Estudos diversos com o código Mach2D-5.8.2.1.

Guilherme Bertoldo

21 de Setembro de 2012

Conteúdo

1	Introdução	1
2	Efeito do dt sobre Cdfi e u, v, T, p sobre a superfície do cone	1
3	Mais de uma iteração para cada instante	4
4	Critérios de parada do processo iterativo	4
5	O fator-E 5.1 Teoria 5.2 Resultados 5.2.1 UDS 5.2.2 CDS 5.2.3 Eficiência e robustez	8 8 8 12 15

1 Introdução

O código Mach2D-5.8.2.1 foi desenvolvido para calcular o escoamento externo de gases sobre a parte frontal de um corpo de simetria plana ou axial. Neste código são considerados apenas escoamentos invíscidos, modelados pela equação de Euler. A seguir são apresentados resultados considerando o escoamento de ar ($\gamma = 1.4$) sobre um cone de semi-ângulo de 10° com número de Mach de corrente livre igual a 4.

2 Efeito do dt sobre Cdfi e u, v, T, p sobre a superfície do cone

O primeiro estudo (S0076) consiste na avaliação da influência de dt sobre variáveis globais e locais utilizando o código Mach2D-5.8.2.1-SVN-r68. Os parâmetros numéricos de entrada deste código são dados na Tab. 1. Na terceira coluna desta tabela são indicados os parâmetros comuns a todas as simulações do conjunto S0076.

A Tab. 2 mostra o coeficiente de arrasto de pressão frontal Cdfi sobre o cone para diversas malhas e valores de dt. Além disso, a tabela também mostra a soma dos resíduos res dos sistemas lineares na última iteração it. No código Mach2D-5.8.2.1-r68, o resíduo dos sistemas lineares são calculados através da fórmula

$$R^{\phi} = \frac{\|A^{\phi}\phi - b^{\phi}\|_{1}}{\|b^{\phi}\|_{1}},\tag{1}$$

exceto para a equação da correção da pressão, pois $b^{p'}$ tende a zero. Neste caso não é feita a divisão indicada na equação acima.

É possível observar na Tab. 2 que existe um intervalo de dt (1E-4 < dt < 5E-6) para o qual Cdfi é praticamente constante. Para valores de dt acima deste intervalo, porém menores que 1E-7, a variação de Cdfi ocorre até o 12° algarismo. Para valores de dt abaixo deste intervalo, porém acima de 1E-3, a variação de Cdfi acorre até o 6° algarismo.

Ao se reduzir dt, é natural esperar que o erro aumente em função do erro de arredondamento. Entretanto, é estranho que o erro aumente ao se aumentar dt.

A Tab. 3 mostra a distribuição de u, v, T e p sobre alguns pontos da superfície do cone obtidos da simulação S05. A Tab. 4, mostra a máxima diferença absoluta e a máxima diferença relativa entre as simulações de S01 a S10 comparadas com a simulação S05. Observa-se para as variáveis locais o mesmo comportamento do erro para a variável global.

Iabela I. I afametros numericos de entrada do codigo M	a c n 2 D = 0.	.0.2.1-5 V IV-106
Simulation identification (up to 100 characters)	sim id	
Number of real volumes in the csi direction	nx-2	
Number of real volumes in the eta direction	ny-2	
length of the elliptical x semi-axis (m)	la	$2.83564090980890\mathrm{E}{+}00$
length of the elliptical y semi-axis (m)	lb	2.000000000000000000000000000000000000
length of the body (m)	lr	$2.83564090980890\mathrm{E}{+}00$
base radius/semi-height of the body (m)	rb	5.00000000000000E-01
Kind of grid (1=uniform, 2=geometric progression, 3=power law)	kg	1
Kind of centroid mean $(1=simple mean, 2=weighted mean)$	kcm	1
Kind of coord. system $(1=cylindrical, 0 = cartesian)$	coord	1
width of the volume closer to the wall (m)	a1	1.00000000000000E-03
Exponent of the power law for the north boundary	akn	2.000000000000000000000000000000000000
Exponent of the power law for the south boundary	aks	1.000000000000000000000000000000000000
Maximum number of iteractions for time cycle	itmax	200000
Maximum number of iteractions for mass cycle	imax	1
Number of iteractions up to which $dt = dt1$	it1	100
Number of iteractions from which $dt = dt2$	it2	300
Initial time step (s)	dt1	
Final time step (s)	dt2	
Maximum number of iteractions for solving the linear systems for u, v and T	nitm_u	5
Maximum number of iteractions for solving the linear system for p	nitm_p	5
Number of iteractions to calculate the mean of the residuals	nit_res	500
Tolerance in the MSI for solving the linear systems for u, v and T	tol_u	1.00000000000000E-02
Tolerance in the MSI for solving the linear system for p	tol_p	1.00000000000000E-02
Tolerance for the sum of residuals	tol_res	1.00000000000000E-18
Frequency of printing in the listing file	wlf	1
1 = do not open result files, 0 = open	sem_a	1
0 = visualize the plot, $1 = $ do not visualize	sem_g	1
Frequency of writing data for graphics	w_g	1
1 = write the fields, $0 =$ do not	w_cam	0
Number of iteractions up to which beta $=$ beta1	itb1	300
Number of iteractions from which $beta = beta2$	itb2	1000
Initial beta $(\text{UDS}/\text{CDS} \text{ mixing constant } (0=\text{UDS}, 1=\text{CDS}))$	beta1	0.00000000000000000000000000000000000
Final beta $(\text{UDS}/\text{CDS} \text{ mixing constant } (0=\text{UDS}, 1=\text{CDS}))$	beta2	0.00000000000000000000000000000000000
$\mathrm{GF}=\mathrm{gamma}=\mathrm{Cp}\ /\ \mathrm{Cv}\ \mathrm{(for\ the\ free\ stream)}$	GF	1.40000000000000E+00
Perfect gas constant (J/kg.K)	Rg	2.87000000000000E+02
Free stream pressure (Pa)	PF	1.000000000000000E+05
Free stream temperature (K)	TF	3.000000000000000000000000000000000000
Free stream Mach number	MF	4.000000000000000000000000000000000000

Tabela 1: Parâmetros numéricos de entrada do código Mach2D-5.8.2.1-SVN-r68

Tabela 2: Resultados principais do conjunto de simulações S0076 para a variável global Cdfi.

