Estudo da variação dos parâmetros numéricos sobre o desempenho computacional do código Mach2D-7.0. Parte A: código geral.

Guilherme Bertoldo

11 de Setembro de 2012

Conteúdo

1	Parâmetros numéricos	1
2	Variação dinâmica de dt	1
3	Parâmetros para o controle da convergência	3

1 Parâmetros numéricos

Os parâmetros numéricos de entrada do código Mach2D-7.0 são dados na Tab. 1. Na terceira coluna desta tabela são indicados os parâmetros comuns a todas as simulações.

Tabela 1. 1 arametros numericos de entrada do coulgo MacinzD-1.0								
Simulation identification (up to 100 characters)	sim_id							
Number of real volumes in the csi direction	nx-2							
Number of real volumes in the eta direction	ny-2							
Kind of grid $(1=$ eta uniform, $2=$ geometric progression for eta, $3=$ power law)	kg	1						
Initial step for the geometric progression grid (m)	a1	1.00000000E-06						
$\operatorname{Coordinate}$ system (1=cylindrical, else cartesian)	coord	1						
Perfect gas constant $(J/(kg.K))$	Rg	2.86900000 E + 02						
gamma = Cpo / Cvo in the chamber (Specific heat ratio)	gamma	1.40000000 E + 00						
Stagnation pressure in the chamber (Pa)	po	$1.725068000\mathrm{E}{+}06$						
Stagnation temperature in the chamber (K)	T0	8.333300000 ± 02						
$\operatorname{atmospheric}$ pressure at the sea level (Pa)	pr	$1.013250000 \mathrm{E}{+}05$						
gravitational acceleration at the sea level $(m/s2)$	go	$9.806650000 \mathrm{E}{+}00$						
Initial constant of the UDS/CDS mixing scheme	beta1							
Final constant of the UDS/CDS mixing scheme	beta2							
$beta = beta1$ for it $\leq = itb1$	itb1							
beta = beta2 for $itb2 <= it$	itb2							
m modvis = 0 -> Euler; m modvis = 1 -> Navier-Stokes	modvis	0						
turbulence model option $(0=$ laminar, $1=$ Baldwin-Lomax $)$	modtur	0						
m ccTw = 0 -> adiabatic; $ m ccTw$ = 1 -> prescribed temperature	ccTw	0						
$dt = dt1$ for it $\leq = it1$	it 1							
$\mathrm{dt} = \mathrm{dt}2 ext{ for it}2 <= \mathrm{it}$	it 2							
Initial time step (s)	dt 1							
Final time step (s)	dt 2							
Maximum number of iteractions of the time evolution	itmax							
Parada com base no valor do residuo, se negativo, a parada e feita com base no imax	tolerance							
Maximum number of iteractions for the pressure correction	imax							
Maximum number of iteractions for the TDMA method for u, v and T	nitm_u							
Maximum number of iteractions for the TDMA method for p	nitm_p							
Upload backup data and continue computation $(0 = no, 1 = yes)$	reload	0						
Frequency of saving backup data	wbkp	50000						
Frequency of printing in the listing file and in the screen	wlf	1						
1 = do not open result files, 0 = open	sem_a	1						
0 = visualize the plot, $1 =$ do not visualize	sem_g	1						
Frequency of writing data for graphics	w_g	1						
1 = write the fields, $0 =$ do not	w_cam	1						
Mostrar resultados de iteracoes na tela, $0 =$ nao, $1 =$ sim	ver_tela	0						
Numero de Nucleos que serao utilizados na computacao paralela	num	1						

Tabela 1: Parâmetros numéricos de entrada do código Mach2D-7.0

2 Variação dinâmica de dt

O estudo sobre a variação dinâmica de dt apresentado no relatório

Estudo da variação dos parâmetros numéricos sobre o desempenho computacional do código Mach2D-7.0. Parte A: código geral.

Tabela 2: Parâmetros fixos no conjunto de simulações S0062.

beta1	beta2	itb1	$\mathrm{it}\mathrm{b}2$	$\mathrm{it1}$	it2	tolerance	imax	nitm_u	nitm_p
0.0	0.0	100	500	$\overline{5}$	5	1.00E-14	2	4	2

