\frac{\rho_{\mathbf{p}}^{*} - \rho_{\mathbf{p}}^{0}}{\Delta t} + \frac{\rho_{e}^{m}r_{e}U_{e}^{*}}{\Delta\xi} - \frac{\rho_{s}^{m}r_{s}V_{s}^{*}}{\Delta\eta}\right] + \frac{(\rho_{e}^{m} - \rho_{e}^{*})r_{e}U_{e}^{m}}{\Delta\xi} - \frac{(\rho_{s}^{m} - \rho_{s}^{*})r_{s}V_{s}^{m}}{\Delta\eta}.$$
 (374)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$\frac{(\rho r V)_n}{\Delta \eta} - \frac{(\rho r U)_w}{\Delta \xi},\tag{375}$$

devem ser adicionados aos desta seção.

3.6.9 Canto NE

Os coeficientes e o termo fonte são

$$A_{\rm P}^{p'} = g_{\rm P} \left[\frac{r_{\rm P}}{J_{\rm P} \Delta t} - \frac{\left(\frac{1}{2} - \hat{\alpha}_w\right) r_w U_w^m}{\Delta \xi} - \frac{\left(\frac{1}{2} - \hat{\alpha}_s\right) r_s V_s^m}{\Delta \eta} \right] + \frac{\rho_w^m r_w d_w^U}{\Delta \xi} + \frac{\rho_s^m r_s d_s^V}{\Delta \eta}, \tag{376}$$

$$A_w^{p'} = \frac{-\rho_w^m r_w d_w^U - \left(\frac{1}{2} + \hat{\alpha}_w\right) r_w U_w^m g_w}{\Delta \xi}, \qquad (377)$$

$$A_e^{p'} = 0, (378)$$

$$A_{s}^{p'} = \frac{-\rho_{s}^{m} r_{s} d_{s}^{V} - \left(\frac{1}{2} + \hat{\alpha}_{s}\right) r_{s} V_{s}^{m} g_{s}}{\Delta \eta},$$
(379)

$$A_{n}^{p'} = 0,$$

$$(380)$$

$$[r_{P} \rho_{p}^{*} - \rho_{p}^{\circ} - \rho_{m}^{\circ} r_{w} U_{w}^{*} - \rho_{n}^{m} r_{s} V_{s}^{*}] - (\rho_{w}^{m} - \rho_{w}^{*}) r_{w} U_{w}^{m} - (\rho_{n}^{m} - \rho_{s}^{*}) r_{s} V_{n}^{m}$$

$$(380)$$

$$b_{\mathrm{P}}^{p'} = -\left[\frac{r_{\mathrm{P}}}{J_{\mathrm{P}}}\frac{\rho_{\mathrm{P}}^{*}-\rho_{\mathrm{P}}^{\circ}}{\Delta t} - \frac{\rho_{w}^{m}r_{w}U_{w}^{*}}{\Delta\xi} - \frac{\rho_{s}^{m}r_{s}V_{s}^{*}}{\Delta\eta}\right] - \frac{(\rho_{w}^{m}-\rho_{w}^{*})r_{w}U_{w}^{m}}{\Delta\xi} - \frac{(\rho_{s}^{m}-\rho_{s}^{*})r_{s}V_{s}^{m}}{\Delta\eta}.$$
 (381)

Os coeficientes e o termo fonte obtidos da discretização do termo

$$\frac{(\rho r V)_n}{\Delta \eta} + \frac{(\rho r U)_e}{\Delta \xi},\tag{382}$$

devem ser adicionados aos desta seção.

3.7 Cálculo das variáveis sobre os contornos

3.7.1 Aproximações envolvendo u

1. Contorno sul

O vetor velocidade \boldsymbol{u}_s deve ser tangente à superfície. Como o contorno sul é uma linha de η constante, então

$$\boldsymbol{u}_{s} = \lambda \left(\boldsymbol{E}_{\xi} \right)_{s}, \tag{383}$$

onde $(E_{\xi})_s$ é um vetor tangente à superfície (ver a Seç. 2.6) e λ é um coeficiente a determinar. Tendo em vista que

$$u_{
m P}
ightarrow u_s$$
 (384)

a medida que a malha é refinada, o coeficiente λ é aproximado por

$$\lambda \simeq \operatorname{sgn}\left(\boldsymbol{u}_{\mathrm{P}} \cdot \left(\boldsymbol{E}_{\xi}\right)_{s}\right) \sqrt{\frac{u_{\mathrm{P}}^{2} + v_{\mathrm{P}}^{2}}{\left(x_{\xi}\right)_{s}^{2} + \left(y_{\xi}\right)_{s}^{2}}}.$$
(385)

Uma vez conhecido $\lambda,$ tem-se

$$u_s = \lambda \left(x_\xi \right)_s. \tag{386}$$

2. Contorno norte

$$u_n = u_\infty \tag{387}$$

3. Contorno oeste

Neste contorno

$$\hat{\boldsymbol{n}} \cdot \nabla u = 0, \tag{388}$$

onde \hat{n} é o vetor normal ao contorno o
este. Uma vez que o contorno oeste é uma linha de ξ constante, tem-se

$$\hat{\boldsymbol{n}} = \frac{\boldsymbol{E}^{\varsigma}}{\|\boldsymbol{E}^{\varsigma}\|} \tag{389}$$

