

Simulação Numérica de Escoamento Reativo em Motor-Foguete com Refrigeração Regenerativa

Projeto CFD-5 apoiado pela Agência Espacial Brasileira (AEB) Anúncio de Oportunidades 01/2004 do Programa UNIESPAÇO Tema: Veículos Espaciais Tópico: Processos de Combustão em Motores-Foguete

Relatório técnico 5 do projeto CFD-5/UFPR: código Mach2D 6.0

ESCOAMENTO BIDIMENSIONAL REATIVO

Carlos Henrique Marchi, Dr. Eng. Mec. Luciano Kiyoshi Araki, Eng. Mec.

Universidade Federal do Paraná (UFPR) Departamento de Engenharia Mecânica (DEMEC)

Curitiba, 7 de março de 2007.

<u>SUMÁRIO</u>

LISTA DE FIGURAS	3
LISTA DE TABELAS	4
LISTA DE SÍMBOLOS	6
1. INTRODUÇÃO	8
1.1 Código Mach2D	8
1.2 Objetivos deste relatório	9
1.3 Definição do problema	
1.4 Variáveis de interesse	
2. MODELOS FÍSICO, MATEMÁTICO E NUMÉRICO	14
2.1. Modelo físico	14
2.2. Modelo matemático	14
2.3. Modelo numérico	16
2.4. Condições de contorno	23
2.4.1. Contorno sul (linha de simetria)	24
2.4.2. Contorno norte (parede):	24
2.4.3. Contorno leste (saída):	25
2.4.4. Contorno oeste (entrada):	25
2.5. Algoritmo	
3. RESULTADOS NUMÉRICOS	
4. CONCLUSÃO	43
REFERÊNCIAS BIBLIOGRÁFICAS	44

LISTA DE FIGURAS

Figura 1.1: Perfil da tubeira utilizada nas simulações. [Fonte: Back et al. (1965)]	10
Figura 1.2: Condições de contorno aplicadas à tubeira.	11
Figura 3.1: Distribuição da temperatura ao longo da tubeira - escoamento congelado, modelo químico 3, diversas malhas.	35
Figura 3.2: Distribuição da pressão ao longo da tubeira - escoamento congelado, modelo químico 3, diversas malhas.	36
Figura 3.3: Distribuição da velocidade axial ao longo da tubeira, escoamento congelado, modelo químico 3, diversas malhas.	36
Figura 3.4: Distribuição do empuxo ao longo da tubeira, escoamento congelado, modelo químico 3, diversas malhas.	37
Figura 3.5: Distribuição da temperatura ao longo da tubeira - modelos de escoamento congelado, em equilíbrio químico local e com taxa finita de reação (malha 90x10 volumes).	38
Figura 3.6: Distribuição de frações mássicas de H ₂ O ao longo da tubeira – modelos de escoamento congelado, em equilíbrio químico local e com taxa finita de reação (malha 90x10 volumes)	38
Figura 3.7: Distribuição da pressão ao longo da tubeira – escoamento de ar (malha 720x80 volumes)	39
Figura 3.8: Distribuição de temperatura ao longo da tubeira – modelos monoespécie (H ₂ O) com propriedades variáveis, congelado e em equilíbrio (malha 90x10 volumes)	40
Figura 3.9: Distribuição de pressão ao longo da tubeira – modelos monoespécie (H ₂ O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes)	40
Figura 3.10: Distribuição de velocidade axial ao longo da tubeira – modelos monoespécie (H ₂ O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes)	41
Figura 3.11: Distribuição de velocidade radial ao longo da tubeira – modelos de escoamento monoespécie (H ₂ O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes).	41
Figura 3.12: Distribuição do número de Mach ao longo da tubeira – modelos de escoamento monoespécie (H ₂ O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes)	42

LISTA DE TABELAS

Tabela 1.1: Parâmetros geométricos da tubeira. [Fonte: Back et al. (1965)]	10
Tabela 2.1: Valores dos coeficientes para a equação transformada geral	17
Tabela 3.1: Arquivos com os resultados originais do código Mach2D, para os modelos	
monoespécie	28
Tabela 3.2: Arquivos com os resultados originais do código Mach2D, para os modelos de	
mistura de gases.	29
Tabela 3.3: Parâmetros físicos, numérico e microcomputador utilizado nas simulações do	
código Mach2D	30
Tabela 3.4: Resultados numéricos para empuxo (ao nível do mar e no vácuo) e velocidade	
característica, obtidos com o código Mach2D, para malha de 90x10 volumes de controle	30
Tabela 3.5: Resultados numéricos para impulso específico (ao nível do mar e no vácuo) e	
coeficiente de descarga, obtidos com o código Mach2D, para malha de 90x10 volumes	
de controle	31
Tabela 3.6: Resultados numéricos para coeficiente de empuxo (ao nível do mar e no vácuo) e	
empuxo dinâmico adimensional, obtidos com o código Mach2D, para malha de 90x10	
volumes de controle.	31
Tabela 3.7: Resultados numéricos para temperatura, pressão e velocidade axial na saída da	
tubeira (centro), obtidos com o código Mach2D, para malha de 90x10 volumes de	
controle	31
Tabela 3.8: Resultados numéricos para temperatura, pressão e velocidade axial na saída da	
tubeira (parede), obtidos com o código Mach2D, para malha de 90x10 volumes de	
controle	32
Tabela 3.9: Resultados numéricos para massa específica, número de Mach e fração mássica de	
H ₂ O na saída da tubeira (centro), obtidos com o código Mach2D, para malha de 90x10	
volumes de controle.	32
Tabela 3.10: Resultados numéricos para massa específica, número de Mach e fração mássica	
de H ₂ O na saída da tubeira (parede), obtidos com o código Mach2D, para malha de	
90x10 volumes de controle.	32
Tabela 3.11: Resultados numéricos para o escoamento de ar (propriedades constantes e	
variáveis), obtidas através do código Mach2D, para malha de 90x10 volumes de	
controle	33
Tabela 3.12: Resultados numéricos para empuxo (ao nível do mar e no vácuo) e velocidade	
característica para diversas malhas, para o modelo físico congelado (modelo químico 3)	34
Tabela 3.13: Resultados numéricos para impulso específico (ao nível do mar e no vácuo) e	
coeficiente de descarga para diversas malhas, para o modelo físico congelado (modelo	
químico 3).	34
Tabela 3.14: Resultados numéricos para coeficiente de empuxo (ao nível do mar e no vácuo) e	
empuxo dinâmico adimensional para diversas malhas, para o modelo físico congelado	
(modelo químico 3).	34
Tabela 3.15: Resultados numéricos para temperatura, pressão e velocidade, na saída da tubeira	
(centro), para diversas malhas, para o modelo físico congelado (modelo químico 3)	34
Tabela 3.16: Resultados numericos para temperatura, pressão e velocidade, na saída da tubeira	. .
(parede), para diversas malhas, para o modelo físico congelado (modelo químico 3)	35
Tabela 3.1/: Resultados numéricos para massa específica, número de Mach e fração mássica	
de H_2O , na saida da tubeira (centro), para diversas malhas, para o modelo físico	<u> </u>
congelado (modelo químico 3).	35

Tabela 3.18: Resultados numéricos para massa específica, número de Mach e fração mássica	
de H ₂ O, na saída da tubeira (parede), para diversas malhas, para o modelo físico	
congelado (modelo químico 3).	35

LISTA DE SÍMBOLOS

- C_d coeficiente de descarga [adimensional]
- c_p calor específico à pressão constante [J/kg·K]
- *d* coeficientes de correção da velocidade originados do acoplamento pressão-velocidade
- *F** empuxo dinâmico adimensional [adimensional]
- \dot{m} fluxo de massa [kg/s]
- *M* número de Mach [adimensional]
- *OF* razão de mistura [adimensional]
- P pressão total [Pa]
- *P'* correção de pressão
- r raio [m]
- R constante da mistura de gases [J/kg·K]
- r_c raio de curvatura [m]
- r_g raio da garganta [m]
- r_{in} raio na entrada da tubeira [m]
- S área da seção transversal de escoamento $[m^2]$
- *T* temperatura [K]
- *u* velocidade axial [m/s]
- v velocidade radial [m/s]
- Y_i fração mássica da espécie química *i*

Letras gregas

- β fator do esquema de interpolação utilizado (0: UDS, 1: CDS)
- γ razão entre calores específicos [adimensional]
- ρ massa específica [kg/m³]
- ϕ solução numérica da variável de interesse

Subíndices

- *e* propriedade na face direita (face leste)
- *E* propriedade no volume à direita (volume leste)
- *ex* propriedades na saída da tubeira
- *n* propriedade na face superior (face norte)
- *N* propriedade no volume superior (volume norte)
- *P* propriedade no volume atual (volume *P*)
- *s* propriedade na face inferior (face sul)
- *S* propriedade no volume inferior (volume sul)
- *w* propriedade na face esquerda (face oeste)
- *W* propriedade no volume à esquerda (volume oeste)

1. INTRODUÇÃO

Neste relatório são apresentados os modelos físicos, matemáticos e numéricos do código Mach2D, versão 6.0, destinado à solução numérica do escoamento bidimensional em motores-foguete. São apresentados, também, resultados numéricos para uma geometria previamente definida, obtida do trabalho de Back *et al.* (1965). Os modelos químicos existentes no código Mach2D são os mesmos apresentados nos Relatórios Técnicos 1 e 3, inseridos nos códigos Gibbs 1.3 e Mach1D 5.0.

1.1 Código Mach2D

A obtenção das propriedades termoquímicas da mistura gasosa de combustão, em caráter local, bem como de parâmetros de desempenho é feita através do código Mach2D 6.0. Tal código, escrito em linguagem Fortran 95 (e compilado com o Compaq Visual Fortran 6.6), apresenta cinco modelos físicos distintos:

- 1. solução numérica de escoamento monoespécie, com propriedades constantes;
- solução numérica de escoamento monoespécie, com propriedades variáveis, incluindo propriedades do ar e do vapor de água (H₂O);
- 3. solução numérica de escoamento congelado;
- 4. solução numérica de escoamento em equilíbrio químico local;
- 5. solução numérica de escoamento com taxa finita de reação.

No caso dos modelos para escoamento monoespécie com propriedades variáveis, o calor específico (c_p) é obtido através de polinômios interpoladores, envolvendo a temperatura:

$$c_p = 1061,33426 - 0,43283 \cdot T + 0,00102 \cdot T^2 -6,47481 \cdot 10^{-7} \cdot T^3 + 1.38642 \cdot 10^{-10} \cdot T^4 , \qquad (1.1)$$

utilizado para o escoamento de ar, obtido da interpolação dos dados de Incropera e DeWitt (1998), ou do polinômio de McBride *et al.* (1993), para vapor de água (H₂O), apresentado no Relatório Técnico 1 (Eq. 1.1).

Os escoamentos congelado e em equilíbrio químico local são idealizações do fenômeno real, uma vez que para o primeiro a composição química é mantida constante ao longo de todo o escoamento e para o segundo, a composição química atinge a condição de equilíbrio para cada volume de controle do escoamento. Deve-se ressaltar, contudo, que mesmo para todas as simulações envolvendo mistura de gases (modelos congelado, em equilíbrio local e com taxa finita de reação), o processo de combustão não é considerado. Modela-se somente uma mistura de gases perfeitos, eletricamente neutra, sem efeitos como atomização ou mudança de fase.

Como características do código Mach2D, destacam-se:

- Metodologia adotada: Método dos Volumes Finitos;
- Condições de contorno aplicadas com auxílio de volumes fictícios;
- Malha estruturada não-ortogonal de faces centradas;
- Funções de interpolação: UDS (primeira ordem) e CDS (segunda ordem), com correção adiada;
- Sistema de coordenadas curvilíneas ξ-η;
- Possiblidade de resolução de problemas bidimensionais planos ou axissimétricos;
- Formulação totalmente implícita no tempo para o processo iterativo;
- Solver MSI para 5 diagonais;
- Formulação adequada para qualquer velocidade (desde o escoamento subsônico, na entrada da tubeira, ao escoamento supersônico, na saída);
- Método SIMPLEC para acoplamento pressão-velocidade;
- Velocidades nas faces do arranjo co-localizado obtidas conforme Marchi e Maliska (1994);
- Equações de conservação da quantidade de movimento: Equações de Euler;
- Equação da energia baseada na temperatura (e não na entalpia).

1.2 Objetivos deste relatório

Os objetivos principais deste relatório são:

- Apresentar os modelos físicos, químicos, matemáticos e numéricos disponíveis no código;
- Obter soluções analítica e numéricas para um problema específico;
- Verificar o efeito dos modelos físico e matemático adotado sobre a solução do problema abordado;
- Verificar o efeito do modelo químico adotado na solução do problema abordado.

1.3 Definição do problema

A geometria da câmara-tubeira utilizada nas simulações é a mesma apresentada no trabalho de Back *et al.* (1965), cujo perfil é apresentado na Figura 1.1.

Figura 1.1: Perfil da tubeira utilizada nas simulações. [Fonte: Back et al. (1965)]

Alguns parâmetros geométricos da tubeira de Back *et al.* (1965) são apresentados na Tabela 1.1, mostrada a seguir. Para tal tubeira, foram obtidos resultados experimentais para escoamento de ar que foram reproduzidos com o código Mach2D e apresentados no Capítulo 3.

Raio de entrada [m]	0,063482
Raio na garganta [m]	0,020320
Raio de curvatura [m]	0,012700
Raio na saída [m]	0,052322
Razão de expansão de áreas [adim.]	6,63
Comprimento total [m]	0,185039
Posição da garganta [m]	0,064872

Tabela 1.1: Parâmetros geométricos da tubeira. [Fonte: Back et al. (1965)]

As condições de contorno, mostradas na Figura 1.2, são definidas como se segue:

 Condições de entrada: A temperatura (T) e a pressão(P) da mistura de gases de combustão são tomadas como funções das propriedades de estagnação; a composição (frações mássicas - Y_i) das espécies químicas é definida a partir da temperatura e pressão locais; a velocidade axial (*u*) na entrada é extrapolada linearmente da velocidade no interior da câmara-tubeira, enquanto a velocidade radial (*v*) é nula.

$$\begin{cases} T = f(T_0); \quad P = f(P_0); \\ \\ Y_i = f(T, P); \quad \frac{d^2 u}{dz^2} = 0; \quad v = 0 \end{cases}$$
(1.2)

• Condições na parede da tubeira: Parede adiabática, impermeável.

Figura 1.2: Condições de contorno aplicadas à tubeira.

Condições na saída da tubeira: A solução do escoamento em tubeiras não requer condições de contorno na saída quando o escoamento é supersônico nessa região. Contudo, para implementação de um modelo numérico, há necessidade da especificação das condições de contorno para tal região. Sendo assim, as condições de contorno na saída da tubeira para temperatura (*T*), pressão (*P*), velocidades axial (*u*) e radial (*v*) e frações mássicas (*Y_i*) são tomadas como extrapolações lineares dessas propriedades para os valores encontrados no interior da câmara-tubeira.

$$\begin{cases} \frac{d^2 T}{dz^2} = 0; & \frac{d^2 P}{dz^2} = 0; \\ \frac{d^2 Y_i}{dz^2} = 0; & \frac{d^2 u}{dz^2} = 0; \\ \frac{d^2 Y_i}{dz^2} = 0; & \frac{d^2 u}{dz^2} = 0; \end{cases}$$
(1.3)

 Condições no centro da tubeira (linha de simetria): Condições de simetria (impermeável, adiática).

