Condições de contorno para Mach2D-5.8.2.1 - aerodinâmica

Guilherme Bertoldo

12 de Novembro de 2012

Conteúdo

1	Con	ndições de contorno exatas	1
	1.1	Contorno norte	2
	1.2	Contorno sul	2
	1.3	Contorno leste	2
	1.4	Contorno oeste	2
2	Apr	roximações para as condições de contorno	2
	2.1	Contorno norte	2
	2.2	Contorno sul	3
	2.3	Contorno leste	4
	2.4	Contorno oeste	4
	2.5	Canto sudoeste	5
	2.6	Canto sudeste	5
	2.7	Canto noroeste	5
	2.8	Canto nordeste	5
3	Imp	plementações	5
	3.1	Código base - SVN-112	6
		3.1.1 Contorno sul	6
		3.1.2 Contorno leste	6
		3.1.3 Contorno oeste	6
	3.2	SVN-113	6
	3.3	SVN-114	7
	3.4	SVN-115	7
	3.5	SVN-116	7
	3.6	SVN-117	8
	3.7	SVN-118	9
	3.8	SVN-119	9
	3.9	SVN-120	10
	3.10	SVN-121	11
	3.11	SVN-123	12
	3.12	SVN-124	12
4	Con	ıclusões	13
A	Pro	priedades geométricas no sistema $\xi\eta$	14

1 Condições de contorno exatas

As condições de contorno exatas para as variáveis $u, v, T \in p$, referentes aos contornos ilustrados na Fig. 1, são apresentadas a seguir.

Figura 1: Esquema dos contornos do domínio de cálculo.

1.1Contorno norte

(1)p $= p_{\infty}$

$$T = T_{\infty} \tag{2}$$

$$u = u_{\infty}$$
 (3)

$$v = 0 \tag{4}$$

1.2 Contorno sul

$$(\hat{\boldsymbol{n}} \cdot \nabla) p = 0 \tag{5}$$

$$(\hat{\boldsymbol{n}} \cdot \nabla)T = 0$$

$$(6)$$

$$(7)$$

$$\boldsymbol{n} \cdot \boldsymbol{u} = \boldsymbol{0} \tag{7}$$

1.3Contorno leste

Escoamento localmente parabólico:

$$(\boldsymbol{u} \cdot \nabla)\phi = 0, \qquad \phi \in \{p, T, u, v\}$$
(8)

1.4Contorno oeste

$$(\hat{\boldsymbol{n}} \cdot \nabla)\phi = 0, \qquad \phi \in \{p, T, u\}$$
(9)

$$v = 0 \tag{10}$$

Aproximações para as condições de contorno $\mathbf{2}$

$\mathbf{2.1}$ Contorno norte

Neste contorno é possível escrever

$$\phi_s = \phi_{\infty}, \quad \phi \in \{p, T, u, v\},\tag{11}$$

onde

$$v_{\infty} = 0. \tag{12}$$

Utilizando a discretização

• p'=0:

$$\frac{\phi_{\rm P} + \phi_{\rm s}}{2} = \phi_{\infty} \tag{13}$$

e lembrando que $p=p_\infty+p',$ obtém-se

$$A_{\rm P}^{p'} = 1, \quad A_{\rm S}^{p'} = 1, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{p'} = 0.$$
 (14)

• $T = T_{\infty}$:

$$A_{\rm P}^{\rm T} = 1, \quad A_{\rm s}^{\rm T} = 1, \quad \text{demais} \quad A^{\rm T} = 0, \quad b_{\rm P}^{\rm T} = 2T_{\infty}.$$
 (15)

- $u = u_{\infty}$:
- $A_{\rm P}^{u} = 1, \quad A_{\rm s}^{u} = 1, \quad \text{demais} \quad A^{u} = 0, \quad b_{\rm P}^{u} = 2u_{\infty}.$ (16)
- v = 0:

$$A_{\rm P}^v = 1, \quad A_{\rm S}^v = 1, \quad \text{demais} \quad A^v = 0, \quad b_{\rm P}^v = 0.$$
 (17)

2.2 Contorno sul

• $\hat{\boldsymbol{n}} \cdot \nabla p = 0$

Observando que o contorno sul é uma linha de η constante¹, tem-se que o vetor unitário \hat{n} normal ao contorno é dado por

$$\hat{\boldsymbol{n}} = \frac{\boldsymbol{E}^{\eta}}{\|\boldsymbol{E}^{\eta}\|}.$$
(18)

Combinando a Eq. (99), isto é,

$$\nabla \phi = \boldsymbol{E}^{\xi} \, \frac{\partial \phi}{\partial \xi} + \boldsymbol{E}^{\eta} \, \frac{\partial \phi}{\partial \eta},$$

com a Eq. (18), obtém-se para a condição de contorno da pressão

$$\left(g^{\xi\eta}\frac{\partial p}{\partial\xi} + g^{\eta\eta}\frac{\partial p}{\partial\eta}\right)_n = 0 \tag{19}$$

ou

$$-\beta_n \left(\frac{\partial p}{\partial \xi}\right)_n + \gamma_n \left(\frac{\partial p}{\partial \eta}\right)_n = 0.$$
⁽²⁰⁾

onde foram usadas as eqs. (97) e (98).

Aplicando a aproximação

$$\left(\frac{\partial p}{\partial \eta}\right)_n = \frac{p_{\rm N} - p_{\rm P}}{\Delta \eta},\tag{21}$$

na Eq. (20) e observando que $p=p^{\ast}+p^{\prime},$ obtém-se

$$A_{\rm P}^{p'} = \frac{1}{\Delta\eta}, \quad A_{\rm N}^{p'} = \frac{-1}{\Delta\eta}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{p'} = \frac{p_{\rm N}^* - p_{\rm P}^*}{\Delta\eta} - \frac{\beta_n}{\gamma_n} \left(\frac{\partial p}{\partial\xi}\right)_n^m, \tag{22}$$

onde o índice m indica o valor da variável obtido da última iteração. A aproximação para

$$\left(\frac{\partial p}{\partial \xi}\right)_n$$

será dada nas seções de implementação.