Combinando a Eq. (61), isto é,

$$\nabla \phi = \boldsymbol{E}^{\xi} \; \frac{\partial \phi}{\partial \xi} + \boldsymbol{E}^{\eta} \; \frac{\partial \phi}{\partial \eta},$$

com a Eq. (389), obtém-se para a condição de contorno (388)

$$\left(g^{\xi\xi}\frac{\partial u}{\partial\xi} + g^{\xi\eta}\frac{\partial u}{\partial\eta}\right)_w = 0 \tag{390}$$

 \mathbf{ou}

$$\alpha_w \left(\frac{\partial u}{\partial \xi}\right)_w - \beta_w \left(\frac{\partial u}{\partial \eta}\right)_w = 0.$$
(391)

onde foram usadas as Eqs. (58) e (59).

Aplicando a aproximação

$$\left(\frac{\partial u}{\partial \xi}\right)_w = \frac{u_{\rm P} - u_w}{\Delta \xi/2} \tag{392}$$

à Eq. (391), tem-se

$$u_w = u_{\rm P} - \frac{1}{2} \frac{\beta_w}{\alpha_w} \left(\frac{\partial u}{\partial \eta}\right)_w \Delta \xi.$$
(393)

Exceto para os volumes dos cantos SW e NW, utiliza-se a aproximação

$$\left(\frac{\partial u}{\partial \eta}\right)_{w} = \frac{\left(u_{w}\right)_{N} - \left(u_{w}\right)_{S}}{2\Delta\eta}.$$
(394)

Para o canto NW

$$\left(\frac{\partial u}{\partial \eta}\right)_w = 0 \tag{395}$$

e para o canto SW

$$\left(\frac{\partial u}{\partial \eta}\right)_{w} = \frac{u_{w} - u_{sw}}{\Delta \eta/2} = 2\frac{u_{w}}{\Delta \eta}.$$
(396)

4. Contorno leste

Escoamento localmente parabólico

 $\boldsymbol{u} \cdot \nabla \boldsymbol{u} = \boldsymbol{0}. \tag{397}$

Utilizando

$$\boldsymbol{u} = J\left(\boldsymbol{U}\boldsymbol{E}_{\boldsymbol{\xi}} + \boldsymbol{V}\boldsymbol{E}_{\boldsymbol{\eta}}\right) \tag{398}$$

e a Eq. (61), obtém-se

$$\left(\boldsymbol{u}\cdot\nabla\boldsymbol{u}\right)_{e} = \left(U\frac{\partial\boldsymbol{u}}{\partial\boldsymbol{\xi}} + V\frac{\partial\boldsymbol{u}}{\partial\boldsymbol{\eta}}\right)_{e} = 0. \tag{399}$$

Aplicando a aproximação

$$\left(\frac{\partial u}{\partial \xi}\right)_e = \frac{u_e - u_P}{\Delta \xi/2},\tag{400}$$

tem-se

$$u_e = u_{\rm P} - \frac{1}{2} \frac{V_e}{U_e} \left(\frac{\partial u}{\partial \eta}\right)_e \Delta \xi.$$
(401)

Exceto para os volumes dos cantos SE e NE, utiliza-se a aproximação

$$\left(\frac{\partial u}{\partial \eta}\right)_{e} = \frac{\left(u_{e}\right)_{\mathrm{N}} - \left(u_{e}\right)_{\mathrm{S}}}{2\Delta\eta}.$$
(402)

Para o canto SE, utiliza-se

$$\left(\frac{\partial u}{\partial \eta}\right)_{e} = \frac{\left(u_{e}\right)_{\mathrm{N}} - \left(u_{e}\right)_{\mathrm{P}}}{\Delta \eta} \tag{403}$$

e para o canto NE, utiliza-se

$$\left(\frac{\partial u}{\partial \eta}\right)_e = 0. \tag{404}$$

3.7.2 Aproximações envolvendo v

1. Contorno sul

Utilizando o mesmo raciocínio aplicado para u, tem-se

$$v_s = \lambda \left(y_\xi \right)_s. \tag{405}$$

2. Contorno norte

$$v_n = 0. (406)$$

3. Contorno oeste

$$v_w = 0. \tag{407}$$

4. Contorno leste

Utilizando um procedimento análogo ao feito para u, tem-se

$$v_e = v_{\rm P} - \frac{1}{2} \frac{V_e}{U_e} \left(\frac{\partial v}{\partial \eta}\right)_e \Delta \xi.$$
(408)

Exceto para os volumes dos cantos SE e NE, utiliza-se a aproximação

$$\left(\frac{\partial v}{\partial \eta}\right)_{e} = \frac{\left(v_{e}\right)_{\mathrm{N}} - \left(v_{e}\right)_{\mathrm{S}}}{2\Delta\eta}.$$
(409)