1.4 Variáveis de interesse

Como variáveis de interesse deste relatório, citam-se as do Relatório Técnico 3, acrescidas por algumas, listadas a seguir:

- variáveis globais empuxo (ao nível do mar e no vácuo), impulso específico (ao nível do mar e no vácuo), coeficiente de empuxo (ao nível do mar e no vácuo), velocidade característica, coeficiente de descarga (C_d) e empuxo dinâmico adimensional (F^{*});
- variáveis locais, na saída da tubeira pressão estática (P_{ex}), temperatura (T_{ex}), velocidade (u_{ex}), número de Mach (M_{ex}), massa específica (ρ_{ex}) e fração mássica do vapor de água, Y_{ex}(H₂O), apenas para os modelos físicos de escoamento congelado, equilíbrio químico e taxa finita de reação.

As relações que definem o empuxo, o coeficiente de descarga e o empuxo dinâmico adimensional foram apresentados no Relatório Técnico 3 (seção 1.4), não sendo reapresentadas neste relatório. A velocidade característica, o impulso específico e o coeficiente de empuxo, no entanto, são obtidos a partir das seguintes relações:

$$C^* = \frac{P_c S^*}{\dot{m}_p},\tag{1.4}$$

$$I_s = \frac{F t_q}{m_p g_o}, \tag{1.5}$$

e

$$C_f = \frac{F}{P_c S^*},\tag{1.6}$$

sendo: P_c a pressão na câmara de combustão [Pa]; S* a área da garganta [m²]; \dot{m}_p a vazão mássica de propelente [kg/s]; F a força de empuxo [N]; t_q o tempo de queima [s]; g_o a aceleração da gravidade (que ao nível do mar equivale a 9,8066 m/s²); m_p é a massa efetiva total de propelente [kg].

2. MODELOS FÍSICO, MATEMÁTICO E NUMÉRICO

Neste capítulo são apresentados os modelos físico, matemático e numérico do escoamento bidimensional em tubeira.

2.1. Modelo físico

Para o escoamento bidimensional dos gases de combustão ao longo da tubeira são adotadas as seguintes hipóteses:

- ausência de efeitos viscosos;
- ausência de transferência de calor do fluido para a parede;
- escoamento de gás monoespécie perfeito ou de mistura de gases perfeitos.

2.2. Modelo matemático

O modelo matemático é baseado nas equações de conservação da massa, da conservação de quantidade movimento linear nas direções axial e radial (Equações de Euler), equação da energia e equação de estado, dadas nesta ordem, para a hipótese de regime permanente:

$$\frac{\partial}{\partial z}(\rho u) + \frac{1}{r}\frac{\partial}{\partial r}(r \rho v) = 0, \qquad (2.1)$$

$$\frac{\partial}{\partial z}(\rho u u) + \frac{1}{r}\frac{\partial}{\partial r}(r \rho v u) = -\frac{\partial P}{\partial z},$$
(2.2)

$$\frac{\partial}{\partial z}(\rho \, u \, v) + \frac{1}{r} \frac{\partial}{\partial r}(r \, \rho \, v \, v) = -\frac{\partial P}{\partial r}, \qquad (2.3)$$

$$\frac{\partial}{\partial z}(\rho \, u \, T) + \frac{1}{r} \frac{\partial}{\partial r}(r \, \rho \, v \, T) = \frac{1}{c_p} \left[\nabla \left(P \, \vec{V} \right) - P \, \nabla \vec{V} \right] + S_{eq/tf}, \qquad (2.4)$$

$$P = \rho R T , \qquad (2.5)$$

sendo: ρ , u, v, P e T as cinco variáveis dependentes, representando a massa específica, a velocidade axial, a velocidade radial, a pressão e a temperatura, nesta ordem; z e r, as direções axial e radial, respectivamente; c_p , o calor específico congelado a pressão constante; R, a constante da mistura de gases no interior da tubeira; \vec{V} , o vetor velocidade; e $S_{eq/tf}$, o termo-fonte químico, dado por:

$$S_{eq/tf} = -\frac{1}{c_p} \left[\sum_{i=1}^{N} h_i \frac{\partial}{\partial z} (\rho \, u \, Y_i) - \sum_{i=1}^{N} h_i \frac{1}{r} \frac{\partial}{\partial r} (r \, \rho \, v \, Y_i) \right], \tag{2.6a}$$

para o modelo de escoamento em equilíbrio químico local; e

$$S_{eq/tf} = -\frac{1}{c_p} \sum_{i=1}^{N} h_i \dot{w}_i$$
, (2.6b)

no caso do modelo de escoamento com taxa finita de reação, sendo N o número total de espécies, Y_i , $h_i \in \dot{w}_i$, nesta ordem, a fração mássica, a entalpia e a taxa de geração de massa da espécie química i. Para os demais modelos físicos (escoamentos monoespécie e congelado), tal termo-fonte é nulo. Deve-se atentar, ainda, que no caso do modelo de escoamento com taxa finita de reação, há a necessidade da solução de uma última equação para a conservação mássica de cada espécie química i, dada por:

$$\frac{\partial}{\partial z} (\rho \, u \, Y_i) + \frac{1}{r} \frac{\partial}{\partial r} (r \, \rho \, v \, Y_i) = \dot{w}_i \,. \tag{2.7}$$

A taxa de geração de massa para cada espécie, empregada nas Eqs. (2.6b) e (2.7) é obtida através da seguinte relação:

$$\dot{w}_i = M_i \sum_{j=1}^{L} \left(\Delta v_{ij} \cdot \theta_j \right), \tag{2.8}$$

em que: Δv_{ij} , calculado por $\Delta v_{ij} = v_{ij}'' - v_{ij}'$, representa a diferença entre o número de moles formados e consumidos durante a reação *j*; e θ_j é a taxa de geração de espécies relacionada à reação *j*. Para maiores detalhes sobre a obtenção das taxas de geração de espécies, recomenda-se a leitura do capítulo 1 do Relatório Técnico 2. No caso do escoamento em equilíbrio químico local e com taxa finita de reação, o valor de c_p , utilizando na equação da energia, deve ser obtido para cada volume de controle. Para tanto, são utilizadas as Eqs. (6.2) a (6.4) apresentadas anteriormente no Relatório Técnico 3.

2.3. Modelo numérico

O primeiro passo para a obtenção do modelo numérico é a transformação do sistema de coordenadas axissimétrico (*z*-*r*) para um sistema de coordenadas generalizado (ξ - η). Detalhes sobre tal transformação podem ser vistos nos capítulos 11 a 15 de Maliska (1995). As equações transformadas podem ser escritas da seguinte forma geral, Eq. (2.9), cujos coeficientes são apresentados na Tabela 2.1.

$$\frac{1}{J}\frac{1}{r}\frac{\partial}{\partial\xi}(r\rho U\Phi) + \frac{1}{J}\frac{1}{r}\frac{\partial}{\partial\eta}(r\rho V\Phi) = -\hat{P}^{\Phi} + \hat{S}^{\Phi}, \qquad (2.9)$$

sendo:

$$U = u r_{\eta} - v z_{\eta}, \qquad (2.10)$$

e

$$V = v \, \mathbf{z}_{\xi} - u \, r_{\xi} \,. \tag{2.11}$$

O Jacobiano (*J*) é obtido através das funções transformadas, podendo ser calculado através da seguinte expressão:

$$J = \frac{1}{z_{\xi} r_{\eta} - r_{\xi} z_{\eta}}.$$
 (2.12)

Para a discretização das equações, foi utilizado o Método dos Volumes Finitos, associado a uma formulação adequada para qualquer velocidade e arranjo co-localizado de variáveis. As condições de contorno foram aplicadas mediante o uso de volumes fictícios. Para o acoplamento pressão-velocidade, foi empregado o Método Simplec.

Equação de conservação	Φ	\hat{P}^{Φ}	\hat{S}^{Φ}
Massa	1	0	0
Quantidade de movimento axial	и	${\partial P\over\partial \xi}r_\eta - {\partial P\over\partial \eta}r_\xi$	0
Quantidade de movimento radial	V	${\partial P\over\partial\eta} z_{\xi} - {\partial P\over\partial\xi} z_{\eta}$	0
Energia	Т	0	$\frac{1}{J c_p} \Big[\nabla \Big(P \vec{V} \Big) - P \nabla \vec{V} \Big] + S_{eq/tf}$
Espécies	Y_i	0	$rac{\dot{w}_i}{J}$

Tabela 2.1: Valores dos coeficientes para a equação transformada geral.

As equações de conservação da quantidade de movimento axial, da quantidade de movimento radial, da energia e de espécies podem ser escritas na seguinte forma:

$$a_{P}^{u}\Phi_{P} + a_{w}^{u}\Phi_{W} + a_{e}^{u}\Phi_{E} + a_{s}^{u}\Phi_{S} + a_{n}^{u}\Phi_{N} = b_{P}^{\Phi}, \qquad (2.13)$$

sendo:

$$a_e^u = \dot{M}_e \left(\frac{1}{2} - \alpha_e \right), \tag{2.14}$$

$$a_w^u = -\dot{M}_w \Big(\frac{1}{2} + \alpha_w \Big),$$
 (2.15)

$$a_n^u = \dot{M}_n \left(\frac{1}{2} - \alpha_n \right),$$
 (2.16)

 $a_s^u = \dot{M}_s \left(\frac{1}{2} - \alpha_s\right), \tag{2.17}$

$$a_P^u = \frac{M_P^0}{\Delta t} - \left(a_w^u + a_e^u + a_s^u + a_n^u\right), \tag{2.18}$$

que são válidas para todas as equações, observando-se que:

$$\alpha_{e} = \begin{cases} \frac{1}{2}, & \text{se } U_{e} \ge 0 \\ & & , \\ -\frac{1}{2}, & \text{se } U_{e} < 0 \end{cases}$$
(2.19)

$$\alpha_{w} = \begin{cases} \frac{1}{2}, & \text{se } U_{w} \ge 0 \\ & & \\ -\frac{1}{2}, & \text{se } U_{w} < 0 \end{cases}$$
(2.20)

$$\alpha_{n} = \begin{cases} \frac{1}{2}, & \text{se } V_{n} \ge 0\\ & & ,\\ -\frac{1}{2}, & \text{se } V_{n} < 0 \end{cases}$$
(2.21)

$$\alpha_{s} = \begin{cases} \frac{1}{2}, & \text{se } V_{s} \ge 0\\ & & ,\\ -\frac{1}{2}, & \text{se } V_{s} < 0 \end{cases}$$
(2.22)

$$\dot{M}_e = \left(r \ \rho \ U\right)_e,\tag{2.23}$$

$$\dot{M}_w = \left(r \ \rho \ U\right)_w,\tag{2.24}$$

$$\dot{M}_n = (r \rho V)_n, \qquad (2.25)$$

$$\dot{M}_s = \left(r \,\rho \,V\right)_s,\tag{2.26}$$

$$M_P^0 = \frac{r_P \ \rho_P^0}{J_P}.$$
 (2.27)

Nota-se, entretanto, que os termos-fontes são diferentes, conforme apresentado na seqüência:

$$b_P^u = \frac{M_P^0}{\Delta t} u_P^0 + S_P^u + w_P^u, \qquad (2.28)$$

$$b_P^{\nu} = \frac{M_P^0}{\Delta t} v_P^0 + S_P^{\nu} + w_P^{\nu}, \qquad (2.29)$$

$$b_P^T = \frac{M_P^0}{\Delta t} T_P^0 + S_P^T + w_P^T + S_{eq/tf}^T , \qquad (2.30)$$

$$b_{P}^{Y} = \frac{M_{P}^{0}}{\Delta t} (Y_{i})_{P}^{0} + S_{P}^{Y} + \beta \left\{ \dot{M}_{e} \alpha_{e} \left[(Y_{i})_{P} - (Y_{i})_{E} \right] + \dot{M}_{w} \alpha_{w} \left[(Y_{i})_{P} - (Y_{i})_{W} \right] \right\} + \dot{M}_{n} \alpha_{n} \left[(Y_{i})_{P} - (Y_{i})_{N} \right] + \dot{M}_{s} \alpha_{s} \left[(Y_{i})_{P} - (Y_{i})_{S} \right] \right\}$$
(2.31)

$$w_P^u = \beta \left[\dot{M}_e \, \alpha_e \left(u_P - u_E \right) + \dot{M}_w \, \alpha_w \left(u_P - u_W \right) \right. \\ \left. + \dot{M}_n \, \alpha_n \left(u_P - u_N \right) + \dot{M}_s \, \alpha_s \left(u_P - u_S \right) \right], \qquad (2.32)$$

$$w_P^{\nu} = \beta \left[\dot{M}_e \, \alpha_e \left(v_P - v_E \right) + \dot{M}_w \, \alpha_w \left(v_P - v_W \right) \right. \\ \left. + \dot{M}_n \, \alpha_n \left(v_P - v_N \right) + \dot{M}_s \, \alpha_s \left(v_P - v_S \right) \right], \qquad (2.33)$$

$$w_P^T = \beta \left[\dot{M}_e \, \alpha_e \left(T_P - T_E \right) + \dot{M}_w \, \alpha_w \left(T_P - T_W \right) \right. \\ \left. + \dot{M}_n \, \alpha_n \left(T_P - T_N \right) + \dot{M}_s \, \alpha_s \left(T_P - T_S \right) \right]$$
(2.34)

observando-se que β , neste caso, é o coeficiente de mistura entre os esquemas de aproximação UDS ($\beta = 0$) e CDS ($\beta = 1$); além disso, tem-se:

$$S_{P}^{u} = \frac{r_{P}}{2} \Big[(P_{P} + P_{N}) (r_{\xi})_{n} - (P_{S} + P_{P}) (r_{\xi})_{s} + (P_{W} + P_{P}) (r_{\eta})_{w} - (P_{P} + P_{E}) (r_{\eta})_{e} \Big],$$
(2.35)

$$S_{P}^{v} = \frac{r_{P}}{2} \Big[-(P_{P} + P_{N})(z_{\xi})_{n} + (P_{S} + P_{P})(z_{\xi})_{s} + (P_{P} + P_{E})(z_{\eta})_{e} - (P_{W} + P_{P})(z_{\eta})_{w} \Big],$$
(2.36)

$$S_{P}^{T} = \frac{r_{P}}{J_{P}(c_{P})_{P}} \frac{\left(P_{P} - P_{P}^{0}\right)}{\Delta t} - \frac{u_{P}}{(c_{P})_{P}} S_{P}^{u} - \frac{v_{P}}{(c_{P})_{P}} S_{P}^{v}, \qquad (2.37)$$

$$S_P^Y = \frac{\dot{w}_i}{J_P} r_P, \qquad (2.38)$$

$$S_{eq/tf}^{T} = -\sum_{i=1}^{N} \left\{ \frac{(h_{i})_{P}}{(c_{p})_{P}} \left[\dot{M}_{e}(Y_{i})_{E} - \dot{M}_{w}(Y_{i})_{W} + \dot{M}_{n}(Y_{i})_{N} - \dot{M}_{s}(Y_{i})_{S} \right] \right\},$$
(2.39a)

que é válida para o escoamento em equilíbrio químico local; e

$$S_{eq/tf}^{T} = -\frac{1}{J_{P}(c_{p})_{P}} \sum_{i=1}^{N} [(h_{i})_{P}(\dot{w}_{i})_{P}], \qquad (2.39b)$$

que deve ser considerada para o modelo de escoamento com taxa finita de reação.