			г		,		3	1	0
Simulation	nx-2	ny-2	dt1	dt_2	RAM	it	tcpu	res	Cdfi
S01	30	30	5.00E-03	5.00 E-03	15.4	200001	$3.97 \mathrm{E}{+}02$	2.63E-13	7.860632616468913 E-02
S02	30	30	1.00E-03	1.00E-03	15.4	200001	4.00 E + 02	2.03E-14	$7.860652486710192 ext{E-}02$
S03	30	30	5.00E-04	5.00E-04	15.4	200001	4.05E + 02	8.22E-15	$7.860652506868759 ext{E-02}$
S04	30	30	1.00E-04	1.00E-04	15.4	200001	$3.96E \pm 02$	1.55 E - 15	$7.860652506878746 ext{E-02}$
S05	30	30	5.00E-05	5.00E-05	15.4	200001	3.91E + 02	1.30E-15	$7.860652506878746 ext{E-02}$
S06	30	30	1.00E-05	1.00E-05	15.4	200001	$3.81E \pm 02$	1.69 E - 16	$7.860652506878733 ext{E-02}$
S07	30	30	5.00E-06	5.00E-06	15.4	200001	$3.74E \pm 02$	1.14 E - 15	7.860652506878472E-02
S08	30	30	1.00E-06	1.00E-06	15.4	200001	3.70E + 02	$7.21 ext{E-17}$	7.860652506876506E-02
S09	30	30	5.00E-07	5.00 E-07	15.4	200001	3.22E + 02	5.32E-17	7.860652506873683E-02
S10	30	30	1.00E-07	1.00 E-07	15.4	200001	1.86E + 02	$4.95 ext{E-17}$	7.860652506852883E-02

Tabela 3: Resultados principais do conjunto de simulações S0076. Variáveis locais u, v, T e p em alguns pontos sobre a superfície do cone.

x	u	v	P	Т	ro
7.089102274522250 E-02	1.329779358317130 E + 03	2.301185599074430 E + 02	1.879510692627020 E + 05	3.530113504230970E + 02	1.855129539211020 E + 00
2.126730682356670 E-01	1.329754583378780 E + 03	2.123366929215530E+02	1.878256784825460 ± 05	3.531197933547130 E + 02	1.853322545350200 E + 00
3.544551137261120 ± 01	1.329711377063470 E + 03	2.123484260203690E+02	1.877767275413590 ± 05	3.532237573550450 E + 02	1.852294183011590 E + 00
4.962371592165570 ± 01	1.329648811955410 E + 03	2.124337433715520E+02	1.877642733170460 ± 05	3.533369900759260E+02	$1.851577774825710\mathrm{E}{+}00$
6.380192047070020 E-01	1.329571907751840 ± 03	2.125714962795670E + 02	1.877706589584710 ± 05	3.534582246757920E+02	1.851005638624060 E + 00
7.798012501974470 ± 01	$1.329483675264610 E \pm 03$	2.127488439958320E+02	1.877882426252890 E + 05	3.535864531320200 E + 02	1.850507643720750E+00
9.215832956878920 ± 01	1.329386563406040 E + 03	2.129555996764240 E + 02	1.878116330814840 ± 05	3.537206759730710E+02	1.850035857648030 E + 00
1.063365341178340 E + 00	1.329281905399840 E + 03	2.131867050995270E + 02	1.878381722977330 ± 05	3.538601416496450 E + 02	1.849568030014000 E + 00
1.205147386668780 E + 00	1.329170678492200 E + 03	2.134393850875280E+02	1.878659301626600 ± 05	3.540039551855430 E + 02	1.849089856382520 E + 00
1.346929432159230 E + 00	1.329053222390700 E + 03	2.137139425140940 E + 02	1.878940984683400 ± 05	3.541513541567040 E + 02	1.848597392450850 E + 00
1.488711477649670 E + 00	1.328929367803200 E + 03	2.140140483189340 E + 02	1.879225008406370 ± 05	3.543013757016260 E + 02	1.848093961390430 E + 00
1.630493523140120 E + 00	1.328798455548790 E + 03	2.143457799293420E+02	1.879516175856380 ± 05	3.544531687176620E + 02	1.847588744736720 E + 00
1.772275568630560 E + 00	1.328659017331110 ± 03	2.147205952889230E+02	1.879827298356140 ± 05	3.546055956270710E+02	1.847100265503960 E + 00
1.914057614121010 E + 00	1.328509287419170 ± 03	2.151516900534770E+02	1.880173883412090 ± 05	3.547575366709780 E + 02	1.846649567808340 E + 00
2.055839659611450 E + 00	1.328346714493680 ± 03	2.156591775742310E + 02	1.880576403901240 ± 05	3.549071470525290 E + 02	1.846266290596470 E + 00
2.197621705101900 E + 00	1.328169254664400 ± 03	2.162623945224890 E + 02	1.881047424712860 ± 05	3.550520845347490 E + 02	1.845974859248750 E + 00
2.339403750592340 E + 00	1.327976010531290 E + 03	2.169845488577000E+02	1.881578306209750 ± 05	3.551872663626240 E + 02	1.845793075423290 E + 00
2.481185796082790 E + 00	1.327769532430660 ± 03	2.178410164852880 E + 02	1.882117902302790 ± 05	3.553047487048620 E + 02	1.845711920120520E+00
2.622967841573230E+00	1.327562573934020 ± 03	2.188397089995630 E + 02	1.882469752415460 ± 05	3.553841423172410 ± 02	1.845644550963490 E + 00
2.764749887063680 E + 00	1.327346877610310 E + 03	2.200969867655030 E + 02	1.882155923028200 E + 05	3.554093866515390 E + 02	1.845205789622940 E + 00

Tabela 4: Resultados principais do conjunto de simulações S0076. Comparação dos resultados obtidos das simulações S01-S10 com a simulação S05.

		Máx. difere	ença absolut	a	
	u	v	р	Т	ro
S01-S05	8.73E-05	2.88E-05	5.24 E-01	1.19E-04	5.51E-06
S02-S05	8.77 E-07	2.72 E-07	3.06E-03	1.21E-06	3.56E-08
S03-S05	1.88E-09	5.81E-10	5.62E-06	2.58E-09	6.79E-11
S04-S05	1.00E-11	9.95 E- 13	1.05 E - 09	$0.00 \mathrm{E}{+}00$	9.99E-15
S06-S05	9.78E-12	1.02E-12	1.02E-09	$0.00 \mathrm{E}{+}00$	1.02E-14
S07-S05	1.00E-11	$1.99 ext{E-12}$	$5.01 \text{E}{-}09$	5.06E-12	2.00E-14
S08-S05	5.00E-11	$9.01 \text{E}{-}12$	3.40E-08	6.10E-11	5.02E-14
S09-S05	1.00E-10	1.80E-11	$7.70 \text{E}{-}08$	1.23E-10	1.30E-13
S10-S05	8.00E-10	$1.15 \text{E}{-}10$	$4.06 \text{E}{-}07$	5.92E-10	1.00E-12
		Máx. difer	ença relativa	a	
	u	v	р	Т	ro
S01-S05	$6.57 \text{E}{-}08$	1.25 E-07	2.78E-06	3.35 E - 07	$2.97 \text{E}{-}06$
S02-S05	6.60E-10	1.18E-09	1.62E-08	3.40E-09	1.92E-08
S03-S05	1.41E-12	2.52E-12	2.99 E- 11	7.25E-12	3.66E-11
S04-S05	7.52E-15	4.32E-15	$5.57 ext{E-15}$	$0.00 \mathrm{E}{+}00$	5.39E-15
S06-S05	7.35E-15	4.45 E - 15	5.41E-15	$0.00 \mathrm{E}{+}00$	5.51E-15
S07-S05	7.52E-15	8.65 E - 15	2.66 E- 14	1.42E-14	1.08E-14
S08-S05	3.76E-14	3.92E-14	1.81E-13	1.72E-13	2.71E-14
S09-S05	7.52E-14	7.82E-14	$4.09 \text{E}{-}13$	3.46E-13	7.00E-14
$\mathrm{S10} ext{-}\mathrm{S05}$	6.02E-13	$5.00 \text{E}{-}13$	2.16E-12	1.67 E-12	5.39E-13