• $\hat{\boldsymbol{n}} \cdot \nabla T = 0$

Analogamente ao caso anterior, tem-se

$$A_{\rm P}^{\rm T} = \frac{1}{\Delta\eta}, \quad A_{\rm N}^{\rm T} = \frac{-1}{\Delta\eta}, \quad \text{demais} \quad A^{\rm T} = 0, \quad b_{\rm P}^{\rm T} = -\frac{\beta_n}{\gamma_n} \left(\frac{\partial T}{\partial\xi}\right)_n^m.$$
 (23)

• $\hat{\boldsymbol{n}} \cdot \boldsymbol{u} = 0$

Em termos das componentes contravariantes, o vetor velocidade \boldsymbol{u} pode ser escrito como

$$\boldsymbol{u} = J \left(U \boldsymbol{E}_{\boldsymbol{\xi}} + V \boldsymbol{E}_{\boldsymbol{\eta}} \right). \tag{24}$$

No contorno sul o vetor normal é dado pela Eq. (18), logo, sobre este contorno vale

$$\hat{\boldsymbol{n}} \cdot \boldsymbol{u} = V_n = v_n \left(x_{\xi} \right)_n - u_n \left(y_{\xi} \right)_n = 0.$$
⁽²⁵⁾

A condição de contorno (25) é utilizada diretamente nas equações de transporte e não fornece uma fórmula para se determinar explicitamente $u_n \in v_n$. De fato, estas grandezas são irrelevantes na obtenção dos campos nos nós dos volumes de controle. O que realmente importa é a condição $V_n = 0$. Apesar disso, u_n e v_n são necessárias para se determinar os coeficientes e fontes dos sistemas lineares de $u \in v$ nos volumes fictícios do contorno sul. Para contornar este problema são necessárias algumas aproximações, que serão apresentadas seções de implementação.

¹Detalhes sobre as propriedades geométricas no sistema $\xi\eta$ são dadas no Apêndice A.

2.3 Contorno leste

Escoamento localmente parabólico para todas as variáveis

$$\boldsymbol{u} \cdot \nabla \phi = 0, \quad \phi \in \{p, T, u, v\}.$$
(26)

Utilizando as eqs. (24) e (99), obtém-se

$$\left(\boldsymbol{u}\cdot\nabla\phi\right)_{w} = \left(U\frac{\partial\phi}{\partial\xi} + V\frac{\partial\phi}{\partial\eta}\right)_{w} = 0.$$
(27)

Aplicando a aproximação

$$\left(\frac{\partial\phi}{\partial\xi}\right)_{w} = \frac{\phi_{\rm P} - \phi_{\rm W}}{\Delta\xi},\tag{28}$$

à Eq. (27), obtém-se para $T,\,u$ ev

$$A_{\mathbf{P}}^{\phi} = \frac{1}{\Delta\xi}, \quad A_{\mathbf{W}}^{\phi} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\mathbf{P}}^{\phi} = -\frac{V_w}{U_w} \left(\frac{\partial\phi}{\partial\eta}\right)_w^m, \quad \phi \in \{T, u, v\}, \tag{29}$$

onde

$$U_{w} = u_{w} (y_{\eta})_{w} - v_{w} (x_{\eta})_{w}, \qquad V_{w} = v_{w} (x_{\xi})_{w} - u_{w} (y_{\xi})_{w}.$$
(30)

No caso da pressão, deve-se levar em conta a relação $p=p^{\ast}+p^{\prime},$ o que produz

$$A_{\rm P}^{p'} = \frac{1}{\Delta\xi}, \quad A_{\rm W}^{p'} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{\phi} = -\frac{p_{\rm P}^* - p_{\rm W}^*}{\Delta\xi} - \frac{V_w}{U_w} \left(\frac{\partial p}{\partial\eta}\right)_w^m. \tag{31}$$

2.4 Contorno oeste

Para $p, T \in u$ a condição de simetria é

$$\hat{\boldsymbol{n}} \cdot \nabla \phi = 0, \quad \phi \in \{p, T, u\},\tag{32}$$

onde \hat{n} é o vetor normal ao contorno o
este. Uma vez que o contorno o
este é uma linha de ξ constante, tem-se

$$\hat{\boldsymbol{n}} = \frac{\boldsymbol{E}^{\xi}}{\|\boldsymbol{E}^{\xi}\|} \tag{33}$$

Combinando a Eq. (99), isto é,

$$\nabla \phi = \boldsymbol{E}^{\xi} \, \frac{\partial \phi}{\partial \xi} + \boldsymbol{E}^{\eta} \, \frac{\partial \phi}{\partial \eta}$$

com a Eq. (33), obtém-se para a condição de contorno (32)

$$\left(g^{\xi\xi}\frac{\partial\phi}{\partial\xi} + g^{\xi\eta}\frac{\partial\phi}{\partial\eta}\right)_e = 0 \tag{34}$$

ou

$$\alpha_e \left(\frac{\partial \phi}{\partial \xi}\right)_e - \beta_e \left(\frac{\partial \phi}{\partial \eta}\right)_e = 0. \tag{35}$$

onde foram usadas as eqs. (96) e (97).

Aplicando a aproximação

$$\left(\frac{\partial\phi}{\partial\xi}\right)_e = \frac{\phi_{\rm E} - \phi_{\rm P}}{\Delta\xi} \tag{36}$$

à Eq. (35), obtém-se

$$A_{\rm P}^{\phi} = \frac{1}{\Delta\xi}, \quad A_{\rm E}^{\phi} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm P}^{\phi} = -\frac{\beta_e}{\alpha_e} \left(\frac{\partial\phi}{\partial\eta}\right)_e^m, \quad \phi \in \{T, u\}.$$
(37)

No caso da pressão, deve-se levar em conta a relação $p=p^{\ast}+p^{\prime},$ o que produz

$$A_{\rm P}^{p'} = \frac{1}{\Delta\xi}, \quad A_{\rm E}^{p'} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{p'} = \frac{p_{\rm E}^* - p_{\rm P}^*}{\Delta\xi} - \frac{\beta_e}{\alpha_e} \left(\frac{\partial p}{\partial\eta}\right)_e^m. \tag{38}$$

A condição de contorno para v é aproximada por

$$v_e = \frac{v_{\rm E} + v_{\rm P}}{2} = 0, \tag{39}$$

de modo que $% \left({{{\left({{{}}}}}} \right)}}} \right.$

$$A_{\rm P}^v = 1, \quad A_{\rm E}^v = 1, \quad \text{demais} \quad A^v = 0, \quad b_{\rm P}^v = 0.$$
 (40)