A equação da conservação da massa é transformada em uma equação de correção da pressão, sendo reescrita na seguinte forma:

$$a_{P}^{P}P_{P}' + a_{w}^{P}P_{W}' + a_{e}^{P}P_{E}' + a_{s}^{P}P_{S}' + a_{n}^{P}P_{N}' = b_{P}^{P}, \qquad (2.40)$$

sendo:

$$a_{w}^{P} = -r_{w}\rho_{w}d_{w} - r_{w}U_{w}\left(\frac{1}{2} + \alpha_{w}\right)g_{W}, \qquad (2.41)$$

$$a_{e}^{P} = -r_{e}\rho_{e}d_{e} + r_{e}U_{e}\left(\frac{1}{2} - \alpha_{e}\right)g_{E}, \qquad (2.42)$$

$$a_{s}^{P} = -r_{s}\rho_{s}d_{s} - r_{s}U_{s}\left(\frac{1}{2} + \alpha_{s}\right)g_{s}, \qquad (2.43)$$

$$a_{n}^{P} = -r_{n}\rho_{n}d_{n} + r_{n}U_{n}\left(\frac{1}{2} - \alpha_{n}\right)g_{N}, \qquad (2.44)$$

$$a_{P}^{P} = \frac{r_{P} g_{P}}{J_{P} \Delta t} + r_{e} \rho_{e} d_{e} + r_{e} U_{e} \left(\frac{1}{2} + \alpha_{e}\right) g_{P} + r_{w} \rho_{w} d_{w} - r_{w} U_{w} \left(\frac{1}{2} - \alpha_{w}\right) g_{P} + r_{e} \rho_{e} d_{h} + r_{h} U_{h} \left(\frac{1}{2} + \alpha_{h}\right) g_{P} + r_{s} \rho_{s} d_{s} - r_{s} U_{s} \left(\frac{1}{2} - \alpha_{s}\right) g_{P}$$

$$(2.45)$$

$$b_{P}^{p} = -\left[\frac{\left(\rho_{P} - \rho_{P}^{0}\right)}{J_{P} \Delta t}r_{P} + \dot{M}_{e} - \dot{M}_{w} + \dot{M}_{n} - \dot{M}_{s}\right], \qquad (2.46)$$

e

$$g_P = \frac{1}{R_P T_P}.$$
 (2.47)

A massa específica (ρ), é obtida através da equação de estado (Eq. 2.5), enquanto as velocidades nas faces leste e norte são obtidas mediante as seguintes relações (sendo as velocidades nas faces oeste e sul obtidas por expressões análogas):

$$U_{e} = \frac{1}{\left[\left(a_{P}^{u}\right)_{P} + \left(a_{P}^{u}\right)_{E}\right]} \left\{ \frac{\left(M_{P}^{0} + M_{E}^{0}\right)}{\Delta t} U_{e}^{0} + \left(w_{P}^{u} + w_{E}^{u} - \Sigma_{P}^{u} - \Sigma_{E}^{u}\right) (r_{\eta})_{e} - \left(w_{P}^{v} + w_{E}^{v} - \Sigma_{P}^{v} - \Sigma_{E}^{v}\right) (z_{\eta})_{e} + 2\left[S_{e}^{u}(r_{\eta})_{e} - S_{e}^{v}(z_{\eta})_{e}\right] \right\},$$
(2.48)

e

$$V_{n} = \frac{1}{\left[\left(a_{P}^{u}\right)_{P} + \left(a_{P}^{u}\right)_{N}\right]} \left\{ \frac{\left(M_{P}^{0} + M_{N}^{0}\right)}{\Delta t} V_{n}^{0} + \left(w_{P}^{v} + w_{E}^{v} - \Sigma_{P}^{v} - \Sigma_{N}^{v}\right) \left(z_{\xi}\right)_{n} - \left(w_{P}^{u} + w_{N}^{u} - \Sigma_{P}^{u} - \Sigma_{N}^{u}\right) \left(r_{\xi}\right)_{n} + 2\left[S_{n}^{v}\left(z_{\xi}\right)_{n} - S_{n}^{u}\left(r_{\xi}\right)_{n}\right] \right\},$$
(2.49)

sendo:

$$\Sigma_{P}^{u} = (a_{w}^{u})_{P} u_{W} + (a_{e}^{u})_{P} u_{E} + (a_{s}^{u})_{P} u_{S} + (a_{n}^{u})_{P} u_{N}, \qquad (2.50)$$

$$\Sigma_{E}^{u} = (a_{w}^{u})_{E} u_{P} + (a_{e}^{u})_{E} u_{EE} + (a_{s}^{u})_{E} u_{SE} + (a_{n}^{u})_{E} u_{NE}, \qquad (2.51)$$

$$\Sigma_{P}^{v} = (a_{w}^{u})_{P} v_{W}^{*} + (a_{e}^{u})_{P} v_{E}^{*} + (a_{s}^{u})_{P} v_{S}^{*} + (a_{n}^{u})_{P} v_{N}^{*}, \qquad (2.52)$$

$$\Sigma_{E}^{v} = \left(a_{w}^{u}\right)_{E} v_{P}^{*} + \left(a_{e}^{u}\right)_{E} v_{EE}^{*} + \left(a_{s}^{u}\right)_{E} v_{SE}^{*} + \left(a_{n}^{u}\right)_{E} v_{NE}^{*}, \qquad (2.53)$$

$$\Sigma_{N}^{u} = (a_{w}^{u})_{N} u_{NW} + (a_{e}^{u})_{N} u_{NE} + (a_{s}^{u})_{N} u_{P} + (a_{n}^{u})_{P} u_{NN}, \qquad (2.54)$$

$$\Sigma_{N}^{v} = \left(a_{w}^{u}\right)_{N} v_{NW}^{*} + \left(a_{e}^{u}\right)_{N} v_{NE}^{*} + \left(a_{s}^{u}\right)_{N} v_{P}^{*} + \left(a_{n}^{u}\right)_{N} v_{NN}^{*}, \qquad (2.55)$$

$$S_{e}^{u} = r_{e} \bigg[\left(r_{\xi} \right)_{e} \frac{\left(P_{N} + P_{NE} - P_{S} - P_{SE} \right)}{4} + \left(r_{\eta} \right)_{e} \left(P_{P} - P_{E} \right) \bigg], \qquad (2.56)$$

$$S_{e}^{\nu} = r_{e} \left[\left(z_{\eta} \right)_{e} \left(P_{E} - P_{P} \right) + \left(z_{\xi} \right)_{e} \frac{\left(P_{S} + P_{SE} - P_{N} - P_{NE} \right)}{4} \right],$$
(2.57)

$$S_{n}^{u} = r_{n} \bigg[\left(r_{\xi} \right)_{n} \left(P_{N} - P_{P} \right) + \left(r_{\eta} \right)_{n} \frac{\left(P_{W} + P_{NW} - P_{E} - P_{NE} \right)}{4} \bigg],$$
(2.58)

e

$$S_{n}^{\nu} = r_{n} \left[\left(z_{\eta} \right)_{n} \frac{\left(P_{E} + P_{NE} - P_{W} - P_{NW} \right)}{4} + \left(z_{\xi} \right)_{n} \left(P_{P} - P_{N} \right) \right].$$
(2.59)

Para a discretização da equação da conservação da massa, é utilizado o método SIMPLEC para o acoplamento pressão-velocidade. Desse acoplamento, surgem as variáveis d_e , d_w , d_n e d_s , constantes das Eqs. (2.41) a (2.45). A seguir são apresentadas as formulações para d_e e d_n , sendo d_w e d_s obtidas de forma análoga:

$$d_{e} = \frac{2 r_{e} \Delta t}{\left(M_{P}^{0} + M_{E}^{0}\right)} \left[\left(r_{\eta}\right)_{e}^{2} + \left(z_{\eta}\right)_{e}^{2} \right],$$
(2.60)

e

$$d_{n} = \frac{2 r_{n} \Delta t}{\left(M_{P}^{0} + M_{N}^{0}\right)} \left[\left(z_{\xi}\right)_{n}^{2} + \left(r_{\xi}\right)_{n}^{2} \right].$$
(2.61)

Deve-se proceder, também, uma correção das velocidades nodais e nas faces utilizando-se, para tanto, a correção de pressão (P'):

$$u_{P} = u_{P}^{ant} + \frac{\Delta t}{M_{P}^{0}} S_{P}^{u'}, \qquad (2.62)$$

$$v_{P} = v_{P}^{ant} + \frac{\Delta t}{M_{P}^{0}} S_{P}^{\nu'}, \qquad (2.63)$$

$$S_{P}^{u'} = \frac{r_{P}}{2} \Big[\left(P_{P}' + P_{N}' \right) \left(r_{\xi} \right)_{n} - \left(P_{P}' + P_{S}' \right) \left(r_{\xi} \right)_{s} + \left(P_{P}' + P_{W}' \right) \left(r_{\eta} \right)_{w} - \left(P_{P}' + P_{E}' \right) \left(r_{\eta} \right)_{e} \Big],$$
(2.64)

$$S_{P}^{\nu'} = \frac{r_{P}}{2} \Big[(P_{P}' + P_{E}') (z_{\eta})_{e} - (P_{P}' + P_{W}') (z_{\eta})_{w} + (P_{P}' + P_{S}') (z_{\xi})_{s} - (P_{P}' + P_{N}') (r_{\xi})_{n} \Big], \qquad (2.65)$$

$$U_e = U_e^* + d_e (P_P' - P_E'), \qquad (2.66)$$

e

$$V_n = V_n^* + d_n \left(P_P' - P_N' \right).$$
(2.67)

Também é necessário que sejam corrigidas a pressão e a massa específica longo de todo o escoamento. Tais correções são feitas sobre as estimativas anteriores da pressão (P^{ant}) e da massa específica (ρ^{ant}), através das seguintes expressões:

$$P = P^{ant} + P' \,. \tag{2.68}$$

e

$$\rho = \rho^{ant} + \frac{P'}{RT}.$$
(2.69)

2.4. Condições de contorno

São apresentadas a seguir as condições de contorno aplicadas ao modelo numérico bidimensional de escoamento de gases ao longo da tubeira. A entrada e a saída da tubeira correspondem, respectivamente, aos contornos oeste e leste, enquanto a linha de simetria corresponde ao contorno sul e as paredes da tubeira definem o contorno norte. A equação de conservação de espécies só se faz necessária na resolução do modelo de escoamento com taxa finita de reação.

2.4.1. Contorno sul (linha de simetria)

Quantidade de movimento da direção axial:

$$a_P^u = 1, \ a_n^u = -1, \ a_w^u = a_e^u = a_s^u = b_P^u = 0.$$
 (2.70)

Quantidade de movimento da direção radial:

$$a_P^{\nu} = a_n^{\nu} = 1, \ a_w^{\nu} = a_e^{\nu} = a_s^{\nu} = b_P^{\nu} = 0.$$
 (2.71)

Energia:

$$a_P^T = 1, \ a_n^T = -1, \ a_w^T = a_e^T = a_s^T = b_P^T = 0.$$
 (2.72)

Massa:

$$a_P^P = 1, \ a_n^P = -1, \ a_w^P = a_e^P = a_s^P = 0, \ b_P^T = \frac{2r_N}{r_{NN} - r_N} (P_N' - P_{NN}').$$
 (2.73)

Espécies:

$$a_P^Y = 1, \ a_n^Y = -1, \ a_w^Y = a_e^Y = a_s^Y = b_P^Y = 0.$$
 (2.74)

2.4.2. Contorno norte (parede):

Quantidade de movimento da direção axial:

$$a_P^u = 1, \ a_s^u = -1, \ a_w^u = a_e^u = a_n^u = b_P^u = 0.$$
 (2.75)

Quantidade de movimento da direção radial:

 $a_P^{\nu} = 1, \ a_s^{\nu} = -1, \ a_w^{\nu} = a_e^{\nu} = a_n^{\nu} = b_P^{\nu} = 0.$ (2.76)

Energia:

$$a_P^T = 1, \ a_s^T = -1, \ a_w^T = a_e^T = a_n^T = b_P^T = 0.$$
 (2.77)

Massa:

$$a_P^P = 1, \ a_n^P = -1, \ a_w^P = a_e^P = a_s^P = 0, \ b_P^T = \frac{2(r_s - r_s)}{r_s - r_{ss}} (P_s' - P_{ss}').$$
 (2.78)

Espécies:

$$a_P^Y = 1, \ a_s^Y = -1, \ a_w^Y = a_e^Y = a_n^Y = b_P^Y = 0.$$
 (2.79)

2.4.3. Contorno leste (saída):

Para todas as equações de conservação os coeficientes e termos-fontes são obtidos através da seguinte expressão:

$$a_P^{\Phi} = 1, \ a_w^{\Phi} = -1, \ a_e^{\Phi} = a_s^{\Phi} = a_n^{\Phi} = 0, \ b_P^{\Phi} = \frac{2(z_w - z_W)}{z_W - z_{WW}} (\Phi_W - \Phi_{WW}),$$
 (2.80)

em que Φ representa as velocidades u e v, a temperatura T, a correção de pressão P' e/ou a fração mássica Y_i da espécie química i.

2.4.4. Contorno oeste (entrada):

Quantidade de movimento da direção axial:

$$a_P^u = 1, \ a_e^u = -1, \ a_w^u = a_s^u = a_n^u = 0, \ b_P^u = \frac{2z_E}{z_{EE} - z_E} (u_E - u_{EE}).$$
 (2.81)

Quantidade de movimento da direção radial:

$$a_P^{\nu} = 1, \ a_e^{\nu} = a_w^{\nu} = a_s^{\nu} = a_n^{\nu} = b_P^{\nu} = 0.$$
 (2.82)

Energia:

$$a_P^T = a_e^T = 1, \ a_w^T = a_s^T = a_n^T = 0, \ b_P^T = 2T_{in}.$$
 (2.83)

Massa:

$$a_P^P = a_e^P = 1, \ a_w^P = a_s^P = a_n^P = 0, \ b_P^T = 2 P'_{in}.$$
 (2.84)

Espécies:

$$a_P^Y = a_e^Y = 1, \ a_w^Y = a_s^Y = a_n^Y = 0, \ b_P^Y = 2(Y_i)_{in}.$$
 (2.85)

2.5. Algoritmo

Na seqüência é apresentado o algoritmo para a solução do escoamento bidimensional dos gases de combustão no interior da tubeira. Para tanto, foram utilizadas as equações de conservação da quantidade de movimento nas direções axial e radial, de conservação da energia e de conservação da massa (já discretizadas), bem como a equação de estado.

- 1. Leitura dos dados.
- 2. Geração da malha.
- 3. Cálculo das métricas $(z_{\xi}, z_{\eta}, r_{\xi}, r_{\eta})$.
- 4. Estimativa inicial para o momento $t+\Delta t$.
- 5. Cálculo da pressão e da temperatura na entrada da tubeira com base na velocidade de entrada (conforme feito nos Relatórios 3 e 4).
- 6. Cálculo do calor específico a pressão constante (conforme feito no Relatório 1).
- Cálculo dos coeficientes, termos-fontes e condições de contorno para a velocidade *u*, através das Eqs. (2.14) a (2.18), (2.28), (2.70), (2.75), (2.80) e (2.81).
- 8. Solução da velocidade *u*, através do método MSI.

