

Simulação Numérica de Escoamento Reativo em Motor-Foguete com Refrigeração Regenerativa

Projeto CFD-5 apoiado pela Agência Espacial Brasileira (AEB) Anúncio de Oportunidades 01/2004 do Programa UNIESPAÇO Tema: Veículos Espaciais Tópico: Processos de Combustão em Motores-Foguete

RELATÓRIO TÉCNICO 1: programa Gibbs 1.3

PROPRIEDADES TERMODINÂMICAS EQUILÍBRIO QUÍMICO TEMPERATURA DE COMBUSTÃO

(Disponível em ftp.demec.ufpr.br/cfd/projetos/cfd5)

Carlos Henrique Marchi, Dr. Eng. Mec. Luciano Kiyoshi Araki, Eng. Mec.

Universidade Federal do Paraná (UFPR) Departamento de Engenharia Mecânica (DEMEC)

Curitiba, 10 de maio de 2005.

RESUMO

Este relatório está dividido em três capítulos que relatam comparações entre resultados do programa Gibbs, versão 1.3, escrito em linguagem Fortran 95, e os programas da NASA: Thermobuild, Teqworks e CEA.

O primeiro capítulo descreve o cálculo das propriedades termodinâmicas calor específico à pressão constante, entalpia e energia livre de Gibbs, nas bases mássica e molar, de oito espécies químicas (H₂O, O₂, H₂, OH, O, H, HO₂, H₂O₂) envolvidas em reações do propelente H₂/O₂, disponíveis no programa Gibbs 1.3. E apresenta comparações dos resultados das três propriedades termodinâmicas, na base molar, fornecidos pelos programas Gibbs 1.3 e Thermobuild, para as oito espécies químicas, nas temperaturas de 298.15, 800, 2000 e 4000 K. Com as comparações entre os programas Gibbs 1.3 e Thermobuild, verificou-se que os erros máximos são: para o calor específico à pressão constante, 0.24%; para a entalpia, 5.6%; e para a energia livre de Gibbs, 12%. Porém, os erros máximos da entalpia e da energia livre de Gibbs se reduzem para 0.92% e 2.2% se a referência, em vez do programa Thermobuild, é o banco de dados NIST.

O segundo capítulo descreve o cálculo da composição de equilíbrio químico e suas propriedades para uma mistura de gases. Este capítulo apresenta os nove modelos reativos disponíveis no programa Gibbs 1.3, que têm de zero a dezoito reações de dissociação, com três a oito espécies químicas envolvidas em reações do propelente H₂/O₂, e o modelo numérico usado para resolvê-los. Também apresenta resultados da fração mássica de cada gás, massa molecular média, massa específica total da mistura e o calor específico à pressão constante médio para cinco problemas. O terceiro capítulo descreve o modelo numérico usado para calcular a temperatura de combustão para uma mistura de gases em equilíbrio químico e os resultados de dezessete problemas.

As comparações descritas nos capítulos 2 e 3 foram feitas entre três programas: Gibbs 1.3; e os programas CEA e Teqworks, cujo modelo reativo usado contém nove espécies químicas. Com base nestas comparações, verificou-se que: (a) os programas Gibbs (modelo 9) e Teqworks reproduzem os resultados do programa CEA dentro da mesma ordem de erro para as variáveis analisadas; (b) os resultados dos modelos (3, 4, 5 e 7) com seis espécies são muito próximos dos modelos (9 e 10) com oito espécies, mas modelos com apenas quatro espécies ou menos podem apresentar erros significativos; e (c) se o interesse for usar um modelo com seis espécies, recomenda-se o modelo 5, e no caso de oito espécies, o modelo 9.

LISTA DE SÍMBOLOS

a_{ki}	coeficiente k da espécie i para cálculo de propriedades termodinâmicas (adim.)
a	número de moles do reagente oxigênio molecular (mol)
A	símbolo de cada espécie química
b	número de moles do produto vapor d'água na equação da reação global do modelo 0, sem dissociação química
С	calor específico à pressão constante médio (J/mol.K ou J/kg.K)
С	concentração total (mol/cm ³)
c_i	calor específico à pressão constante da espécie química i (J/mol.K ou J/kg.K)
C_i	concentração da espécie química <i>i</i> (mol/cm ³)
d	número de moles do produto oxigênio molecular na equação da reação global do modelo 0, sem dissociação química (mol)
Ε	erro relativo (%)
Erro	erro absoluto (adim.)
f	número de moles do produto hidrogênio molecular na equação da reação global do modelo 0, sem dissociação química (mol)
g	energia livre de Gibbs (J/mol ou J/kg)
h	entalpia (J/mol ou J/kg)
Н	entalpia total (J)
h_{298}	entalpia de formação (J/mol ou J/kg)
K_j	constante de equilíbrio de cada reação <i>j</i> baseada na pressão parcial
L	número total de reações de dissociação
LH2	hidrogênio líquido
LOX	oxigênio líquido
Μ	Massa molecular média (kg/kmol)
M_i	massa molecular da espécie química i (kg/kmol)

п	número total de moles (mol)
Ν	número total de espécies químicas
n _i	número de moles da espécie química i (mol)
OF	razão mássica oxidante/combustível dos reagentes (adim.)
р	pressão total (bar ou atm)
p_i	pressão parcial da espécie química i (atm)
R	constante da mistura de gases (J/kg.K)
referencia	resultado de referência, obtido utilizando-se o programa Thermobuild ou CEA
Ru	constante universal dos gases perfeitos (8.314510 J/mol.K)
Т	temperatura (K)
[THERM]	dado para cálculo da energia livre de Gibbs, obtido diretamente do programa Thermobuild e correspondendo à coluna $-(G - H298)/T$ (J/mol.K)
valor	resultado a ser comparado, obtido utilizando-se o programa Gibbs, Teqworks ou outra fonte
X	fração molar (adim.)
Y	fração mássica (adim.)

Letras gregas

ΔG_j	variação da energia livre de Gibbs de cada reação <i>j</i> , na pressão de 1 atm, em base
	molar
\mathcal{E}_{j}	grau de reação ou taxa de dissociação da reação <i>j</i>
Φ	razão de equivalência
ρ	massa específica total (kg/m ³)
$ ho_i$	massa específica da espécie química i (kg/m ³)
γ	razão de calores específicos (adim.)
${\cal V}_{ij}^{,}$	coeficiente estequiométrico do reagente <i>i</i> na reação de dissociação <i>j</i> (mol)
${\cal V}_{ij}^{"}$	coeficiente estequiométrico do produto <i>i</i> na reação de dissociação <i>j</i> (mol)

Subíndices

С	combustão
CEA	programa CEA
Gibbs	programa Gibbs 1.3
i	número da espécie química
j	número da reação de dissociação
Р	produto
R	reagente
S	condição estequiométrica
Teqworks	programa Teqworks

SUMÁRIO

1. PROPRIEDADES TERMODINÂMICAS	7
1.1 Definições	7
1.2 Comparações	8
1.3 Conclusão	14
2. EQUILÍBRIO QUÍMICO	16
2.1 Propriedades de mistura de gases	16
2.2 Reações químicas	18
2.3 Modelo reativo número 0	19
2.4 Modelo reativo número 1	20
2.5 Modelo reativo número 2	21
2.6 Modelo reativo número 3	22
2.7 Modelo reativo número 4	24
2.8 Modelo reativo número 5	25
2.9 Modelo reativo número 7	26
2.10 Modelo reativo número 10	28
2.11 Modelo reativo número 9	29
2.12 Modelo numérico	32
2.13 Comparações	33
2.14 Conclusão	44
3. TEMPERATURA DE COMBUSTÃO	46
3.1 Modelo numérico	46
3.2 Comparações	48
3.3 Conclusão	54
4. REFERÊNCIAS BIBLIOGRÁFICAS	56
ANEXO A – Coeficientes e resultados originais do Thermobuild	58

1. PROPRIEDADES TERMODINÂMICAS

Objetivos:

- Descrever o cálculo das propriedades termodinâmicas calor específico à pressão constante, entalpia e energia livre de Gibbs, nas bases mássica e molar, de oito espécies químicas (H₂O, O₂, H₂, OH, O, H, HO₂, H₂O₂) envolvidas em reações do propelente H₂/O₂, disponíveis no programa Gibbs 1.3.
- Comparar os resultados das três propriedades termodinâmicas, na base molar, fornecidos pelo programas Gibbs 1.3 e Thermobuild da NASA, para as oito espécies químicas, nas temperaturas de 298.15, 800, 2000 e 4000 K.

<u>1.1 DEFINIÇÕES</u>

Uma substância pura é aquela que apresenta composição química invariável e homogênea. Ela pode ocorrer em mais de uma fase; deve, porém, apresentar a mesma composição química em todas as fases. Como exemplos de substâncias puras, pode-se citar a água, gases diatômicos (oxigênio, nitrogênio, hidrogênio, entre outros), hidrocarbonetos puros, e outros. O estado de uma substância pura simples compressível é definido por duas propriedades independentes (VAN WYLEN *et al.*, 1995). Dentre as propriedades mais utilizadas, destacam-se a temperatura e a pressão, que podem ser medidas experimentalmente e constituem-se em um par de propriedades independentes para casos que não envolvam mudança de fase.

A partir das duas propriedades independentes, as demais propriedades termodinâmicas podem ser obtidas, através da utilização de relações apropriadas. Dentre as propriedades de interesse para o caso de reações químicas, citam-se o calor específico à pressão constante (*c*), a entalpia (*h*) e a energia livre de Gibbs (*g*), todas avaliadas para a pressão de referência de 1 atm (101.325 kPa). As duas últimas são importantes na determinação das constantes de equilíbrio, necessárias à determinação da composição de equilíbrio químico de uma dada mistura reativa. E a primeira para simulação de escoamentos.

A obtenção de tais parâmetros pode ser feita de modos diversos, desde a consulta em gráficos e tabelas impressos até o uso de programas computacionais. Aqui, optou-se pela utilização do método apresentado no trabalho de McBride *et al.* (1993), em que são fornecidas bibliotecas para propriedades termodinâmicas e de transporte para espécies puras, por meio de coeficientes para polinômios interpoladores. Deste modo, para a obtenção do calor específico (c), da entalpia (h) e energia livre de Gibbs (g) são utilizadas as seguintes expressões, respectivamente:

$$c_i = Ru \left(a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4 \right)_i$$
(1.1)

$$h_i = Ru T_i \left(a_1 + a_2 \frac{T}{2} + a_3 \frac{T^2}{3} + a_4 \frac{T^3}{4} + a_5 \frac{T^4}{5} + \frac{a_6}{T} \right)_i$$
(1.2)

$$g_i = Ru T_i \left(a_1 (1 - \ln T) - a_2 \frac{T}{2} - a_3 \frac{T^2}{6} - a_4 \frac{T^3}{12} - a_5 \frac{T^4}{20} + \frac{a_6}{T} - a_7 \right)_i$$
(1.3)

onde os coeficientes a_k são particulares para cada espécie química *i*; Ru refere-se à constante universal dos gases perfeitos (8.314510 J/mol·K); T é a temperatura absoluta (K) da espécie considerada; e as unidades são na base molar, isto é, *c* em J/mol.K e *h* e *g* em J/mol. As propriedades na base mássica, ou seja, *c* em J/kg.K e *h* e *g* em J/kg, são obtidas multiplicando-se seus valores na base molar pelo fator 1000/ M_i , onde M_i é a massa molecular (kg/kmol) de cada espécie química *i*.