id	nx-2	ny-2	RAM	dt1	dt2	$\operatorname{it}\max$	it	tcpu
Back.001	56	20	16	5.00 E-06	$5.00 ext{E-} 05$	20000	20000	$2.48\mathrm{E}{+01}$
Back.002	112	40	19	1.00 E-06	$1.00 \mathrm{E}\text{-}05$	20000	20000	$1.03\mathrm{E}{+}02$
Back.003	224	80	31	8.00 E - 07	$8.00 ext{E-06}$	20000	20000	$4.94\mathrm{E}{+02}$
Back.004	448	160	77	$5.00 ext{E-} 07$	$5.00 ext{E-06}$	20000	20000	$3.84\mathrm{E}{+03}$
Back.005	896	320	263	1.00 E-07	1.00 E-06	30000	30000	$3.07\mathrm{E}{+}04$
id	Cd	Fd^*	\max cu	maxcv	\max ct	maxcp	maxcc	dt
Back.001	$1.047043462\mathrm{E}{+00}$	$9.770438608 ext{E-}01$	8.18E-01	8.18E-01	8.18E-01	9.90E-01	9.90E-01	1.36E-05
Back.002	$1.016945868\mathrm{E}{+00}$	$9.720276816 ext{E-}01$	$8.15 ext{E-}01$	$8.15 ext{E-}01$	8.15 E-01	9.90 E-01	9.90 E-01	6.56 E-06
Back.003	$1.000833901\mathrm{E}{+00}$	$9.701725855 \mathrm{E}{ ext{-}}01$	8.13 E-01	8.13 E-01	8.13 E-01	9.90 E-01	9.90 E-01	3.20 E-06
Back.004	$9.914736245 ext{E-01}$	$9.686359878 ext{E-01}$	8.15 E-01	$8.15 ext{E-}01$	8.15 E-01	9.90 E-01	9.90 E-01	1.57 E-06
Back.005	9.864693701E-01	9.677675381E-01	8.17E-01	8.17E-01	8.17E-01	9.90E-01	9.90E-01	7.76E-07

Tabela 3: Resultados do conjunto de simulações S0062.

foi repetido para o esquema UDS. No presente estudo (S0062), contudo, a tolerância foi reduzida de 1E-6 para 1E-14. Os parâmetros mantidos fixos são mostrados na Tab. 2 e os resultados principais na Tab. 3. Para todos os resultados apresentados não foi possível reduzir a razão dos resíduos à tolerância prescrita, entretanto, o gráfico da razão dos resíduos como função do número de iterações indica que o processo iterativo foi realizado até que se atingisse o erro de arredondamento. Não houve mundança nos resultados para Cd e Fd* até a quinta casa decimal.

O mesmo teste foi repetido para o esquema CDS (S0061). Os parâmetros mantidos fixos são dados na Tab. 4 e os resultados principais são apresentados na Tab. 5. Para todos os resultados apresentados não foi possível reduzir a razão dos resíduos à tolerância prescrita, entretanto o gráfico da razão dos resíduos como função do número de iterações indica que o processo iterativo foi realizado até a estabilização do resíduo. Ao se comparar Cd e Fd* com os do primeiro relatório, observa-se que as diferenças tornam-se significativas a partir da terceira malha, para a qual apenas três algarismos significativos coincidem. Também observou-se (Fig. 1) que as oscilações no campo de temperatura aumentaram significativamente para a quarta malha. Na quinta malha não houve convergência para os parâmetros utilizados.

A principal conclusão é: mesmo reduzindo-se a tolerância dos resíduos, o uso do dt dinâmico não permitiu reduzir as oscilações na solução e nem utilizar malhas mais finas no caso do esquema CDS.

Tabela 4: Parâmetros fixos no conjunto de simulações S0061.

beta1	beta2	itb1	$\mathrm{it}\mathrm{b}2$	$\mathrm{it1}$	it2	tolerance	imax	nitm_u	nitm_p
0.0	1.0	100	$\overline{500}$	5	5	1.00 E-14	2	4	2

Tabela 5: Resultados do conjunto de simulações S0061.

			J		3			
sim_id	nx-2	ny-2	RAM	$\mathrm{dt}1$	dt2	$\operatorname{it}\max$	it	tcpu
Back.001	56	20	16	5.00 E-06	$5.00 ext{E-} 05$	20000	20000	$2.44\mathrm{E}{+01}$
Back.002	112	40	19	1.00 E-06	$1.00\mathrm{E}\text{-}05$	20000	20000	$1.03\mathrm{E}{+}02$
Back.003	224	80	31	$8.00 ext{E-} 07$	$8.00 ext{E-06}$	20000	20000	$5.26\mathrm{E}{+}02$
Back.004	448	160	77	$5.00 ext{E-} 07$	$5.00 ext{E-06}$	20000	20000	$3.85\mathrm{E}{+03}$
Back.005	896	320				30000		
id	Cd	Fd^*	maxcu	maxcv	\max ct	maxcp	maxcc	dt
Back.001	$9.799088743 ext{E-}01$	$9.648594599 ext{E-01}$	$8.26 ext{E-} 01$	8.26E-01	8.26 E-01	9.90E-01	9.90E-01	1.37E-05
Back.002	$9.808019717 ext{E-}01$	$9.660900583 ext{E-}01$	$8.26 ext{E-} 01$	8.26E-01	8.26 E-01	9.93E-01	9.90 E- 01	6.56 E-06
Back.003	$9.810662747 ext{E-01}$	$9.665962511 \mathrm{E}{-}01$	$6.80 ext{E-}01$	6.80 E-01	6.80 E-01	9.95 E- 01	9.90 E- 01	1.33E-06
Back.004	9.812376961E-01	$9.668064269 ext{E-01}$	$6.20 ext{E-} 01$	$6.20 ext{E-}01$	6.20 E-01	9.25 E-01	9.90 E-01	$3.16\mathrm{E}\text{-}07$
Back.005								