Para o canto SE, utiliza-se

$$\left(\frac{\partial v}{\partial \eta}\right)_{e} = \frac{\left(v_{e}\right)_{N} - \left(v_{e}\right)_{P}}{\Delta \eta}$$

$$\tag{410}$$

e para o canto NE, utiliza-se

$$\left(\frac{\partial v}{\partial \eta}\right)_e = 0. \tag{411}$$

3.7.3 Aproximações envolvendo U e V

1. Contorno sul

 $V_s = 0 \tag{412}$

2. Contorno norte

$$V_n = v_n(x_{\xi})_n - u_n(y_{\xi})_n.$$
(413)

3. Contorno oeste

4. Contorno leste

- $U_w = 0 \tag{414}$
- $U_e = u_e(y_\eta)_e v_e(x_\eta)_e.$ (415)

 $V_e = v_e(x_\xi)_e - u_e(y_\xi)_e.$ (416)

3.7.4 Aproximações envolvendo T

1. Contorno sul

No contorno sul,

$$\hat{\boldsymbol{n}} \cdot \nabla T = 0, \tag{417}$$

isto é, não deve haver fluxo de calor.

Como o contorno sul é uma linha de η constante, o vetor normal é dado por

$$\hat{\boldsymbol{n}} = \frac{\boldsymbol{E}^{\eta}}{\|\boldsymbol{E}^{\eta}\|}.$$
(418)

Combinando a Eq. (61), isto é,

$$\nabla \phi = \boldsymbol{E}^{\xi} \ \frac{\partial \phi}{\partial \xi} + \boldsymbol{E}^{\eta} \ \frac{\partial \phi}{\partial \eta},$$

com a Eq. (418), obtém-se para a condição de contorno

$$\left(g^{\xi\eta}\frac{\partial T}{\partial\xi} + g^{\eta\eta}\frac{\partial T}{\partial\eta}\right)_s = 0 \tag{419}$$

ou

$$-\beta_s \left(\frac{\partial T}{\partial \xi}\right)_s + \gamma_s \left(\frac{\partial T}{\partial \eta}\right)_s = 0.$$
(420)

onde foram usadas as Eqs. (59) e (60).

Aplicando a aproximação $% {\displaystyle \sum} {$

$$\left(\frac{\partial T}{\partial \eta}\right)_s = \frac{T_{\rm P} - T_s}{\Delta \eta/2},\tag{421}$$

obtém-se

$$T_{s} = T_{\rm P} - \frac{1}{2} \frac{\beta_{s}}{\gamma_{s}} \left(\frac{\partial T}{\partial \xi}\right)_{s} \Delta \eta.$$
(422)

Exceto nos cantos SW e SE,

$$\left(\frac{\partial T}{\partial \xi}\right)_{s} = \frac{(T_{s})_{\rm E} - (T_{s})_{\rm W}}{2\Delta\xi}.$$
(423)

Para o canto SW, utiliza-se

$$\left(\frac{\partial T}{\partial \xi}\right)_{s} = \frac{\left(T_{s}\right)_{\mathrm{E}} - \left(T_{s}\right)_{\mathrm{P}}}{\Delta \xi}$$

$$\tag{424}$$

e o canto SE, utiliza-se

$$\left(\frac{\partial T}{\partial \xi}\right)_{s} = \frac{\left(T_{s}\right)_{\mathrm{p}} - \left(T_{s}\right)_{\mathrm{W}}}{\Delta \xi}.$$
(425)

2. Contorno norte

$$T_n = T_\infty. \tag{426}$$

3. Contorno oeste

Neste contorno não deve haver fluxo de calor, logo

$$\hat{\boldsymbol{n}} \cdot \nabla T = 0, \tag{427}$$

onde $\hat{\boldsymbol{n}}$ é o vetor normal ao contorno o
este.

Seguindo o mesmo procedimento utilizado para u no contorno oeste, obtém-se

$$\alpha_w \left(\frac{\partial T}{\partial \xi}\right)_w - \beta_w \left(\frac{\partial T}{\partial \eta}\right)_w = 0.$$
(428)

Aplicando a aproximação

$$\left(\frac{\partial T}{\partial \xi}\right)_w = \frac{T_{\rm P} - T_w}{\Delta \xi/2} \tag{429}$$

à Eq. (428), tem-se

$$T_w = T_{\rm P} - \frac{1}{2} \frac{\beta_w}{\alpha_w} \left(\frac{\partial T}{\partial \eta}\right)_w \Delta \xi.$$
(430)

Exceto para os volumes dos cantos SW e NW, utiliza-se a aproximação

$$\left(\frac{\partial T}{\partial \eta}\right)_{w} = \frac{\left(T_{w}\right)_{N} - \left(T_{w}\right)_{S}}{2\Delta\eta}.$$
(431)

Para o canto NW

$$\left(\frac{\partial T}{\partial \eta}\right)_w = 0 \tag{432}$$

e para o canto SW

$$\left(\frac{\partial T}{\partial \eta}\right)_{w} = \frac{\left(T_{w}\right)_{N} - \left(T_{w}\right)_{P}}{\Delta \eta}.$$
(433)

4. Contorno leste

Utilizando um procedimento análogo ao feito para u, tem-se

$$T_e = T_{\rm P} - \frac{1}{2} \frac{V_e}{U_e} \left(\frac{\partial T}{\partial \eta}\right)_e \Delta \xi.$$
(434)

Exceto para os volumes dos cantos SE e NE, utiliza-se a aproximação

$$\left(\frac{\partial T}{\partial \eta}\right)_e = \frac{\left(T_e\right)_{\rm N} - \left(T_e\right)_{\rm S}}{2\Delta\eta}.\tag{435}$$

Para o canto SE, utiliza-se

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{\left(T_{e}\right)_{\mathrm{N}} - \left(T_{e}\right)_{\mathrm{P}}}{\Delta \eta} \tag{436}$$

e para o canto NE, utiliza-se

$$\left(\frac{\partial T}{\partial \eta}\right)_e = 0. \tag{437}$$

3.7.5 Aproximações envolvendo p

São idênticas às da temperatura.