1.2 COMPARAÇÕES

As propriedades termodinâmicas obtidas através da utilização do programa Gibbs 1.3 são, a seguir, comparadas às obtidas do programa Thermobuild, da NASA. Ambos os programas baseiam seus cálculos em polinômios interpoladores. O Thermobuild, contudo, apresenta dois coeficientes extras (multiplicados por potências negativas da temperatura) em relação ao Gibbs 1.3. Os resultados originais do Thermobuild são apresentados no Anexo deste relatório.

O programa Gibbs 1.3 permite que sejam escolhidas até 8 espécies químicas (Tabela 1.1): vapor de água (H₂O), oxigênio molecular (O₂), hidrogênio molecular (H₂), radical hidroxila (OH), oxigênio atômico (O), hidrogênio atômico (H), radical hidroperoxi (HO₂) e peróxido de hidrogênio (H₂O₂). Para todas as espécies consideradas, os coeficientes $a_1 a a_7$ (Tabela 1.2), fornecidos por McBride *et al.* (1993), são válidos para a faixa de temperaturas entre 200 e 6000 K, que é adequada às aplicações deste projeto. As propriedades *c*, *h* e *g* podem ser obtidas na base molar ou mássica.

As Tabelas 1.3 e 1.4 apresentam os dados fixos usados para executar o programa Gibbs 1.3 e a relação dos nomes dos arquivos com resultados originais. Quatro valores diferentes para a temperatura foram comparados (Tabela 1.4). A escolha por tais valores se deve à faixa comum de temperaturas encontrada em problemas envolvendo escoamentos reativos em motores-foguetes,

cujo estudo será efetuado tendo-se por base uma versão posterior (a ser implementada) do programa Gibbs 1.3.

Símbolo da espécie	Índice da espécie (<i>i</i>)	Nome da espécie	M _i (kg/kmol)
H ₂ O	1	Vapor de água	18.01528
O ₂	2	oxigênio molecular	31.99880
H_2	3	hidrogênio molecular	2.01588
OH	4	radical hidroxila	17.00734
0	5	oxigênio atômico	15.99940
Н	6	hidrogênio atômico	1.00794
HO ₂	7	radical hidroperoxi	33.00674
H ₂ O ₂	8	peróxido de hidrogênio	34.01468

Tabela 1.1 Massa molecular (*M_i*) das espécies químicas usadas no programa Gibbs 1.3.

Fonte: NASA TM-4513 (McBride et al., 1993).

Tabela 1.2 Coeficientes (*a_{ki}*) usados no programa Gibbs 1.3.

Para t	emperatura m	nenor do que	1000 K				
espécie	al	a2	a3	a4	a5	аб	a7
H2O	4.19864056E+00	-2.03643410E-03	6.52040211E-06	-5.48797062E-09	1.77197817E-12	-3.02937267E+04	-8.49032208E-01
02	3.78245636E+00	-2.99673415E-03	9.84730200E-06	-9.68129508E-09	3.24372836E-12	-1.06394356E+03	3.65767573E+00
Н2	2.34433112E+00	7.98052075E-03	-1.94781510E-05	2.01572094E-08	-7.37611761E-12	-9.17935173E+02	6.83010238E-01
OH	3.99201543E+00	-2.40131752E-03	4.61793841E-06	-3.88113333E-09	1.36411470E-12	3.61508056E+03	-1.03925458E-01
0	3.16826710E+00	-3.27931884E-03	6.64306396E-06	-6.12806624E-09	2.11265971E-12	2.91222592E+04	2.05193346E+00
Н	2.5000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00	0.0000000E+00	2.54736599E+04	-4.46682853E-01
HO2	4.30179801E+00	-4.74912051E-03	2.11582891E-05	-2.42763894E-08	9.29225124E-12	2.94808040E+02	3.71666245E+00
H2O2	4.27611269E+00	-5.42822417E-04	1.67335701E-05	-2.15770813E-08	8.62454363E-12	-1.77542989E+04	3.43505074E+00
Para t	emperatura m	naior ou igua	l a 1000 K				
espécie	a1	a2	a3	a4	a5	аб	a7
H2O	2.67703787E+00	2.97318329E-03	-7.73769690E-07	9.44336689E-11	-4.26900959E-15	-2.98858938E+04	6.88255571E+00
02	3.66096083E+00	6.56365523E-04	-1.41149485E-07	2.05797658E-11	-1.29913248E-15	-1.21597725E+03	3.41536184E+00
Н2	2.93286579E+00	8.26607967E-04	-1.46402335E-07	1.54100359E-11	-6.88804432E-16	-8.13065597E+02	-1.02432887E+00
OH	2.83864607E+00	1.10725586E-03	-2.93914978E-07	4.20524247E-11	-2.42169092E-15	3.94395852E+03	5.84452662E+00
0	2.54363697E+00	-2.73162486E-05	-4.19029520E-09	4.95481845E-12	-4.79553694E-16	2.92260120E+04	4.92229457E+00
Н	2.50000286E+00	-5.65334214E-09	3.63251723E-12	-9.19949720E-16	7.95260746E-20	2.54736589E+04	-4.46698494E-01
HO2	4.17228728E+00	1.88117647E-03	-3.46277408E-07	1.94657853E-11	1.76254294E-16	6.18102964E+01	2.95767746E+00
H2O2	4.57333537E+00	4.04984070E-03	-1.29479479E-06	1.97281710E-10	-1.13402846E-14	-1.80548121E+04	7.04278488E-01

Fonte: NASA TM-4513 (McBride et al., 1993).

Tabela 1.3 Dados fixos usados para executar o programa Gibbs.

Variável	Valor
Programa: Gibbs	Versão 1.3, Release 24 Fev 2005
Tipo de cálculo	1 (TERMO)
número de espécies químicas (N)	8
Base	2 (molar)

Tabela 1.4 Arquivos com resultados originais do programa Gibbs.

Nome do arquivo	Temperatura (K)	Data da simulação
Gibbs_1p3_termo_001.out	298.15	24 Fev 2005
Gibbs_1p3_termo_002.out	800.00	25 Fev 2005
Gibbs_1p3_termo_003.out	2000.00	25 Fev 2005
Gibbs_1p3_termo_004.out	4000.00	25 Fev 2005

As Tabelas 1.5 a 1.16 apresentam os resultados obtidos com o programa Gibbs 1.3 e com o programa Thermobuild. Para uma melhor comparação, os resultados fornecidos pelo programa Gibbs 1.3 foram arredondados para o mesmo número de algarismos daqueles do programa Thermobuild. Nestas tabelas, o erro é calculado através da seguinte expressão:

$$E = 100 \frac{(referencia - valor)}{referencia}$$
(1.4)

sendo E o erro relativo (%), e *referencia* e *valor* os resultados fornecidos pelos programas Thermobuild e Gibbs, respectivamente.

Das Tabelas 1.5 a 1.8, nota-se que os valores obtidos para o calor específico à pressão constante são bastante próximos, às vezes idênticos. A espécie que apresenta o maior erro relativo (0.236%) é o hidrogênio molecular (H₂), para a temperatura de 2000 K.

Tabela 1.5 Calor específico à pressão constante (J/mol.K) para T = 298.15 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	33.588	33.588	0
O_2	29.378	29.378	0
H_2	28.836	28.836	0
OH	29.886	29.886	0
0	21.912	21.912	0
Н	20.786	20.786	0
HO_2	34.893	34.893	0
H_2O_2	42.388	42.388	0

Tabela 1.6 Calor específico à pressão constante (J/mol.K) para T = 800 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	38.728	38.733	-0.013
O_2	33.745	33.750	-0.015
H ₂	29.629	29.616	0.044
OH	29.913	29.916	-0.010
0	20.984	20.987	-0.010
Н	20.786	20.786	0
HO ₂	45.047	45.068	-0.047
H_2O_2	58.482	58.505	-0.039

As Tabelas 1.9 a 1.12 apresentam os valores obtidos para a entalpia. Na Tabela 1.9 são apresentados resultados relativos à entalpia das espécies químicas obtidas para a temperatura de 298.15 K, conhecida como entalpia de formação. Para as espécies moleculares (hidrogênio, oxigênio e vapor de água), bem como para o oxigênio e o hidrogênio atômicos, os resultados

fornecidos por ambos os programas são idênticos, quando desconsidera-se os erros de arredondamento. Já para as outras três espécies (peróxido de hidrogênio e radicais hidroxila e hidroperoxi), os resultados apresentam discrepâncias. Para o peróxido de hidrogênio os resultados apresentam diferença de 0.316%. Já para os radicais hidroperoxi e hidroxila, as diferenças são de - 4.426% e 5.550%, respectivamente.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	51.756	51.679	0.149
O_2	37.784	37.856	-0.191
H_2	34.276	34.195	0.236
OH	34.765	34.714	0.147
0	20.826	20.821	0.024
Н	20.786	20.786	0
HO ₂	55.722	55.774	-0.093
H_2O_2	73.860	73.921	-0.083

Tabela 1.7 Calor específico à pressão constante (J/mol.K) para T = 2000 K.

Tabela 1.8 Calor específico à pressão constante (J/mol.K) para T = 4000 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H_2O	59.325	59.368	-0.072
O_2	41.707	41.677	0.072
H_2	39.087	39.134	-0.120
OH	38.536	38.550	-0.036
0	21.302	21.299	0.014
Н	20.786	20.786	0
HO_2	61.900	61.922	-0.036
H_2O_2	81.406	81.307	0.122

Tabela 1.9 Entalpia (J/mol) para *T* = 298.15 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-241826	-241826	0
O ₂	0	0.000019	****
H ₂	0	0.000013	****
ОН	37278	39347	-5.550
0	249175	249175	0
Н	217999	217998	0.000
HO ₂	12020	12552	-4.426
H ₂ O ₂	-135880	-136310	-0.316

As Tabelas 1.13 a 1.16 apresentam os valores obtidos para a energia livre de Gibbs. O programa Thermobuild não fornece diretamente o valor da energia livre de Gibbs. Assim, utiliza-se a seguinte relação para obtê-la e apresentá-la nas Tabelas 1.13 a 1.16:

$$g = h_{298} - T[THERM]$$
 (1.5)

sendo h_{298} a entalpia de formação da espécie química considerada e [*THERM*] o resultado obtido diretamente do programa Thermobuild, correspondente à coluna -(G - H298)/T, dado em J/mol.K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-223823	-223822	0.000
O_2	15838	15838	0
H_2	14701	14698	0.020
OH	52144	54214	-3.970
0	259846	259847	-0.000
Н	228431	228430	0.000
HO ₂	32312	32847	-1.656
H_2O_2	-110120	-110546	-0.387

Tabela 1.10 Entalpia (J/mol) para T = 800 K.

Tabela 1.11	Entalpia	(J/mol) j	para T=	2000 K.
-------------	----------	-----------	---------	---------

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-168783	-168771	0.007
O_2	59202	59168	0.057
H_2	52950	52986	-0.068
ОН	91071	93162	-2.296
0	284888	284890	-0.001
Н	253374	253374	0
HO_2	93612	94156	-0.581
H_2O_2	-28982	-29472	-1.691

Tabela 1.12 Entalpia (J/mol) para T = 4000 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-55974	-55956	0.032
O_2	139001	139007	-0.004
H ₂	126848	126823	0.020
OH	164899	166970	-1.256
0	326851	326856	-0.002
Н	294947	294946	0.000
HO ₂	213096	213642	-0.256
H ₂ O ₂	127759	127366	0.308

As discrepâncias apuradas junto à entalpia de formação das três espécies (peróxido de hidrogênio, radical hidroxila e radical hidroperoxi) propagam-se para a energia livre de Gibbs. Isto se deve ao fato de a determinação da energia livre de Gibbs depender dos valores da entalpia. A

espécie que apresenta o maior erro relativo (11.82%) é o radical hidroxila (OH), para a temperatura de 298.15 K. É justamente o radical cujo erro relativo também é o maior para a entalpia de formação. Este erro se reduz com o aumento da temperatura, caindo para 1.75% em 800 K e 0.23% em 4000 K. Para as demais espécies, o erro é sempre inferior a 1% em qualquer temperatura testada.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-298125	-298125	0
O_2	-61165	-61165	0
H_2	-38963	-38963	0
OH	-17504	-15435	11.820
0	201155	201155	0
Н	183796	183795	0.001
HO ₂	-56288	-55756	0.945
H_2O_2	-205804	-206234	-0.209

Tabela 1.13 Energia livre de Gibbs (J/mol) para T = 298.15 K.