2.5 Canto sudoeste

No volume fictício do canto sudoeste é feita a extrapolação

$$\phi_{\mathrm{P}} = \frac{\phi_{\mathrm{N}} + \phi_{\mathrm{E}} + \phi_{\mathrm{NE}}}{3} + \mathcal{O}(\Delta\xi) + \mathcal{O}(\Delta\eta), \quad \phi \in \{p, T, u, v\},\tag{41}$$

de modo que os coeficientes dos sistemas lineares de T, $u \in v$ são dados por

$$A_{\rm P}^{\phi} = 1, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm P}^{\phi} = \frac{\phi_{\rm N}^m + \phi_{\rm E}^m + \phi_{\rm NE}^m}{3}, \quad \phi \in \{T, u, v\}.$$
 (42)

No caso da pressão, levando-se em conta a relação $p = p^* + p'$, tem-se

$$A_{\rm P}^{p'} = 1, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{p'} = \frac{p_{\rm N}^m + p_{\rm E}^m + p_{\rm NE}^m}{3} - \frac{p_{\rm N}^* + p_{\rm E}^* + p_{\rm NE}^*}{3}.$$
 (43)

2.6 Canto sudeste

No volume fictício do canto sudeste é feita a extrapolação

$$\phi_{\rm P} = \frac{\phi_{\rm N} + \phi_{\rm W} + \phi_{\rm NW}}{3} + \mathcal{O}(\Delta\xi) + \mathcal{O}(\Delta\eta), \quad \phi \in \{p, T, u, v\},\tag{44}$$

de modo que os coeficientes dos sistemas lineares de T, $u \in v$ são dados por

$$A_{\rm P}^{\phi} = 1, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm P}^{\phi} = \frac{\phi_{\rm N}^m + \phi_{\rm W}^m + \phi_{\rm NW}^m}{3}, \quad \phi \in \{T, u, v\}.$$
 (45)

No caso da pressão, levando-se em conta a relação $p = p^* + p'$, tem-se

$$A_{\rm P}^{p'} = 1,$$
 demais $A^{p'} = 0,$ $b_{\rm P}^{p'} = \frac{p_{\rm N}^m + p_{\rm W}^m + p_{\rm NW}^m}{3} - \frac{p_{\rm N}^* + p_{\rm W}^* + p_{\rm NW}^*}{3}.$ (46)

2.7 Canto noroeste

No volume fictício do canto noroeste é feita a extrapolação

$$\phi_{\rm P} = \frac{\phi_{\rm s} + \phi_{\rm E} + \phi_{\rm SE}}{3} + \mathcal{O}(\Delta\xi) + \mathcal{O}(\Delta\eta), \quad \phi \in \{p, T, u, v\},\tag{47}$$

de modo que os coeficientes dos sistemas lineares de T, $u \in v$ são dados por

$$A_{\rm p}^{\phi} = 1, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm p}^{\phi} = \frac{\phi_{\rm s}^{m} + \phi_{\rm E}^{m} + \phi_{\rm sE}^{m}}{3}, \quad \phi \in \{T, u, v\}.$$
(48)

No caso da pressão, levando-se em conta a relação $p = p^* + p'$, tem-se

$$A_{\rm P}^{p'} = 1,$$
 demais $A^{p'} = 0,$ $b_{\rm P}^{p'} = \frac{p_{\rm s}^m + p_{\rm E}^m + p_{\rm SE}^m}{3} - \frac{p_{\rm s}^* + p_{\rm E}^* + p_{\rm SE}^*}{3}.$ (49)

2.8 Canto nordeste

No volume fictício do canto nordeste é feita a extrapolação

$$\phi_{\rm P} = \frac{\phi_{\rm s} + \phi_{\rm w} + \phi_{\rm sw}}{3} + \mathcal{O}(\Delta\xi) + \mathcal{O}(\Delta\eta), \quad \phi \in \{p, T, u, v\}$$
(50)

de modo que os coeficientes dos sistemas lineares de T, $u \in v$ são dados por

$$A_{\rm P}^{\phi} = 1, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm P}^{\phi} = \frac{\phi_{\rm s}^m + \phi_{\rm w}^m + \phi_{\rm sw}^m}{3}, \quad \phi \in \{T, u, v\}.$$
 (51)

No caso da pressão, levando-se em conta a relação $p = p^* + p'$, tem-se

$$A_{\rm P}^{p'} = 1,$$
 demais $A^{p'} = 0,$ $b_{\rm P}^{p'} = \frac{p_{\rm S}^m + p_{\rm W}^m + p_{\rm SW}^m}{3} - \frac{p_{\rm S}^* + p_{\rm W}^* + p_{\rm SW}^*}{3}.$ (52)

3 Implementações

A seguir são apresentadas as aproximações utilizadas no código base Mach2D-5.8.2.1-SVN-r112 (Branch: transient) e as modificações feitas neste código para eliminar as simplificações das condições de contorno.

3.1Código base - SVN-112

O código base utiliza algumas simplificações das aproximações listadas na Seç. 2, utilizadas para garantir a convergência do processo iterativo. Estas simplificações são listadas abaixo.

3.1.1 Contorno sul

O termo

$$\frac{\beta_n}{\gamma_n} \left(\frac{\partial\phi}{\partial\xi}\right)_n^m \tag{53}$$

é desprezado nas Eqs. (22) e (23). Esta simplificação é correta somente para malhas ortogonais, caso em que $\beta_n = 0.$

Para determinar os coeficientes e termos fontes para os sistemas lineares de $u \in v$, considera-se

$$u_n = u_{\rm N}, \qquad v_n = v_{\rm N},\tag{54}$$

que combinadas com as aproximações

$$u_n = \frac{u_{\rm P} + u_{\rm N}}{2}, \qquad v_n = \frac{v_{\rm P} + v_{\rm N}}{2},$$
(55)

levam a

$$A_{\rm P}^{u} = 1, \quad A_{\rm N}^{u} = -1, \quad \text{demais} \quad A^{u} = 0, \quad b_{\rm P}^{u} = 0$$
 (56)

е

$$A_{\rm P}^v = 1, \quad A_{\rm N}^v = -1, \quad \text{demais} \quad A^v = 0, \quad b_{\rm P}^v = 0.$$
 (57)

Esta aproximação não garante que a velocidade do fluido sobre a parede seja tangente à parede.

3.1.2Contorno leste

O termo

$$\frac{V_w}{U_w} \left(\frac{\partial \phi}{\partial \eta}\right)_w^m \tag{58}$$

é desprezado nas Eqs. (29) e (31). Esta simplificação é correta somente para o caso em que $V_w = 0$.