- 9. Cálculo dos termos-fontes e condições de contorno para a velocidade v, através das Eqs. (2.29), (2.71), (2.76), (2.80) e (2.82).
- 10. Solução da velocidade v, através do método MSI.
- Cálculo dos termos-fontes e condições de contorno para a temperatura *T*, através das Eqs. (2.30), (2.72), (2.77), (2.80) e (2.83).
- 12. Solução da temperatura *T*, através do método MSI.
- 13. Cálculo de ρ_P e de ρ_e , através da equação de estado, Eq. (2.5).
- 14. Cálculo dos coeficientes do método SIMPLEC, através das Eqs. (2.60) e (2.61).
- 15. Cálculo de U_e e de V_n , utilizando as Eqs. (2.48) e (2.49).
- Cálculo dos coeficientes, termos-fontes e condições de contorno para a correção de pressão P', através das Eqs. (2.40) a (2.46), (2.73), (2.78), (2.80) e (2.84).
- 17. Solução da correção de pressão P', através do método MSI.
- 18. Correção das variáveis utilizando-se a correção de pressão P', através das Eqs. (2.62), (2.63) e (2.66) a (2.69).
- 19. Retornar ao item 16 até atingir o número máximo de iterações do ciclo da massa.
- 20. Caso se trate de modelo de escoamento com taxa finita de reação, cálculo dos coeficientes, termos-fontes e condições de contorno para as frações mássicas *Y_i*, através das Eqs. (2.14) a (2.18), (2.31), (2.74), (2.79), (2.80) e (2.85).
- 21. Caso se trate de modelo de escoamento com taxa finita de reação, solução das frações mássicas *Y_i* através do método MSI.
- 22. Retornar ao item 4, até atingir o número máximo de iterações ou satisfazer um critério de convergência.
- 23. Pós-processamento.

3. <u>RESULTADOS NUMÉRICOS</u>

São apresentadas, nas Tabelas 3.1 e 3.2, os dados referentes aos arquivos de resultados obtidos das simulações utilizando-se o código Mach2D, versão 6.0. Para os modelos monoespécie foram efetuados estudos com malhas de até 720 volumes na direção axial por 80 volumes na direção radial. Estudos com mesmo refinamento de malha foram efetuados para o modelo de escoamento congelado, utizando-se modelos com três (modelos químicos 0 e 1), quatro (modelo químico 2), seis (modelos químicos 3 e 5) ou oito espécies (modelos 9 e 10). No caso dos modelos em equilíbrio químico local, o grau de refinamento é menor: para os modelos químicos 0, 1 e 2, a malha mais refinada foi de 360 x 40 volumes; para o modelo químico 3, somente duas malhas foram estudadas: 90 x 10 e 180 x 20 volumes; para os modelos 4 e 10, somente resultados para a malha de 90 x 10 volumes foram obtidos. Para as simulações de escoamento com taxa finita de reação, foram estudadas as malhas de 90 x 10, 180 x 20 e 360 x 40 volumes de controle para o modelo químico 31 e as malhas de 90 x 10 e 180 x 20 volumes para o modelo químico 32.

	Volum	es reais				
Caso	(Nve	ol-2)	Δt	Iterações	Data da	Tempo de
	Direção Axial	Direção Radial		externas	simulação	СРО
	Ar – pro	priedades con	stantes			
Mach2D_5p5_0090x0010	90	10	3,0d-6	6877	03 Out 2006	16,1 s
Mach2D_5p5_0180x0020	180	20	3,0d-6	4967	03 Out 2006	57,8 s
Mach2D_5p5_0360x0040	360	40	3,0d-6	2881	03 Out 2006	3,08 min
Mach2D_5p5_0720x0080	720	80	1,0 d- 6	7240	04 Out 2006	31,0 min
	Ai	r – cp variáve	I			
Mach2D_5p5_0090x0010_cp	90	10	3,0d-6	6859	11 Out 2006	16,0 s
Mach2D_5p5_0180x0020_cp	180	20	3,0d-6	4887	11 Out 2006	55,6 s
Mach2D_5p5_0360x0040_cp	360	40	3,0d-6	2865	11 Out 2006	2,99 min
Mach2D_5p5_0720x0080_cp	720	80	1,0 d -6	7246	16 Out 2006	36,5 min
	Vapor de á	gua – prop. c	onstantes			
Mach2D_5p5_0090x0010_Mach1D	90	10	3,0d-6	2254	16 Out 2006	5,66 s
Mach2D_5p5_0180x0020_Mach1D	180	20	1,0d-6	4314	16 Out 2006	49,9 s
Mach2D_5p5_0360x0040_Mach1D	360	40	1,0d-6	3183	16 Out 2006	3,31 min
Mach2D_5p5_0720x0080_Mach1D	720	80	3,0d-7	9735	16 Out 2006	41,0 min
Vapor de água – prop. variáveis						
Mach2D_5p5_0090x0010_Mach1D_cp	90	10	3,0d-6	2256	17 Out 2006	11,1 s
Mach2D_5p5_0180x0020_Mach1D_cp	180	20	1,0 d- 6	4350	17 Out 2006	59,9 s
Mach2D_5p5_0360x0040_Mach1D_cp	360	40	1,0 d- 6	3214	17 Out 2006	3,26 min
Mach2D_5p5_0720x0080_Mach1D_cp	720	80	3,0d-7	9599	17 Out 2006	41,7 min

Tabela 3.1: Arquivos com os resultados originais do código Mach2D, para os modelos monoespécie.