3 Mais de uma iteração para cada instante

Para avaliar se o número de iterações em cada instante do ciclo temporal poderia afetar a qualidade dos resultados, alguns testes foram realizados com o código Mach2D-5.8.2.1-SVN-r72 (branch: transient). Os parâmetros de entrada mantidos fixos em todas as simulações (do conjunto S0081) são dados na Tab. 6. Os resultados obtidos são mostrados na Tab. 5. Nesta tabela, itimax representa o número de iterações para cada instante do ciclo temporal. Dos dados, conclui-se que o uso de mais de uma iteração para cada instante não contribui para melhorar a qualidade dos resultados.

Simulation	nx	ny	dt 1	dt2	it	itimax	tcpu	RAM	Cdfi	res
S01	30	30	1.00E-03	1.00E-03	4668	1	5.68E + 00	$1.54 \mathrm{E}{+01}$	7.860652513411978E-02	3.19E-14
S02	30	30	1.00E-03	1.00E-03	2344	2	$5.31 \mathrm{E}{+00}$	$1.54 \mathrm{E}\!+\!01$	7.860652493487792E-02	$1.95 \text{E}{-}14$
S03	30	30	1.00E-03	1.00E-03	1578	3	6.12E + 00	$1.54 \mathrm{E}\!+\!01$	7.860652489546030E-02	5.35E-14
S04	30	30	1.00E-03	1.00E-03	1170	4	5.52E + 00	$1.54 \mathrm{E}{+01}$	7.860652486841932E-02	4.45E-14
S05	30	30	1.00E-03	1.00E-03	942	5	$5.40 \mathrm{E}{+00}$	$1.54 \mathrm{E}\!+\!01$	7.860652485185123 E-02	1.99E-14
S06	30	30	1.00E-04	1.00E-04	510	1	$6.08 \text{E}{-}01$	1.54E + 01	7.860652506878747E-02	1.66E-15
S07	30	30	$1.00 \text{E}{-}04$	1.00E-04	214	2	$4.48 \text{E}{-}01$	$1.54 \mathrm{E}\!+\!01$	7.860652506878715E-02	1.75 E - 15
S08	30	30	1.00E-04	1.00E-04	186	3	$5.84 \text{E}{-}01$	$1.54 \mathrm{E}{+01}$	7.860652506878715E-02	2.04E-15
S09	30	30	1.00E-04	1.00E-04	174	4	$7.24 ext{E-01}$	$1.54 \mathrm{E}{+01}$	7.860652506878715E-02	1.86E-15
S10	30	30	1.00E-04	1.00E-04	166	5	8.88E-01	$1.54 \mathrm{E}\!+\!01$	7.860652506878715 E-02	1.91E-15
S11	30	30	1.00E-05	1.00E-05	1772	1	1.54E + 00	1.54E + 01	7.860652506878672E-02	1.60E-16
S12	30	30	$1.00 \text{E}{-}05$	1.00E-05	1444	2	$2.58E \pm 00$	$1.54 \mathrm{E}\!+\!01$	7.860652506878693E-02	2.43E-16
S13	30	30	$1.00 \text{E}{-}05$	1.00E-05	1346	3	$_{3.63E+00}$	$1.54 \mathrm{E}{+01}$	7.860652506878700E-02	2.31E-16
S14	30	30	1.00E-05	1.00E-05	1248	4	4.56 E + 00	$1.54 \mathrm{E}\!+\!01$	7.860652506878678E-02	2.49E-16
S15	30	30	1.00 E- 05	$1.00 ext{E-05}$	1168	5	$5.14 \mathrm{E}{+00}$	$1.54 \mathrm{E}\!+\!01$	7.860652506878650 E-02	2.25E-16

Tabela 5: Resultados principais do conjunto de simulações S0081.

Tabela 6: Parâmetros numéricos de entrada do código Mach2D-5.8.2.1-SVN-r72 (branch: transient) (conjunto S0081)

	sim id	Simulation identification (up to 100 characters)
30	nx-2	Number of real volumes in the csi direction
30	ny-2	Number of real volumes in the eta direction
$2.835640909808900\mathrm{E}{+00}$	la	length of the elliptical x semi-axis (m)
2.000000000000000000000000000000000000	lb	length of the elliptical y semi-axis (m)
$2.835640909808900\mathrm{E}{+00}$	lr	length of the body (m)
5.000000000000000E-01	rb	base radius/semi-height of the body (m)
1	kg	Kind of grid (1=uniform, 2=geometric progression, 3=power law)
1	kcm	Kind of centroid mean (1=simple mean, 2=weighted mean)
1	coord	Kind of coord. system $(1=cylindrical, 0=cartesian)$
1.000000000000000E-03	a1	width of the volume closer to the wall (m)
2.000000000000000000000000000000000000	akn	Exponent of the power law for the north boundary
1.000000000000000000000000000000000000	aks	Exponent of the power law for the south boundary
500000	itmax	Maximum number of iteractions for time cycle
	itimax	"Maximum number of iterations for the correction cycle"
1	imax	Maximum number of iteractions for mass cycle
100	it 1	Number of iteractions up to which $dt = dt1$
300	it 2	Number of iteractions from which $dt = dt2$
	dt1	Initial time step (s)
	dt 2	Final time step (s)
5	nitm_u	Maximum number of iteractions for solving the linear systems for u, v and T
5	nitm_p	Maximum number of iteractions for solving the linear system for p
1	nit_res	Number of iteractions to calculate the mean of the residuals
1.0000000000000000E-02	tol_u	Tolerance in the MSI for solving the linear systems for u, v and T
1.0000000000000000E-02	tol_p	Tolerance in the MSI for solving the linear system for p
1.000000000000000E-13	tol_res	Tolerance for the sum of residuals
1	wlf	Frequency of printing in the listing file
1	sem_a	1 = do not open result files, 0 = open
1	sem_g	0 = visualize the plot, $1 =$ do not visualize
1	w_g	Frequency of writing data for graphics
0	w_cam	1 = write the fields, $0 = $ do not
300	it b1	Number of iteractions up to which beta $=$ beta1
1000	it b2	Number of iteractions from which beta $=$ beta2
0.00000000000000000000000000000000000	beta1	Initial beta $(\text{UDS/CDS mixing constant } (0=\text{UDS}, 1=\text{CDS}))$
0.00000000000000000000000000000000000	beta2	Final beta $(\text{UDS/CDS mixing constant } (0=\text{UDS}, 1=\text{CDS}))$
1.4000000000000000000000000000000000000	GF	$\mathrm{GF}=\mathrm{gamma}=\mathrm{Cp}\;/\;\mathrm{Cv}\;(\mathrm{for\;the\;free\;stream})$
2.870000000000000E + 02	Rg	Perfect gas constant $(J/kg.K)$
1.000000000000000000000000000000000000	PF	Free stream pressure (Pa)
3.000000000000000000000000000000000000	TF	Free stream temperature (K)
4.000000000000000000000000000000000000	MF	Free stream Mach number