ŀ

3.1.3 Contorno oeste

O termo

$$\frac{\beta_e}{\alpha_e} \left(\frac{\partial\phi}{\partial\eta}\right)_e^m \tag{59}$$

é desprezado nas Eqs. (37) e (38). Esta simplificação é correta somente para malhas ortogonais, caso em que $\beta_e = 0.$

SVN-113 3.2

Implementada a condição de contorno (23) para T no contorno sul, isto é,

$$A_{\rm P}^{\rm T} = \frac{1}{\Delta\eta}, \quad A_{\rm N}^{\rm T} = \frac{-1}{\Delta\eta}, \quad \text{demais} \quad A^{\rm T} = 0, \quad b_{\rm P}^{\rm T} = -\frac{\beta_n}{\gamma_n} \left(\frac{\partial T}{\partial\xi}\right)_n^m,$$
 (23)

considerando

$$\left(\frac{\partial T}{\partial \xi}\right)_n = \frac{T_{\rm E} + T_{\rm NE} - T_{\rm W} - T_{\rm NW}}{4\Delta\xi}.$$
(60)

Esta aproximação envolve volumes fictícios e reais².

Para avaliar o efeito da alteração das CC no resultado final, algumas variáveis foram selecionadas: o coeficiente de arrasto invíscido frontal (variável global) e a máxima diferença entre os campos $u, v, T \in p$ da revisão atual e da anterior (variáveis locais). No caso das vairáveis locais, também são apresentadas as coordenadas i e j da malha onde ocorreu a máxima diferença. Os resultados são apresentados a seguir.

²As extrapolações para os fictícios são feitas de modo consistente com as condições de contorno aplicadas em todas as revisões listadas neste relatório.

Cdfi ==== 7.852045220515882E-02 ...: SVN-112 7.852045220515882E-02 ...: SVN-113

Variáveis locais							
(reais	====: s)		===				
var	i	j	np	SVN-112	SVN-113	dif. relativa(%)	
u	2	2	34	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00	
v	2	2	34	1.9433319561331419E+02	1.9433319561331419E+02	0.0E+00	
Т	2	2	34	3.4944391904016413E+02	3.4944391904016413E+02	0.0E+00	
р	2	2	34	1.7597348511392082E+05	1.7597348511392082E+05	0.0E+00	
(fict:	ício	s)					
var	i	j	np	SVN-112	SVN-113	dif. relativa(%)	
u	1	1	1	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00	
v	1	1	1	1.2955546374220947E+02	1.2955546374220947E+02	0.0E+00	
Т	3	1	3	3.5278877286111225E+02	3.5285724655139489E+02	1.9E-02	
р	1	1	1	1.7597348511392079E+05	1.7597348511392079E+05	0.0E+00	

Destes resultados observa-se que a modificação da CC para a temperatura no contono sul não alterou o Cdfi e causou uma variação pequena no campo de temperatura somente nos volumes fictícios.

3.3 SVN-114

Implementada a condição de contorno (37) para T no contorno oeste, isto é,

$$A_{\rm P}^{\phi} = \frac{1}{\Delta\xi}, \quad A_{\rm E}^{\phi} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\rm P}^{\phi} = -\frac{\beta_e}{\alpha_e} \left(\frac{\partial\phi}{\partial\eta}\right)_e^m, \quad \phi \in \{T, u\}, \tag{37}$$

 $\operatorname{considerando}$

$$\left(\frac{\partial T}{\partial \eta}\right)_e = \frac{T_{\rm N} + T_{\rm NE} - T_{\rm S} - T_{\rm SE}}{4\Delta\eta}.$$
(61)

Esta aproximação envolve volumes reais e fictícios. Com este esquema o programa divergiu.

3.4 SVN-115

Para tentar contornar a divergência presente na revisão anterior, adotou-se o seguinte esquema numérico

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{-(T_{\rm NN} + T_{\rm NNE}) + 4(T_{\rm N} + T_{\rm NE}) - 3(T_{\rm P} + T_{\rm E})}{4\Delta\eta}, \quad i = 1, \quad j = 2.$$
(62)

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{T_{\rm N} + T_{\rm NE} - T_{\rm S} - T_{\rm SE}}{4\Delta\eta}, \quad i = 1, \quad 3 \le j \le n_y - 2.$$
(63)

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{(T_{\rm ss} + T_{\rm sse}) - 4(T_{\rm s} + T_{\rm se}) + 3(T_{\rm P} + T_{\rm e})}{4\Delta\eta}, \quad i = 1, \quad j = n_y - 1.$$
(64)

Esta aproximação envolve volumes reais e fictícios, exceto os volumes fictícios dos cantos. Ainda assim o programa divergiu.

3.5 SVN-116

Para tentar contornar a divergência presente na revisão anterior, adotou-se o seguinte esquema numérico

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{-T_{\rm NNE} + 4T_{\rm NE} - 3T_{\rm E}}{2\Delta\eta}, \quad i = 1, \quad j = 2.$$
(65)

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{T_{\rm NE} - T_{\rm SE}}{2\Delta \eta}, \quad i = 1, \quad 3 \le j \le n_y - 2.$$
(66)

$$\left(\frac{\partial T}{\partial \eta}\right)_{e} = \frac{T_{\rm SSE} - 4T_{\rm SE} + 3T_{\rm E}}{2\Delta\eta}, \quad i = 1, \quad j = n_y - 1.$$
(67)

Esta aproximação envolve apenas volumes reais. Neste caso o programa convergiu. Os resultados são apresentados a seguir.

Cdfi						
7.852 7.852 7.852 7.852	0452: 0452: 0452:	2051 2051 2051	5882 5882 5882	E-02: SVN-112 E-02: SVN-113 E-02: SVN-116		
Variá	veis	loc	ais			
(reai	s)					
var	i	j	np	SVN-113	SVN-116	dif. relativa(%)
u	2	2	34	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00
v	2	2	34	1.9433319561331419E+02	1.9433319561331419E+02	0.0E+00
Т	2	2	34	3.4944391904016413E+02	3.4944391904016413E+02	0.0E+00
р	2	2	34	1.7597348511392082E+05	1.7597348511392082E+05	0.0E+00
(fict	ício	s)				
var	i	j	np	SVN-113	SVN-116	dif. relativa(%)
u	1	1	1	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00
v	1	1	1	1.2955546374220947E+02	1.2955546374220947E+02	0.0E+00
Т	1	4	97	3.3427165714084174E+02	1.9034847487649870E+02	-4.3E+01
р	1	1	1	1.7597348511392079E+05	1.7597348511392079E+05	0.0E+00

Com os resultados das revisões 114-116, observa-se que o uso de volumes fictícios nas derivadas "cruzadas" pode levar à divergência. Além disso, a implementação desta revisão não alterou o Cdfi, mas causou uma variação de 43% no campo de temperatura nos volumes fictícios. Não houve variação dos campos nos volumes reais.