Figura 1: Distribuição de temperatura (S0061).

3 Parâmetros para o controle da convergência

Realizou-se diversas simulações com o intuito de encontrar algum parâmetro que possibilitasse variar dinamicamente o incremento de tempo dt e concomitantemente garantir a convergência e a celeridade do processo iterativo. Neste estudo três parâmetros foram testados:

1. Os coeficientes associados à diagonal dominância,

$$c^{\phi} = \max_{P} \frac{\sum_{nb} |A_{nb}|}{|A_{P}|}, \quad \phi \in \{u, v, T, p'\}$$
(1)

2. A negatividade dos coeficientes dos sistemas lineares. Conforme Maliska[2] (p. 64), a estabilidade do processo iterativo é favorecida quando os coeficientes A_{nb} do sistema linear

$$A_P \phi_P + \sum_{nb} A_{nb} \phi_{nb} = b_P \tag{2}$$

forem negativos. Para avaliar este efeito, foram definidas as variáveis

$$a^{\phi} = \max_{nb} A_{nb}, \quad \phi \in \{u, v, T, p'\}$$

$$\tag{3}$$

3. A variação de

$$\|\phi - \phi^{\circ}\|_{\infty}, \quad \phi \in \{u, v, T, p\}$$

$$\tag{4}$$

ao longo das iterações.

Os testes foram realizados para diferentes malhas e valores para dt. Também testou-se o esquema UDS e CDS. Os parâmetros de entrada variados são listados na Tab. 6. Em todas as simulações manteve-se beta1=0, itb1=100, itb2=500, it1=it2=5, itmax=20000, tolerance=1.00E-06, imax =4, nitm u=1, nitm p=2.

Tabela 6: Parâmetros dos conjuntos de simulações S0068-S0074.