Tabela 1.14 Energia livre de Gibbs (J/mol) para T = 800 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-402880	-402880	0
O_2	-172904	-172905	-0.001
H_2	-112938	-112948	-0.009
OH	-118240	-116168	1.752
0	114152	114154	-0.002
Н	120243	120243	0
HO ₂	-182225	-181682	0.298
H_2O_2	-337214	-337634	-0.125

Tabela 1.15 Energia livre de Gibbs (J/mol) para T = 2000 K.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-698620	-698639	-0.003
O_2	-478342	-478316	0.005
H ₂	-323886	-323942	-0.017
OH	-393632	-391573	0.523
0	-117611	-117607	0.003
Н	-55187	-55187	0
HO ₂	-534880	-534308	0.107
H_2O_2	-718484	-718855	-0.052

Verificou-se que os erros das propriedades termodinâmicas calculadas pelo programa Gibbs são relativamente grandes para algumas temperaturas e espécies, quando a fonte de referência é o programa Thermobuild. Mas se a referência é mudada para os valores de NIST (2005), por exemplo, para o radical hidroxila (OH), obtém-se:

- (a) Para o calor específico à pressão constante, os resultados do Thermobuild e Gibbs são idênticos a 29.886 J/mol.K, e do NIST a 29.98 J/mol.K. Portanto, o erro do Thermobuild e do Gibbs é de 0.31%.
- (b) Para a entalpia, os resultados do Thermobuild, Gibbs e NIST são, respectivamente, 37278, 39347 e 38990 J/mol. Assim, os erros do Thermobuild e do Gibbs são, respectivamente, de 4.4% e -0.92%.
- (c) Para a energia livre de Gibbs, os resultados do Thermobuild, Gibbs e NIST são, respectivamente, -17504, -15435, -15780 J/mol. Então, os erros do Thermobuild e do Gibbs são, respectivamente, de -10.9% e 2.2%.

Espécie	Thermobuild	Gibbs 1.3	Erro (%)
H ₂ O	-1270846	-1270871	-0.002
O_2	-1046080	-1046033	0.004
H ₂	-728512	-728603	-0.012
OH	-906262	-904212	0.226
0	-536249	-536242	0.001
Н	-379809	-379808	0.000
HO ₂	-1208528	-1207936	0.049
H_2O_2	-1467352	-1467678	-0.022

Tabela 1.16 Energia livre de Gibbs (J/mol) para T = 4000 K.

1.3 CONCLUSÃO

Neste capítulo, foram feitas comparações do calor específico à pressão constante, entalpia e energia livre de Gibbs para oito espécies químicas (H₂O, O₂, H₂, OH, O, H, HO₂ e H₂O₂) em T = 298.15, 800, 2000 e 4000 K. Com as comparações entre os programas Gibbs 1.3 e o Thermobuild, verificou-se que:

- Os valores obtidos para o calor específico à pressão constante são muito próximos, às vezes idênticos. A espécie que apresenta o maior erro relativo (0.236%) é o hidrogênio molecular (H₂), para a temperatura de 2000 K.
- A espécie que apresenta o maior erro relativo (5.55%) na entalpia é o radical hidroxila (OH), para a temperatura de 298.15 K. Este erro se reduz com o aumento da temperatura, caindo para 1.26% em 4000 K.
- A espécie que apresenta o maior erro relativo (11.82%) na energia livre de Gibbs é o radical hidroxila (OH), para a temperatura de 298.15 K. Este erro se reduz com o aumento da

temperatura, caindo para 1.75% em 800 K e 0.23% em 4000 K. Para as demais espécies, o erro é sempre inferior a 1% em qualquer temperatura testada.

4) Os erros máximos da entalpia e da energia livre de Gibbs se reduzem para 0.92% e 2.2% se a referência, em vez do programa Thermobuild, é NIST (2005).

2. EQUILÍBRIO QUÍMICO

Objetivos:

- Calcular a composição de equilíbrio químico e suas propriedades para uma mistura de gases composta por até oito espécies químicas (H₂O, O₂, H₂, OH, O, H, HO₂, H₂O₂) envolvidas em reações do propelente H₂/O₂ e disponíveis no programa Gibbs 1.3.
- 2) Apresentar os nove modelos reativos disponíveis no programa Gibbs 1.3, que são usados para calcular a composição de equilíbrio químico de uma mistura de gases, e o modelo numérico usado para resolvê-los. Os nove modelos reativos contêm de zero a dezoito reações de dissociação, envolvendo de três a oito espécies químicas.
- 3) Comparar resultados fornecidos pelo programa Gibbs 1.3 aos programas CEA e Teqworks da NASA. Para cinco problemas, são comparados resultados de: fração mássica de cada gás; massa molecular média; massa específica total da mistura; e o calor específico à pressão constante médio. Além disso, são apresentados resultados de: constante da mistura de gases; razão de calores específicos; e a concentração total da mistura.
- Analisar a estabilidade e robustez numérica dos nove modelos reativos do programa Gibbs 1.3, bem como o tempo computacional, para definir quais serão usados em simulações de escoamentos.

2.1 PROPRIEDADES DE MISTURA DE GASES

Considerando-se conhecido o número de moles de cada espécie química (n_i) numa mistura de gases, as seguintes propriedades podem ser calculadas (Kuo, 1986):

Número total de moles (*n*):

$$n = \sum_{i=1}^{N} n_i \tag{2.1}$$

onde N é o número de espécies químicas na mistura.

Massa molecular média (M):

$$M = \frac{1}{n} \sum_{i=1}^{N} n_i M_i = \sum_{i=1}^{N} X_i M_i$$
(2.2)

onde M_i é a massa molecular de cada espécie química na mistura.

Fração molar de cada espécie química na mistura (X_i) :

$$X_i = \frac{n_i}{n} = \frac{p_i}{p} \tag{2.3}$$

onde p_i é a pressão parcial de cada espécie, e p é a pressão total da mistura.

Constante da mistura de gases (*R*):

$$R = 1000 \frac{Ru}{M} \tag{2.4}$$

Fração mássica de cada espécie química na mistura (Y_i) :

$$Y_i = \frac{\rho_i}{\rho} = X_i \frac{M_i}{M} = \frac{n_i M_i}{nM}$$
(2.5)

onde ρ_i é a massa específica de cada espécie.

Massa específica total da mistura (ρ):

$$\rho = \frac{p}{RT} \tag{2.6}$$

Calor específico à pressão constante médio (c):

$$c = \sum_{i=1}^{N} Y_i c_i \tag{2.7}$$

onde c_i é o calor específico à pressão constante de cada espécie.

Razão de calores específicos (γ):

$$\gamma = \frac{c}{(c-R)} \tag{2.8}$$

Somatório de frações molares e mássicas:

$$1 = \sum_{i=1}^{N} X_{i} = \sum_{i=1}^{N} Y_{i}$$
(2.9)

Concentração de cada espécie química na mistura (C_i):

$$C_i = \frac{\rho_i}{M_i} = \rho \frac{Y_i}{M_i} = \frac{p_i}{RuT}$$
(2.10)

Concentração total da mistura (*C*):

$$C = \sum_{i=1}^{N} C_i = \frac{p}{RuT}$$

$$(2.11)$$

Entalpia total da mistura (*H*):

$$H = \sum_{i=1}^{N} n_i h_i \tag{2.12}$$

2.2 REAÇÕES QUÍMICAS

Definição de alguns parâmetros usados no cálculo de reações em equilíbrio químico de uma mistura de gases (Kuo, 1986):

Equação das reações químicas:

$$\sum_{i=1}^{N} v_{ij}^{*} A_{i} \quad \Leftrightarrow \quad \sum_{i=1}^{N} v_{ij}^{*} A_{i} \qquad (j=1,2,\ldots L)$$

$$(2.13)$$

onde *A* representa o símbolo de cada espécie química, *i* representa o número de cada espécie química, *N* é o número total de espécies, *j* é o número de uma reação química específica, *L* é o número total de reações químicas, $v_{ij}^{*} \in v_{ij}^{*}$ são, respectivamente, os coeficientes estequiométricos da espécie química *i* na reação *j* dos reagentes e dos produtos.

Constante de equilíbrio de cada reação j baseada na pressão parcial (K_i):

$$K_{j} = \prod_{i=1}^{N} p_{i}^{(\nu_{ij} - \nu_{ij})}$$
(2.14)

Relação entre constante de equilíbrio e energia livre de Gibbs para cada reação *j*:

$$K_j = \exp\left(-\frac{\Delta G_j}{RuT}\right)$$
(2.15)

onde a variação da energia livre de Gibbs de cada reação $j(\Delta G_j)$ é dada por

$$\Delta G_j = \sum_{i=1}^N v_{ij}^n g_i - \sum_{i=1}^N v_{ij}^n g_i$$
(2.16)

Razão de equivalência (Φ):

$$\Phi = \frac{OF_S}{OF}$$
(2.17)

onde OF é a razão mássica oxidante/combustível dos reagentes, e OF_s é OF na composição estequiométrica.

2.3 MODELO REATIVO NÚMERO 0

A Tabela 2.1 apresenta as principais características do modelo 0. Este modelo é o mais simples, sem qualquer reação de dissociação e, portanto, é o modelo mais distante da realidade, servindo como referência ideal para os demais.

Número de espécies químicas	<i>N</i> = 3
Espécies químicas	H_2O, O_2, H_2
Número de reações de dissociação	L = 0

Equação da reação global do modelo 0:

$$H_2 + aO_2 \implies bH_2O + dO_2 + fH_2 \tag{2.18}$$

O coeficiente *a* da Eq. (2.18) é função do valor prescrito para a razão oxidante/combustível em massa (*OF*), calculado através de

$$a = OF \frac{M_3}{M_2} \tag{2.19}$$

onde M_3 e M_2 são respectivamente a massa molecular do hidrogênio molecular (H_2) e do oxigênio molecular (O_2).

Os coeficientes b, d e f da Eq. (2.18) são obtidos da conservação de massa das espécies atômicas envolvidas, hidrogênio e oxigênio atômicos, resultando em três casos: Caso 1, composição estequiométrica:

$$a = \frac{1}{2}, \quad b = 1, \quad d = f = 0$$
 (2.20)

Caso 2, mistura rica em oxidante (O_2) :

$$a > \frac{1}{2}, \quad b = 1, \quad d = a - \frac{1}{2}, \quad f = 0$$
 (2.21)

Caso 3, mistura rica em combustívl (H_2):

$$a < \frac{1}{2}, \quad b = 2a, \quad d = 0, \quad f = 1 - 2a$$
 (2.22)

Para o modelo 0, o número de moles de cada espécie química (n_i) resulta em

$$n_1 = b$$

$$n_2 = d$$

$$n_3 = f$$

$$n = n_0$$

$$(2.23)$$

onde, por definição, o número de moles dos produtos sem dissociação química é dado por

$$n_0 = b + d + f \tag{2.24}$$

2.4 MODELO REATIVO NÚMERO 1

A Tabela 2.2 apresenta as principais características do modelo 1.