3.7.6 Aproximações envolvendo ρ

Em todos os contornos, a densidade é calculada com base na equação de estado, utilizando a pressão e a temperatura já calculadas nas seções anteriores.

3.8 Coeficientes e fontes do sistema linear para p'. Contribuição das C.C.

1. Contorno sul

No contorno sul não há fluxo de massa, logo,

$$\frac{(\rho r V)_s}{\Delta \eta} = 0. \tag{438}$$

Assim a contribuição para os coeficientes e o termo fonte devido a este contorno são nulos, ou seja,

$$A_{\rm P}^{p'} += 0, \tag{439}$$

$$A_s^{p'} += 0, (440)$$

$$A_w^{p'} += 0, (441)$$

$$A_e^{p'} += 0, (442)$$

$$A_n^{p'} += 0, (443)$$

$$b_{\mathbf{p}}^{p'} += 0.$$
 (444)

A notação y + = x indica a operação de incrementar $y \operatorname{com} x$.

2. Contorno norte

No contorno norte o fluxo de massa,

$$\frac{(\rho r V)_n}{\Delta \eta},\tag{445}$$

é prescrito. Assim, a contribuição deste contorno para os coeficientes e o termo fonte é dada por

$$A_{\rm P}^{p'} += 0, \tag{446}$$

$$A_{s}^{p'} += 0, (447)$$

$$\begin{array}{l}
A_{w}^{p} \ += \ 0, \\
A^{p'} \ += \ 0. \\
\end{array} \tag{448}$$

$$4_e^P += 0, \tag{449}$$

$$A_n^{p^*} += 0, (450)$$

$$b_{\mathbf{P}}^{p'} += -\frac{(\rho r V)_{n}^{m}}{\Delta \eta}.$$
(451)

3. Contorno oeste

No contorno oeste não há fluxo de massa, logo,

$$\frac{(\rho r U)_w}{\Delta \xi} = 0. \tag{452}$$

Assim, a contribuição deste contorno para os coeficientes e o termo fonte é dada por

$$A_{\rm P}^{p'} \ += \ 0, \tag{453}$$

$$A_s^{p'} += 0, (454)$$

$$A_w^{p'} += 0, (455)$$

$$A_e^{p'} += 0, (456)$$

$$A_n^{p'} += 0, (457)$$

$$b_{\rm P}^{p'} += 0.$$
 (458)

4. Contorno leste

No contorno leste o fluxo de massa,

$$\frac{(\rho r U)_e}{\Delta \xi},\tag{459}$$

é calculado. Assim, é necessário introduzir os acoplamentos da densidade e da velocidade com a pressão. O acoplamento pressão-densidade é feito como segue. Primeiramente utiliza-se a seguinte identidade para expressar a densidade na face em termos da densidade nodal

$$\rho_e = \rho_{\rm P} \left(1/2 + \hat{\alpha}_e \right) + \left[\rho_e^m - \rho_{\rm P}^m \left(1/2 + \hat{\alpha}_e \right) \right]. \tag{460}$$

Em seguida, utiliza-se a Eq. (217)

$$\rho_{\rm P} = \rho_{\rm P} + g_{\rm P} p_{\rm P}^{\prime}, \qquad (217)$$

o que produz

$$\rho_e = (1/2 + \hat{\alpha}_e) g_{\rm P} p'_{\rm P} + \left[\rho_e^m + \left(\rho_{\rm P}^* - \rho_{\rm P}^m \right) (1/2 + \hat{\alpha}_e) \right].$$
(461)

O acoplamento pressão-velocidade é dado pela Eq. (312), isto é,

$$U_e = U_e^* + d_e^U \left(p_{\rm P}' - p_e' \right). \tag{312}$$

Combinando as Eqs. (461) e (312) com a fórmula linearizada (315)

$$(\rho r U)_{e} = \rho_{e}^{m} r_{e} U_{e} + \rho_{e} r_{e} U_{e}^{m} - \rho_{e}^{m} r_{e} U_{e}^{m}, \qquad (315)$$

obtém-se as seguintes contribuições para os coeficientes e termo fonte do contorno leste

$$A_{\rm P}^{p'} + = \frac{\rho_e^m r_e d_e^U}{\Delta \xi} + \frac{g_{\rm P} (1/2 + \hat{\alpha}_e) r_e U_e^m}{\Delta \xi}, \tag{462}$$

$$A_{s}^{p'} += 0, (463)$$

$$A_{w}^{p'} += 0, (464)$$

$$A_e^{p'} \ += \ 0, \tag{465}$$

$$A_n^{p'} += 0, (466)$$

$$b_{\rm P}^{p'} += -\left\{\frac{\rho_e^m r_e}{\Delta\xi} \left[U_e^* - d_e^U p_e'\right] + \left(\rho_{\rm P}^* - \rho_{\rm P}^m\right) \left(1/2 + \hat{\alpha}_e\right) \frac{r_e U_e^m}{\Delta\xi}\right\}.$$
(467)