3.6 SVN-117

Implementada a condição de contorno (29) para a temperatura no contorno leste, isto é,

$$A_{\mathbf{p}}^{\phi} = \frac{1}{\Delta\xi}, \quad A_{\mathbf{w}}^{\phi} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{\phi} = 0, \quad b_{\mathbf{p}}^{\phi} = -\frac{V_w}{U_w} \left(\frac{\partial\phi}{\partial\eta}\right)_w^m, \quad \phi \in \{T, u, v\}, \tag{29}$$

onde se utilizou a aproximação

$$\left(\frac{\partial T}{\partial \eta}\right)_{w} = \frac{-T_{\rm NNW} + 4T_{\rm NW} - 3T_{\rm W}}{2\Delta\eta}, \quad i = n_x, \quad j = 2.$$
(68)

$$\left(\frac{\partial T}{\partial \eta}\right)_{w} = \frac{T_{\rm NW} - T_{\rm SW}}{2\Delta \eta}, \quad i = n_x, \quad 3 \le j \le n_y - 2.$$
(69)

$$\left(\frac{\partial T}{\partial \eta}\right)_{w} = \frac{T_{\rm ssw} - 4T_{\rm sw} + 3T_{\rm w}}{2\Delta\eta}, \quad i = n_{x}, \quad j = n_{y} - 1.$$

$$(70)$$

Cdfi

====
7.852045220515882E-02 ...: SVN-112
7.852045220515882E-02 ...: SVN-113
7.852045220515882E-02 ...: SVN-116
7.852045220515882E-02 ...: SVN-117

Variáveis locais

	- /					
var	i	j	np	SVN-116	SVN-117	dif. relativa(%)
u	2	2	34	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00
v	2	2	34	1.9433319561331419E+02	1.9433319561331419E+02	0.0E+00
Т	2	2	34	3.4944391904016413E+02	3.4944391904016413E+02	0.0E+00
р	2	2	34	1.7597348511392082E+05	1.7597348511392082E+05	0.0E+00

(fict	ício	s)				
var	i	j	np	SVN-116	SVN-117	dif. relativa(%)
u	1	1	1	1.3353188681793949E+03	1.3353188681793949E+03	0.0E+00
v	1	1	1	1.2955546374220947E+02	1.2955546374220947E+02	0.0E+00
Т	32	8	256	3.3951998594577952E+02	3.4038849098401238E+02	2.6E-01
р	1	1	1	1.7597348511392079E+05	1.7597348511392079E+05	0.0E+00

A implementação desta revisão não alterou o Cdfi e causou uma variação menor que 0.5% no campo de temperatura. Não houve variação dos campos nos volumes reais.

3.7**SVN-118**

Implementada a condição de contorno (22) para a pressão no contorno sul, isto é,

$$A_{\mathbf{P}}^{p'} = \frac{1}{\Delta\eta}, \quad A_{\mathbf{N}}^{p'} = \frac{-1}{\Delta\eta}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\mathbf{P}}^{p'} = \frac{p_{\mathbf{N}}^* - p_{\mathbf{P}}^*}{\Delta\eta} - \frac{\beta_n}{\gamma_n} \left(\frac{\partial p}{\partial\xi}\right)_n^m, \tag{22}$$

onde as seguintes aproximações foram utilizadas

$$\left(\frac{\partial p}{\partial \xi}\right)_n = \frac{-p_{\rm NEE} + 4p_{\rm NE} - 3p_{\rm N}}{2\Delta\xi}, \quad i = 2, \quad j = 1.$$

$$(71)$$

$$\left(\frac{\partial p}{\partial \xi}\right)_n = \frac{p_{\rm NE} - p_{\rm NW}}{2\Delta\xi}, \quad 3 \le i \le n_x - 2, \quad j = 1.$$

$$\tag{72}$$

$$\left(\frac{\partial p}{\partial \xi}\right)_n = \frac{p_{\rm NWW} - 4p_{\rm NW} + 3p_{\rm W}}{2\Delta\xi}, \quad i = n_x - 1, \quad j = 1.$$
(73)

Cdfi

==== 7.852045220515882E-02 ...: SVN-112 7.852045220515882E-02 ...: SVN-113 7.852045220515882E-02 ...: SVN-116 7.852045220515882E-02 ...: SVN-117 7.852096563133239E-02 ...: SVN-118 (0.00065% dif. rel. com SVN-117)

Variáveis locais _____

(reai:	s)					
var	i	j	np	SVN-117	SVN-118	dif. relativa(%)
u	2	2	34	1.3353188681793949E+03	1.3350771481225952E+03	-1.8E-02
v	2	2	34	1.9433319561331419E+02	1.9578299096697060E+02	7.5E-01
Т	2	4	98	3.3427165714084174E+02	3.3423870266341299E+02	-9.9E-03
р	2	3	66	1.5924603902000125E+05	1.5918095311389668E+05	-4.1E-02
(fict:	ício	s)				
var	i	j	np	SVN-117	SVN-118	dif. relativa(%)
u	1	1	1	1.3353188681793949E+03	1.3350771481225952E+03	-1.8E-02
v	2	1	2	1.9433319561331419E+02	1.9578299096697060E+02	7.5E-01
Т	1	2	33	3.0956036506722785E+02	3.0965929545190789E+02	3.2E-02
р	2	1	2	1.7597348511392082E+05	1.7620442990888451E+05	1.3E-01

A implementação desta revisão causou uma pequena variação em Cdfi e alterou todos os campos u, v, T e p em menos de 1%.

SVN-119 3.8

Aplicada a condição de contorno (38) para a pressão no contorno oeste, isto é,

$$A_{\rm P}^{p'} = \frac{1}{\Delta\xi}, \quad A_{\rm E}^{p'} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{p'} = \frac{p_{\rm E}^* - p_{\rm P}^*}{\Delta\xi} - \frac{\beta_e}{\alpha_e} \left(\frac{\partial p}{\partial\eta}\right)_e^m, \tag{38}$$

onde o esquema numérico para

 $\left(\frac{\partial p}{\partial \eta}\right)_{e}$

é o mesmo das Eqs. (65)-(67).