Número de espécies químicas	<i>N</i> = 3
Espécies químicas	H_2O, O_2, H_2
Número de reações de dissociação	L = 1

Tabela 2.2 Principais características do modelo 1.

Equação da reação global do modelo 1:

$$H_2 + aO_2 \implies n_1H_2O + n_2O_2 + n_3H_2$$
 (2.25)

Equação da reação de dissociação do modelo 1:

$$2H_2 + O_2 \Leftrightarrow 2H_2O \tag{2.26}$$

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.25), no caso, e o grau de reação em cada equação de dissociação (ε_j) , só uma no caso, a Eq. (2.26). Assim, para o modelo 1, obtémse

$$n_{1} = b + 2\varepsilon_{1}$$

$$n_{2} = d - \varepsilon_{1}$$

$$n_{3} = f - 2\varepsilon_{1}$$

$$n = n_{0} - \varepsilon_{1}$$

$$(2.27)$$

Para o modelo 1, a aplicação da Eq. (2.16) à Eq. (2.26) resulta em

$$\Delta G_1 = 2g_1 - g_2 - 2g_3 \tag{2.28}$$

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 1, obtém-se

$$K_1 p n_2 n_3^2 = n_1^2 n (2.29)$$

2.5 MODELO REATIVO NÚMERO 2

A Tabela 2.3 apresenta as principais características do modelo 2.

N=4
$H_{2}O_{1}O_{2}H_{2}OH$
$11_{2}0, 0_{2}, 11_{2}, 011$
L = 2

Tabela 2.3 Principais características do modelo 2.

Equação da reação global do modelo 2:

$$H_2 + aO_2 \implies n_1H_2O + n_2O_2 + n_3H_2 + n_4OH$$
 (2.30)

Equações das reações de dissociação do modelo 2:

$$\begin{array}{rcl} reação 1: & 2H_2 &+ & O_2 &\Leftrightarrow & 2H_2O\\ reação 2: & H_2 &+ & O_2 &\Leftrightarrow & 2OH \end{array}$$
(2.31)

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.30), no caso, e o grau de reação em cada equação de dissociação (ε_j) , duas neste caso, a Eq. (2.31). Assim, para o modelo 2, obtémse

$$n_{1} = b + 2\varepsilon_{1}$$

$$n_{2} = d - \varepsilon_{1} - \varepsilon_{2}$$

$$n_{3} = f - 2\varepsilon_{1} - \varepsilon_{2}$$

$$n_{4} = 2\varepsilon_{2}$$

$$n = n_{0} - \varepsilon_{1}$$

$$(2.32)$$

Para o modelo 2, a aplicação da Eq. (2.16) à Eq. (2.31) resulta em

$$\Delta G_1 = 2g_1 - g_2 - 2g_3$$

$$\Delta G_2 = 2g_4 - g_2 - g_3$$
(2.33)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 2, obtém-se

$$\begin{aligned}
 K_1 p n_2 n_3^2 &= n_1^2 n \\
 K_2 n_2 n_3 &= n_4^2
 \end{aligned}$$
(2.34)

2.6 MODELO REATIVO NÚMERO 3

A Tabela 2.4 apresenta as principais características do modelo 3. Este modelo se constitui nas quatro reações com 3º corpo dos modelos usados por Barros et al. (1990) e Smith et al. (1987).

Equação da reação global do modelo 3:

$$H_2 + aO_2 \implies n_1H_2O + n_2O_2 + n_3H_2 + n_4OH + n_5O + n_6H$$
(2.35)

Número de espécies químicas	<i>N</i> = 6
Espécies químicas	H ₂ O, O ₂ , H ₂ , OH, O, H
Número de reações de dissociação	L = 4

Tabela 2.4 Principais características do modelo 3.

Equações das reações de dissociação do modelo 3:

reação 1 :	Η	+	ОН	\Leftrightarrow	H_2O		
reação 2 :			2H	\Leftrightarrow	H_2	(2	26)
reação 3 :			20	\Leftrightarrow	O_2	(2.	.30)
reação 4 :	0	+	H	\Leftrightarrow	ОН		

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.35), no caso, e o grau de reação em cada equação de dissociação (ε_j) , quatro neste caso, a Eq. (2.36). Assim, para o modelo 3, obtém-se

$$n_{1} = b + \varepsilon_{1}$$

$$n_{2} = d + \varepsilon_{3}$$

$$n_{3} = f + \varepsilon_{2}$$

$$n_{4} = -\varepsilon_{1} + \varepsilon_{4}$$

$$n_{5} = -2\varepsilon_{3} - \varepsilon_{4}$$

$$n_{6} = -\varepsilon_{1} - 2\varepsilon_{2} - \varepsilon_{4}$$

$$n = n_{0} - \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4}$$
(2.37)

Para o modelo 3 a aplicação da Eq. (2.16) à Eq. (2.36) resulta em

$$\Delta G_{1} = g_{1} - g_{4} - g_{6}$$

$$\Delta G_{2} = g_{3} - 2g_{6}$$

$$\Delta G_{3} = g_{2} - 2g_{5}$$

$$\Delta G_{4} = g_{4} - g_{5} - g_{6}$$
(2.38)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 3, obtém-se

$$K_{1}pn_{4}n_{6} = n_{1}n$$

$$K_{2}pn_{6}^{2} = n_{3}n$$

$$K_{3}pn_{5}^{2} = n_{2}n$$

$$K_{4}pn_{5}n_{6} = n_{4}n$$
(2.39)

2.7 MODELO REATIVO NÚMERO 4

A Tabela 2.4 e a Eq. (2.35) também são válidas para o modelo 4. Este modelo se constitui naquele adotado por Svehla (1964). Equações das reações de dissociação do modelo 4:

reação 1 :	$2H_2$	+	O_2	\Leftrightarrow	$2H_2O$	
reação 2 :			2H	\Leftrightarrow	H_2	(2, 40)
reação 3 :			20	\Leftrightarrow	O_2	(2.40)
reação 4 :	0	+	H	\Leftrightarrow	ОН	

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.35), no caso, e o grau de reação em cada equação de dissociação (ε_j) , quatro neste caso, a Eq. (2.40). Assim, para o modelo 4, obtém-se

 $n_{1} = b + 2\varepsilon_{1}$ $n_{2} = d - \varepsilon_{1} + \varepsilon_{3}$ $n_{3} = f - 2\varepsilon_{1} + \varepsilon_{2}$ $n_{4} = \varepsilon_{4}$ $n_{5} = -2\varepsilon_{3} - \varepsilon_{4}$ $n_{6} = -2\varepsilon_{2} - \varepsilon_{4}$ $n = n_{0} - \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4}$ (2.41)

Para o modelo 4 a aplicação da Eq. (2.16) à Eq. (2.40) resulta em

$$\Delta G_{1} = 2g_{1} - g_{2} - 2g_{3}$$

$$\Delta G_{2} = g_{3} - 2g_{6}$$

$$\Delta G_{3} = g_{2} - 2g_{5}$$

$$\Delta G_{4} = g_{4} - g_{5} - g_{6}$$
(2.42)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 4, obtém-se

$$K_{1}pn_{2}n_{3}^{2} = n_{1}^{2}n$$

$$K_{2}pn_{6}^{2} = n_{3}n$$

$$K_{3}pn_{5}^{2} = n_{2}n$$

$$K_{4}pn_{5}n_{6} = n_{4}n$$
(2.43)

2.8 MODELO REATIVO NÚMERO 5

A Tabela 2.5 apresenta as principais características do modelo 5. Este modelo se constitui naquele adotado por Barros et al. (1990). A Eq. (2.35) também é válida para o modelo 5.

Número de espécies químicas	<i>N</i> = 6
Espécies químicas	H ₂ O, O ₂ , H ₂ , OH, O, H
Número de reações de dissociação	L = 8

Equações das reações de dissociação do modelo 5:

reação 1 :	Н	+	OH	\Leftrightarrow	H_2O	
reação 2 :			2H	\Leftrightarrow	H_2	
reação 3 :			20	\Leftrightarrow	O_2	
<i>reação</i> 4 :	0	+	H	\Leftrightarrow	ОН	$(2 \Lambda \Lambda)$
reação 5 :	0	+	ОН	\Leftrightarrow	$H + O_2$	(2.44)
<i>reação</i> 6:	H	+	ОН	\Leftrightarrow	$O + H_2$	
reação 7 :	H_2	+	ОН	\Leftrightarrow	$H + H_2O$	
reação 8 :			2 <i>OH</i>	\Leftrightarrow	$O + H_2O$	

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.35), no caso, e o grau de reação em cada equação de dissociação (ε_j) , oito neste caso, a Eq. (2.44). Assim, para o modelo 5, obtémse

$$n_{1} = b + \varepsilon_{1} + \varepsilon_{7} + \varepsilon_{8}$$

$$n_{2} = d + \varepsilon_{3} + \varepsilon_{5}$$

$$n_{3} = f + \varepsilon_{2} + \varepsilon_{6} - \varepsilon_{7}$$

$$n_{4} = -\varepsilon_{1} + \varepsilon_{4} - \varepsilon_{5} - \varepsilon_{6} - \varepsilon_{7} - 2\varepsilon_{8}$$

$$n_{5} = -2\varepsilon_{3} - \varepsilon_{4} - \varepsilon_{5} + \varepsilon_{6} + \varepsilon_{8}$$

$$n_{6} = -\varepsilon_{1} - 2\varepsilon_{2} - \varepsilon_{4} + \varepsilon_{5} - \varepsilon_{6} + \varepsilon_{7}$$

$$n = n_{0} - \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4}$$

$$(2.45)$$

Para o modelo 5 a aplicação da Eq. (2.16) à Eq. (2.44) resulta em

$$\Delta G_{1} = g_{1} - g_{4} - g_{6}$$

$$\Delta G_{2} = g_{3} - 2g_{6}$$

$$\Delta G_{3} = g_{2} - 2g_{5}$$

$$\Delta G_{4} = g_{4} - g_{5} - g_{6}$$

$$\Delta G_{5} = g_{2} + g_{6} - g_{4} - g_{5}$$

$$\Delta G_{6} = g_{3} + g_{5} - g_{4} - g_{6}$$

$$\Delta G_{7} = g_{1} + g_{6} - g_{3} - g_{4}$$

$$\Delta G_{8} = g_{1} + g_{5} - 2g_{4}$$
(2.46)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 5, obtém-se

$$K_{1}pn_{4}n_{6} = n_{1}n$$

$$K_{2}pn_{6}^{2} = n_{3}n$$

$$K_{3}pn_{5}^{2} = n_{2}n$$

$$K_{4}pn_{5}n_{6} = n_{4}n$$

$$K_{5}n_{4}n_{5} = n_{2}n_{6}$$

$$K_{6}n_{4}n_{6} = n_{3}n_{5}$$

$$K_{7}n_{3}n_{4} = n_{1}n_{6}$$

$$K_{8}n_{4}^{2} = n_{1}n_{5}$$
(2.47)