4 Critérios de parada do processo iterativo

Quatro potenciais modelos para critérios de parada do processo iterativo foram testatos utilizando o código Mach2D5.8.2.1-SVN-r78 (branch: E-Factor). Os modelos são os seguintes:

Modelo 1: O resíduo dos sistemas lineares para $u, v \in T$ em cada iteração é calculado através da fórmula

$$R^{\phi} = \frac{\|A^{\phi}\phi - b^{\phi}\|_{1}}{\|b^{\phi}\|_{1}}, \quad \phi \in \{u, v, T\}$$
(2)

e o resíduo do sistema linear para p' por

$$R^{p'} = \|A^{p'}p' - b^{p'}\|_1.$$
(3)

O critério de parada é o resíduo total, dado por

$$R = R^{u} + R^{v} + R^{T} + R^{p'}.$$
(4)

Modelo 2: O resíduo dos sistemas lineares para $u, v, T \in p'$ em cada iteração é calculado através da fórmula

$$R^{\phi} = \|A^{\phi}\phi - b^{\phi}\|_{1}, \quad \phi \in \{u, v, T, p'\}.$$
(5)

O critério de parada é dado por

$$R = \frac{\sum_{\phi} R^{\phi}}{\left(\sum_{\phi} R^{\phi}\right)_{n=1}}, \quad \phi \in \{u, v, T, p'\},\tag{6}$$

onde o índice n = 1 indica a primeira iteração. Este é o mesmo modelo aplicado na versão inicial do Mach2D7.

Modelo 3: O resíduo dos sistemas lineares para $u, v, T \in p'$ em cada iteração é calculado através da fórmula

$$R^{\phi} = \|A^{\phi}\phi - b^{\phi}\|_{1}, \quad \phi \in \{u, v, T, p'\}.$$
(7)

O critério de parada é dado por

$$R = \sum_{\phi} \frac{R^{\phi}}{\left(R^{\phi}\right)_M}, \quad \phi \in \{u, v, T, p'\},\tag{8}$$

onde o índice M indica o maior valor do resíduo R^{ϕ} já calculado.

Modelo 4: O critério de parada é dado por

$$R = \sum_{\phi} \frac{\|\phi - \phi^{\circ}\|_{1}}{\|\phi\|_{1}}, \quad \phi \in \{u, v, T, p\}.$$
(9)

onde o índice o indica o valor da variável na última iteração.

Um conjunto de simulações (S0079) foi realizado para avaliar o efeito de cada modelo citado acima. A diferença entre as simulações é apenas o número de volumes. A Tab. 7 apresenta os parâmetros de entrada de cada simulação. A seguir são apresentados os resultados para a simulação S01. As demais simulações apresentam resultados similares.

Resultados do conjunto de simulações S0079, simulação S01.

Legenda:								
it: #	da iteração							
R-M1: R	para o modelo 1							
R-M2: R	para o modelo 2							
R-M3: R	para o modelo 3							
R-M4: R para o modelo 4								
Cdfi: Coeficiente de arrasto de pressão frontal								
<pre>it_stop: it</pre>	eração de parada							
it	R –M 1	R-M2	R-M3	R – M 4	Cdfi	it_stop		
1	3.0681476607329174E-03	1.0000000000000000E+00	4.000000000000000E+00	1.0025199425300904E+00	3.4872214170593497E-03	0		
100	3.4793695925555938E-07	8.3464459911335567E+00	2.9696786709293352E+00	8.1406974645924224E-03	9.9257845703585021E-02	0		
200	1.2877106787959833E-07	5.2010971571254005E+00	2.1087349365998653E+00	2.2679671762513591E-03	7.7449266478250831E-02	0		
300	5.0301850436013572E-08	2.6069048742413892E+00	1.1614251979343042E+00	7.6434005208563633E-04	7.7349564066680379E-02	0		
400	2.1285013453965008E-08	1.3252966069643577E+00	6.0123059132388279E-01	3.0238633257191914E-04	7.7602768278559636E-02	0		
500	9.2623113628548297E-09	6.6016203386870764E-01	2.9686521125154236E-01	1.2919314916509921E-04	7.7995705835606513E-02	0		
600	3.9801003435279913E-09	3.1291859166004610E-01	1.3901048706987182E-01	5.5905760174872622E-05	7.8280388393691211E-02	0		
700	1.6620277198126722E-09	1.4098029784165145E-01	6.1832829388252873E-02	2.3758294069377422E-05	7.8447398348841804E-02	0		
800	6.7142103346027733E-10	6.0539666396519892E-02	2.6232547745720269E-02	9.8059607357009200E-06	7.8534197567878439E-02	0		
900	2.6243043701697577E-10	2.4884255324843181E-02	1.0665268194852882E-02	3.9154978360755352E-06	7.8575516569715051E-02	0		
1000	9.9439899814669216E-11	9.8363473989065905E-03	4.1751777532150957E-03	1.5139341754654266E-06	7.8593868488850499E-02	0		
1100	3.6633459402908426E-11	3.7561709458081688E-03	1.5809134208779902E-03	5.6819488263995550E-07	7.8601570138882332E-02	0		
1200	1.3160386054166804E-11	1.3915210187091221E-03	5.8138586355165490E-04	2.0758216084985487E-07	7.8604653116265133E-02	0		
1300	4.6236397897174521E-12	5.0203344757327980E-04	2.0846242599688238E-04	7.4034931683868357E-08	7.8605839115797077E-02	0		