Cdfi						
====						
7.852045220515882E-02	:	SVN-112				
7.852045220515882E-02	:	SVN-113				
7.852045220515882E-02	:	SVN-116				
7.852045220515882E-02	:	SVN-117				
7.852096563133239E-02	:	SVN-118	(0.00065%	dif.	rel.	com SVN-117)
7.858219442491492E-02	:	SVN-119	(0.07798%	dif.	rel.	com SVN-118)

Variáveis	locais

(reais	s)					
var	i	j	np	SVN-118	SVN-119	dif. relativa(%)
u	2	2	34	1.3350771481225952E+03	1.2963882327219831E+03	-2.9E+00
v	2	2	34	1.9578299096697060E+02	1.0135677676078242E+02	-4.8E+01
Т	2	2	34	3.4941412101087769E+02	4.1332489444448618E+02	1.8E+01
р	2	2	34	1.7591111253577392E+05	2.4079364441019163E+05	3.7E+01
(fict:	ício	s)				
var	i	j	np	SVN-118	SVN-119	dif. relativa(%)
u	1	1	1	1.3350771481225952E+03	1.2963882327219831E+03	-2.9E+00
v	2	1	2	1.9578299096697060E+02	1.0135677676078242E+02	-4.8E+01
Т	1	2	33	3.0965929545190789E+02	-1.2062686460785085E+02	-1.4E+02
a	1	2	33	1.7591111253577392E+05	-8.0718621801848430E+05	-5.6E+02

A implementação desta revisão teve um impacto significativo sobre a variável global e sobre as variáveis locais. Além disso, obteve-se resultados errados (negativos) para p e T.

3.9 SVN-120

Implementada a condição de contorno (31) para a pressão no contorno leste, isto é,

$$A_{\rm P}^{p'} = \frac{1}{\Delta\xi}, \quad A_{\rm W}^{p'} = \frac{-1}{\Delta\xi}, \quad \text{demais} \quad A^{p'} = 0, \quad b_{\rm P}^{\phi} = -\frac{p_{\rm P}^* - p_{\rm W}^*}{\Delta\xi} - \frac{V_w}{U_w} \left(\frac{\partial p}{\partial\eta}\right)_w^m, \tag{31}$$

onde o esquema numérico para

 $\left(\frac{\partial p}{\partial \eta}\right)_w$

é o mesmo das Eqs. (68)-(70).

```
Cdfi
====
7.852045220515882E-02 ...: SVN-112
7.852045220515882E-02 ...: SVN-113
7.852045220515882E-02 ...: SVN-116
7.852045220515882E-02 ...: SVN-117
7.852096563133239E-02 ...: SVN-118 (0.00065% dif. rel. com SVN-117)
7.858219442491492E-02 ...: SVN-119 (0.07798% dif. rel. com SVN-118)
7.859913003663684E-02 ...: SVN-120 (0.02155% dif. rel. com SVN-119)
```

Variá =====	veis =====	100 ====	cais			
(reai	s)					
var	i	j	np	SVN-119	SVN-120	dif. relativa(%)
u	31	8	255	1.3550841558503598E+03	1.3541363458311107E+03	-7.0E-02
v	31	9	287	7.8621830321939186E+01	7.8890252785384945E+01	3.4E-01
Т	31	8	255	3.3952642097223952E+02	3.4078532868424594E+02	3.7E-01
р	31	7	223	1.6336153085368659E+05	1.6399870782893314E+05	3.9E-01
(fict	ício	s)				
var	i	j	np	SVN-119	SVN-120	dif. relativa(%)

u	32	8 256	1.3550841558503598E+03	1.3541363458311107E+03	-7.0E-02
v	32	9 288	7.8621830321939186E+01	7.8890252785384945E+01	3.4E-01
Т	32	8 256	3.4039429587585391E+02	3.4166837248331444E+02	3.7E-01
р	32	7 224	1.6336153085368659E+05	1.6535555607900882E+05	1.2E+00

A implementação desta revisão produziu uma pequena variação tanto na variável global quanto nas locais.

3.10 SVN-121

A condição de contorno para o campo de velocidades no contorno sul é satisfeita através da relação

$$\hat{\boldsymbol{n}} \cdot \boldsymbol{u} = V_n = 0. \tag{25}$$

Como já apontado, a condição de contorno (25) é utilizada diretamente nas equações de transporte e não fornece uma fórmula para se determinar explicitamente $u_n \in v_n$. Embora estas grandezas não influenciem na solução final, são necessárias para se definir os coeficientes dos sistemas lineares para $u \in v$ nos volumes fictícios do contorno sul. No código base (SVN-112) o problema foi parcialmente resolvido com a aproximação

$$u_n = u_N, \qquad v_n = v_N. \tag{74}$$

Esta aproximação é desvantajosa porque não garante que o vetor velocidade do fluido sobre a parede seja tangencial à parede.

Para corrigir este problema, a seguinte proposta é utilizada. Uma vez que o contorno sul é uma linha de η constante e que o vetor velocidade do fluido sobre a parede deve ser tangencial à parede, é possível escrever

$$\boldsymbol{u}_{n} = u_{n}\hat{i} + v_{n}\hat{j} = \lambda \left(\boldsymbol{E}_{\xi}\right)_{n},\tag{75}$$

onde E_{ξ} é um vetor tangencial à linha de η constante, isto é,

$$\boldsymbol{E}_{\boldsymbol{\xi}} = \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\xi}} = x_{\boldsymbol{\xi}} \boldsymbol{i} + y_{\boldsymbol{\xi}} \boldsymbol{j}, \tag{84}$$

e λ é uma constante a ser determinada.