2.9 MODELO REATIVO NÚMERO 7

A Tabela 2.5 e a Eq. (2.35) também são válidas para o modelo 7. Este modelo se constitui naquele adotado por Smith et al. (1987). Equações das reações de dissociação do modelo 7:

$$\begin{array}{rrrr} reação 1: & H_2 &+ & OH \iff H &+ & H_2O \\ reação 2: & & 2OH \iff O &+ & H_2O \\ reação 3: & H_2 &+ & O \iff H &+ & OH \\ reação 4: & O_2 &+ & H \iff O &+ & OH \\ reação 5: & H &+ & OH \iff H_2O \\ reação 6: & O &+ & H \iff OH \\ reação 7: & & 2O \iff O_2 \\ reação 8: & & 2H \iff H_2 \end{array}$$

$$(2.48)$$

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.35), no caso, e o grau de reação em cada equação de dissociação (ε_j) , oito neste caso, a Eq. (2.48). Assim, para o modelo 7, obtémse

$$n_{1} = b + \varepsilon_{1} + \varepsilon_{2} + \varepsilon_{5}$$

$$n_{2} = d - \varepsilon_{4} + \varepsilon_{7}$$

$$n_{3} = f - \varepsilon_{1} - \varepsilon_{3} + \varepsilon_{8}$$

$$n_{4} = -\varepsilon_{1} - 2\varepsilon_{2} + \varepsilon_{3} + \varepsilon_{4} - \varepsilon_{5} + \varepsilon_{6}$$

$$n_{5} = \varepsilon_{2} - \varepsilon_{3} + \varepsilon_{4} - \varepsilon_{6} - 2\varepsilon_{7}$$

$$n_{6} = \varepsilon_{1} + \varepsilon_{3} - \varepsilon_{4} - \varepsilon_{5} - \varepsilon_{6} - 2\varepsilon_{8}$$

$$n = n_{0} - \varepsilon_{5} - \varepsilon_{6} - \varepsilon_{7} - \varepsilon_{8}$$

$$(2.49)$$

Para o modelo 7 a aplicação da Eq. (2.16) à Eq. (2.48) resulta em

$$\Delta G_{1} = g_{1} + g_{6} - g_{3} - g_{4}$$

$$\Delta G_{2} = g_{1} + g_{5} - 2g_{4}$$

$$\Delta G_{3} = g_{4} + g_{6} - g_{3} - g_{5}$$

$$\Delta G_{4} = g_{4} + g_{5} - g_{2} - g_{6}$$

$$\Delta G_{5} = g_{1} - g_{4} - g_{6}$$

$$\Delta G_{6} = g_{4} - g_{5} - g_{6}$$

$$\Delta G_{7} = g_{2} - 2g_{5}$$

$$\Delta G_{8} = g_{3} - 2g_{6}$$
(2.50)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 7, obtém-se

$K_1 n_3 n_4$	=	$n_1 n_6$	
$K_2 n_4^2$	=	$n_1 n_5$	
$K_3n_3n_5$	=	$n_4 n_6$	
$K_4 n_2 n_6$	=	$n_4 n_5$ (2)	51
$K_5 pn_4 n_6$	=	$n_1 n$	
$K_6 pn_5 n_6$	=	$n_4 n$	
$K_7 pn_5^2$	=	$n_2 n$	
$K_8 pn_6^2$	=	<i>n</i> ₃ <i>n</i>	

2.10 MODELO REATIVO NÚMERO 10

A Tabela 2.6 apresenta as principais características do modelo 10. As quatro primeiras reações deste modelo são as quatro reações com 3° corpo usadas nos modelos de Barros et al. (1990) e Smith et al. (1987). E as reações 5 e 6 foram extraídas do modelo de Kee et al. (1990).

Tabela 2.6 Principais características do modelo 10.

Número de espécies químicas	<i>N</i> = 8
Espécies químicas	H ₂ O, O ₂ , H ₂ , OH, O, H, HO ₂ , H ₂ O ₂
Número de reações de dissociação	L = 6

Equação da reação global do modelo 10:

$$H_2 + aO_2 \Rightarrow n_1H_2O + n_2O_2 + n_3H_2 + n_4OH + n_5O + n_6H + n_7HO_2 + n_8H_2O_2$$
 (2.52)

Equações das reações de dissociação do modelo 10:

	H_2O	\Leftrightarrow	ОН	′ +	H	reação 1:
	H_2	\Leftrightarrow	2H			reação 2 :
(2.52	O_2	\Leftrightarrow	20			reação 3 :
(2.35	ОН	\Leftrightarrow	H) +	0	<i>reação</i> 4:
	HO_2	\Leftrightarrow	O_2	I +	H	reação 5 :
	2 <i>OH</i>	\Leftrightarrow	H_2O_2	L		reação 6 :

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.52), no caso, e o grau de reação

em cada equação de dissociação (ε_j), seis neste caso, a Eq. (2.53). Assim, para o modelo 10, obtémse

$$n_{1} = b + \varepsilon_{1}$$

$$n_{2} = d + \varepsilon_{3} - \varepsilon_{5}$$

$$n_{3} = f + \varepsilon_{2}$$

$$n_{4} = -\varepsilon_{1} + \varepsilon_{4} + 2\varepsilon_{6}$$

$$n_{5} = -2\varepsilon_{3} - \varepsilon_{4}$$

$$n_{6} = -\varepsilon_{1} - 2\varepsilon_{2} - \varepsilon_{4} - \varepsilon_{5}$$

$$n_{7} = \varepsilon_{5}$$

$$n_{8} = -\varepsilon_{6}$$

$$n = n_{0} - \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4} - \varepsilon_{5} + \varepsilon_{6}$$
(2.54)

Para o modelo 10 a aplicação da Eq. (2.16) à Eq. (2.53) resulta em

$$\Delta G_{1} = g_{1} - g_{4} - g_{6}$$

$$\Delta G_{2} = g_{3} - 2g_{6}$$

$$\Delta G_{3} = g_{2} - 2g_{5}$$

$$\Delta G_{4} = g_{4} - g_{5} - g_{6}$$

$$\Delta G_{5} = g_{7} - g_{2} - g_{6}$$

$$\Delta G_{6} = 2g_{4} - g_{8}$$
(2.55)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 10, obtém-se

$K_1 p n_4 n_6$	=	$n_1 n$	
$K_2 p n_6^2$	=	<i>n</i> ₃ <i>n</i>	
$K_3 pn_5^2$	=	$n_2 n$	(2.56)
$K_4 pn_5 n_6$	=	n ₄ n	(2.50)
$K_5 pn_2 n_6$	=	<i>n</i> ₇ <i>n</i>	
$K_6 n_8 n$	=	$n_4^2 p$	

2.11 MODELO REATIVO NÚMERO 9

A Tabela 2.7 apresenta as principais características do modelo 9. Este modelo se constitui naquele adotado no programa CHEMKIN (Kee et al., 1990). A Eq. (2.52) também é válida para o modelo 9.

Tabela 2.7 Principais características do modelo 9.

Número de espécies químicas	N = 8
Espécies químicas	H ₂ O, O ₂ , H ₂ , OH, O, H, HO ₂ , H ₂ O ₂
Número de reações de dissociação	L = 18

Equações das reações de dissociação do modelo 9:

reação 1 :	$H + OH \Leftrightarrow H_2O$	
reação 2 :	$H_2 \iff 2H$	
reação 3 :	$O_2 \iff 2O$	
reação 4:	$H + O_2 \iff HO_2$	
reação 5 :	$H_2O_2 \iff 2OH$	
reação 6:	$H_2 + O_2 \iff 2OH$	
reação 7 :	$OH + H_2 \iff H_2O + H$	
reação 8 :	$H + O_2 \iff OH + O$	
reação 9 :	$O + H_2 \iff OH + H$	
reação 10 :	$H + 2O_2 \iff HO_2 + O_2$	
reação 11:	$OH + HO_2 \iff H_2O + O_2$	
reação 12 :	$H + HO_2 \iff 2OH$	
reação 13 :	$O + HO_2 \Leftrightarrow O_2 + OH$	
<i>reação</i> 14 :	$2OH \iff O + H_2O$	
reação 15 :	$H + HO_2 \Leftrightarrow H_2 + O_2$	
reação 16 :	$2HO_2 \iff H_2O_2 + O_2$	(2.57)
<i>reação</i> 17 :	$H_2O_2 + H \iff HO_2 + H_2$	(2.37)
reação 18 :	$H_2O_2 + OH \iff H_2O + HO_2$	

O número de moles de cada espécie química (n_i) é obtido da conservação de massa de cada espécie. Para isso é considerada a equação da reação global, Eq. (2.52), no caso, e o grau de reação em cada equação de dissociação (ε_j) , dezoito neste caso, a Eq. (2.57). Assim, para o modelo 9, obtém-se

$$n_{1} = b + \varepsilon_{1} + \varepsilon_{7} + \varepsilon_{11} + \varepsilon_{14} + \varepsilon_{18}$$

$$n_{2} = d - \varepsilon_{3} - \varepsilon_{4} - \varepsilon_{6} - \varepsilon_{8} - \varepsilon_{10} + \varepsilon_{11} + \varepsilon_{13}$$

$$+ \varepsilon_{15} + \varepsilon_{16}$$

$$n_{3} = f - \varepsilon_{2} - \varepsilon_{6} - \varepsilon_{7} - \varepsilon_{9} + \varepsilon_{15} + \varepsilon_{17}$$

$$n_{4} = -\varepsilon_{1} + 2\varepsilon_{5} + 2\varepsilon_{6} - \varepsilon_{7} + \varepsilon_{8} + \varepsilon_{9} - \varepsilon_{11} + 2\varepsilon_{12}$$

$$+ \varepsilon_{13} - 2\varepsilon_{14} - \varepsilon_{18}$$

$$n_{5} = 2\varepsilon_{3} + \varepsilon_{8} - \varepsilon_{9} - \varepsilon_{13} + \varepsilon_{14}$$

$$n_{6} = -\varepsilon_{1} + 2\varepsilon_{2} - \varepsilon_{4} + \varepsilon_{7} - \varepsilon_{8} + \varepsilon_{9} - \varepsilon_{10} - \varepsilon_{12}$$

$$- \varepsilon_{15} - \varepsilon_{17}$$

$$n_{7} = \varepsilon_{4} + \varepsilon_{10} - \varepsilon_{11} - \varepsilon_{12} - \varepsilon_{13} - \varepsilon_{15} - 2\varepsilon_{16} + \varepsilon_{17}$$

$$+ \varepsilon_{18}$$

$$n_{8} = -\varepsilon_{5} + \varepsilon_{16} - \varepsilon_{17} - \varepsilon_{18}$$

$$n_{1} = n_{0} - \varepsilon_{1} + \varepsilon_{2} + \varepsilon_{3} - \varepsilon_{4} + \varepsilon_{5} - \varepsilon_{10}$$

$$(2.58)$$

Para o modelo 9 a aplicação da Eq. (2.16) à Eq. (2.57) resulta em

$$\Delta G_{1} = g_{1} - g_{4} - g_{6}$$

$$\Delta G_{2} = 2g_{6} - g_{3}$$

$$\Delta G_{3} = 2g_{5} - g_{2}$$

$$\Delta G_{4} = g_{7} - g_{2} - g_{6}$$

$$\Delta G_{5} = 2g_{4} - g_{8}$$

$$\Delta G_{6} = 2g_{4} - g_{2} - g_{3}$$

$$\Delta G_{7} = g_{1} + g_{6} - g_{3} - g_{4}$$

$$\Delta G_{8} = g_{4} + g_{5} - g_{2} - g_{6}$$

$$\Delta G_{9} = g_{4} + g_{6} - g_{3} - g_{5}$$

$$\Delta G_{10} = g_{2} + g_{7} - 2g_{2} - g_{6}$$

$$\Delta G_{11} = g_{1} + g_{2} - g_{4} - g_{7}$$

$$\Delta G_{12} = 2g_{4} - g_{6} - g_{7}$$

$$\Delta G_{13} = g_{2} + g_{3} - 2g_{4}$$

$$\Delta G_{15} = g_{2} + g_{3} - g_{6} - g_{7}$$

$$\Delta G_{16} = g_{2} + g_{8} - 2g_{7}$$

$$\Delta G_{16} = g_{2} + g_{8} - 2g_{7}$$

(2.59)

Aplicando-se as Eqs. (2.3) e (2.14) ao modelo 9, obtém-se

$$K_{1}pn_{4}n_{6} = n_{1}n$$

$$K_{2}n_{3}n = n_{6}^{2}p$$

$$K_{3}n_{2}n = n_{5}^{2}p$$

$$K_{4}pn_{2}n_{6} = n_{7}n$$

$$K_{5}n_{8}n = n_{4}^{2}p$$

$$K_{6}n_{2}n_{3} = n_{4}^{2}$$

$$K_{7}n_{3}n_{4} = n_{1}n_{6}$$

$$K_{8}n_{2}n_{6} = n_{4}n_{5}$$

$$K_{9}n_{3}n_{5} = n_{4}n_{6}$$

$$K_{10}pn_{2}n_{6} = n_{7}n$$

$$K_{11}n_{4}n_{7} = n_{1}n_{2}$$

$$K_{12}n_{6}n_{7} = n_{2}^{2}n_{4}$$

$$K_{14}n_{4}^{2} = n_{1}n_{5}$$

$$K_{15}n_{6}n_{7} = n_{2}n_{8}$$

$$K_{17}n_{6}n_{8} = n_{3}n_{7}$$

$$K_{18}n_{4}n_{8} = n_{1}n_{7}$$

(2.60)

2.12 MODELO NUMÉRICO

Conforme visto acima nas seções 2.3 a 2.11 e resumido na Tabela 2.8, o programa Gibbs 1.3 apresenta nove modelos diferentes de reações químicas. Estes modelos têm 3, 4, 6 ou 8 espécies químicas e de 0 a 18 reações de dissociação.