1400	1.5928234407697287E-12	1.7703299286833741E-04	7.3136130369725878E-05	2.5847519049225607E-08	7.8606280226695385E-02	0
1500	5.3936668502132811E-13	6.1244675188955945E-05	2.5232603556584714E-05	8.8556457997558341E-09	7.8606439634886463E-02	0
1600	1.7989146825885002E-13	2.0856733910797039E-05	8.6068720556586000E-06	2.9841060225781301E-09	7.8606495837405338E-02	0
1700	5.9272444809607226E-14	7.0766179517803746E-06	2.9713290839218636E-06	9.9098372323173825E-10	7.8606515236151669E-02	3308
1800	1.9361539567539837E-14	2.4317287488936685E-06	1.0945690351699011E-06	3.2489465108702026E-10	7.8606521809998844E-02	3308
1900	6.2985059389792059E-15	8.9240808405304271E-07	4.5266555089929180E-07	1.0532163283219811E-10	7.8606524002592368E-02	3308
2000	2.1096183420594891E-15	3.9689997911427363E-07	2.7377976136876642E-07	3.3805450324270679E-11	7.8606524723860594E-02	3308
2100	7.7719170587208613E-16	2.5769265381959423E-07	2.1175446325060684E-07	1.0756512322243100E-11	7.8606524958291055E-02	3308
2200	3.6391242121793309E-16	2.1557469802605046E-07	1.8991283149749211E-07	3.3965212253978376E-12	7.8606525033692934E-02	3308
2300	2.3748759624593434E-16	2.0260410628908876E-07	1.5887990764679196E-07	1.0653172727378167E-12	7.8606525057724280E-02	3308
2400	1.8344574578405438E-16	1.7334585504129439E-07	1.5496061148480645E-07	3.3213675721577828E-13	7.8606525065322397E-02	3308
2500	1.6657286134696909E-16	1.5993624629016543E-07	1.1034579727307464E-07	1.0301294987671132E-13	7.8606525067707655E-02	3308
2600	1.5191636583386569E-16	1.1278771487637425E-07	1.0703480583273662E-07	3.1848142319498447E-14	7.8606525068451616E-02	3308
2700	1.4727560489189445E-16	1.1430299110831318E-07	1.0123484389296709E-07	9.8536021413420293E-15	7.8606525068682542E-02	3308
2800	9.3408614147531676E-17	1.0781910597284618E-07	1.0156455281051828E-07	3.0943594407924827E-15	7.8606525068753860E-02	3308
2900	9.9399082881269766E-17	1.0370170363383164E-07	1.0094928526012648E-07	1.0007374199984902E-15	7.8606525068776106E-02	3308
3000	1.0114675121317163E-16	1.0523714026316147E-07	9.9397447987537244E-08	3.4041798435787036E-16	7.8606525068782976E-02	3308
3100	1.0233287056971075E-16	9.7926444751934780E-08	9.6229072490253290E-08	1.6074764365471115E-16	7.8606525068784641E-02	3308
3200	9.0903131452675240E-17	1.0550915702066408E-07	9.3352610260129089E-08	1.0338141130579033E-16	7.8606525068784946E-02	3308
3300	1.0127846613705917E-16	1.0074840266894976E-07	9.4860379498962719E-08	8.7354585008327603E-17	7.8606525068785141E-02	3308

Em todos os testes realizados, o modelo 1 apresentou o resíduo final menor que 1E-15, o que facilita o estabelecimento de uma condição de parada. Entretanto, mesmo ao se atingir R=1E-14 (por volta da iteração 1800), o coeficiente Cdfi ainda apresenta variações a partir do oitavo algarismo. Isto significa que os sistemas lineares, em cada iteração, são resolvidos até quase o erro de máquina, mas a solução geral, que envolve o acoplamento entre os sistemas lineares, ainda não atingiu tal precisão.

Nos modelos 2 e 3, a redução dos resíduos não é previsível, o que dificulta o estebelecimento de um critério de parada. Se a solução inicial for muito próxima da solução convergida, haverá um decréscimo muito pequeno em R.

O modelo 4 produz resultados totalmente enganadores quando o processo iterativo é de convergência lenta (o que já é um fato conhecido). Na milésima iteração, por exemplo, a variação da solução de um nível iterativo para o outro, segundo o modelo 4, é de 1.5E-6, equanto se percebe que o coeficiente Cdfi varia a partir do segundo algarismo.

Conclusão: nenhum dos modelos é plenamente satisfatório.

					i
Simulation identification (up to 100 characters)	sım_1d	201	202	S03	S04
Number of real volumes in the csi direction	nx-2	30	09	120	240
Number of real volumes in the eta direction	ny-2	30	60	120	240
length of the elliptical x semi-axis (m)	Įa	2.83564090980890 ± 00	$2.83564090980890\mathrm{E}{+00}$	$2.83564090980890\mathrm{E}{+00}$	$2.83564090980890\mathrm{E}{+00}$
length of the elliptical v semi-axis (m)	llb	2.000000000000000000000000000000000000	2.000000000000000E+00	$2.0000000000000000 \pm 00$	2.000000000000000E+00
length of the body (m)	lr	$2.83564090980890 \mathrm{E} + 00$	$2.83564090980890E \pm 00$	$2.83564090980890 \mathrm{E} + 00$	$2.83564090980890\mathrm{E}{+00}$
base radius/semi-height of the body (m)	$^{\mathrm{rb}}$	5.00000000000000E-01	5.00000000000000E-01	5.00000000000000E-01	5.0000000000000E-01
Kind of grid (1=uniform, 2=geometric progression, 3=power law)	kg	1	1	1	1
Kind of centroid mean $(1=\sinh ple mean, 2=weighted mean)$	kcm	-	-	1	1
Kind of coord. system ($1=$ cylindrical, $0=$ cartesian)	coord			1	
width of the volume closer to the wall (m)	al	1.000000000000000E-03	1.000000000000000E-03	1.000000000000000E-03	1.000000000000000E-03
Exponent of the power law for the north boundary	akn	$2.0000000000000000 \pm 00$	2.000000000000000E+00	$2.0000000000000000 \pm 00$	2.000000000000000E+00
Exponent of the power law for the south boundary	aks	1.0000000000000000E + 00	1.000000000000000E+00	$1.0000000000000000 \pm 00$	1.00000000000000E+00
Maximum number of iteractions for time cycle	itmax	50000	500000	50000	50000
"Maximum number of iterations for the correction cycle"	itimax	1	1	1	
Maximum number of iteractions for mass cycle	imax	1	1	1	1
Number of iteractions up to which $dt = dt1$	it1	100	100	100	100
Number of iteractions from which $dt = dt_2$	it2	300	300	300	300
Initial time step (s)	dt1	1.000000000000000E-07	1.000000000000000E-07	1.000000000000000E-07	1.00000000000000E-07
Final time step (s)	dt2	1.00000000000000E-05	1.00000000000000E-05	1.00000000000000E-05	1.00000000000000E-05
Maximum number of iteractions for solving the linear systems for u, v and T	nitm_u	ų	ų	3	ъ
Maximum number of iteractions for solving the linear system for p	nitm_p	5	ъ	сu	5 C
Number of iteractions to calculate the mean of the residuals	nit_res	1	1	1	1
Tolerance in the MSI for solving the linear systems for u, v and T	tol_u	1.00000000000000000E-02	1.0000000000000000E-02	1.000000000000000000000000000000000000	1.000000000000000E-02
Tolerance in the MSI for solving the linear system for p	tol_p	1.000000000000000E-02	1.000000000000000E-02	1.000000000000000E-02	1.000000000000000E-02
Tolerance for the sum of residuals	tol_res	1.000000000000000E-13	1.000000000000000E-13	1.0000000000000000E-13	1.00000000000000E-13
Frequency of printing in the listing file	wlf	100	100	100	100
1 = do not open result files, 0 = open	sem_a	1	1	1	1
0 = visualize the plot, 1 = do not visualize	sem_g	1	1	1	1
Frequency of writing data for graphics	wg				(
I = Whete the fields, U = do not	w_cam	Ο	Π	0	
Number of iteractions up to which beta = betal M_{1}	itb1	300	300	300	300
	1-1-1	DDDT	DUUL	OULT	000T
Initial peta (UDS/CDS mixing constant (U=UDS, 1=CDS)) Final heta (IIDS/CDS mixing constant (0–IIDS 1–CDS))	beta1 heta2		U.UUUUUUUUUUUUUE+UU		U.UUUUUUUUUUE+UU
The second	нU				
Derived rank and $Derived rank and Derived rank an$; ř	2.870000000000E+02	2.870000000000E+02	2.87000000000000000000000000000000000000	2.8700000000000E+02
Free stream messure (Pa)	он Ч		1.000000000000000000000000000000000000	1.000000000000000000000000000000000000	1.000000000000000000000000000000000000
Free stream temperature (K)	H.L.	3.0000000000000E + 02	3.000000000000E+02	3.000000000000000000000000000000000000	3.00000000000000E+02
Free stream Mach number	MF	4.00000000000000E + 00	4.00000000000000E + 00	4.00000000000000E + 00	4.0000000000000E+00
E-factor for p linear system (if $EFp < 0$, E-factor theory is not applied)	EFp	1.000000000000000E-01	1.00000000000000E-01	1.000000000000000E-01	1.00000000000000E-01
E-factor for T linear system (if EFT < 0, E-factor theory is not applied)	EFŢ	1.00000000000000E-01	1.00000000000000E-01	1.00000000000000E-01	1.00000000000000E-01
E-factor for u and v linear systems (if $EFuv < 0$, E-factor theory is not applied)	T, T	1.00000000000000E-01	1.00000000000000E-01	1.000000000000000000000000000000000000	1.000000000000E-01