Case Oregan Arr Herefor Data da Redial Tempo de externas Tempo de Sublação Mach2D_fog_com_cand00_090.010 90 10 3.0.46 2.501 2.3 Ou 2006 6.565 Mach2D_fog_com_cand00_100:020 180 20 8.0.47 4607 2.3 Ou 2006 4.19 min Mach2D_fog_com_cand00_100:0010 90 10 3.0.46 2.087 2.40 ou 2006 5.44 s Mach2D_fog_com_cand01_00:0010 90 10 3.0.47 11212 2.0 ou 2006 5.44 s Mach2D_fog_com_cand01_00:0010 90 10.0.46 4463 2.40 ou 2006 5.84 s Mach2D_fog_com_cand01_00:0010 90 10.0.46 4353 2.50 ou 2006 5.88 s Mach2D_fog_com_cand01_20:0010 90 10 3.0.46 2256 2.50 ou 2006 5.88 s Mach2D_fog_com_cand01_80:0020 180 20 1.0.46 4318 23 ou 2006 4.8.6 s Mach2D_fog_com_cand01_80:0020 90 10 3.0.46 2250 uz 2006 5.89 s Mach2D_fog_co		Volum	es reais				
Directo Directo Directo Creation Manuage Creation Mach2D_pdp_com_mod0_900.010 0 0 1.0.4.6 2.501 2.3.0u 2006 6.5.5 s Mach2D_pdp_com_mod0_900.010 180 20 8.0.6.7 5181 2.3.0u 2006 4.1.9 min Mach2D_pdp_com_mod0_900.010 90 10 3.0.4.6 2.087 2.4.0u 2006 4.4.9 min Mach2D_pdp_com_mod0_1900.010 90 10 3.0.4.6 2.087 2.4.0u 2006 5.4.8 s Mach2D_pdp_com_mod0_1200.000 180 2.0 1.0.4.6 4.463 2.4.0u 2006 5.8 s Mach2D_pdp_com_mod0_1200.000 180 2.0 1.0.4.6 4.453 2.5.0 u 2006 5.2.8 s Mach2D_pdp_com_mod0_2100.000 180 2.0 1.0.4.6 4.453 2.0 u 2006 5.3.8 s Mach2D_pdp_com_mod0_190.010 90 10 3.0.4.7 11106 2.5 0 u 2006 5.8 s Mach2D_pdp_com_mod0_190.010 90 10 3.0.4.7 9.000 3.0 u 2006 4.3.5 min	Caso	(Nv	<i>ol-2</i>)	Δt	Iterações	Data da	Tempo de
Mach2D_6pl_cong_mod0_000010 90 10 30.46 2501 23.0u:2006 6,56 s Mach2D_6pl_cong_mod0_300x00 90 10 3.0d-6 2501 23.0u:2006 1,10 min Mach2D_6pl_cong_mod0_20x080 720 80 3.0d-7 44.0u:2006 5,44 s Mach2D_6pl_cong_mod0_100x010 90 10 3.0d-6 2007 24.0u:2006 5,44 s Mach2D_6pl_cong_mod0_100x010 90 10 3.0d-6 2007 24.0u:2006 5,44 s Mach2D_6pl_cong_mod0_120x040 360 40 1.0d-6 4463 24.0u:2006 5,88 s Mach2D_6pl_cong_mod0_200x040 360 40 1.0d-6 4255 25.0u:2006 52.8 s Mach2D_6pl_cong_mod0_200x040 360 40 1.0d-6 4255 25.0u:2006 5,88 s Mach2D_6pl_cong_mod0_270x080 720 80 3.0d-7 11106 25.0u:2006 5,88 s Mach2D_6pl_cong_mod03_180x020 180 20 1.0d-6 4245 23.0u:2006 43,6 s Mach2D_6p		Direção A vial	Direção Radial		externas	siliulação	CPU
Mach2D_6p0_cong_mod0_99x010 90 10 3,04-6 2501 23 Out 2006 6,5 s Mach2D_6p0_cong_mod0_360:040 180 20 8,04-7 3812 23 Out 2006 4,10 min Mach2D_6p0_cong_mod0_190:010 90 10 3,04-6 23 Out 2006 4,90 min Mach2D_6p0_cong_mod0_190:010 90 10 3,04-6 24 Out 2006 5,44 s Mach2D_6p0_cong_mod0_130:020 180 20 1,04-6 4453 24 Out 2006 5,44 s Mach2D_6p0_cong_mod0_130:020 180 20 1,04-6 4453 24 Out 2006 5,88 s Mach2D_6p0_cong_mod0_200:010 90 10 3,04-6 2256 25 Out 2006 3,44 min Mach2D_6p0_cong_mod0_23:00:040 360 40 1,04-6 4325 25 Out 2006 3,44 min Mach2D_6p0_cong_mod0_30:00:010 90 10 3,04-6 2250 25 Out 2006 3,44 min Mach2D_6p0_cong_mod0_30:00:010 90 10 3,04-6 220 Uz 2006 3,44 min Mach2D_6p0_cong_mod03:00:010<		Escos	mento conge	lado			
Mach2D_6p0_cong_mod0_180x020 180 20 8.04-7 5812 23 Out 2006 1.10 min Mach2D_6p0_cong_mod0_30x040 360 40 8.04-7 1012 23 Out 2006 4.19 min Mach2D_6p0_cong_mod0_190x010 90 10 3.04-6 2087 24 Out 2006 5.44 s Mach2D_6p0_cong_mod0_180x020 180 20 1.04-6 4363 24 Out 2006 5.18 s Mach2D_6p0_cong_mod0_280x040 360 40 1.04-6 4370 24 Out 2006 5.28 s Mach2D_6p0_cong_mod0_280x040 360 40 1.04-6 4255 25 Out 2006 5.88 s Mach2D_6p0_cong_mod0_280x040 360 40 1.04-6 4255 25 Out 2006 5.88 s Mach2D_6p0_cong_mod0_380x040 360 40 1.04-6 425 25 Out 2006 5.89 s Mach2D_6p0_cong_mod0_3180x020 180 20 1.04-6 425 21 Out 2006 3.30 min Mach2D_6p0_cong_mod0_300x010 90 10 3.04-7 9000 20 Out 2006 3.32 min	Mach2D 6p0 cong mod00 090x010	90	10	3.0d-6	2501	23 Out 2006	6.56 s
Mach2D_6p0_comg_mod00_360x040 360 40 8,04-7 4067 23 Out 2006 4,19 min Mach2D_6p0_comg_mod00_20x080 720 80 3,04-7 11212 23 Out 2006 5,44 s Mach2D_6p0_comg_mod01_180x020 180 20 1,04-6 4443 24 Out 2006 5,44 s Mach2D_6p0_comg_mod01_280x040 360 40 1.04-6 4433 24 Out 2006 5,88 s Mach2D_6p0_comg_mod02_180x020 180 20 1,04-6 4435 25 Out 2006 5,88 s Mach2D_6p0_comg_mod02_360x040 360 40 1,04-6 4352 25 Out 2006 5,88 s Mach2D_6p0_comg_mod02_360x040 360 40 1,04-6 432 s 25 Out 2006 49.2 min Mach2D_6p0_comg_mod03_360x040 360 40 1,04-6 432 s 23 Out 2006 5,89 s Mach2D_6p0_comg_mod03_360x040 360 40 1,04-6 434 s 23 Out 2006 3,30 min Mach2D_6p0_comg_mod03_360x040 360 40 1,04-6 434 s 23 Out 2006	Mach $2D_6p0_cong_mod00_180x020$	180	20	8.0d-7	5812	23 Out 2006	1.10 min
Mach2D_6p0_comg_mod0_200x080 720 80 3.04-7 11212 23 Out 2006 49.0 min Mach2D_6p0_comg_mod0_100x010 90 10 3.04-6 2087 24 Out 2006 5.44 st Mach2D_6p0_comg_mod0_1360x040 366 40 1.04-6 3760 24 Out 2006 3.18 st Mach2D_6p0_comg_mod0_200x010 90 10 3.04-6 2256 25 Out 2006 5.8 st Mach2D_6p0_comg_mod0_200x010 90 10 3.04-6 2256 25 Out 2006 5.8 st Mach2D_6p0_comg_mod0_200x00 180 20 1.04-6 4355 25 Out 2006 5.8 st Mach2D_6p0_comg_mod0_300x00 180 20 1.04-6 4324 23 Out 2006 48.6 st Mach2D_6p0_comg_mod0_3180x020 180 20 1.04-6 4345 23 Out 2006 43.2 min Mach2D_6p0_comg_mod0_3180x020 180 20 1.04-6 4344 23 Out 2006 6.0 st Mach2D_6p0_comg_mod0_3180x020 180 20 1.04-6 4314 23 Out 2006 4.3 2 min	Mach2D 6p0 cong mod $00_{360x040}$	360	40	8.0d-7	4067	23 Out 2006	4 19 min
Math2D_cp0_comg_mod0_0900:10 90 10 3,04-6 2007 24 Jun 2006 5,44 s Mach2D_cp0_comg_mod0_1560:00 360 40 1,04-6 346.0 24 Our 2006 3,94 min Mach2D_cp0_comg_mod0_1220:080 720 80 3,04-7 100.78 24 Our 2006 5,88 s Mach2D_cp0_comg_mod02_090:010 90 10 3,04-6 2256 25 Our 2006 5,88 s Mach2D_cp0_comg_mod02_200:0010 90 10 3,04-6 2256 25 Our 2006 3,44 min Mach2D_cp0_comg_mod02_200:0010 90 10 3,04-6 2256 23 Our 2006 49.2 min Mach2D_cp0_comg_mod03_09:0010 90 10 3,04-6 2269 23 Our 2006 48,6 s Mach2D_cp0_comg_mod03_09:0010 90 10 3,04-6 2269 23 Our 2006 43,2 min Mach2D_cp0_comg_mod05_18:0020 180 20 1,04-6 3184 23 Our 2006 43,2 min Mach2D_cp0_comg_mod05_10:0010 90 10 3,04-6 2269 23 Our 2006	Mach2D_ $6p0_cong_mod00_720x080$	720	80	3.0d-7	11212	23 Out 2006	49.0 min
Mach2D_cp0_comg_mod01_180x020 180 20 1.04-6 440 240 u 2006 3.94 min Mach2D_cp0_comg_mod01_20x080 720 80 3.04-7 10.373 24 Ou 2006 3.94 min Mach2D_cp0_comg_mod02_09x010 90 10 3.04-6 2256 25 Our 2006 5.88 s Mach2D_cp0_comg_mod02_08x010 90 10 3.04-6 4455 25 Our 2006 5.88 s Mach2D_cp0_comg_mod02_20x080 720 80 3.04-7 110.16 25 Our 2006 5.89 s Mach2D_cp0_comg_mod03_180x020 180 20 1.04-6 4245 23 Our 2006 5.89 s Mach2D_cp0_comg_mod03_12x0x080 720 80 3.04-7 9400 3.02 Our 2006 3.33 min Mach2D_cp0_comg_mod03_12x0x080 720 80 3.04-7 9400 3.02 Our 2006 5.33 s Mach2D_cp0_comg_mod05_90x010 90 10 3.04-6 2269 23 Our 2006 5.03 s Mach2D_cp0_comg_mod05_90x010 90 10 3.04-7 9400 23 Our 2006 5.0	Mach2D_ $opo_cong_mod01_090x010$	90	10	3.0d-6	2087	24 Out 2006	5 44 s
Mach2D_cp0_cong_mod01_360x040 300 10 10.4-6 37.60 24 Our 2006 45.2 min Mach2D_cp0_cong_mod01_20x080 720 80 3.04-7 10073 24 Our 2006 45.2 min Mach2D_cp0_cong_mod02_180x020 180 20 1.04-6 3256 25 Our 2006 3.44 min Mach2D_cp0_cong_mod02_180x020 180 20 1.04-6 3236 25 Our 2006 3.44 min Mach2D_cp0_cong_mod02_270x080 720 80 3.04-7 11106 25 Our 2006 49.2 min Mach2D_cp0_cong_mod03_090x010 90 10 3.04-6 2259 23 Our 2006 48.6 s Mach2D_cp0_cong_mod03_180x020 180 20 1.04-6 4245 23 Our 2006 43.2 min Mach2D_cp0_cong_mod05_180x020 180 20 1.04-6 4245 23 Our 2006 3.3.0 min Mach2D_cp0_cong_mod05_180x020 180 20 1.04-6 4245 23 Our 2006 3.3.3 min Mach2D_cp0_cong_mod05_180x040 300 40 1.04-6 4245 23 Our 2006	Mach2D_ $opo_cong_mod01_180x020$	180	20	1.0d-6	4463	24 Out 2000	5, 44 S
Match2D_6p0_comg_mol01_220x080 200 40 1,04-0 2100 21-00 20-00 53-76 Mash2D_6p0_comg_mol02_000x010 90 10 3,04-6 2256 25 Our 2006 5,88 s Mash2D_6p0_comg_mol02_100x020 180 20 1,04-6 4355 25 Our 2006 5,88 s Mash2D_6p0_comg_mol02_30x080 720 80 3,04-7 11106 25 Our 2006 4,92 min Mash2D_6p0_comg_mol03_1090x010 90 10 3,04-6 2260 23 Our 2006 4,92 min Mash2D_6p0_comg_mol03_180x020 180 20 1,04-6 4184 23 Our 2006 43,3 min Mash2D_6p0_comg_mol03_120x080 720 80 3,04-7 9600 23 Our 2006 53,3 s Mash2D_6p0_comg_mol03_50x040 360 40 1,04-6 3184 23 Our 2006 43,5 min Mash2D_6p0_comg_mol03_90x040 90 10 3,04-7 9600 23 Our 2006 49,9 s Mash2D_6p0_comg_mol09_90x010 90 10 3,04-7 9600 23 Our 2006	Mach2D_ $opo_cong_mod01_360x040$	360	20 40	1,00-6	3760	24 Out 2000	3 94 min
Mach2D_pdp_comg_mod02_080x00 P20 Rod P204 Rod P224 Rod Mach2D_pdp_cong_mod02_080x00 90 10 3.04-6 2256 25 0ut 2006 5.8 ks Mach2D_pdp_cong_mod02_180x020 180 20 1.04-6 4325 25 0ut 2006 3.44 min Mach2D_pdp_cong_mod02_180x020 180 20 1.04-6 425 25 0ut 2006 3.44 min Mach2D_pdp_cong_mod03_180x020 180 20 1.04-6 3184 23 0ut 2006 3.30 min Mach2D_pdp_cong_mod03_200x040 360 40 1.04-6 3184 23 0ut 2006 6.00 s Mach2D_pdp_cong_mod03_200x040 360 40 1.04-6 3184 23 0ut 2006 6.00 s Mach2D_pdp_cong_mod05_300x010 90 10 3.04-7 9600 23 0ut 2006 43.5 min Mach2D_pdp_cong_mod05_300x010 90 10 3.04-7 9600 23 0ut 2006 49.5 s Mach2D_pdp_cong_mod05_300x010 90 10 3.04-7 9600 23 0ut 2006 40.9 s <	Mach2D_6p0_cong_mod01_720x080	720	80	1,00-0 3.0d-7	10378	24 Out 2000	45.2 min
Match2D_p0p2_cong_mod02_180x020 180 20 1.04-6 44.55 2.50 at 2.00 52.8 s Mach2D_p0p2_cong_mod02_360x040 360 40 1.04-6 32.55 2.50 ut 2006 3.44 min Mach2D_p0p2_cong_mod03_300x010 90 10 3.04-6 2.269 2.50 ut 2006 3.88 s Mach2D_p0p2_cong_mod03_360x040 360 40 1.04-6 4.84 cs 3.00 ut 2006 4.8, cs Mach2D_p0p2_cong_mod03_360x040 360 40 1.04-6 4.84 cs 3.00 ut 2006 4.8, cs Mach2D_p0p2_cong_mod03_180x020 180 20 1.04-6 4.24 s 2.3 Out 2006 6.00 s Mach2D_p0p2_cong_mod05_360x040 360 40 1.04-6 4.24 s 2.3 Out 2006 3.3, 3 min Mach2D_p0p2_cong_mod05_720x080 7.20 80 3.04-7 9600 2.3 Out 2006 3.42 min Mach2D_p0p2_cong_mod05_720x080 7.20 80 3.04-7 9600 2.3 Out 2006 4.32 min Mach2D_p0p2_cong_mod07_720x080 7.20 80 3.04-7 9600	$Mach2D_6p0_cong_mod02_020x000$	00	10	3.0d.6	2256	24 Out 2000	5 88 s
Math2D_pp(_comg_mod02_360x40) 180 20 1,04-5 3236 25 Out 2006 3,44 min Mach2D_pf0_cong_mod02_70x080 720 80 3,04-7 11106 25 Out 2006 3,44 min Mach2D_pf0_cong_mod03_90x010 90 10 3,04-6 2269 25 Out 2006 48,6 s Mach2D_pf0_cong_mod03_180x020 180 20 1,04-6 3184 23 Out 2006 48,6 s Mach2D_pf0_cong_mod03_720x080 720 80 3,04-7 9600 23 Out 2006 6,00 s Mach2D_pf0_cong_mod05_180x020 180 20 1,04-6 4184 23 Out 2006 6,00 s Mach2D_pf0_cong_mod05_360x040 360 40 1,04-6 4184 23 Out 2006 40,3 min Mach2D_pf0_cong_mod05_180x020 180 20 1,04-6 4184 23 Out 2006 40,3 s min Mach2D_pf0_cong_mod05_180x040 360 40 1,04-6 3184 23 Out 2006 40,9 s Mach2D_pf0_cong_mod09_360x040 360 40 1,04-6 3184 23 Out 2006 <t< td=""><td>Mach2D_opo_cong_mod02_090x010</td><td>90 180</td><td>20</td><td>5,00-0</td><td>4455</td><td>25 Out 2000</td><td>5,00 5</td></t<>	Mach2D_opo_cong_mod02_090x010	90 180	20	5,00-0	4455	25 Out 2000	5,00 5
Mach2D_p0p_cong_mod02_20x080 720 80 3.0d-7 1106 25.0d 25.0d 20.0d 24.2 min Mach2D_p0p_cong_mod03_280x00 190 10 3.0d-6 2269 23.0d 20.0d 58.9 s Mach2D_p0p_cong_mod03_280x00 180 20 1.0d-6 4245 23.0d 23.0d 30.0min Mach2D_p0p_cong_mod03_290x010 90 10 3.0d-6 2269 23.0d 23.0d 48.6 s Mach2D_p0p_cong_mod03_290x010 90 10 3.0d-6 2269 23.0d 20.0d 43.2 min Mach2D_p0p_cong_mod05_190x010 90 10 3.0d-6 2269 23.0d 20.0d 43.5 min Mach2D_p0p_cong_mod05_180x020 180 20 1.0d-6 3184 23.0d 20.0d 43.5 min Mach2D_p0p_cong_mod09_90x010 90 10 3.0d-7 9600 23.0d 20.0d 43.5 min Mach2D_p0p_cong_mod09_90x010 90 10 3.0d-6 2269 23.0d 20.0d 3.0d	Mach2D_opo_cong_mod02_180x020	260	20	1,0 u- 0	2026	25 Out 2000	32,0 S
Mach2D_p0p_cong_mod03_90x010 90 10 3,04-7 11100 25 0.01 2006 45,2 min Mach2D_p6p_cong_mod03_90x010 90 10 3,04-6 2269 23 0.01 2006 48,6 s Mach2D_p6p_cong_mod03_70x080 720 80 3,04-7 9600 23 0.01 2006 43,2 min Mach2D_p6p_cong_mod05_90x010 90 10 3,04-6 2269 23 0.01 2006 6,00 s Mach2D_p6p_cong_mod05_360x040 360 40 1,04-6 4245 23 0.01 2006 6,00 s Mach2D_p6p_cong_mod05_360x040 360 40 1,04-6 4245 23 0.01 2006 43,5 min Mach2D_p6p_cong_mod05_90x010 90 10 3,04-6 2269 23 0.01 2006 43,5 min Mach2D_p6p_cong_mod09_90x010 90 10 3,04-6 2269 23 0.01 2006 43,5 min Mach2D_p6p_cong_mod09_9180x020 180 20 1,04-6 4145 23 0.01 2006 43,1 min Mach2D_p6p_cong_mod10_30x040 360 40 1,04-6 244 23 0.01 2006	Mach2D_6p0_cong_mod02_360x040	300 720	40	1,00-0	3230	25 Out 2006	3,44 min
Mach2D_gop_cong_mod03_180x00 90 10 5.04-5 2290 25 0.012006 5.89 8 Mach2D_6p0_cong_mod03_180x00 360 40 1.04-6 3184 23 Out 2006 48.6 s Mach2D_6p0_cong_mod03_720x080 720 80 3.04-7 9600 23 Out 2006 43.2 min Mach2D_6p0_cong_mod05_90x010 90 10 3.04-6 2269 23 Out 2006 53.3 s Mach2D_6p0_cong_mod05_90x010 90 10 3.04-6 2269 23 Out 2006 3.42 min Mach2D_6p0_cong_mod05_720x080 720 80 3.04-7 9600 23 Out 2006 43.5 min Mach2D_6p0_cong_mod05_90x010 90 10 3.04-6 2269 23 Out 2006 40.9 s Mach2D_6p0_cong_mod09_306x040 360 40 1.04-6 4245 23 Out 2006 43.4 min Mach2D_6p0_cong_mod10_90x010 90 10 3.04-7 9600 23 Out 2006 43.1 min Mach2D_6p0_cong_mod10_180x020 180 20 1.04-6 4245 23 Out 2006 49.9 s<	Mach2D_6p0_cong_mod02_/20x080	/20	80	3,00-7	22(0	23 Out 2006	49,2 min
Mach2D_p6p_cong_mod03_160x040 180 20 1.04-6 44.8 23 3.00 48.6 s 3.30 min Mach2D_p6p_cong_mod03_720x080 720 80 3.04-7 9600 23 0ut 2006 43.2 min Mach2D_p6p_cong_mod05_180x020 180 20 1.04-6 4245 23 0ut 2006 6.00 s Mach2D_p6p_cong_mod05_360x040 360 40 1.04-6 3184 23 0ut 2006 3.42 min Mach2D_p6p_cong_mod05_360x040 360 40 1.04-6 3184 23 0ut 2006 43,5 min Mach2D_p6p_cong_mod09_90x010 90 10 3.04-7 9600 23 0ut 2006 43,5 min Mach2D_p6p_cong_mod09_90x010 90 10 3.04-6 2269 23 0ut 2006 3.44 min Mach2D_p6p_cong_mod09_720x080 720 80 3.04-7 9600 23 0ut 2006 3.44 min Mach2D_p6p_cong_mod10_30x040 360 40 1.04-6 4245 23 0ut 2006 3.33 min <t< td=""><td>Mach2D_6p0_cong_mod03_090x010</td><td>90</td><td>10</td><td>3,00-6</td><td>2269</td><td>23 Out 2006</td><td>5,89 s</td></t<>	Mach2D_6p0_cong_mod03_090x010	90	10	3,00-6	2269	23 Out 2006	5,89 s
Mach2D_6p0_cong_mod03_200080 360 40 1.04-6 3184 23 Out 2006 4,2 min Mach2D_6p0_cong_mod05_090x010 90 10 3.04-6 2269 23 Out 2006 43,2 min Mach2D_6p0_cong_mod05_180x020 180 20 1.04-6 4245 23 Out 2006 53,3 s Mach2D_6p0_cong_mod05_720x080 720 80 3.04-7 9600 23 Out 2006 6,0 s Mach2D_6p0_cong_mod05_720x080 720 80 3.04-7 9600 23 Out 2006 6,0 s Mach2D_6p0_cong_mod09_90x010 90 10 3.04-6 2269 23 Out 2006 49,9 s Mach2D_6p0_cong_mod09_70x080 720 80 3.0d-7 9600 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_80x020 180 20 1.0d-6 4245 23 Out 2006 59.8 s Mach2D_6p0_cong_mod10_180x020 180 20 1.0d-6 43184 23 Out 2006 43,9 s Mach2D_6p0_cong_mod10_180x020 180 20 1.0d-6 4314 23 Out 2006 43,9 s <td>Mach2D_6p0_cong_mod03_180x020</td> <td>180</td> <td>20</td> <td>1,0d-6</td> <td>4245</td> <td>23 Out 2006</td> <td>48,6 s</td>	Mach2D_6p0_cong_mod03_180x020	180	20	1,0d-6	4245	23 Out 2006	48,6 s
Mach2D_6p0_cong_mod05_200x010 90 10 3,04-6 2000 23 Out 2006 43,2 mm Mach2D_6p0_cong_mod05_180x020 180 20 1,04-6 4245 23 Out 2006 53,3 s Mach2D_6p0_cong_mod05_180x020 180 20 1,04-6 4245 23 Out 2006 3,42 min Mach2D_6p0_cong_mod05_720x080 720 80 3,04-7 9600 23 Out 2006 43,5 min Mach2D_6p0_cong_mod05_720x080 720 80 3,04-7 9600 23 Out 2006 49,9 s Mach2D_6p0_cong_mod09_00x010 90 10 3,04-6 2269 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_90x010 90 10 3,04-6 2269 23 Out 2006 5,98 s Mach2D_6p0_cong_mod10_90x010 90 10 3,04-6 2269 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_360x040 360 40 1,04-6 4314 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_360x040 180 20 1,04-6 6409 24 Ian 2007 2,6 s <td>Mach2D_6p0_cong_mod03_360x040</td> <td>360</td> <td>40</td> <td>1,0d-6</td> <td>3184</td> <td>23 Out 2006</td> <td>3,30 min</td>	Mach2D_6p0_cong_mod03_360x040	360	40	1,0d-6	3184	23 Out 2006	3,30 min
Mach2D_6p0_cong_mod05_180x200 180 20 1,04-6 22.9 23.04 2006 6,00 s Mach2D_6p0_cong_mod05_180x200 180 20 1,04-6 3184 23.04 2006 53.3 s Mach2D_6p0_cong_mod05_360x040 360 40 1,04-6 3184 23.04 2006 53.3 s Mach2D_6p0_cong_mod09_00x010 90 10 3,04-6 2269 23.04 2006 43.5 min Mach2D_6p0_cong_mod09_90x010 90 10 3,04-6 2269 23.04 2006 43.5 min Mach2D_6p0_cong_mod09_360x040 360 40 1,04-6 3184 23.04 2006 3,44 min Mach2D_6p0_cong_mod10_90x010 90 10 3,04-7 9600 23.04 2006 5,98 s Mach2D_6p0_cong_mod10_90x010 90 10 3,04-6 2269 23.04 2006 3,33 min Mach2D_6p0_cong_mod10_90x010 90 10 1,04-6 3184 23.04 2006 3,33 min Mach2D_6p0_eq_mod1_90x10 90 10 1,04-6 8011 24 Jan 2007 27,6 s	Mach2D_6p0_cong_mod03_720x080	720	80	3,0d-7	9600	23 Out 2006	43,2 min