Para determinar λ deve-se observar que, com o refino da malha,

$$\boldsymbol{u}_{\mathrm{N}} \to \boldsymbol{u}_{n},$$
 (76)

o que também implica em

$$|\boldsymbol{u}_{\mathrm{N}}\| \to \|\boldsymbol{u}_{n}\|. \tag{77}$$

Combinando as Eqs. (76) e (77) à Eq. (75), obtém-se

$$\lambda \simeq \operatorname{sgn}\left(\boldsymbol{u}_{\mathrm{N}} \cdot \left(\boldsymbol{E}_{\xi}\right)_{n}\right) \sqrt{\frac{u_{\mathrm{N}}^{2} + v_{\mathrm{N}}^{2}}{\left(x_{\xi}\right)_{n}^{2} + \left(y_{\xi}\right)_{n}^{2}}}.$$
(78)

Deste modo

$$u_n = \frac{u_{\rm P} + u_{\rm N}}{2} = \lambda \left(x_{\xi} \right)_n \tag{79}$$

е

$$v_n = \frac{v_{\rm P} + v_{\rm N}}{2} = \lambda \left(y_{\xi} \right)_n. \tag{80}$$

Com base nas Eqs. (79) e (80), os coeficientes e fontes dos sistemas lineares para u e v no contorno sul ficam

$$A_{\rm P}^{u} = 1, \quad A_{\rm N}^{u} = 1, \quad \text{demais} \quad A^{u} = 0, \quad b_{\rm P}^{u} = 2\lambda \left(x_{\xi}\right)_{n}$$
 (81)

е

$$A_{\rm P}^{v} = 1, \quad A_{\rm N}^{v} = 1, \quad \text{demais} \quad A^{v} = 0, \quad b_{\rm P}^{v} = 2\lambda \left(y_{\xi}\right)_{n}.$$
 (82)

As aproximações (81) e (82) levam às condições de contorno exatas com o refino da malha.

Cdfi

7.852045220515882E-02 ...: SVN-112 7.852045220515882E-02 ...: SVN-113 7.852045220515882E-02 ...: SVN-116 7.852045220515882E-02 ...: SVN-117

7.852 7.858 7.859 7.859	09656 21944 91300 91300	5313 4249 0366 0366	3239 1492 3684 3684	DE-02: SVN-118 (0.000 DE-02: SVN-119 (0.077 HE-02: SVN-120 (0.021 HE-02: SVN-121	065% dif. rel. com SVN-117) 798% dif. rel. com SVN-118) 155% dif. rel. com SVN-119)	
Variá	veis	loc	ais			
=====	====: ~	====	===			
(real	s) i	i	nn	SVN-120	SVN-121	dif relativa(%)
var	- -	J	24	1 2062002272100255102	1 00620002070100255102	
u	2	2	34	1.29030623272196354+03	1.29030023272190335403	0.02+00
v	2	2	34	1.0135677676078259E+02	1.0135677676078259E+02	0.0E+00
Т	2	2	34	4.1332489444448612E+02	4.1332489444448612E+02	0.0E+00
р	2	2	34	2.4079364441019174E+05	2.4079364441019174E+05	0.0E+00
(fict	ícios	s)				
var	i	j	np	SVN-120	SVN-121	dif. relativa(%)
u	2	1	2	1.2963882327219835E+03	1.2805892798488878E+03	-1.2E+00
v	2	1	2	1.0135677676078259E+02	2.2580244124337833E+02	1.2E+02
Т	1	1	1	2.3797636826628013E+02	2.3797636826628013E+02	0.0E+00
р	1	1	1	-1.0904887105697706E+05	-1.0904887105697706E+05	-0.0E+00

A implementação desta revisão, como previsto, não alterou Cdfi, nem os campos de pressão e temperatura. As variações apareceram nos volumes fictícios do contorno sul para $u \in v$.

3.11 SVN-123

As condições de contorno para $u \in v$ no contorno leste foram implementadas com o mesmo esquema utilizado para a temperatura (SVN-117) neste contorno.

Cdfi						
====						
7.852	20452	205	15882	E-02: SVN-112		
7.852	20452	205	15882	E-02: SVN-113		
7.852	20452	205	15882	E-02: SVN-116		
7.852	20452	205	15882	E-02: SVN-117		
7.852	20965	631:	33239	E-02: SVN-118 (0.00065%	dif. rel. com SVN-117)	
7.858	82194	4249	91492	E-02: SVN-119 (0.07798%	dif. rel. com SVN-118)	
7.859	9130	0366	53684	E-02: SVN-120 (0.02155%	dif. rel. com SVN-119)	
7.859	9130	0366	53684	E-02: SVN-121		
7.860	4805	8029	91811	E-02: SVN-123 (0.00722%	dif. rel. com SVN-121)	
Variá =====	veis ====	100 ====	cais ====			
var	.5) i	i	nn	SVN-121	SVN-123	dif relativa(%)
11	31	л 2	255	1 3541363458311107E+03 1	3540398347328014F+03	-7 1E-03
v	31	9	287	7.8890252785384945E+01 7.	8960798071167517E+01	8.9E-02
Т	31	8	255	3.4078532868424594E+02 3.	4091011813551313E+02	3.7E-02
n	31	7	223	1 6399870782893314E+05 1	6416372951973692E+05	1 OE-01
Р	01	Ĩ	220	1.00000101020000111.00011	01100120010100021:00	1.01 01
(fict	ício	s)				
var	i	í	np	SVN-121	SVN-123	dif. relativa(%)
u	32	8	256	1.3541363458311107E+03 1.	3531412737130770E+03	-7.3E-02
v	32	7	224	1.3375619506241711E+02 1.	3650473880925924E+02	2.1E+00
Т	32	8	256	3.4166837248331444E+02 3.	4181696148045432E+02	4.3E-02
p	32	7	224	1.6535555607900882E+05 1.	6554873844827956E+05	1.2E-01

A implementação desta revisão produziu uma pequena variação tanto na variável global quanto nas locais.

3.12 SVN-124

As condições de contorno para u no contorno oeste foram implementadas com o mesmo esquema utilizado para a temperatura (SVN-116) neste contorno.

JULI					
====					
7.8520)4522	2051	5882	2E-02: SVN-112	
7.8520)4522	2051	5882	2E-02: SVN-113	
7.8520)4522	2051	5882	2E-02: SVN-116	
7.8520)4522	2051	5882	2E-02: SVN-117	
7.8520	9656	313	3239	E-02: SVN-118 (0.00065% dif. rel. com SVN-117)	
7.8582	21944	249	1492	2E-02: SVN-119 (0.07798% dif. rel. com SVN-118)	
7.8599	91300	366	3684	E-02: SVN-120 (0.02155% dif. rel. com SVN-119)	
7.8599	91300	366	3684	E-02: SVN-121	
7.8604	18058	8029	1811	E-02: SVN-123 (0.00722% dif. rel. com SVN-121)	
7.8604	18058	8029	1811	E-02: SVN-124	
Variáv	veis	loc	ais		
=====	====	===	===		
(reais	s)				
var	i	j	np	SVN-123 SVN-124	dif. relativa(%)
u	2	2	34	1.2963882327219828E+03 1.2963882327219828E+03	0.0E+00
v	2	2	34	1.0135677676078235E+02 1.0135677676078235E+02	0.0E+00
Т	2	2	34	4.1332489444448612E+02 4.1332489444448612E+02	0.0E+00
p	2	2	34	2.4079364441019148E+05 2.4079364441019148E+05	0.0E+00
-					
(fictí	cios	5)			
var	i	j	np	SVN-123 SVN-124	dif. relativa(%)
u	1	3	65	1.3234811541042977E+03 1.7391284967138693E+03	3.1E+01
v	1	1	1	1.0905307266805352E+02 1.0905307266805352E+02	0.0E+00
Т	1	1	1	2.3797636826628013E+02 2.3797636826628013E+02	0.0E+00
р	1	1	1	-1.0904887105697735E+05 -1.0904887105697735E+05	-0.0E+00
-					