Tabela 7: Parâmetros numéricos de entrada do código Mach2D-5.8.2.1-r78, conjunto de simulações S0079.

5 O fator-E

5.1 Teoria

Ao se discretizar as equações de Euler ou Navier-Stokes (levando-se em conta os termos com a primeira derivada temporal), obtém-se um sistema linear da forma

$$\left(\frac{F_P}{\Delta t} + (A_P)_{\infty}\right)\phi_P + \sum_{nb} A_{nb}\phi_{nb} = (b_P)_{\infty} + \frac{G_P}{\Delta t},\tag{10}$$

que se reduz a

$$(A_P)_{\infty}\phi_P + \sum_{nb} A_{nb}\phi_{nb} = (b_P)_{\infty},\tag{11}$$

no limite $\Delta t \to \infty$.

Deste modo, a expressão

$$\Delta t^* \equiv \frac{F_P}{(A_P)_{\infty}} \tag{12}$$

pode ser tomada como um tempo característico de adveção-difusão no volume de controle P. Com base nesta ideia, van Doormaal e Raithby[1] propuseram que o passo de tempo a ser utilizado na eq. (10) fosse um múltiplo E (fator-E) do tempo característico Δt^* , isto é,

$$\Delta t = E \cdot \Delta t^*. \tag{13}$$

Assim, cada volume de controle teria um passo de tempo condizente com o escoamento em seu interior e o avanço temporal se daria de forma irregular até se atingir o regime permanente.

5.2 Resultados

5.2.1 UDS

A teoria do Fator-E foi implementada no código Mach2D5.8.2.1-SVN-r80 (branch: E-factor). O código foi criado de modo que os sistemas lineares para u e v, o sistema para T e o sistema para p' possam ter diferentes valores de E. Diversas simulações (conjunto S0080) foram realizadas para determinar o fator-E que reduz o esforço computacional e avaliar se os resultados seriam ou não dependentes do incremento de tempo. Os parâmetros de entrada mantidos fixos em todas as simulações são dados na Tab. 9¹ e os resultados principais na Tab. 8. Como pode ser visto nesta tabela, o fator-E variou de 0.1 a 100, mas foi o mesmo para todos os sistemas lineares. A variação do tempo de CPU com o fator-E é mostrada na Fig. 1. Percebe-se que existe um valor ideal para E que depende da malha. Um valor de referência para todas as malhas seria E = 10.

Figura 1: Variação do tempo de CPU com o fator-E (S0080).

Da Tab. 8 percebe-se que o fator-E no intervalo de 0.1 a 10 altera Cdfi somente a partir do 14° algarismo. Entretanto, para E = 100, na malha 30x30, está no oitavo algarismo.

¹Exceção: o parâmetro tol res vale 2E-13 para a simulação S36.

A Tab. 8 também mostra os valores máximos e mínimos para d
t de cada sistema linear. Curiosamente, os valores mínimos e máximos de d
t para $u, v \in T$ são proporcionais ao fator-E, algo que não ocorre
 para o d
t associado ao sistema linear para p' (Fig. 2).

Figura 2: Variação dos valores máximos e mínimos de dt com o fator-E.

0.1 0.1 3308 3.0 15.4 7.860652506878514E-02 1.01E-16 1.22E-05 1.11E-07 1.22E-05 1.11E-07 0.5 0.5 1092 1.1 15.4 7.860652506878733E-02 9.67E-16 6.10E-05 5.56E-07 6.10E-05 5.56E-07
0.5 0.5 1092 1.1 15.4 7.80055206878733E-02 9.67E-16 6.10E-05 5.56E-07 6.10E-05
1.0 1.0 644 0.7 15.4 7.860652506878738E-02 6.48E-16 1.22E-04 1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1.0 1.0 644 0.7 15.4 7.860652506878738E-02 2.0 2.0 518 0.6 15.4 7.860652506878746E-02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0
26430
1 2 4 3 0 0 0
8 8 8 8 8
505 505 506 307 30 30 30 30 30 30 30 30 30 30 30 30 30

Tabela 8: Resultados principais do conjunto de simulações S0080.

Tabela 9: Parâmetros numéricos de entrada do código Mach2D-5.8.2.1-SVN-r80 (branch: E-factor) (conjunto S0080).