Aproximações para as codições iniciais 3.9

3.9.1 Nós dos volumes

(468) $u_{\rm P} = u_{\infty}$

$$v_{\rm P} = 0 \tag{469}$$

 $T_{\rm P} = T_{\infty}$ (470) $p_{\rm P} = p_{\sim}$ (471)

$$\rho_{\rm P} = \frac{p_{\rm P}}{D_{\rm e}T} = \rho_{\infty} \tag{472}$$

$$\rho_{\rm P} = \frac{1}{R_g T_{\rm P}} - \rho_{\infty} \tag{412}$$

$$p'_{\rm P} = 0 \tag{473}$$

3.9.2 Faces dos volumes

$$u_e = u_\infty \tag{474}$$

$$u_n = u_\infty \tag{475}$$

$$v_e = 0$$
 (476)
 $v_e = 0$ (477)

$$v_n = 0$$
 (477)
 $U_e = u_e(y_n)_e - v_e(x_n)_e$ (478)

$$V_n = v_n (x_{\xi})_n - u_n (y_{\xi})_n \tag{479}$$

$$T_w = T_e = T_s = T_n = T_\infty \tag{480}$$

$$p_w = p_e = p_s = p_n = p_\infty \tag{481}$$

$$\rho_e = \rho_{\infty} \tag{482}$$

$$\rho_n = \rho_{\infty}$$

$$V_e = v_e(x_{\xi})_e - u_e(y_{\xi})_e$$

$$(483)$$

$$(484)$$

$$V_e = v_e(x_\xi)_e - u_e(y_\xi)_e \tag{484}$$

Coeficientes do SIMPLEC para as faces dos contornos 3.10

3.10.1 Contorno norte

No contorno norte, tanto u quanto v são prescritos, deste modo não deve haver correção das velocidades em termos de p', o que implica em

$$d_n^u = d_n^v = d_n^V = 0. (485)$$

3.10.2 Contorno sul

Como u e vnão são prescritos na face, mas Vo é, tem-se

$$d_n^u = (d_n^u)_{\rm N} + \mathcal{O}(\Delta\eta), \tag{486}$$

$$d_n^v = (d_n^v)_N + \mathcal{O}(\Delta\eta), \tag{487}$$

$$d_n^V = 0. (488)$$

As aproximações (486) e (487) não interferem no resultado convergido, apenas na convergência.

3.10.3 Contorno leste

Como nenhuma componente do vetor velocidade é prescrita, utilizam-se as aproximações

$$d_e^u = (d_e^u)_{\mathsf{W}} + \mathcal{O}(\Delta\xi), \tag{489}$$

$$d_e^v = (d_e^v)_{\mathsf{W}} + \mathcal{O}(\Delta\xi), \tag{490}$$

$$d_{e}^{U} = d_{e}^{u} (y_{\eta})_{e} + d_{e}^{v} (x_{\eta})_{e}.$$
(491)

3.10.4 Contorno oeste

Neste contorno $v \in U$ são prescritos, deste modo, aproxima-se apenas d_e^u :

$$d_e^u = (d_e^u)_{\scriptscriptstyle \rm E} + \mathcal{O}(\Delta\xi), \tag{492}$$

$$\begin{array}{rcl} d_{e}^{v} &=& 0, \\ d_{e}^{U} &=& 0. \end{array} \tag{493}$$

$$d_e^o = 0. (494)$$

Resolução dos sistemas lineares 3.11

Há quatro sistemas lineares a serem resolvidos, todos da forma

$$A_{s}^{\phi}\phi_{\rm S} + A_{w}^{\phi}\phi_{\rm W} + A_{\rm P}^{\phi}\phi_{\rm P} + A_{e}^{\phi}\phi_{\rm E} + A_{n}^{\phi}\phi_{\rm N} = b_{\rm P}^{\phi}, \quad \phi \in \{u, v, T, p'\}.$$
(136)

A resolução destes sistemas é feita através do método TDMA linha-a-linha[3] ou MSI[5].

3.12Resíduos dos sistemas lineares

O resíduo dos sistemas lineares ${\cal R}_{L_1}$ é dado por

$$R_{L_1} = R_{L_1}^u + R_{L_1}^v + R_{L_1}^{\mathrm{T}} + R_{L_1}^{p'}, \qquad (495)$$

onde $R^{\phi}_{L_1}$ é dado por

$$R_{L_{1}}^{\phi} = \frac{\sum_{P} \left| A_{P}^{\phi} \phi_{P} + \sum_{nb} A_{nb}^{\phi} \phi_{nb} - b_{P}^{\phi} \right|}{\sum_{P} \left| b_{P}^{\phi} \right|} \quad \phi \in \{T, u, v\},$$
(496)

.

exceto para a equação da correção da pressão

$$R_{L_{1}}^{p'} = \sum_{\mathbf{P}} \left| A_{\mathbf{P}}^{p'} p_{\mathbf{P}}' + \sum_{nb} A_{nb}^{p'} p_{nb}' - b_{\mathbf{P}}^{p'} \right|.$$
(497)

As somas nas Eqs. (496) e (497) devem ser feitas sobre todos os volumes reais.