Modelo	L	N	Espécies envolvidas	Observações
0	0	3	H_2O, O_2, H_2	modelo ideal
1	1	3	H_2O, O_2, H_2	
2	2	4	H_2O, O_2, H_2, OH	
3	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H	4 reações com 3º corpo de Barros et al. (1990) e Smith et al. (1987)
4	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H	modelo de Svehla (1964)
5	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H	modelo de Barros et al. (1990)
7	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H	modelo de Smith et al. (1987)
10	6	8	H ₂ O, O ₂ , H ₂ , OH, O, H, HO ₂ , H ₂ O ₂	4 reações do modelo 3 e 2 do modelo de Kee et al. (1990)
9	18	8	H ₂ O, O ₂ , H ₂ , OH, O, H, HO ₂ , H ₂ O ₂	modelo de Kee et al. (1990)

Tabela 2.8 Modelos de reações em equilíbrio químico do programa Gibbs 1.3.

Algoritmo do programa Gibbs 1.3 para equilíbrio químico:

- Definir os dados: número do modelo reativo, temperatura (*T*), pressão total (*p*), razão mássica oxidante/combustível (*OF*), e parâmetros numéricos (números de iterações e tolerâncias).
- 2) Ler os coeficientes termodinâmicos (a_{ki}) das Eqs. (1.1) a (1.3).
- Calcular os coeficientes da Eq. (2.18): *a* com a Eq. (2.19); *b*, *d* e *f* com a Eq. (2.20), (2.21) ou (2.22), dependendo do caso.
- 4) Inicializar os graus de reação (ε_j), de cada reação de dissociação, com o valor zero.
- Calcular o número inicial de moles de cada espécie (ni) do modelo reativo e o número total de moles (n) com base nas variáveis dos itens 3 e 4.
- 6) Calcular a energia livre de Gibbs para cada espécie (g_i), com a Eq. (1.3), a variação da energia livre de Gibbs de cada reação *j* (ΔG_j), com a Eq. (2.16), e a constante de equilíbrio de cada reação *j* baseada na pressão parcial (K_i), com a Eq. (2.15).
- 7) Iterativamente, através do método de Newton-Raphson (Turns, 1996), até que seja atingido o número máximo de iterações (itimax) ou que a tolerância (tol_e) seja satisfeita, calcular o grau de reação da 1^a reação de dissociação (ε₁). Fazer o mesmo para a 2^a reação de dissociação e assim por diante até a reação L.
- Com os ε_j obtidos no item 7, atualizar o número de moles de cada espécie (n_i) do modelo reativo e o número total de moles (n).
- 9) Calcular a variação do número total de moles (Δn). Voltar ao item 7 até que seja atingido o número máximo de iterações (itemax) ou enquanto Δn for maior do que a tolerância (tol_n).
- 10) Calcular as propriedades de mistura definidas nas Eqs. (2.2) a (2.11).

2.13 COMPARAÇÕES

Diversos foguetes de grande porte apresentam motores a propelente líquido associados a sistemas de refrigeração regenerativa. Para a avaliação da performance de um motor-foguete são comumente determinados certos parâmetros, como o empuxo, a perda de carga do sistema de refrigeração regenerativa e a temperatura máxima atingida pela parede (MARCHI *et al.*, 2004). Fazse necessário, contudo, que anteriormente seja determinada a composição química dos gases de combustão ao longo da tubeira. O primeiro passo nessa direção é a determinação da composição de equilíbrio químico, em que, por hipótese, a mistura de espécies é considerada homogênea, com pressão e temperatura constantes.

Com o intuito de validar os resultados obtidos através de simulações realizadas utilizando o programa Gibbs 1.3, foram feitos alguns estudos comparativos, cujos resultados são apresentados

na seqüência. Os valores de temperatura e pressão das simulações, apresentados na Tabela 2.9, foram escolhidos para cobrir suas variações aproximadas desde a câmara de combustão até uma razão de expansão de tubeira de 1000:1. Para cada problema abordado foram utilizados todos os modelos de reações químicas de equilíbrio, como forma, também, de se avaliar o comportamento dos resultados obtidos em função do modelo adotado. Para os testes, considerou-se que os valores de referência seriam aqueles apresentados pelo programa CEA (Tabela 2.10), da NASA. Um outro programa, também da NASA, denominado Teqworks (Tabela 2.11), também foi utilizado e seus resultados, assim como os do programa Gibbs 1.3, são comparados ao programa CEA. O número de espécies químicas consideradas nos programas CEA e Teqworks é de nove, que é o máximo possível para estes programas com o sistema LOX/LH2. No programa Gibbs, o número de espécies químicas varia de três a oito, dependendo do modelo reativo adotado.

Problema	Temperatura (K)	Pressão total (bar)
E1	4000	200
E2	3000	20
E3	2000	2
E4	1500	0.2
E5	600	0.02

Tabela 2.9 Definição dos problemas usados nas comparações ($\Phi = 1$).

Tabela 2.10 Arquivos com resultados originais do programa CEA.

Problema	Nome do arquivo	Data da simulação
E1	CEA_pt_1.out	1 Mar 05
E2	CEA_pt_2.out	1 Mar 05
E3	CEA_pt_3.out	1 Mar 05
E4	CEA_pt_4.out	1 Mar 05
E5	CEA_pt_5.out	1 Mar 05

Tabela 2.11 Arquivos com resultados originais do programa Teqworks.

Problema	Nome do arquivo	Data da simulação
E1 a E5	Tw_pt_1.out	4 Mar 05

A Tabela 2.12, mostrada a seguir, apresenta dados relativos aos parâmetros fixos utilizados na execução do programa Gibbs 1.3. Nota-se que a razão de equivalência unitária adotada, que corresponde à composição estequiométrica da mistura hidrogênio-oxigênio, representa a condição mais crítica, do ponto de vista numérico. Isso ocorre porque apenas a espécie H₂O possui condição inicial diferente de zero para o número de moles.

Tabela 2.12 Dados fixos usados para executar o programa Gibbs.

Variável	Valor
Programa Gibbs	Versão 1.3, Release 24 Fev e 23 Mar 2005
Tipo de cálculo	3 (EQUILÍBRIO)
razão em massa oxidante/combustível (OF)	$7.936682739 \ (\Phi = 1)$
número máximo de iterações para resolver a taxa	50000
de dissociação de cada reação $e(j)$ (itimax)	
tolerância para resolver e(j) (tol_e)	1.0e-12
número máximo de iterações para resolver o	50000
número total de moles <i>n</i> (itemax)	20000
tolerância para resolver <i>n</i> (tol_n)	1.0e-12
microcomputador	Pentium III, 750 MHz, 786 MB RAM

A Tabela 2.13 apresenta informações sobre os arquivos de saída do programa Gibbs 1.3. Para os casos em que não se obteve a convergência em 50000 iterações, informa-se na tabela a variação do número total de moles entre duas iterações consecutivas na iteração 50000. Nota-se também que, para um determinado par pressão-temperatura, a convergência em geral é alcançada com menor número de iterações para o modelo com maior número de reações químicas, entre os modelos com mesmo número de espécies. Como exemplos de tal afirmação, citam-se os casos dos problemas E1, E2 e E3, para os quais o modelo 5 (seis espécies) sempre apresentou o menor número de iterações externas (48, 105 e 899, nesta ordem), com menor tempo de CPU (0.010, 0.020 e 0.150 s, respectivamente) em relação aos modelos 3, 4 e 7 (todos com seis espécies). Verifica-se, contudo, que o modelo 5, necessitou de um modo geral 50% mais iterações externas e tempo de CPU do que o modelo 5. Portanto, não apenas o número de reações de dissociação, mas também as próprias reações envolvidas interferem no esforço computacional para obtenção dos resultados. Verifica-se o mesmo para os modelos 9 e 10, ambos com oito espécies: o modelo 9 com dezoito reações precisa menos iterações e tempo de CPU do que o modelo 5 e tempo de CPU do que o modelo 5 e tempo de CPU do que o modelo 5.

As Tabelas 2.14 a 2.23 a seguir apresentam os resultados obtidos para os diversos problemas ao se utilizar os programas Gibbs, CEA e Teqworks. Para fins de comparação, os resultados do Gibbs foram arredondados para o mesmo número de algarismos dos resultados do CEA. Os erros relativos são calculados conforme a Eq. (1.4), tendo os resultados do CEA como referência. Observa-se, contudo, que quando apresentada a notação 9(r), os valores de referência serão os obtidos através do modelo 9. Atenta-se, também para as seguintes abreviaturas, comumente utilizadas nas Tabelas de 2.14 a 2.23: dif. para diferença e m. para modelo. O erro absoluto das frações mássicas, apresentado nas Tabelas 2.15, 2.17, 2.19, 2.21 e 2.23, é calculado através da seguinte equação:

Problema	Modelo	Nome do arquivo	Data da	Iterações	tempo de
E1	reativo	Cibba 1m2 aquilibria 001a aut	2 Mar 05	externas	CFU(s)
	0	Gibbs 1p3 equilibrio 001a.out	2 Mar 05	<u> </u>	0
	1	Gibbs_1p3_equilibrio_0010.out	2 Mar 05	<u> </u>	0
	2	Cibbs_1p3_equilibrio_001c.out	2 Mar 05	200	0
	3	Cibbs_1p3_equilibrio_001a.out	2 Mar 05	200	0.02
EI E1	4	Gibbs_1p3_equilibric_001f.out	2 Mar 05	193	0.02
EI E1		Gibbs 1p3_equilibrio_001g out	2 Mar 05	40	0.01
EI E1	/ 10	Gibbs_1p3_equilibrio_001g.out	20 Mar 05	227	0.01
E1 F1	0	Gibbs 1p3 equilibrio 001i out	2 Mar 05	38	0.04
E1 E2	9	Cibbs_1p3_cquilibrio_001.out	2 Mar 05	30	0.01
E2 E2	1	Cibbs_1p3_equilibrio_002a.out	2 Mar 05	2	0
E2 E2	1	Cibbs_1p3_equilibrio_0020.out	2 Mar 05	26	0
E2 E2	2	Cibbs_1p3_equilibrio_002c.out	2 Mar 05	20	0
E2 E2	3	Cibbs_1p3_equilibrio_002d.out	2 Mar 05	430	0.04
E2	4	Cibbs_1p3_equilibric_0026.out	2 Mar 05	328	0.03
E2	3	Gibbs 1p3 equilibrio 0021.001	2 Mar 05	105	0.02
E2	/	Globs_1p3_equilibrio_002g.out	20 Mar 05	155	0.03
E2 E2	10	Cibbs_1p3_equilibrio_002i.out	2 Mar 05	508	0.07
E2	9	Cibbs_1p3_equilibrits_002s_sect	2 Mai 03	0/	0.02
E3	0	Gibbs_1p3_equilibrio_003a.out	2 Mar 05	2	0
E3	1	Gibbs_1p3_equilibrio_003b.out	2 Mar 05	4	0
E3	2	Gibbs 1p3 equilibrio 003c.out	2 Mar 05	10	0
E3	3	Gibbs_1p3_equilibrio_003d.out	2 Mar 05	3909	0.41
E3	4	Gibbs_1p3_equilibrio_003e.out	2 Mar 05	1532	0.16
E3	<u>כ</u>	Gibbs 1p3 equilibrio 0031.001	2 Mar 05	1211	0.15
E3 E2	/	Cibbs_1p3_equilibrio_003g.out	20 Mar 05	0284	0.23
E3 E2	10	Gibbs_1p3_equilibrio_003i.out	2 Mar 05	9384	0.12
E3	9	<u>Gibbs_1p3_equilibria_004a_aat</u>	2 Mai 05	343	0.12
E4	0	Gibbs 1p3 equilibrio 004a.out	2 Mar 05	2	0
E4	1	Gibbs 1p3 equilibrio 004b.out	2 Mar 05	<u> </u>	0
E4	2	Gibbs 1p3 equilibrio 004c.out	2 Mar 05	20020	0
E4	3	Gibbs 1p3 equilibrio 004d.out	3 Mar 05	30039	3.70
E4	4	Gibbs_1p3_equilibrio_004e.out	3 Mar 05	7100	0.65
E4		Cibbs 1p3_equilibrio_004f.out	26 Mar 05	10660	1.27
E4	10	Gibbs_1p3_equilibrio_004g.out	20 Mar 05	3.02.6	2.11
E4	0	Gibbs_1p3_equilibrio_004i.out	2 Mar 05	1705	0.66
E4	9	Cibbs_1p3_equilibric_0041.00t	2 Mar 05	1795	0.00
E5	0	Gibbs 1p3 equilibrio 005a.out	3 Mar 05	2	0
E3 E5	1	Cibbs 1p2 equilibric 005c cut	3 Iviar 05	2	0
E3 E5	2	Gibbs 1p2 equilibric 005d cut	3 Iviar 05	2	0
E3 E5	<u> </u>	Gibbs 1p3 equilibria 005a cut	2 Mar 05	2	0
E3 E5	- 4	Cibbs 1p2 equilibric 005f out	2 Mar 05	2	0
E3 E5	<u>כ</u>	Gibbs 1p2 equilibria 005 cout	26 Mar 05	2	0
EJ E5	/ 10	Gibbs 1p3 equilibric 005b out	20 Ivial 03		U
E5 E5	0	Gibbs 1p3 equilibric 005i out	3 Mar 05	nverge 2	0.01
$_{\rm LJ}$	2	Gibbs ips equilibrito obst.out	J IVIAL US	2	0.01

Tabela 2.13 Arquivos com resultados originais do programa Gibbs.

$$Erro = Y_{CEA} - Y_{Gibbs ou Teqworks}$$

(2.61)

sendo Y_{CEA} a fração mássica obtida através do programa CEA e $Y_{Gibbs ou Teqworks}$ a fração mássica obtida através dos programas Gibbs 1.3 ou Teqworks.

Madala	М	ρ	c congelado	γ congelado	R	С
Niodelo	(kg/kmol)	(kg/m^3)	(J/kg.K)	(adim.)	(J/kg.K)	(mol/cm ³)
0	18.015	10.8336	3295.5	1.1629	461.53	6.0136e-4
1	16.865	10.1421	3300.0	1.1756	493.00	6.0136e-4
2	16.196	9.7395	3288.8	1.1850	513.37	6.0136e-4
E modelo 2	-4.38	-4.38	0.061			
Dif. (%) entre m. 2 e 9(r)	-4.24	-4.24	0.15	0.75	4.07	0
3	15.536	9.3425	3293.5	1.1940	535.19	6.0136e-4
4	15.536	9.3425	3293.5	1.1940	535.19	6.0136e-4
5	15.536	9.3425	3293.5	1.1940	535.19	6.0136e-4
E modelo 5	-0.13	-0.12	-0.082			
Dif. (%) entre m. 5 e 9(r.)	0.0064	0.0086	0.0030	0	-0.0093	0
7	15.536	9.3425	3293.5	1.1940	535.19	6.0136e-4
10	15.537	9.3433	3293.6	1.1940	535.14	6.0136e-4
CEA	15.516	9.3309	3290.8			
9	15.537	9.3433	3293.6	1.1940	535.14	6.0136e-4
E modelo 9	-0.14	-0.13	-0.085			
Teqworks	15.503	9.3230				
E Teqworks	-0.084	0.085				

Tabela 2.14 Resultados globais para o problema E1.

Tabela 2.15 Resultados para as frações mássicas do problema E1.

Modelo	H ₂ O	O ₂	H_2	OH	0	Η	HO ₂	H_2O_2	O ₃
0	1.0000e-0	0	0						
1	8.6362e-1	1.2112e-1	1.5260e-2						
2	7.7532e-1	7.7639e-2	1.7462e-2	1.2958e-1					
Erro do modelo 2	-2.7e-2	-3.0e-3	-3.8e-5	5.5e-3	2.1e-2	2.7e-3	9.2e-4	2.1e-4	2.6e-6
Dif. entre m. 2 e 9(r)	-2.3e-2	-3.0e-3	-3.8e-5	-9.3e-4	2.1e-2	2.7e-3	9.3e-4	2.1e-4	
3	7.5268e-1	7.7291e-2	1.7347e-2	1.2886e-1	2.1134e-2	2.6914e-3			
4	7.5268e-1	7.7291e-2	1.7347e-2	1.2886e-1	2.1134e-2	2.6914e-3			
5	7.5268e-1	7.7291e-2	1.7347e-2	1.2886e-1	2.1134e-2	2.6914e-3			
Erro do modelo 5	-4.3e-3	-2.6e-3	7.7e-5	6.2e-3	-5.0e-4	-6.4e-6	9.2e-4	2.1e-4	2.6e-6
Dif. entre m. 5 e 9(r)	-5.4e-4	-3.8e-4	2.9e-5	-2.1e-4	-5.2e-5	2.1e-6	9.3e-4	2.1e-4	
7	7.5268e-1	7.7291e-2	1.7347e-2	1.2886e-1	2.1134e-2	2.6914e-3			
10	7.5214e-1	7.6915e-2	1.7376e-2	1.2865e-1	2.1082e-2	2.6935e-3	9.2804e-4	2.1200e-4	
CEA	7.4839e-1	7.4654e-2	1.7424e-2	1.3508e-1	2.0636e-2	2.6850e-3	9.2359e-4	2.0703e-4	2.6050e-6
9	7.5214e-1	7.6915e-2	1.7376e-2	1.2865e-1	2.1082e-2	2.6935e-3	9.2804e-4	2.1200e-4	
Erro do modelo 9	-3.8e-3	-2.3e-3	4.8e-5	6.4e-3	-4.5e-4	-8.5e-6	-4.4e-6	-5.0e-6	2.6e-6
Teqworks	7.478e-1	7.8259e-2	1.7690e-2	1.318e-1	2.1167e-2	2.7045e-3	5.6768e-4	5.534e-13	1.3402e-6
Erro do Teqworks	5.9e-4	-3.6e-3	-2.7e-4	3.3e-3	-5.3e-4	-2.0e-5	3.6e-4	2.1e-4	1.3e-6

Modelo		ρ	<i>c</i> congelado	γcongelado	R (U) V)	C
	(kg/kmol)	(kg/m [°])	(J/kg.K)	(adım.)	(J/kg.K)	(mol/cm ²)
0	18.015	1.4445	3155.3	1.1713	461.53	8.0181e-5
1	17.515	1.4044	3155.9	1.1770	474.70	8.0181e-5
2	17.272	1.3849	3152.6	1.1802	481.40	8.0181e-5
E modelo 2	-0.92	-0.93	0.0095			
Dif. (%) entre m. 2 e 9(r)	-0.83	-0.84	0.044	0.14	0.83	0
3	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
4	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
5	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
E modelo 5	-0.088	-0.087	-0.035			
Dif. (%) entre m. 5 e 9(r)	0	0	0	0	0	0
7	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
10	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
CEA	17.114	1.3722	3152.9			
9	17.129	1.3734	3154.0	1.1819	485.41	8.0181e-5
E modelo 9	-0.088	-0.087	-0.035			
Teqworks	17.120	1.3727				
E Teqworks	-0.035	-0.036				

Tabela 2.16 Resultados globais para o problema E2.

Tabela 2.17 Resultados para as frações mássicas do problema E2.

Modelo	H ₂ O	O ₂	H_2	OH	0	Η	HO ₂	H_2O_2	O ₃
0	1.0000	0	7.321e-13						
1	9.4291e-1	5.0703e-2	6.3884e-3						
2	9.1388e-1	3.7937e-2	7.2085e-3	4.0978e-2					
Erro do modelo 2	-6.3e-3	-7.8e-4	-5.0e-7	3.1e-3	3.3e-3	5.2e-4	8.9e-5	1.9e-5	4.7e-8
Dif. entre m. 2 e $9(r)$	-4.4e-3	3.1e-4	-3.4e-5	7.1e-5	3.4e-3	5.2e-4	8.9e-5	1.9e-5	
3	9.0955e-1	3.8289e-2	7.1710e-3	4.1061e-2	3.4079e-3	5.1624e-4			
4	9.0955e-1	3.8289e-2	7.1710e-3	4.1061e-2	3.4079e-3	5.1624e-4			
5	9.0955e-1	3.8289e-2	7.1710e-3	4.1061e-2	3.4079e-3	5.1624e-4			
Erro do modelo 5	-1.9e-3	-1.1e-3	3.7e-5	3.0e-3	-7.3e-5	-1.0e-6	8.9e-5	1.9e-5	4.7e-8
Dif. entre m. 5 e 9(r)	-5.0e-5	-3.9e-5	3.2e-6	-1.2e-5	-1.8e-6	1.2e-7	8.9e-5	1.9e-5	
7	9.0955e-1	3.8289e-2	7.1710e-3	4.1061e-2	3.4079e-3	5.1624e-4			
10	9.0950e-1	3.8250e-2	7.1742e-3	4.1049e-2	3.4061e-3	5.1636e-4	8.8547e-5	1.9324e-5	
CEA	9.0761e-1	3.7161e-2	7.2080e-3	4.4067e-2	3.3347e-3	5.1522e-4	8.8797e-5	1.8870e-5	4.7269e-8
9	9.0950e-1	3.8250e-2	7.1742e-3	4.1049e-2	3.4061e-3	5.1636e-4	8.8547e-5	1.9324e-5	-
Erro do modelo 9	-1.9e-3	-1.1e-3	3.4e-5	3.0e-3	-7.1e-5	-1.1e-6	2.5e-7	-4.5e-7	4.7e-8
Teqworks	9.0850e-1	3.8427e-2	7.2460e-3	4.1891e-2	3.3923e-3	5.1613e-4	5.1871e-5	3.457e-11	3.5514e-8
Erro do Teqworks	-8.9e-4	-1.3e-3	-3.8e-5	2.2e-3	5.8e-5	9.1e-7	3.7e-5	1.9e-5	1.2e-8

Para os cinco problemas analisados, os programas Gibbs (modelo 9) e Teqworks reproduzem os resultados do programa CEA dentro da mesma ordem de erro para as variáveis comparadas: os erros máximos de parâmetros globais são, respectivamente, de 0.15% e 0.085%; e

os erros absolutos máximos das frações mássicas são, respectivamente, de 6.4×10^{-3} e 3.6×10^{-3} . Portanto, pode-se concluir que as propriedades de uma reação em equilíbrio químico estão sendo corretamente calculadas no programa Gibbs 1.3, para o modelo 9.