	Simulation identification (up to 100 characters)	sim_id	
	Number of real volumes in the csi direction	nx-2	
	Number of real volumes in the eta direction	ny-2	
	length of the elliptical x semi-axis (m)	la	$2.83564090980890 \text{E}{+}00$
	length of the elliptical y semi-axis (m)	lb	2.000000000000000000000000000000000000
	length of the body (m)	lr	$2.83564090980890 \mathrm{E}{+}00$
	base radius/semi-height of the body (m)	rb	5.00000000000000E-01
	Kind of grid (1=uniform, 2=geometric progression, 3=power law)	kg	1
	Kind of centroid mean $(1=simple mean, 2=weighted mean)$	kcm	1
	Kind of coord. system ($1 = cylindrical, 0 = cartesian$)	coord	1
	width of the volume closer to the wall (m)	a1	1.00000000000000E-03
	Exponent of the power law for the north boundary	akn	2.000000000000000000000000000000000000
	Exponent of the power law for the south boundary	aks	1.000000000000000000000000000000000000
	Maximum number of iteractions for time cycle	itmax	500000
	"Maximum number of iterations for the correction cycle"	itimax	1
	Maximum number of iteractions for mass cycle	imax	1
	Number of iteractions up to which $dt = dt1$	it1	100
	Number of iteractions from which $dt = dt2$	it2	300
	Initial time step (s)	dt1	1.00000000000000E-07
	Final time step (s)	dt2	1.00000000000000E-05
Maximun	n number of iteractions for solving the linear systems for u, v and T	nitm_u	5
	Maximum number of iteractions for solving the linear system for p	nitm_p	5
	Number of iteractions to calculate the mean of the residuals	nit_res	1
	Tolerance in the MSI for solving the linear systems for u, v and T	tol_u	1.000000000000000000E-02
	Tolerance in the MSI for solving the linear system for p	tol_p	1.000000000000000000000000000000000000
	Tolerance for the sum of residuals	tol_res	1.00000000000000E-13
	Frequency of printing in the listing file	wlf	100
	1 = do not open result files, 0 = open	sem_a	1
	0 = visualize the plot, $1 = do not v$ isualize	sem_g	1
	Frequency of writing data for graphics	w_g	1
	1 = write the fields, $0 = $ do not	w_cam	0
	Number of iteractions up to which beta = betal	itbl	300
	Number of iteractions from which beta = beta2 $U_{i} = U_{i} $	itb2	
	Initial beta $(UDS/CDS mixing constant (0=UDS, 1=CDS))$	betal	0.00000000000000000000000000000000000
	Final beta $(UDS/CDS mixing constant (0=UDS, 1=UDS))$	Deta2	0.00000000000000000000000000000000000
	GF = gamma = Cp / Cv (for the free stream)	GF D	1.4000000000000000000000000000000000000
	Perfect gas constant (J/kg.K)	H Rg	2.87000000000000000000000000000000000000
	Free stream pressure (Pa) $\overline{\mathbf{F}}_{\text{res}}$		2.000000000000000E+05
	Free stream temperature (K)		3.000000000000000000000000000000000000
E fo	Free stream Mach number $(if FEn < 0, F forter theory is not applied)$		4.0000000000000E+00
E-la E-fa	actor for T linear system (if EFT < 0 , E factor theory is not applied)	EFD	
E-lat E factor for	u and y linear systems (if FFux < 0 , E factor theory is not applied)	FE.	
E-ractor ror	\sim and v mical systems in Eruv ~ 0 . E-factor theory is not applied.	I DIUV	1

5.2.2 CDS

O mesmo estudo da seção anterior foi repetida para o esquema CDS. Os parâmetros de entrada são os da Tab. 9, exceto, itb1 = 50 e beta2 = 1.0. Os resultados são apresentados nas Figs. 3 e 4, bem como na Tab. 10. Destes resultados, conclui-se:

- 1. O máximo valor para o fator-E no esquema CDS é muito mais restrito que no UDS (Fig. 3). No primeiro esquema, chegou-se a E=100 (talvez se pudesse chegar a um valor maior ainda), ao passo que no segundo, chegou-se a E=5 nas malhas mais finas.
- 2. A variação de max(dt) e min(dt) para os sistemas lineares para $u, v \in T$ é linear com o fator-E, o que não ocorre para o sistema linear associado a p' (Fig. 4).
- 3. Nas malhas mais finas (120x120 e 240x240), Cdfi variou a partir do 14° algarismo ao se variar E de 0.1 a 5. Na malha (60x60), Cdfi variou a partir do 13° algarismo ao se variar E de 0.1 a 5. Para a malha mais grossa (30x30), Cdfi variou a partir do 13° algarismo ao se variar E de 0.1 a 4, resultado que piora com o aumento de E.

Figura 3: Variação do tempo de CPU com o fator-E (S0082).

Figura 4: Variação dos valores máximos e mínimos de dt com o fator-E (S0082).