3.13Aproximações para as grandezas de interesse

Distribuição do coeficiente de pressão 3.13.1

No contorno sul o coeficiente de pressão é dado por

$$\left(C_p\right)_n = \frac{p_s - p_\infty}{q_\infty}.\tag{498}$$

3.13.2 Coefficiente C_{Df}^p

O coeficiente C_{Df}^p , dado pela Eq. (44), isto é,

$$C_{\rm Df}^{p} = \frac{2^{f}}{q_{\infty} r_{b}^{f+1}} \int_{\xi_{i}}^{\xi_{f}} (p - p_{\infty}) \, r y_{\xi} \, \mathrm{d}\xi, \tag{44}$$

é aproximado por

$$C_{\rm Df}^{p} = \frac{2^{f}}{q_{\infty} r_{b}^{f+1}} \sum \left(p_{s} - p_{\infty} \right) r_{s} \left(y_{\xi} \right)_{s} \Delta \xi + \mathcal{O}(\Delta \xi^{2}), \tag{499}$$

onde a soma deve ser feita sobre as faces norte de todos os volumes fictícios do contorno sul.

Algoritmo 3.14

A) Definir os parâmetros numéricos e físicos.

O: n_x : Número de volumes na direção ξ n_y : Número de volumes na direção η l_a, l_b : Dimensões do domínio l_r, r_b : Dimensões do corpo g(x): Perfil do corpo a_1 : Largura dos volumes contíguos à superfície g(x) $(a_{\xi})_n$: Parâmetro de concentração de nós na direção ξ (contorno norte) $(a_{\xi})_s$: Parâmetro de concentração de nós na direção ξ (contorno sul) u_{∞} : Velocidade da corrente livre [m/s] p_{∞} : Pressão da corrente livre [m/s] p_{∞} : Pressão da corrente livre [K] R_g : Constante do gás $[J/kg\cdot K]$ Δt : Incremento de tempo [s] $\hat{\beta}$: Coeficiente de acoplamento entre os esquemas UDS e CDS f: Coeficiente do tipo de simetria (f = 0: simetria plana, f = 1: simetria axial)

B) Gerar os nós dos contornos.

E: Seç. 3.2. I: $l_a, \ l_b, \ l_r, \ r_b, \ g(x), \ (a_\xi)_n, \ (a_\xi)_s$

O: x_{ne} , y_{ne} (somente para os contornos)

*: Outros parâmetros de entrada

C) Gerar a malha com base nos nós dos contornos.

E: Seç. 3.3 I: x_{ne} , y_{ne} (somente para os contornos) a_1, f

O: x_{ne} , y_{ne}

- D) Cálculo das propriedades geométricas da malha:
 - 1 Calcular os centroides de todos os volumes reais.
 - 2 Calcular $r = y^f$ em todos os centroides e faces dos volumes reais.
 - 3 Calcular as métricas x_{ξ} , x_{η} , $y_{\xi} \in y_{\eta}$ em todas as faces dos volumes reais.
 - 4 Calcular J em todos os centroides e faces dos volumes reais.
 - 5 Calcular α em todas as faces leste
e oeste dos volumes reais.
 - 6 Calcular β em todas as faces dos volumes reais.
 - 7 Calcular γ em todas as faces norte e sul dos volumes reais.

E: Seç. 3.3 I: x_{ne} , y_{ne} O: x_{P} , y_{P} , r_{P} , r_{e} , r_{n} , $(x_{\xi})_{e}$, $(x_{\eta})_{e}$, $(y_{\xi})_{e}$, $(y_{\eta})_{e}$ $(x_{\xi})_{n}$, $(x_{\eta})_{n}$, $(y_{\xi})_{n}$, $(y_{\eta})_{n}$, J_{P} , J_{e} , J_{n} , α_{e} , β_{e} , β_{n} , γ_{n}

E) Aplicar as condições iniciais.

F) Calcular as propriedades termofísicas:

 $\left(\begin{array}{c} \text{I:} \ T_{\text{P}} \\ \text{O:} \ c_{p} \end{array}\right)$

- G) Iniciar o ciclo de evolução temporal:
 - 1 Incrementar o tempo em $\Delta t.$
 - 2 Atualizar os campos:

I:	$u_{\mathrm{P}},$	$v_{\rm P},$	$T_{\mathbf{P}},$	$p_{\text{P}},$	$ ho_{ ext{P}},$	u_e ,	v_e ,	u_n ,	v_n
0:	$u_{\scriptscriptstyle \mathrm{P}}^{\circ},$	$v_{\scriptscriptstyle \mathrm{P}}^{\circ},$	$T_{\rm p}^{\rm o},$	$p_{\scriptscriptstyle \mathrm{P}}^{\circ},$	$ ho_{ ext{P}}^{\circ},$	$u_e^{\circ},$	$v_e^{\circ},$	$u_n^{\circ},$	v_n°