S0068					
sim id	nx-2	ny-2	$\mathrm{beta2}$	dt1	dt 2
Back001	56	20	0.00 E + 00	3.00E-06	3.00E-06
Back002	56	20	$0.00 E \pm 00$	7.00E-06	7.00E-06
Back003	56	20	$0.00E \pm 0.0$	1.00E-05	1.00E-05
Back004	56	20	0.00E+00	1.36E 05	1.00E 05
Dack004	50	20	0.00 E + 00	1.30E-05	1.30E-05
Back005	56	20	0.00E+00	3.00E-05	3.00E-05
Back006	56	20	$0.00 \mathrm{E}{+}00$	6.00 E-05	6.00 ± 0.05
S0069					
sim id	nx-2	nv-2	b et a2	dt1	dt 2
Back001	112	40	$0.00E \pm 00$	7.00E-07	7.00E-07
Back002	112	40	0.00E+00	1.00E 06	1.00E.06
Dack002	112	40	0.00 ± 0.00	2.00E-00	2.00E-00
Dack005	112	40	0.00E+00	5.00E-00	3.00E-00
Back004	112	40	0.00E+00	6.50E-06	6.50E-06
Back005	112	40	$0.00\mathrm{E}{+}00$	1.00 E-05	$1.00 \text{E}{-}05$
Back006	112	40	$0.00\mathrm{E}{+}00$	1.50 E-05	1.50 E-05
S0070					
sim id	nx-2	nv-2	b et a2	dt1	dt 2
Back001	224	,	$0.00E \pm 0.0$	$1.00E_{-07}$	$1.00E_{-07}$
Dack001 Dack001	224	80	0.001000	4.00E 07	4.00 E 07
Datk002	224	80	0.00E+00	4.0012-07	4.00E-07
Back003	224	80	0.00E+00	7.00E-07	7.00E-07
Back004	224	80	$0.00\mathrm{E}{+}00$	1.30E-06	1.30E-06
Back005	224	80	$0.00 E{+}00$	4.00E-06	4.00 E-06
Back006	224	80	$0.00\mathrm{E}{+}00$	8.00 E-06	8.00 E-06
\$0071					
sim id	n 9	nv: 9	h at a 9	d+1	d+ 9
D1-001	11X-2	1 C O			ut⊿ 2.00⊡.00
Back001	448	160	0.00E+00	3.00E-08	3.00E-08
Back002	448	160	$0.00 \mathrm{E}{+}00$	6.00 ± 0.08	6.00 ± 0.08
Back003	448	160	$0.00 \mathrm{E}{+}00$	9.00 E-08	$9.00 ext{E} - 08$
Back004	448	160	$0.00 \mathrm{E}{+}00$	2.50E-07	$2.50 \text{E}{-}07$
Back005	448	160	0.00 E + 00	6.00 E-07	$6.00 ext{E} - 07$
Back006	448	160	$0.00\mathrm{E}{+}00$	3.00 E-06	3.00 E-06
\$0072					
sim id	n 0	n 0	hotoD	d+1	4+ 0
1d	IIX - 2	ny - 2	beta2		dt 2
Back001	56	20	$1.00 E{+}00$	3.00E-06	3.00 ± 0.06
Back002	56	20	$1.00 \mathrm{E}{+00}$	7.00 E-06	$7.00 \text{E}{-}06$
Back003	56	20	$1.00 \mathrm{E}{+00}$	1.00E-05	1.00E-05
Back004	56	20	$1.00 \mathrm{E}{+00}$	1.36E-05	1.36E-05
Back005	56	20	$1.00E \pm 00$	3.00E-05	3.00E-05
Back006	56	20	$1.00\mathrm{E}{+00}$	6.00 E-05	$6.00 ext{E}-05$
80070					
50073			1	1	14.2
_sim_id	nx-2	ny-2	bet a2	_dtl	_dt2
Back001	112	40	$1.00 \mathrm{E}{+}00$	$7.00 ext{E}-07$	$7.00 ext{E-07}$
Back002	112	40	$1.00 \mathrm{E}{+00}$	1.00E-06	1.00E-06
Back003	112	40	1.00 E + 00	3.00E-06	3.00E-06
Back004	112	40	$1.00 \mathrm{E}{+00}$	6.50E-06	6.50E-06
Back005	112	40	$1.00E \pm 0.0$	1.00E-05	1.00E-05
Back006	112	40	1.00E+00 1.00E+00	1.50E-05	1.50E-05
S0074					
sim_{id}	nx-2	ny-2	$b \operatorname{et} a2$	dt1	dt 2
Back001	224	80	$1.00 \mathrm{E}{+}00$	1.00 E-07	1.00E-07
Back002	224	80	$1.00 \mathrm{E}{+}00$	4.00E-07	4.00E-07
Back003	224	80	$1.00E \pm 00$	7.00E-07	7.00E-07
Back004	224	80	1.00E+00	1.30E-06	1.30E-06
Back005	224	80	1.00E + 00	4.00E.06	4.00E.06
Dack000	224	00	1.0012+00	4.00E-00	4.00E-00
васкооб	ZZ4	80	1.00E+00	0.00E-06	0.00E-06

Dos resultados obtidos foi possível concluir que

- 1. $c^{\phi}>0$ não necessariamente implica em divergência;
- 2. $a^{\phi} > 0$ implica em divergência;
- 3. A divergência do processo iterativo pode ter início mesmo com $a^{\phi} \leq 0$ ou $c^{\phi} \leq 1$. A situação é ilustrada na Fig. 2 que apresenta $\|\phi \phi^{\circ}\|_{\infty}$ e a razão das normas dos resíduos como função do número de iterações para a simulação Back006 do conjunto S0068. Nesta simulação houve 42 iterações no ciclo temporal. Somente na primeira iteração e na penúltima ocorreu que $c^{\phi} > 1$ e em todas as iterações $a^{\phi} \leq 0$. Por

outro lado, observa-se nas partes a, b, c e d da Fig. 2, que a divergência começou efetivamente em torno da vigésima iteração. Outro aspecto curioso é que a norma dos resíduos manteve-se quase constante durante a divergência. Este é um indício de que o problema da estabilidade não está ligado somente ao solver, mas ao algoritmo do ciclo da evolução temporal. Esta ideia é corroborada por Ferziger e Peric[1] (p. 149):

Figura 2: (S0068).

Referências

- [1] J H Ferziger and M Peric. Computational methods for fluid dynamics. Springer, 3 edition, 2002.
- [2] C R Maliska. Transferência de calor e mecânica dos fluidos computacional. LTC, Rio de Janeiro, 2 edition, 2004.