(71)	mm(drb)	1.11E-07	5.45E-07	1.05 E-06	1.12E-06	1.14E-06	1.15E-06	1.16E-06	1.17E-06	2.80E-08	1.36E-07	1.45E-07	1.48E-07	1.48E-07	1.49E-07	$1.49 E_{-07}$	7.02E-09	$1.82 E_{-08}$	1.84E-08	$1.84 E_{-08}$	1.85 E - 08	1.85 E - 0.8	1.85 E - 08	1.76E-09	2.29 E - 09	2.30E-09	2.30E-09	2.30E-09	2.30E-09	00000
(11)	IIIaX(dtp)	1.15E-05	4.76E-05	7.81E-05	1.15E-04	1.40E-04	1.62E-04	1.80E-04	2.46E-04	6.04E-06	2.44E-05	3.93E-05	5.70E-05	6.99 E - 05	8.06E-05	8.98E - 05	3.10E-06	1.23E-05	1.97E-05	2.84E-05	3.49E-05	4.02E-05	4.48E-05	1.57E-06	6.20E-06	9.85 E - 06	1.42E-05	1.74E-05	2.01E-05	20 01E 0
(1171)	(Tad)uuu	1.13E-07	5.63E-07	1.13E-06	2.25E-06	3.38E-06	4.51E-06	5.63E-06	1.13E-05	2.81E-08	1.40E-07	2.81E-07	5.61 E - 07	8.42E-07	1.12E-06	1.40E-06	6.97E-09	3.49 E - 08	6.97E-08	1.39 E - 07	2.09 E - 07	2.79 E - 07	3.49 E - 07	1.73E-09	8.67E-09	1.73E-08	3.47E-08	5.20E-08	6.94E-08	00 0000
(17th)	IIIaX(GUI)	1.22E-05	6.10E-05	1.22E-04	2.44E-04	3.66E-04	4.88E-04	6.10E-04	1.22E-03	6.43E-06	3.21E-05	6.43E-05	1.29E-04	1.93E-04	2.57E-04	3.21E-04	3.31E-06	1.65 E - 05	3.31E-05	6.61 E-05	9.92 E - 05	1.32E-04	1.65 E - 04	1.68E-06	8.38E-06	1.68E-05	3.35E-05	5.03E-05	6.71E-05	100 O
(71)	IIIIII(drA)	1.13E-07	5.63E-07	1.13E-06	2.25E-06	3.38E-06	4.51E-06	5.63E-06	1.13E-05	2.81E-08	1.40E-07	2.81E-07	5.61E-07	8.42E-07	1.12E-06	1.40E-06	6.97E-09	3.49E-08	6.97E-08	1.39E-07	2.09 ± 0.07	2.79 ± 0.7	3.49E-07	1.73E-09	8.67E-09	1.73E-08	3.47E-08	5.20E-08	6.94E-08	0 040 00
	IIIAX (GUV)	1.22E-05	6.10E-05	1.22E-04	2.44E-04	3.66E - 04	4.88E-04	6.10E-04	1.22E-03	6.43E-06	3.21E-05	6.43E-05	1.29E-04	1.93E-04	2.57E-04	3.21E-04	3.31E-06	1.65 E - 05	3.31E-05	6.61E-05	9.92E - 05	1.32E-04	1.65E-04	1.68E-06	8.38E-06	1.68E-05	3.35E-05	5.03E-05	6.71E-05	100 OK
	unn(atu)	1.13E-07	5.63E-07	1.13E-06	2.25E-06	3.38E-06	4.51E-06	5.63E-06	1.13E-05	2.81E-08	1.40E-07	2.81E-07	5.61E-07	8.42E-07	1.12E-06	1.40E-06	6.97E-09	3.49E-08	6.97E-08	1.39E-07	2.09 E - 07	2.79 E - 07	3.49E-07	1.73E-09	8.67E-09	1.73E-08	3.47E-08	5.20E-08	6.94E-08	0.075
	max(dtu)	1.22E-05	6.10E-05	1.22E-04	2.44E-04	3.66E-04	4.88E-04	6.10E-04	1.22E-03	6.43E-06	3.21E-05	6.43E-05	1.29E-04	1.93E-04	2.57E-04	3.21E-04	3.31E-06	1.65 E - 05	3.31E-05	6.61 ± -05	9.92E-05	1.32E-04	1.65 E - 04	1.68E-06	8.38E-06	1.68E-05	3.35E-05	5.03E-05	6.71E-05	0 00E 0E
	sal	1.18E-16	1.44E-15	5.89E-16	6.91E-16	1.07E-15	1.61E-15	1.92E-15	1.94E-15	1.20E-16	2.37E-15	8.65E-16	8.67E-16	1.55E-15	2.27E-15	2.96E-15	1.24E-16	4.36E-15	1.27E-15	1.13E-15	2.30E-15	3.53E-15	4.72E-15	1.30E-16	3.59E-16	2.15E-15	1.61E-15	3.67E-15	6.14E-15	л н са но о
n march britting	Can	7.934605175931288E-02	7.934605175931217E-02	7.934605175930871E-02	7.934605175931135E-02	7.934605175931532E-02	7.934605175931593E-02	7.934605175929350E-02	7.934605175916913E-02	7.936893065213192E-02	7.936893065213345E-02	7.936893065213416E-02	7.936893065213368E-02	7.936893065213102E-02	7.936893065212069E-02	7.936893065211330E-02	7.939192301759646E-02	7.939192301759587E-02	7.939192301759591E-02	7.939192301759591E-02	7.939192301759590E-02	7.939192301759500E-02	7.939192301759548E-02	7.940101784440033E-02	7.940101784439985E-02	7.940101784439982E-02	7.940101784439972E-02	7.940101784439976E-02	7.940101784439960E-02	7 040101794490067E 09
	RAM	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	18.0	18.0	18.0	18.0	18.0	18.0	18.0	27.6	27.6	27.6	27.6	27.6	27.6	27.6	66.2	66.2	66.2	66.2	66.2	66.2	000
	ndən	11.1	5.0	4.0	3.9	3.7	4.1	4.6	16.0	63.1	28.7	22.7	20.8	20.2	20.7	22.0	638.2	255.9	178.2	166.8	162.1	167.3	168.1	3964.7	2043.4	1289.9	1194.0	1204.8	1071.9	000
77	11	12578	4972	3766	3528	3428	3640	4054	13320	17278	6910	5000	4486	4346	4350	4566	29034	11108	7388	6584	6354	6388	6390	50852	19522	11880	10522	10398	9166	0000
041	Εruv	0.1	0.5	1.0	2.0	3.0	4.0	5.0	10.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	с и
LUCICI.	EF I	0.1	0.5	1.0	2.0	3.0	4.0	5.0	10.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	с и
	Erp	0.1	0.5	1.0	2.0	3.0	4.0	5.0	10.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	5.0	0.1	0.5	1.0	2.0	3.0	4.0	С И
	IIV	30	30	30	30	30	30	30	30	09 (09 (09 (09 (09 (09 (09 (120	120	120	120	120	120	120	240	0 240	0 240	0 240	0 240	0 240	010
		S01 30	S02 = 30	S03 30	S04 = 30	S05 30	S06 30	S07 30	S08 30	S10 60	S11 60	S12 60	S13 60	S14 = 60	S15 60	S16 60	S19 120	S20 120	S21 120	S22 120	S23 120	S24 120	S25 120	S28 240	S29 240	S30 240	S31 240	S32 240	S33 240	016 160

Tabela 10: Resultados principais do conjunto de simulações S0082.

5.2.3 Eficiência e robustez

Para avaliar a eficiência e robustez do método do fator-E, as simulações para a malha 240x240 do conjunto de simulações S0082 (UDS com fator-E) e S0084 (CDS com fator-E) foram repetidas. Porém, desta vez a teoria do fator-E não foi empregada. O dt foi mantido fixo para todos os volumes de controle e itmax limitado a 50000. Os resultados para o conjunto de simulações S0083 (UDS sem fator-E) são mostrados na Tab. 11. Nas duas primeiras simulações houve divergência. Na terceira e na quarta o processo iterativo foi interrompido por excesso de iterações. O melhor tempo de CPU ocorreu para a simulação S08, tcpu=246.9 s, com 1826 iterações (cerca da metade do tempo utilizado ao se empregar o fator-E no conjunto S0080). Este estudo foi repetido para o CDS (conjunto de simulações S0084). Entretanto, em nenhum dos dt's utilizados houve convergência.

Conclusões:

- 1. Sobre a eficiência: a utilização do fator-E não garante um aumento da eficiência computacional;
- 2. Sobre a robustez: com a utilização do fator-E foi possível obter resultados tanto para o esquema UDS quanto CDS, o que não ocorreu ao se utilizar o mesmo dt para todos os volumes de controle. Isto mostra que o uso do fator-E torna o código mais robusto;
- 3. O fator-E elimina a necessidade de se ter que estimar manualmente o valor de dt para cada problema, tornando o código mais geral.

				-	-				
Simulation	nx	ny	dt1	dt2	it	tcpu	RAM	Cdfi	res
S01	240	240	1.00E-03	1.00E-03				NaN	
S02	240	240	6.00 E-04	6.00E-04				NaN	
S03	240	240	3.00E-04	3.00E-04	itmax	4837.2	64.4	7.908342321049108E-02	2.78E-12
S04	240	240	1.00E-04	1.00E-04	itmax	5372.2	64.4	7.908342314485037E-02	3.12E-13
S05	240	240	6.00 E-05	6.00E-05	12858	1802.3	64.4	7.908342314501038E-02	6.98E-14
S06	240	240	3.00E-05	3.00E-05	6438	875.6	64.4	7.908342314501123E-02	1.05E-14
S07	240	240	1.00E-05	1.00E-05	2428	337.2	64.4	7.908342314501120E-02	3.04E-15
S08	240	240	6.00E-06	6.00E-06	1826	246.9	64.4	7.908342314501124 E-02	5.53E-15
S09	240	240	3.00E-06	3.00E-06	3540	474.0	64.4	7.908342314501127E-02	1.37 E- 14
S10	240	240	$1.00 ext{E-06}$	1.00E-06	8904	689.4	64.4	7.908342314501052 E-02	2.20E-16

Tabela 11: Resultados principais do conjunto de simulações S0083.

Referências

 J P Van Doormaal and G D Raithby. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7:147–163, 1984.