A implementação desta revisão produziu uma variação significativa em u nos volumes fictícios. As demais variáveis se mantiveram inalteradas.

4 Conclusões

Cdfi

- 1. A aplicação das condições de contorno exatas para o campo de temperatura em todos os contornos não teve efeito sobre Cdfi, pois somente o campo de temperatura nos volumes fictícios foi alterado. Tudo se passou como se houvesse um desacoplamento entre o campo de temperatura e os demais campos.
- 2. A aplicação das condições de contorno exatas para o campo de pressão em todos os contornos teve efeito sobre todas as variáveis. Particularmente o contorno oeste necessita de um tratamento especial, pois o esquema numérico aplicado levou a valores negativos para $p \in T$.
- 3. A aplicação das condições de contorno exatas para u e v no contorno sul não alterou os campos de pressão e temperatura. De fato, o esquema para o cálculo de u e v no contorno sul altera apenas o valor destas variáveis nos nós dos volumes fictícios deste contorno, desde que V = 0.
- 4. O uso de volumes fictícios para o cálculo de derivadas "cruzadas" pode levar à divergências.

Propriedades geométricas no sistema $\xi\eta$ Α

Seja r o vetor posição de um ponto cujas coordenadas são (x, y). Em termos dos vetores unitários $i \in j$, nas direções do eixo x e y, respectivamente, e lembrando que $x = x(\xi, \eta)$ e $y = y(\xi, \eta)$, o vetor posição é dado por

$$\boldsymbol{r} = \boldsymbol{x}(\xi, \eta)\boldsymbol{i} + \boldsymbol{y}(\xi, \eta)\boldsymbol{j}.$$
(83)

Com base na Eq. (83), os vetores $E_{\xi} \in E_{\eta}$, tangentes às linhas de $\eta \in \xi$ constantes, respectivamente, são dados por

$$\boldsymbol{E}_{\xi} = \frac{\partial \boldsymbol{r}}{\partial \xi} = x_{\xi} \boldsymbol{i} + y_{\xi} \boldsymbol{j}, \qquad (84)$$

$$\boldsymbol{E}_{\eta} = \frac{\partial \boldsymbol{r}}{\partial \eta} = x_{\eta} \boldsymbol{i} + y_{\eta} \boldsymbol{j}. \tag{85}$$

Por outro lado, os vetores $E^{\xi} \in E^{\eta}$, normais às linhas de $\xi \in \eta$ constantes, respectivamente, são dados por

$$\boldsymbol{E}^{\boldsymbol{\xi}} = \nabla \boldsymbol{\xi} = \frac{\partial \boldsymbol{\xi}}{\partial x} \boldsymbol{i} + \frac{\partial \boldsymbol{\xi}}{\partial y} \boldsymbol{j} = J(y_{\eta} \boldsymbol{i} - x_{\eta} \boldsymbol{j}), \tag{86}$$

$$\boldsymbol{E}^{\eta} = \nabla \eta = \frac{\partial \eta}{\partial x} \boldsymbol{i} + \frac{\partial \eta}{\partial y} \boldsymbol{j} = J(-y_{\xi} \boldsymbol{i} + x_{\xi} \boldsymbol{j}), \qquad (87)$$

onde foram usadas as relações de transformação[1]

$$\frac{\partial \xi}{x} = J y_{\eta}, \tag{88}$$

$$\frac{\partial \xi}{\partial x} = Jy_{\eta},$$

$$\frac{\partial \xi}{\partial y} = -Jx_{\eta},$$
(88)
(89)

$$\frac{\partial \eta}{\partial x} = -Jy_{\xi},\tag{90}$$

$$\frac{\partial \eta}{\partial y} = Jx_{\xi}, \tag{91}$$

lembrando que J é o jacobiano da transformação

$$J = [x_{\xi}y_{\eta} - x_{\eta}y_{\xi}]^{-1}$$

O produto interno entre os vetores das eqs. (84) e (87) satisfazem às seguintes propriedades

$$\boldsymbol{E}_i \cdot \boldsymbol{E}^j = \delta_i^j, \qquad \boldsymbol{E}_i \cdot \boldsymbol{E}_j = g_{ij}, \qquad \boldsymbol{E}^i \cdot \boldsymbol{E}^j = g^{ij}, \tag{92}$$

onde

$$g_{\xi\xi} = \gamma = x_{\xi}^2 + y_{\xi}^2, \tag{93}$$

$$g_{\xi\eta} = \beta = g_{\eta\xi} = x_{\xi}x_{\eta} + y_{\xi}y_{\eta}, \tag{94}$$

$$g_{\eta\eta} = \alpha = x_{\eta}^2 + y_{\eta}^2 \tag{95}$$

е

$$g^{\xi\xi} = J^2 \alpha = J^2 (x_\eta^2 + y_\eta^2), \tag{96}$$

$$g^{\xi\eta} = -J^2\beta = g^{\eta\xi} = -J^2(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}), \qquad (97)$$

$$g^{\eta\eta} = J^2 \gamma = J^2 (x_{\xi}^2 + y_{\xi}^2).$$
(98)

No sistema coordenado $\xi\eta$, o gradiente de uma função $\phi(\xi,\eta)$ fica

$$\nabla \phi = \mathbf{E}^{\xi} \, \frac{\partial \phi}{\partial \xi} + \mathbf{E}^{\eta} \, \frac{\partial \phi}{\partial \eta}. \tag{99}$$

Referências

[1] C R Maliska. Transferência de calor e mecânica dos fluidos computacional. LTC, Rio de Janeiro, 2 edition, 2004.