Mach2D_6p0_cong_mod05_180x020 180 20 1,04-6 4245 23 Out 2006 53,3 s Mach2D_6p0_cong_mod05_720x080 720 80 3,04-7 9600 23 Out 2006 44,2 min Mach2D_6p0_cong_mod09_090x010 90 10 3,0d-6 2269 23 Out 2006 43,5 min Mach2D_6p0_cong_mod09_180x020 180 20 1,0d-6 4245 23 Out 2006 49,9 s Mach2D_6p0_cong_mod09_360x040 360 40 1,0d-6 4245 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_100x010 90 10 3,0d-6 2269 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_100x040 360 40 1,0d-6 4245 23 Out 2006 43,3 min Mach2D_6p0_cong_mod10_100x040 360 40 1,0d-6 8144 23 Out 2006 42,9 min Mach2D_6p0_eq_mod10_360x40 360 40 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod1_80x20 180 20 1,0d-6 449 33 min	Mach2D_6p0_cong_mod05_090x010	90	10	3,0d-6	2269	23 Out 2006	6,00 s
Mach2D_op0_cong_mod05_360x040 360 40 1,04-6 3184 23 Out 2006 3,42 min Mach2D_op0_cong_mod05_720x080 720 80 3,04-7 9600 23 Out 2006 6,00 s Mach2D_op0_cong_mod09_08010 90 10 3,04-6 2269 23 Out 2006 6,00 s Mach2D_op0_cong_mod09_360x040 360 40 1,04-6 4245 23 Out 2006 3,44 min Mach2D_op0_cong_mod09_360x040 360 40 1,04-6 4245 23 Out 2006 5,98 s Mach2D_op0_cong_mod10_09x010 90 10 3,04-6 2269 23 Out 2006 49,9 s Mach2D_op0_cong_mod10_360x040 360 40 1,04-6 4245 23 Out 2006 42,9 min Mach2D_op0_cong_mod10_360x040 360 40 1,04-6 3184 23 Out 2006 42,9 min Mach2D_op0_ceq_mod10_360x40 360 40 1,0d-6 4458 24 Jan 2007 27,6 s Mach2D_op0_eq_mod1_80x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 min </td <td>Mach2D_6p0_cong_mod05_180x020</td> <td>180</td> <td>20</td> <td>1,0d-6</td> <td>4245</td> <td>23 Out 2006</td> <td>53,3 s</td>	Mach2D_6p0_cong_mod05_180x020	180	20	1,0d-6	4245	23 Out 2006	53,3 s
Mach2D_6p0_cong_mod09_2720x080 720 80 3,0d-7 9600 23 Out 2006 43,5 min Mach2D_6p0_cong_mod09_190x010 90 10 3,0d-6 2269 23 Out 2006 6,00 s Mach2D_6p0_cong_mod09_180x020 180 20 1,0d-6 4245 23 Out 2006 43,9 s Mach2D_6p0_cong_mod09_720x080 720 80 3,0d-7 9600 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_090x010 90 10 3,0d-6 2269 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_090x010 90 10 3,0d-6 2269 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_360x040 360 40 1,0d-6 3184 23 Out 2006 42,9 min Escoamento em equilibrio Escoamento em equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 401 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 752 25 Jan 2007 1,40 s Mach2D_6p0_eq_mod1_80x40 <td>Mach2D_6p0_cong_mod05_360x040</td> <td>360</td> <td>40</td> <td>1,0d-6</td> <td>3184</td> <td>23 Out 2006</td> <td>3,42 min</td>	Mach2D_6p0_cong_mod05_360x040	360	40	1,0d-6	3184	23 Out 2006	3,42 min
Mach2D_6p0_cong_mod09_090x010 90 10 3,04-6 2269 23 Out 2006 6,00 s Mach2D_6p0_cong_mod09_180x020 180 20 1,0d-6 3184 23 Out 2006 3,44 min Mach2D_6p0_cong_mod09_720x080 720 80 3,0d-7 9600 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_090x010 90 10 3,0d-6 2269 23 Out 2006 43,9 s Mach2D_6p0_cong_mod10_180x020 180 20 1,0d-6 4245 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42,9 nin Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42,9 nin Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 77,6 s Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 7452 25 Jan 2007 1,68 min Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 7452 25 Jan 2007 1,27 min	Mach2D_6p0_cong_mod05_720x080	720	80	3,0d-7	9600	23 Out 2006	43,5 min
Mach2D_6p0_cong_mod09_180x020 180 20 1,04-6 4245 23 Out 2006 49.9 s Mach2D_6p0_cong_mod09_720x080 720 80 3,04-7 9600 23 Out 2006 43.1 min Mach2D_6p0_cong_mod10_090x010 90 10 3,04-6 2269 23 Out 2006 43.9 min Mach2D_6p0_cong_mod10_180x020 180 20 1,0d-6 4245 23 Out 2006 49.9 s Mach2D_6p0_cong_mod10_360x040 360 40 1,0d-6 3184 23 Out 2006 43.9 min Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42.9 min Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42.9 min Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27.6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 4458 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 1,20 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6	Mach2D_6p0_cong_mod09_090x010	90	10	3,0d-6	2269	23 Out 2006	6,00 s
Mach2D_6p0_cong_mod09_360x040 360 40 1,04-6 3184 23 Out 2006 3,44 min Mach2D_6p0_cong_mod10_720x080 720 80 3,04-7 9600 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_90x010 90 10 3,04-6 2269 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_180x020 180 20 1,04-6 3184 23 Out 2006 42,9 min Mach2D_6p0_cong_mod10_720x080 720 80 3,04-7 9600 23 Out 2006 42,9 min Mach2D_6p0_eq_mod0_9x10 90 10 1,04-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_9x010 90 10 1,04-6 6409 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod0_180x20 180 20 1,04-6 4458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,04-6 7452 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_90x10 90 10 1,04-6 7519 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_80x20 180 20 1,04-6 5518	Mach2D_6p0_cong_mod09_180x020	180	20	1,0d-6	4245	23 Out 2006	49,9 s
Mach2D_6p0_cong_mod09_720x080 720 80 3,04-7 9600 23 Out 2006 43,1 min Mach2D_6p0_cong_mod10_090x010 90 10 3,04-6 2269 23 Out 2006 5,98 s Mach2D_6p0_cong_mod10_360x040 360 40 1,04-6 4245 23 Out 2006 3,33 min Mach2D_6p0_cong_mod10_360x040 360 40 1,04-6 3184 23 Out 2006 42,9 min Mach2D_6p0_cong_mod10_720x080 720 80 3,04-7 9600 23 Out 2006 42,9 min Mach2D_6p0_eq_mod0_90x10 90 10 1,04-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_360x40 360 40 1,04-6 6409 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,04-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_180x20 180 20 1,04-6 5336 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod2_180x40 360 40 1,04-6 7519 25 Jan 2007 1,30 min Mach2D_6p0_eq_mod2_30x40 360 40 1,04-6 5518 <td>Mach2D_6p0_cong_mod09_360x040</td> <td>360</td> <td>40</td> <td>1,0d-6</td> <td>3184</td> <td>23 Out 2006</td> <td>3,44 min</td>	Mach2D_6p0_cong_mod09_360x040	360	40	1,0d-6	3184	23 Out 2006	3,44 min
Mach2D_6p0_cong_mod10_090x010 90 10 3,04-6 2269 23 Out 2006 5,98 s Mach2D_6p0_cong_mod10_180x020 180 20 1,04-6 4245 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_360x040 360 40 1,04-6 3184 23 Out 2006 42,9 min Mach2D_6p0_cong_mod10_720x080 720 80 3,04-7 9600 23 Out 2006 42,9 min Mach2D_6p0_eq_mod1_80x20 180 20 1,04-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,04-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod1_80x20 180 20 1,04-6 7452 25 Jan 2007 1,40 s Mach2D_6p0_eq_mod1_360x40 360 40 1,04-6 7352 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_360x40 360 40 1,04-6 7519 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod2_90x10 90 10 1,04-6 7519 25 Jan 2007 1,20 min	Mach2D_6p0_cong_mod09_720x080	720	80	3,0d-7	9600	23 Out 2006	43,1 min
Mach2D_6p0_cong_mod10_180x020 180 20 1,0d-6 4245 23 Out 2006 49,9 s Mach2D_6p0_cong_mod10_360x040 360 40 1,0d-6 3184 23 Out 2006 3,33 min Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42,9 min Escoamento em equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 4458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 7519 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 1,20 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 6375 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod3_180x020	Mach2D_6p0_cong_mod10_090x010	90	10	3,0d-6	2269	23 Out 2006	5,98 s
Mach2D_6p0_cong_mod10_360x040 360 40 1,0d-6 3184 23 Out 2006 3,33 min Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42,9 min Escoamento em equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 2,6 s Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 4458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 5336 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 5118 25 Jan 2007 1,32 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod3_180x020 180 <td>Mach2D_6p0_cong_mod10_180x020</td> <td>180</td> <td>20</td> <td>1,0d-6</td> <td>4245</td> <td>23 Out 2006</td> <td>49,9 s</td>	Mach2D_6p0_cong_mod10_180x020	180	20	1,0d-6	4245	23 Out 2006	49,9 s
Mach2D_6p0_cong_mod10_720x080 720 80 3,0d-7 9600 23 Out 2006 42,9 min Escoamento em equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 64458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 5518 25 Jan 2007 1,50 min Mach2D_6p0_eq_mod3_90x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_90x010 90 10 5,0d-7 6382	Mach2D_6p0_cong_mod10_360x040	360	40	1,0d-6	3184	23 Out 2006	3,33 min
Escoamento en equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 7452 25 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_80x20 180 20 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 7519 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod3_360x40 360 40 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod3_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod1_00y0x010 90 10 5,0d-7 6385	Mach2D_6p0_cong_mod10_720x080	720	80	3,0d-7	9600	23 Out 2006	42,9 min
Escoamento em equilibrio Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 4458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 5336 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod3_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod1_090x010 90 10 5,0d-7 6385							
Mach2D_6p0_eq_mod0_90x10 90 10 1,0d-6 8011 24 Jan 2007 27,6 s Mach2D_6p0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 min Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 4458 24 Jan 2007 6,11 min Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_80x20 180 20 1,0d-6 5336 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 7519 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17		Escoan	nento em equ	ilíbrio	0011	24.4 2007	27.6
Mach2D_op0_eq_mod0_180x20 180 20 1,0d-6 6409 24 Jan 2007 1,68 mm Mach2D_op0_eq_mod0_360x40 360 40 1,0d-6 4458 24 Jan 2007 6,11 min Mach2D_op0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_op0_eq_mod1_180x20 180 20 1,0d-6 5336 25 Jan 2007 1,27 min Mach2D_op0_eq_mod1_360x40 360 40 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_op0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,32 min Mach2D_op0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_op0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_op0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 11,5 min Mach2D_op0_eq_mod0_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_op0_eq_mod1_090x010 90 10 5,0d-7 6382 <td< td=""><td>Mach2D_6p0_eq_mod0_90x10</td><td>90</td><td>10</td><td>1,0d-6</td><td>8011</td><td>24 Jan 2007</td><td>27,6 s</td></td<>	Mach2D_6p0_eq_mod0_90x10	90	10	1,0d-6	8011	24 Jan 2007	27,6 s
Mach2D_6p0_eq_mod0_360x40 360 40 1,0d-6 4458 24 Jan 2007 6,11 mm Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 5336 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod3_90x010 90 10 5,0d-7 6375 15 Nov 2006 11,74 h Mach2D_6p0_eq_mod3_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod1_0090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_ff_090x010_mod31 90 10 1,0d-8 200000	Mach2D_6p0_eq_mod0_180x20	180	20	1,0d-6	6409	24 Jan 2007	1,68 min
Mach2D_6p0_eq_mod1_90x10 90 10 1,0d-6 7452 25 Jan 2007 24,0 s Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 5336 25 Jan 2007 1,27 min Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod3_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod4_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000	Mach2D_6p0_eq_mod0_360x40	360	40	1,0d-6	4458	24 Jan 2007	6,11 min
Mach2D_6p0_eq_mod1_180x20 180 20 1,0d-6 5336 25 Jan 2007 1,27 mm Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod3_90x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Mach2D_6p0_etf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_ftf_360x040_mod31 360 40 1,0d-8 200000 <td>Mach2D_6p0_eq_mod1_90x10</td> <td>90</td> <td>10</td> <td>1,0d-6</td> <td>7452</td> <td>25 Jan 2007</td> <td>24,0 s</td>	Mach2D_6p0_eq_mod1_90x10	90	10	1,0d-6	7452	25 Jan 2007	24,0 s
Mach2D_6p0_eq_mod1_360x40 360 40 1,0d-6 3669 25 Jan 2007 5,32 min Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod1_0090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_190x010_mod31	Mach2D_6p0_eq_mod1_180x20	180	20	1,0d-6	5336	25 Jan 2007	1,27 min
Mach2D_6p0_eq_mod2_90x10 90 10 1,0d-6 7519 25 Jan 2007 1,10 min Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod1_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 1,96 h Mach2D_6p0_tf_090x010_mod32	Mach2D_6p0_eq_mod1_360x40	360	40	1,0d-6	3669	25 Jan 2007	5,32 min
Mach2D_6p0_eq_mod2_180x20 180 20 1,0d-6 5518 25 Jan 2007 3,29 min Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_180x020_mod32 <td>Mach2D_6p0_eq_mod2_90x10</td> <td>90</td> <td>10</td> <td>1,0d-6</td> <td>7519</td> <td>25 Jan 2007</td> <td>1,10 min</td>	Mach2D_6p0_eq_mod2_90x10	90	10	1,0d-6	7519	25 Jan 2007	1,10 min
Mach2D_6p0_eq_mod2_360x40 360 40 5,0d-7 5964 25 Jan 2007 15,0 min Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_180x020_mod32 90 10 1,0d-8 200000 18 Jan 2007 16,6 min Mach2D_6p0_tf_180x020_mod32	Mach2D_6p0_eq_mod2_180x20	180	20	1,0d-6	5518	25 Jan 2007	3,29 min
Mach2D_6p0_eq_mod03_090x010 90 10 5,0d-7 6375 15 Nov 2006 11,5 min Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_180x020_mod32 90 10 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_180x020_mod32 90 10 1,0d-8 200000 18 Jan 2007 16,6 min Mach2D_6p0_tf_180x020_mod3	Mach2D_6p0_eq_mod2_360x40	360	40	5,0d-7	5964	25 Jan 2007	15,0 min
Mach2D_6p0_eq_mod03_180x020 180 20 4,0d-7 17475 15 Nov 2006 1,74 h Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 28,6 min Mach2D_6p0_tf_180y020_mod32 90 10 1,0d-8 200000 18 Jan 2007 17,0 h	Mach2D_6p0_eq_mod03_090x010	90	10	5,0d-7	6375	15 Nov 2006	11,5 min
Mach2D_6p0_eq_mod04_090x010 90 10 5,0d-7 6385 15 Jan 2007 8,27 min Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 28,6 min Mach2D_6p0_tf_180x020_mod32 90 10 1,0d-8 200000 18 Jan 2007 19.5 h	Mach2D_6p0_eq_mod03_180x020	180	20	4,0d-7	17475	15 Nov 2006	1,74 h
Mach2D_6p0_eq_mod10_090x010 90 10 5,0d-7 6382 17 Jan 2007 14,6 min Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 90 10 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 18 Jan 2007 28,6 min Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 15 Jan 2007 28,6 min Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 15 Jan 2007 1.95 h	Mach2D_6p0_eq_mod04_090x010	90	10	5,0d-7	6385	15 Jan 2007	8,27 min
Escoamento com taxa finita Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 10 Jan 2007 28,6 min Mach2D_6n0_tf_180x020_mod32 180 20 1 0d-8 200000 15 Jan 2007 1.95 h	Mach2D_6p0_eq_mod10_090x010	90	10	5,0d-7	6382	17 Jan 2007	14,6 min
Escoamento con taxa mina Mach2D_6p0_tf_090x010_mod31 90 10 1,0d-8 200000 10 Jan 2007 28,0 min Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 10 Jan 2007 28,6 min Mach2D_6p0_tf_090x010_mod32 180 20 1.0d-8 200000 15 Jan 2007 1.95 h		Fassar	onto acm t	a finita			
Mach2D_6p0_tf_180x020_mod31 180 20 1,0d-8 200000 15 Jan 2007 1,96 h Mach2D_6p0_tf_180x020_mod31 360 40 1,0d-8 200000 18 Jan 2007 1,96 h Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 10 Jan 2007 28,6 min Mach2D_6p0_tf_180x020_mod32 180 20 1.0d-8 200000 15 Jan 2007 1.95 h	Mach2D 6n0 tf 090x010 mod31	escoam 90	10	a minta 1 0d-8	200000	10 Jan 2007	28.0 min
Mach2D_6p0_tf_360x040_mod31 360 40 1,0d-8 200000 18 Jan 2007 17,0 h Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 10 Jan 2007 28,6 min Mach2D_6p0_tf_180x020_mod32 180 20 1.0d-8 200000 15 Jan 2007 1.95 h	Mach2D $6n0$ tf $180x020$ mod31	180	20	1.0d-8	200000	15 Jan 2007	1 96 h
Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 16 Jan 2007 17,0 If Mach2D_6p0_tf_090x010_mod32 90 10 1,0d-8 200000 10 Jan 2007 28,6 min Mach2D_6n0_tf_180x020_mod32 180 20 1.0d-8 200000 15 Jan 2007 1.95 h	Mach2D $6n0$ tf $360x040$ mod31	360	20 40	1.0d_8	200000	18 Jan 2007	170h
$Mach2D_{0} = 0.0000 + 0.0000$	Mach2D_opo_tt_500x040_mod31 Mach2D_6n0_tf_000x010_mod32	00	10	1.0d.9	200000	10 Jan 2007	28.6 min
	Mach2D $6n0$ tf $180x020$ mod32	180	20	1.0d-8	200000	15 Jan 2007	1 95 h