- 3 Iniciar o ciclo para resolução das equações para u,v,T e p no instante $t\!:$
- 1 Atualizar os campos: I: U_e , V_n , p_s , p_n , p_w , p_e $0{:}\ U_e^m,\ V_n^m,\ p_s^m,\ p_n^m,\ p_w^m,\ p_e^m,\ p_s',\ p_n',\ p_w',\ p_e'$ 2 - Cálculo das propriedades termofísicas (no caso de serem variáveis): I: $T_{\rm P}$ 0: *c*_p 3 - Calcular os coeficientes A^u em todos os volumes: E: (137)-(141), (150)-(154), (158)-(162), (166)-(170), (174)-(178), (181)-(185), (188)-(192), (195)-(199) e (202)-(206) $\mathbf{I:} \ \Delta t, \ \ \rho_{\scriptscriptstyle \mathrm{P}}^{\circ}, \ \ \rho_e, \ \ \rho_n, \ \ U_e, \ \ V_n$ r_e, r_n, r_P, J_P Q: **A**^{*u*} 4 - Calcular os coeficientes A^v em todos os volumes: E: (137)-(141), (150)-(154), (158)-(162), (166)-(170), (174)-(178), (181)-(185), (188)-(192), (195)-(199) e (202)-(206) $\mathbf{I:} \ \Delta t, \ \rho_{\scriptscriptstyle \mathrm{P}}^{\circ}, \ \rho_e, \ \rho_n, \ U_e, \ V_n$ r_e, r_n, r_p, J_p Q: **A**^v 5 - Calcular os fontes b^u em todos os volumes: E: (142), (155), (163), (171), (179), (186), (193), (200) e (207) I: Δt , $\rho_{\rm P}^{\circ}$, ρ_e , ρ_n , U_e , V_n , $u_{\rm P}^{\circ}$, $u_{\rm P}$, u_s , u_n , u_w , u_e , $p_{\rm P}$, p_s , p_n , p_w , p_e $\hat{\beta}$, r_e , r_n , r_P , J_P , $(y_{\xi})_n$, $(y_{\eta})_e$ O: b^u , $\omega_{\rm P}^u$ 6 - Calcular os fontes b^v em todos os volumes: E: (142), (155), (163), (171), (179), (186), (193), (200) e (207) I: Δt , $\rho_{\rm P}^{\circ}$, ρ_e , ρ_n , U_e , V_n , $v_{\rm P}^{\circ}$, $v_{\rm P}$, v_s , v_n , v_w , v_e , $p_{\rm P}$, p_s , p_n , p_w , p_e $\hat{\beta}$, r_e , r_n , r_P , J_P , $(x_\xi)_n$, $(x_\eta)_e$ O: b^v , $\omega_{\rm P}^v$ 7 - Calcular os coeficientes do SIMPLEC para as interfaces dos volumes: E: (262)-(265), (270), (272)I: A^u , A^v $r_e, r_n, (x_{\xi})_n, (y_{\xi})_n, (x_{\eta})_e, (y_{\eta})_e$ $\underbrace{\text{O:} \ d_e^u, \ d_e^v, \ d_e^u, \ d_n^v, \ d_e^U, \ d_n^V \ (\text{somente para as interfaces dos volumes}) }$ 8 - Calcular os coeficientes do SIMPLEC para as faces dos contornos:

E: Seç. 3.10 I: d_e^u , d_e^v , d_n^u , d_n^v $(x_\eta)_e$, $(y_\eta)_e$ O: d_e^u , d_e^v , d_n^u , d_n^v , d_e^U , d_n^V (somente para as faces dos contornos) 9 - Calcular $g_{\rm P}$: E: (218) I: R_g , $T_{\rm P}$ O: $g_{\rm P}$

10 - Calcular os coeficientes $A^{p'}$ da equação da correção da pressão sem a contribuição das condições de contorno:

11 - Calcular os coeficientes $A^{p'}$ da equação da correção da pressão somente com a contribuição das condições de contorno:

E: Sec. 3.8 O: $A^{p'}$ (somente com as contribuições das CC) 12 - Resolver os sistemas lineares para $u \in v$ para obter os campos estimados $u^* \in v^*$: I: A^u , b^u , A^v , b^v , $u_{\rm P}$, $v_{\rm P}$ O: $u_{\rm P}^*$, $v_{\rm P}^*$ 13 - Calcular os resíduos $R_{L_1}^u$ e $R_{L_1}^v$ dos sistemas lineares: E: (496) I: A^u , b^u , A^v , b^v , $u_{\scriptscriptstyle \mathrm{P}}^*$, $v_{\scriptscriptstyle \mathrm{P}}^*$ O: $R_{L_1}^u$, $R_{L_1}^v$ 14 - Calcular as velocidades u_e^* , u_n^* , v_e^* , v_n^* , U_e^* , V_n^* nas interfaces dos volumes: E: (247), (249), (274), (276) $\bigcirc : \ u_e^*, \quad u_n^*, \quad v_e^*, \quad v_n^*, \quad U_e^*, \quad V_n^* \ (\text{somente para a interface dos volumes})$ 15 - Calcular as velocidades u_e^* , u_n^* , v_e^* , v_n^* , U_e^* , V_n^* nas faces dos contornos com base nas condições de contorno: E: Secs. 3.7.1, 3.7.2, 3.7.3 O: u_e^* , u_n^* , v_e^* , v_n^* , U_e^* , V_n^* (somente para as faces dos contornos) 16 - Calcular o termo fonte $b^{p'}$ da equação da correção da pressão sem as contribuições das condições de contorno: E: (325), (333), (339), (346), (353), (360), (367), (374), (381) $\mathbf{I:} \ \rho_{\rm P}^{*}, \ \rho_{\rm P}^{\circ}, \ \rho_{e}, \ \rho_{n}, \ \rho_{e}^{*}, \ \rho_{n}^{*}, \ U_{e}, \ V_{n}, \ U_{e}^{*}, \ V_{n}^{*}, \ \Delta t \\ r_{\rm P}, \ r_{e}, \ r_{n}, \ J_{\rm P}$

O: $b^{p'}$ (sem as contribuições das CC)

17 - Calcular o termo fonte $b^{p'}$ da equação da correção da pressão somente com as contribuições das condições de contorno:

26 - Atualizar a densidade nas faces dos contornos utilizando a pressão atualizada e o último campo de temperatura:

 $\bigcirc: \rho_e, \rho_n$

E: (210) I: p_w , p_e , p_s , p_n , T_w , T_e , T_s , T_n R_a $O: \rho_e, \rho_n$ 27 - Calcular os coeficientes A^{T} da equação da energia: E: (137)-(141), (150)-(154), (158)-(162), (166)-(170), (174)-(178), (181)-(185), (188)-(192), (195)-(192), (192)-(192), (192)-(192), (192)-(192), (192)-(192)-(192), (192)-(192)-(192), (192)-(192)-(192)-(192), (192)-((199) e (202)-(206) $O: A^{T}$ 28 - Calcular os fontes b^{T} da equação da energia para todos os volumes: E: (142), (155), (163), (171), (179), (186), (193), (200) e (207) O: **b**^T 29 - Resolver a equação da energia para se obter T: I: A^{T} , b^{T} , T_{P} O: $T_{\rm P}$ $30 - \text{Calcular o resíduo } R_{L1}^{\text{T}} \text{ do sistema linear para } T:$ E: (496) I: A^{T} , b^{T} , T_{P} O: R_{L1}^{T} 31 - Calcular a temperatura T nas faces dos contornos com base nas condições de contorno: E: Sec. (3.7.4) I: T_{∞} , T_{P} , T_w , T_e , T_s , U_e , V_e α_e , β_e , β_n , γ_n $\underbrace{O: T_w, T_e, T_s, T_n}_{32 - Calcular a densidade nos centroides utilizando os últimos valores de p e T:$ **E**: (210) I: $T_{\rm P}$, $p_{\rm P}$ R_g O: $\rho_{\rm P}$ 33 - Atualizar a densidade nas interfaces dos volumes utilizando a densidade e velocidades nos nós e o esquema UDS com correção adiada para o CDS: E: (225)-(228) I: $U_e, V_n, \rho_{\mathrm{P}}$ $\hat{\beta}$ $O: \rho_e, \rho_n$ 34 - Atualizar a densidade nas faces dos contornos utilizando a pressão e a temperatura atualizadas: E: (210) I: p_w , p_e , p_s , p_n , T_w , T_e , T_s , T_n R_{g} O: ρ_e , ρ_n

35 - Calcular o resíduo total R_{L_1} dos sistemas lineares para $u, v, T \in p'$.

 $\begin{pmatrix} \text{E:} & (495) \\ \\ \text{I:} & R_{L1}^u, & R_{L1}^v, & R_{L1}^{p'}, & R_{L1}^{\text{T}} \\ \\ \text{O:} & R_{L_1} \end{pmatrix}$

- 4 Se o resíduo dos sistemas lineares for menor que uma tolerância prescrita, encerrar o ciclo de evolução temporal.
- H) Pós-processamento: calcular as grandezas de interesse e salvar os resultados.

A Transformação das equações de transporte do sistema xy para o $\xi\eta$

Referências

- [1] BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Transport phenomena. 2. ed. John Wiley & Sons, 2002.
- [2] LANDAU, L. D.; LIFSHITZ, E. M. Fluid mechanics. 2. ed. Oxford: Pergamon Press, 1987. v. 6.
- [3] MALISKA, C. R. Transferência de calor e mecânica dos fluidos computacional. 2. ed. Rio de Janeiro: LTC, 2004.
- [4] VAN DOORMAAL, J. P.; RAITHBY, G. D. Enhancements of the SIMPLE method for predicting incompressible fluid flows. *Numerical Heat Transfer*, v. 7, p. 147–163, 1984.
- [5] TANNEHILL, J. C.; ANDERSON, D. A.; PLETCHER, R. H. Computational fluid mechanics and heat transfer. 2. ed. Taylor & Francis, 1997.