Tabela 3.2: Arquivos com	os resultados originais	do código Mach2D,	, para os modelos de m	istura de gases.
			4 1	

Na Tabela 3.3 são apresentados os principais parâmetros físicos utilizados nas simulações listadas nas Tabelas 3.1 e 3.2. No caso dos modelos físicos monoespécies, foram realizadas simulações para o ar, para posterior comparação como os resultados apresentados por Back *et al.* (1965); e com vapor de água (H₂O), para comparação com os resultados obtidos para modelos de escoamento multiespécie.

Parâmetros físicos (modelo	Temperatura de estagnação (T_0)	833,33 K
monoespécie: ar)	Pressão de estagnação (P_0)	1,725068·10 ⁶ Pa
	Razão entre calores específicos (γ)	1,35
	Constante do gás (R)	287,0 J/kg·K
Parâmetros físicos (modelo	Temperatura de estagnação (T_0)	3420,33 K
monoespécie: H ₂ O)	Pressão de estagnação (P_0)	2,0·10 ⁶ Pa
	Razão entre calores específicos (γ)	1,1956
	Constante do gás (R)	526,97 J/kg·K
Parâmetros físicos (modelos	Temperatura de estagnação (T_0)	3420,33 K
multiespécies)	Pressão de estagnação (P_0)	$2,0.10^{6}$ Pa
	Razão entre calores específicos (γ)	1,1956
	Constante do gás (R)	526,97 J/kg·K
	Razão em massa oxidante/combustível (OF)	7,936682739
Parâmetro numérico	Parâmetro numéricoBeta (fator de mistura entre esquemas: UDS, $\beta = 0$; e CDS, $\beta = 1$)	
Microcomputador	Processador	Pentium IV, 3,40 GHz
	Memória RAM	4 GB
	Sistema operacional	Windows XP

Tabela 3.3: Parâmetros físicos, numérico e microcomputador utilizado nas simulações do código Mach2D.

As Tabelas 3.4 a 3.10, apresentadas na seqüência, mostram os resultados para as variáveis de interesse (globais e locais), para os diversos modelos físicos estudados (modelos monoespécie com escoamento de H₂O e com reações químicas).

Tabela 3.4: Resultados numéricos para empuxo (ao nível do mar e no vácuo) e velocidade característica, obtidoscom o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Empuxo – nível do mar [N]	Empuxo – vácuo [N]	Velocidade característica [m/s]
Monoespécie (H ₂ O) – p. const.	3,510720767064136E+03	4,382156086610380E+03	2,072858086473340E+03
Monoespécie (H ₂ O) - p. var.	3,392571000226753E+03	4,264006319772997E+03	2,127308433805948E+03
Esc. congelado (mod. 3)	3,354342280519610E+03	4,225777600065853E+03	2,107945948175438E+03
Esc. congelado (mod. 10)	3,354351020386190E+03	4,225786339932433E+03	2,107928971142122E+03
Esc. em equilíbrio (mod. 3)	3,478442726799007E+03	4,349878046345250E+03	2,152628112867259E+03
Esc. em equilíbrio (mod. 10)	3,478483979833557E+03	4,349919299379800E+03	2,152659679655160E+03
Esc. com taxa finita (mod. 31)	3,455265108551400E+03	4,326700428097643E+03	1,971586748245028E+03
Esc. com taxa finita (mod. 32)	3,461567455194514E+03	4,333002774740758E+03	1,960687556760189E+03

Tabela 3.5: Resultados numéricos para impulso específico (ao nível do mar e no vácuo) e coeficiente de descarga, obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Impulso específico – nível do mar [s]	Impulso específico – vácuo [s]	Coeficiente de descarga [adim.]
Monoespécie (H ₂ O) – p. const.	2,797213438670569E+02	3,520016258355586E+02	9,822837033679706E-01
Monoespécie (H ₂ O) - p. var.	2,836687246445631E+02	3,565335064544022E+02	9,744041125079393E-01
Esc. congelado (mod. 3)	2,779194206375768E+02	3,501209966478511E+02	9,833544775033394E-01
Esc. congelado (mod. 10)	2,779179064462729E+02	3,501189009574996E+02	9,833623973345837E-01
Esc. em equilíbrio (mod. 3)	2,943106064598687E+02	3,680426404560760E+02	9,629429598558630E-01
Esc. em equilíbrio (mod. 10)	2,943184127846753E+02	3,680515280096674E+02	9,629288391769368E-01
Esc. com taxa finita (mod. 31)	2,677622285454015E+02	3,352932155650058E+02	1,051365398108126E+00
Esc. com taxa finita (mod. 32)	2,667676976318087E+02	3,339253644516592E+02	1,057209793231156E+00
Solução analítica 2D– Kliegel e Levine (1969)			9,830546131567539E-01

Tabela 3.6: Resultados numéricos para coeficiente de empuxo (ao nível do mar e no vácuo) e empuxo dinâmico adimensional, obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Coeficiente de empuxo – nível do mar [adim.]	Coeficiente de empuxo – vácuo [adim.]	Empuxo dinâmico adimensional
Monoespécie (H ₂ O) – p. const.	1,299911094609074E+00	1,635809453859710E+00	9,649256287175394E-01
Monoespécie (H ₂ O) – p. var.	1,307680566827180E+00	1,643578926077817E+00	9,667177483920012E-01
Esc. congelado (mod. 3)	1,292945148216229E+00	1,628843507466866E+00	9,647891451613325E-01
Esc. congelado (mod. 10)	1,292948517034062E+00	1,628846876284698E+00	9,647895614144310E-01
Esc. em equilíbrio (mod. 3)	1,340780180091259E+00	1,676678539341895E+00	9,707946775773462E-01
Esc. em equilíbrio (mod. 10)	1,340796081244573E+00	1,676694440495209E+00	9,707967454135582E-01
Esc. com taxa finita (mod. 31)	1,331846270980526E+00	1,667744630231162E+00	9,740314107599122E-01
Esc. com taxa finita (mod. 32)	1,334275536640716E+00	1,670173895891353E+00	9,744321872605515E-01

Tabela 3.7: Resultados numéricos para temperatura, pressão e velocidade axial na saída da tubeira (centro), obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Temperatura [K]	Pressão [Pa]	Velocidade axial [m/s]
Monoespécie (H ₂ O) – p. const.	1,912891092460216E+03	5,772097896205931E+04	3,115850924375823E+03
Monoespécie (H ₂ O) – p. var.	2,004808751852579E+03	5,819670613320976E+04	3,153723163871432E+03
Esc. congelado (mod. 3)	1,837617609350204E+03	5,570994370392580E+04	3,111644387767022E+03
Esc. congelado (mod. 10)	1,837654923393273E+03	5,571052456835977E+04	3,111622291022181E+03
Esc. em equilíbrio (mod. 3)	2,583804974480022E+03	6,501359696566875E+04	3,214523141617767E+03
Esc. em equilíbrio (mod. 10)	2,583975805678841E+03	6,501555686948555E+04	3,214590552653582E+03
Esc. com taxa finita (mod. 31)	1,978347373704581E+03	6,021988477413709E+04	2,960340384726822E+03
Esc. com taxa finita (mod. 32)	1,994178885547855E+03	6,078353994061717E+04	2,944462518060327E+03

Modelo físico	Temperatura [K]	Pressão [Pa]	Velocidade axial [m/s]
Monoespécie (H ₂ O) – p. const.	1,816235070913468E+03	3,956857794624400E+04	3,120155879058960E+03
Monoespécie (H ₂ O) – p. var.	1,911546006603378E+03	4,082403316874217E+04	3,153420881342124E+03
Esc. congelado (mod. 3)	1,726790405021848E+03	3,763059149825094E+04	3,116140263304346E+03
Esc. congelado (mod. 10)	1,726831711321374E+03	3,763133327306177E+04	3,116117140081799E+03
Esc. em equilíbrio (mod. 3)	2,525729203764702E+03	4,828400448998666E+04	3,204566392954358E+03
Esc. em equilíbrio (mod. 10)	2,525914047452836E+03	4,828742398856219E+04	3,204624924738446E+03
Esc. com taxa finita (mod. 31)	1,909785363008158E+03	4,524529618324312E+04	2,930012747619265E+03
Esc. com taxa finita (mod. 32)	1,930194307786668E+03	4,574587121074118E+04	2,916255975892775E+03

Tabela 3.8: Resultados numéricos para temperatura, pressão e velocidade axial na saída da tubeira (parede), obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Tabela 3.9: Resultados numéricos para massa específica, número de Mach e fração mássica de H₂O na saída da tubeira (centro), obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Massa específica [kg/m ³]	Número de Mach [adim.]	Fração mássica de H ₂ O [adim.]
Monoespécie (H ₂ O) – p. const.	5,726081848495229E-02	2,838217342802338E+00	-
Monoespécie (H ₂ O) – p. var.	5,508578761935728E-02	2,806087402638028E+00	-
Esc. congelado (mod. 3)	5,760554719393207E-02	2,854118176920460E+00	7,836859110598039E-01
Esc. congelado (mod. 10)	5,760611866602174E-02	2,854108409885324E+00	7,835394832707731E-01
Esc. em equilíbrio (mod. 3)	5,178472348787252E-02	2,656891713898575E+00	9,103493597359708E-01
Esc. em equilíbrio (mod. 10)	5,178131130313515E-02	2,656832143657303E+00	9,102908411686360E-01
Esc. com taxa finita (mod. 31)	6,074130805000296E-02	2,703443543455944E+00	8,452874183445813E-01
Esc. com taxa finita (mod. 32)	6,137677775521832E-02	2,693467561777156E+00	8,610273364544117E-01

Tabela 3.10: Resultados numéricos para massa específica, número de Mach e fração mássica de H₂O na saída da tubeira (parede), obtidos com o código Mach2D, para malha de 90x10 volumes de controle.

Modelo físico	Massa específica [kg/m ³]	Número de Mach [adim.]	Fração mássica de H ₂ O [adim.]
Monoespécie (H ₂ O) – p. const.	4,134209618725369E-02	3,009401934622155E+00	-
Monoespécie (H ₂ O) – p. var.	4,052707511502752E-02	2,964867676098242E+00	-
Esc. congelado (mod. 3)	4.140837128113810E-02	3.036259631633307E+00	7,836859110598039E-01
Esc. congelado (mod. 10)	4,140901686614100E-02	3,036243718796219E+00	7,835394832707731E-01
Esc. em equilíbrio (mod. 3)	3,952743778226766E-02	2,768596255550690E+00	9,180244018881757E-01
Esc. em equilíbrio (mod. 10)	3,952614846953970E-02	2,768517599840875E+00	9,179674206889253E-01
Esc. com taxa finita (mod. 31)	4,713848679697868E-02	2,803288046782265E+00	8,402074837561383E-01
Esc. com taxa finita (mod. 32)	4,757174210758160E-02	2,790853718786633E+00	8,560152741665382E-01

Os resultados obtidos para o escoamento de ar (com propriedades constantes ou variáveis) são mostrados na Tabela 3.11, apresentada na seqüência.

Propriedade	Monoespécie (ar) – p. const.	Monoespécie (ar) – p. var.		
	Propriedades globais			
Empuxo – nível do mar [N]	2,656600387272973E+03	2,626484872728133E+03		
Empuxo – vácuo [N]	3,528035706819216E+03	3,497920192274376E+03		
Impulso específico – nível do mar [s]	8,924136325915967E+01	8,800140695542656E+01		
Impulso específico – vácuo [s]	1,185148950560581E+02	1,171991895076884E+02		
Coef. de empuxo – nível do mar [adim.]	1,187196841789719E+00	1,173738647652660E+00		
Coef. de empuxo – vácuo [adim.]	1,576628863310768E+00	1,563170669173709E+00		
Velocidade característica [m/s]	7,371640356506688E+02	7,352565234563339E+02		
Coef. de descarga [adim.]	9,811729286612837E-01	9,837184338917230E-01		
Coef. de descarga [adim.], solução analítica 2D – Klingel e Levine (1969)	9,819339480905922E-01	9,819339480905922E-01		
Empuxo dinâmico adimensional	9,654403462034631E-01	9,627774157549909E-01		
Propriedade	es locais – saída da tubeira (centro)			
Temperatura [K]	3,159862259063141E+02	2,891944766777196E+02		
Pressão [Pa]	4,129071286240737E+04	3,817147351624401E+04		
Velocidade axial [m/s]	1,070066199736350E+03	1,065770313537262E+03		
Massa específica [kg/m ³]	4,553049084570275E-01	4,599038384491737E-01		
Número de Mach [adim.]	3,058220095165866E+00	3,183910046772046E+00		
Pronriedades locais — saída da tubeira (narede)				
Temperatura [K]	2,791542676687150E+02	2,512058003189818E+02		
Pressão [Pa]	2,394353277885159E+04	2,176400834065423E+04		
Velocidade axial [m/s]	1,075426256130978E+03	1,069160652345455E+03		
Massa específica [kg/m ³]	2,988560561048834E-01	3,018751222243306E-01		
Número de Mach [adim.]	3,373312853853384E+00	3,535316173236274E+00		

 Tabela 3.11: Resultados numéricos para o escoamento de ar (propriedades constantes e variáveis), obtidas através do código Mach2D, para malha de 90x10 volumes de controle.

A variação das soluções numéricas obtidas em função do refino de malha é apresentada através das Tabelas 3.12 a 3.18, mostradas na seqüência. Nota-se que a variação, de um modo geral, é reduzida, especialmente para as variáveis de interesse globais. Com relação às variáveis de interesse locais (saída da tubeira), nota-se que a solução oscila com o refinamento de malha na região central da tubeira e converge para um determinado valor na região da parede. Isto é mais facilmente notado através das Figuras 3.1 a 3.3, que apresentam as distribuições de temperatura, pressão e velocidade axial ao longo da tubeira, para quatro malhas diversas. Observa-se que na região central do escoamento ocorrem oscilações das propriedades na região divergente da tubeira– o que resultam nas oscilações observadas na saída da mesma. Com relação às propriedades na região da parede, nota-se que os resultados são bastante próximos e que, graficamente, várias das soluções são coincidentes. Comportamento parecido é observado para variáveis globais, como o empuxo, cuja distribuição ao longo da tubeira é apresentada na Figura 3.4.

Malha	Empuxo – nível do mar [N]	Empuxo – vácuo [N]	Velocidade característica [m/s]
90x10	3,354342280519610E+03	4,225777600065853E+03	2,107945948175438E+03
180x20	3,357518740043595E+03	4,228954059589839E+03	2,106869367075357E+03
360x40	3,357395988643613E+03	4,228831308189857E+03	2,107237459907013E+03
720x80	3,357276753488715E+03	4,228712073034958E+03	2,107361754636734E+03

Tabela 3.12: Resultados numéricos para empuxo (ao nível do mar e no vácuo) e velocidade característica para diversas malhas, para o modelo físico congelado (modelo químico 3).

 Tabela 3.13: Resultados numéricos para impulso específico (ao nível do mar e no vácuo) e coeficiente de descarga para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Impulso específico – nível do mar [s]	Impulso específico – vácuo [s]	Coeficiente de descarga [adim.]
90x10	2,779194206375768E+02	3,501209966478511E+02	9,833544775033394E-01
180x20	2,780405269639829E+02	3,502052278104534E+02	9,838569580375883E-01
360x40	2,780789366664825E+02	3,502562454655367E+02	9,836850976276824E-01
720x80	2,780854627368489E+02	3,502670288914502E+02	9,836270786980558E-01

Tabela 3.14: Resultados numéricos para coeficiente de empuxo (ao nível do mar e no vácuo) e empuxo dinâmico adimensional para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Coeficiente de empuxo – nível do mar [adim.]	Coeficiente de empuxo – vácuo [adim.]	Empuxo dinâmico adimensional
90x10	1,292945148216229E+00	1,628843507466866E+00	9,647891451613325E-01
180x20	1,294169527717956E+00	1,630067886968592E+00	9,658260149640051E-01
360x40	1,294122212681573E+00	1,630020571932209E+00	9,659451170604690E-01
720x80	1,294076252996445E+00	1,629974612247082E+00	9,659723594486832E-01

Tabela 3.15: Resultados numéricos para temperatura, pressão e velocidade, na saída da tubeira (centro), para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Temperatura [K]	Pressão [Pa]	Velocidade axial [m/s]
90x10	1,837617609350204E+03	5,570994370392580E+04	3,111644387767022E+03
180x20	1,805639439146493E+03	5,109139243316584E+04	3,140437532686281E+03
360x40	1,828994591495118E+03	5,538832982609669E+04	3,119129861174552E+03
720x80	1,806600053505889E+03	5,351974106982489E+04	3,138529862498883E+03

Tabela 3.16: Resultados numéricos para temperatura, pressão e velocidade, na saída da tubeira (parede), para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Temperatura [K]	Pressão [Pa]	Velocidade axial [m/s]
90x10	1,726790405021848E+03	3,763059149825094E+04	3,116140263304346E+03
180x20	1,713194145450238E+03	3,689217624605134E+04	3,120629343603136E+03
360x40	1,705445003444844E+03	3,664639845243524E+04	3,122484575902607E+03
720x80	1,701153231180673E+03	3,656873287172182E+04	3,122597828339965E+03

Tabela 3.17: Resultados numéricos para massa específica, número de Mach e fração mássica de H₂O, na saída da tubeira (centro), para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Massa específica [kg/m ³]	Número de Mach [adim.]	Fração mássica de H ₂ O [adim.]
90x10	5,760554719393207E-02	2,854118176920460E+00	7,836859110598039E-01
180x20	5,376546887731687E-02	2,904550979648656E+00	7,836859110598039E-01
360x40	5,754301047416711E-02	2,867496362274534E+00	7,836859110598039E-01
720x80	5,629096780916259E-02	2,902202706319371E+00	7,836859110598039E-01

Tabela 3.18: Resultados numéricos para massa específica, número de Mach e fração mássica de H₂O, na saída da tubeira (parede), para diversas malhas, para o modelo físico congelado (modelo químico 3).

Malha	Massa específica [kg/m ³]	Número de Mach [adim.]	Fração mássica de H ₂ O [adim.]
90x10	4,140837128113810E-02	3,036259631633307E+00	7,836859110598039E-01
180x20	4,091800243024417E-02	3,057776993015358E+00	7,836859110598039E-01
360x40	4,083008753387331E-02	3,069406343092558E+00	7,836859110598039E-01
720x80	4,084634566754120E-02	3,075492635753005E+00	7,836859110598039E-01

Figura 3.1: Distribuição da temperatura ao longo da tubeira - escoamento congelado, modelo químico 3, diversas malhas.

Figura 3.2: Distribuição da pressão ao longo da tubeira - escoamento congelado, modelo químico 3, diversas malhas.

Figura 3.3: Distribuição da velocidade axial ao longo da tubeira, escoamento congelado, modelo químico 3, diversas malhas.

Figura 3.4: Distribuição do empuxo ao longo da tubeira, escoamento congelado, modelo químico 3, diversas malhas.

Observando-se os dados referentes aos escoamentos monoespécie de vapor de água e escoamentos com reações químicas, nota-se que, de forma geral, os resultados dos modelos de taxa finita de reação se encontram entre aqueles obtidos para modelos congelado e em equilíbrio químico local, conforme esperado. Nota-se, contudo, que para certos parâmetros (como o coeficiente de descarga e o empuxo dinâmico adimensional), isto não ocorre. No entanto, devido à ausência de resultados experimentais para comparação, torna-se difícil definir se tais efeitos são ocasionados pelo próprio escoamento bidimensional, por questões puramente numéricas (ligadas ao algoritmo utilizado) ou por outras fontes de discrepância, uma vez que para a maioria das variáveis de interesse, os resultados se comportam de acordo com o esperado.

Com relação aos modelos de taxa finita de reação, verifica-se uma queda da temperatura logo na entrada da tubeira (conforme já observado com o modelo unidimensional), Figura 3.5. Observa-se, contudo, que as frações mássicas de H₂O são superiores às encontradas para o escoamento congelado e em equilíbrio químico local (Figura 3.6) – o que é compatível com a menor temperatura encontrada mas se opõe ao comportamento observado nas simultações de escoamento unidimensional. Observa-se, contudo, que no início do escoamento há um aumento das frações mássicas de espécies como a hidroxila (OH) e o oxigênio monoatômico (O), para cuja formação é necessária uma elevada quantidade de energia e que poderia explicar a queda da temperatura no início do escoamento.

Figura 3.5: Distribuição da temperatura ao longo da tubeira - modelos de escoamento congelado, em equilíbrio químico local e com taxa finita de reação (malha 90x10 volumes).

Figura 3.6: Distribuição de frações mássicas de H₂O ao longo da tubeira – modelos de escoamento congelado, em equilíbrio químico local e com taxa finita de reação (malha 90x10 volumes).

Para validação do código Mach2D, foram comparados os resultados numéricos obtidos para o escoamento de ar (com propriedades constantes e propriedades variáveis) com os resultados experimentais (para a pressão ao longo da parede da tubeira) apresentados por Back *et al.* (1965).

Observa-se que os resultados numéricos apresentam boa concordância com os resultados experimentais, conforme pode ser visto na Figura 3.7.

Figura 3.7: Distribuição da pressão ao longo da tubeira - escoamento de ar (malha 720x80 volumes).

Os perfis de temperatura, pressão, velocidade axial e radial e número de Mach ao longo da tubeira são mostrados nas Figuras 3.8 a 3.12, apresentadas a seguir. Como ocorrido na solução do escoamento unidimensional, nota-se que as maiores diferenças entre os resultados são observadas para o perfil de temperatura, com diferenças superiores a 700 K entre os modelos de escoamento congelado e em equilíbrio químico local. Deve-se notar que em todas as figuras (Figuras 3.8 a 3.12), para os modelos de escoamento congelado e em equilíbrio químico local foram utilizados os resultados referentes ao modelo químico 3 (seis espécies), uma vez que os resultados dos modelos de seis espécies são todos idênticos e as diferenças entre os modelos de seis e de oito espécies são bastante pequenas, conforme já observado no Relatório Técnico 3.

Figura 3.8: Distribuição de temperatura ao longo da tubeira – modelos monoespécie (H₂O) com propriedades variáveis, congelado e em equilíbrio (malha 90x10 volumes).

Figura 3.9: Distribuição de pressão ao longo da tubeira – modelos monoespécie (H₂O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes).

Figura 3.10: Distribuição de velocidade axial ao longo da tubeira – modelos monoespécie (H₂O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes).

Figura 3.11: Distribuição de velocidade radial ao longo da tubeira – modelos de escoamento monoespécie (H₂O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes).

Figura 3.12: Distribuição do número de Mach ao longo da tubeira – modelos de escoamento monoespécie (H₂O) com propriedades variáveis, congelado e em equilíbrio químico local (malha 90x10 volumes).

De um modo geral, observa-se que o perfil da solução analítica (isentrópica), para uma dada propriedade, está contida no intervalo existente entre os perfis do escoamento congelado na parede e no centro (linha de simetria). Observa-se, também, que os perfis de propriedades do escoamento monoespécie são bastante próximos àqueles obtidos para o escoamento congelado, conforme pode ser visto nas Figuras 3.8 a 3.12 e, também, a partir dos resultados apresentados nas Tabelas 3.4 a 3.11. Os tempos de computação exigidos por ambos os modelos físicos é bastante semelhante, especialmente para malhas mais refinadas (como no caso da malha de 720 x 80 volumes). No caso do modelo em equilíbrio químico local, no entanto, o tempo de computação se mostra bastante superior (cerca de 100 vezes superior: para a malha de 90 x 10 volumes de controle, utilizando-se o modelo químico 3, observa-se que o modelo congelado necessitou menos de 6 s de tempo de computação, enquanto o modelo de escoamento em equilíbrio demandou mais de 11 min).

4. <u>CONCLUSÃO</u>

Neste relatório foram apresentados os modelos físicos, matemático e numérico para o escoamento bidimensional de gases reativos em tubeiras, implementados no código Mach2D. Neste código foram utilizados o Método de Volumes Finitos, malhas curvilíneas não-ortogonais, arranjo co-localizado de variáveis, formulação adequada a qualquer velocidade e solver MSI.

Cinco modelos físicos foram implementados: escoamento monoespécie com propriedades constantes ou variáveis (ar ou vapor de água) e escoamentos congelado, em equililíbrio químico local e com taxa finita de reação. A geometria da tubeira utilizada para as simulações foi a mesma apresentada por Back *et al.* (1965), que foi utilizada para experimentos com escoamento de ar. Os resultados experimentais foram utilizados como referência e comparados aos obtidos com o código Mach2D, com boa concordância.

Para os modelos de escoamento congelado e em equilíbrio químico local, observou-se que modelos químicos de seis e de oito espécies apresentam resultados muito próximos entre si conforme já visto nas simulações de escoamento unidimensional (Mach1D, Relatório Técnico 3). Notou-se, também, que os resultados analíticos (escoamento isentrópico, unidimensional), em geral, se encontram dentro da faixa definida pelos resultados do escoamento congelado na parede e no centro da tubeira. Observou-se, ainda, que a maior variação entre os resultados dos modelos físicos é novamente verificada no campo de temperaturas na saída da tubeira: a temperatura na saída da tubeira é pelo menos 700 K menor no caso de escoamento congelado quando comparado ao caso de escoamento em equilíbrio químico local.

REFERÊNCIAS BIBLIOGRÁFICAS

BACK, L. H.; MASSIER, P. F.; GIER, H. L. Comparison of measured and predicted flows through conical supersonic nozzles, with emphasis on the transonic region. **AIAA Journal**, v. 3, n. 9, pp. 1606 – 1614, 1965.

INCROPERA, F. P.; DeWITT, D. P. Fundamentos de Transferência de calor e de massa. 4 ed. Rio de Janeiro: LTC, 1998.

KLIEGEL, J. R.; LEVINE, J. N. Transonic flow in small throat radius of curvature nozzle. **AIAA Journal**, v. 7, pp. 1375 – 1378, 1969.

MALISKA, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional. Rio de Janeiro: LTC, 1995.

MARCHI, C. H.; ARAKI, L. K. Relatório Técnico 1: programa Gibbs 1.3. Propriedades termodinâmicas; Equilíbrio químico; Temperatura de combustão. Curitiba: UFPR, 2005.

MARCHI, C. H.; ARAKI, L. K. Relatório Técnico 2: programa Gibbs 1.3. Taxa finita; Propriedades de transporte. Curitiba: UFPR, 2006.

MARCHI, C. H.; ARAKI, L. K. Relatório técnico 3 do projeto CFD-5/UFPR: programa Mach1D 5.0. Curitiba: UFPR, 2007.

MARCHI, C. H.; MALISKA, C. R. A nonorthogonal finite volume method for the solution of all speed flows using co-located variables. **Numerical Heat Transfer, Part B**, v. 26, pp. 293 – 311, 1994.

McBRIDE, B. J.; GORDON, S.; RENO, M. A. Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513, Cleveland, Ohio, USA, 1993.