Modelo	M (kg/kmol)	ρ (kg/m ³)	<i>c</i> congelado (J/kg.K)	γcongelado (adim.)	R (J/kg.K)	C (mol/cm ³)
0	18.015	2.1667e-1	2868.6	1.1917	461.53	1.2027e-5
1	17.976	2.1620e-1	2869.0	1.1922	462.54	1.2027e-5
2	17.966	2.1608e-1	2868.9	1.1923	462.80	1.2027e-5
E modelo 2	-0.017	-0.014	0.15			
Dif. (%) entre m. 2 e 9(r)	-0.0056	-0.014	0	0.0084	0.0065	0
3	17.965	2.1606e-1	2868.9	1.1924	462.83	1.2027e-5
4	17.965	2.1606e-1	2868.9	1.1924	462.83	1.2027e-5
5	17.965	2.1606e-1	2868.9	1.1924	462.83	1.2027e-5
E modelo 5	-0.011	-0.0046	0.15			
Dif. (%) entre m. 5 e 9(r)	0	-0.0046	0	0	0	0
7	17.965	2.1606e-1	2868.9	1.1924	462.83	1.2027e-5
10	17.965	2.1606e-1	2868.9	1.1924	462.83	1.2027e-5
CEA	17.963	2.1605e-1	2873.2			
9	17.965	2.1605e-1	2868.9	1.1924	462.83	1.2027e-5
E modelo 9	-0.011	0	0.15			
Teqworks	17.964	2.161e-1				
E Teqworks	-0.006	-0.023				

Tabela 2.18 Resultados globais para o problema E3.

Tabela 2.19 Rest	ultados para as	frações	mássicas de	o problema	E3.
------------------	-----------------	---------	-------------	------------	-----

Modelo	H ₂ O	O ₂	H_2	OH	0	Н	HO ₂	H_2O_2	O ₃
0	1.0000	0	7.321e-13						
1	9.9562e-1	3.8862e-3	4.8965e-4						
2	9.9449e-1	3.4021e-3	5.2287e-4	1.5898e-3					
Erro do modelo 2	-1.6e-4	-6.7e-5	1.0e-6	1.9e-4	1.8e-5	4.4e-6	5.9e-7	2.2e-7	1.8e-11
Dif. entre m. 2 e 9(r)	-4.0e-5	9.7e-6	-7.4e-7	1.1e-6	1.9e-5	4.4e-6	5.8e-7	2.2e-7	
3	9.9445e-1	3.4121e-3	5.2211e-4	1.5910e-3	1.8564e-5	4.4299e-6			
4	9.9445e-1	3.4121e-3	5.2211e-4	1.5910e-3	1.8564e-5	4.4299e-6			
5	9.9445e-1	3.4121e-3	5.2211e-4	1.5910e-3	1.8564e-5	4.4299e-6			-
Erro do modelo 5	-1.2e-4	-7.7e-5	1.8e-6	1.9e-4	-3.4e-7	-1.4e-8	5.9e-7	2.2e-7	1.8e-11
Dif. entre m. 5 e 9(r)	0	-3.0e-7	2.0e-8	-1.0e-7	-1.0e-9	1.0e-10	5.8e-7	2.2e-7	
7	9.9445e-1	3.4121e-3	5.2211e-4	1.5910e-3	1.8564e-5	4.4299e-6			
10	9.9445e-1	3.4118e-3	5.2213e-4	1.5909e-3	1.8563e-5	4.4300e-6	5.7565e-7	2.2098e-7	
CEA	9.9433e-1	3.3349e-3	5.2391e-4	1.7847e-3	1.8223e-5	4.4157e-6	5.8719e-7	2.1512e-7	1.811e-11
9	9.9445e-1	3.4118e-3	5.2213e-4	1.5909e-3	1.8563e-5	4.4300e-6	5.7565e-7	2.2098e-7	
Erro do modelo 9	-1.2e-4	-7.7e-5	1.8e-6	1.9e-4	-3.4e-7	-1.4e-8	1.2e-8	-5.9e-9	1.8e-11
Teqworks	9.945e-1	3.3728e-3	5.2451e-4	1.6205e-3	1.8329e-5	4.4152e-6	2.8999e-7	8.8278e-8	1.597e-11
Erro do Teqworks	-1.7e-4	-3.8e-5	-6.0e-7	1.6e-4	-1.1e-7	5.0e-10	3.0e-7	1.3e-7	2.1e-12

Modelo	M (kg/kmol)	ρ (kg/m ³)	c congelado (J/kg.K)	γcongelado (adim.)	<i>R</i> (J/kg.K)	C (mol/cm ³)
0	18.015	2.8890e-2	2627.4	1.2131	461.53	1.6036e-6
1	18.012	2.8885e-2	2627.5	1.2131	461.60	1.6036e-6
2	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
E modelo 2	0	0	-0.034			
Dif. (%) entre m. 2 e 9(r)	0	0	0	0	0	0
3	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
4	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
5	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
E modelo 2	0	0	-0.034			
Dif. (%) entre m. 2 e 9(r)	0	0	0	0	0	0
7	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
10*	13.578	2.1774e-2	2746.4	1.2869	612.36	1.6036e-6
CEA	18.012	2.8884e-2	2626.6			
9	18.012	2.8884e-2	2627.5	1.2131	461.61	1.6036e-6
E modelo 9	0	0	-0.034			
Teqworks	18.0114	2.8884e-2				
E Teqworks	0.0033	0				

Tabela 2.20 Resultados globais para o problema E4.

* Resultados obtidos após 50000 iterações.

Modelo	H ₂ O	02	H ₂	OH	0	Н	HO ₂	H_2O_2	O ₃
0	1.0000	0	6.543e-12						
1	9.9967e-1	2.9390e-4	3.7031e-5						
2	9.9963e-1	2.7606e-4	3.8207e-5	5.7785e-5					
Erro do modelo 2	-1.0e-5	-4.4e-6	5.0e-9	9.9e-6	1.0e-7	4.1e-8	3.5e-9	2.2e-9	7.1e-15
Dif. entre m. 2 e $9(r)$	0	1.4e-7	-9.0e-5	8.0e-9	1.0e-7	4.1e-8	3.4e-9	2.3e-9	
3	9.9963e-1	2.7620e-4	3.8197e-5	5.7793e-5	1.0109e-7	4.0960e-8			
4	9.9963e-1	2.7620e-4	3.8197e-5	5.7791e-5	1.0108e-7	4.0960e-8			
5	9.9963e-1	2.7620e-4	3.8197e-5	5.7793e-5	1.0109e-7	4.0960e-8			
Erro do modelo 5	-1.0e-5	-4.6e-6	1.5e-8	9.9e-6	-1.5e-9	-2.1e-10	3.5e-9	2.2e-9	7.1e-15
Dif. entre m. 5 e 9(r)	0	0	1.0e-9	0	0	1.0e-12	3.4e-9	2.3e-9	
7	9.9963e-1	2.7620e-4	3.8197e-5	5.7793e-5	1.0108e-7	4.0960e-8			
10*	3.4626e-1	5.8037e-1	7.3144e-2	6.4542e-6	3.561e-10	1.7283e-6	2.2551e-4	2.127e-11	
CEA	9.9962e-1	2.7164e-4	3.8212e-5	6.7722e-5	9.9587e-8	4.0746e-8	3.4962e-9	2.1875e-9	7.135e-15
9	9.9963e-1	2.7620e-4	3.8198e-5	5.7793e-5	1.0109e-7	4.0961e-8	3.3742e-9	2.2622e-9	
Erro do modelo 9	-1.0e-5	-4.6e-6	1.4e-8	9.9e-6	-1.5e-9	-2.2e-10	1.2e-10	-7.5e-11	7.1e-15
Teqworks	9.994e-1	1.3920e-4	3.5863e-4	6.1144e-5	1.0695e-7	7.4591e-7	7.311e-10	1.0710e-9	2.049e-15
Erro do Teqworks	2.2e-4	1.3e-4	-3.2e-4	6.6e-6	-7.4e-9	-7.1e-7	2.8e-9	1.1e-9	5.1e-15

Tabela 2.21 Resultados para as frações mássicas do problema E4.

* Resultados obtidos após 50000 iterações.

Modelo	M (kg/kmol)	ρ (kg/m ³)	c congelado (J/kg.K)	γcongelado (adim.)	<i>R</i> (J/kg.K)	C (mol/cm ³)
0	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
1	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
2	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
E modelo 2	0	0	0.0099			
Dif. (%) entre m. 2 e 9(r)	0	0	0	0	0	0
3	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
4	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
5	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
E modelo 5	0	0	0.0099			
Dif. (%) entre mod. 5 e 9	0	0	0	0	0	0
7	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
10*						
CEA	18.015	7.2224e-3	2016.3			
9	18.015	7.2224e-3	2016.1	1.2969	461.53	4.0091e-7
E modelo 9	0	0	9.9e-3			
Teqworks	18.014	7.2222e-3				
E Teqworks	5.6e-3	2.8e-3				

* O modelo apresentou divergência.

Modelo	H ₂ O	O ₂	H ₂	OH	0	Н	HO ₂	H_2O_2	O ₃
0	1.0000	0	7.321e-13						
1	1.0000	1.115e-13	7.462e-13						
2	1.0000	1.120e-15	7.395e-13	1.219e-13					
Erro do modelo 2	0	1.6e-12	-5.4e-13	-1.2e-13	1.6e-24	2.4e-23	1.6e-22	1.5e-19	3.5e-35
Dif. entre m. 2 e 9(r)	0	8.0e-13	1.2e-13	3.0e-13	3.2e-20	1.9e-20	1.5e-15	1.2e-14	
3	1.0000	2.219e-31	7.618e-13	5.724e-13	1.775e-30	4.240e-15			
4	1.0000	1.495e-13	7.150e-13	1.186e-13	2.545e-17	4.302e-14			
5	1.0000	1.409e-19	8.085e-13	1.288e-12	2.981e-19	4.308e-20			
Erro do modelo 5	0	1.6e-12	-6.1e-13	-1.3e-12	-3.0e-19	-4.3e-20	1.6e-22	1.5e-9	3.5e-35
Dif. entre m. 5 e $9(r)$	0	8.0e-13	5.1e-14	-8.6e-13	-2.7e-19	-2.4e-20	1.5e-15	1.2e-14	
7	1.0000	1.184e-18	8.085e-13	1.288e-12	7.336e-26	6.186e-20			
10*									
CEA	1.0000	1.563e-12	1.977e-13	4.497e-15	1.585e-24	2.431e-23	1.567e-22	1.480e-19	3.468e-35
9	1.0000	8.007e-13	8.590e-13	4.231e-13	3.214e-20	1.948e-20	1.531e-15	1.230e-14	
Erro do modelo 9	0	7.6e-13	-6.6e-13	-4.2e-13	-3.2e-20	-1.9e-20	-1.5e-15	-1.2e-14	3.5e-35
Teqworks	1.0000	1.951e-27	5.5890e-6	5.983e-19	5.598e-32	1.292e-19	1.466e-34	4.693e-27	< 1.0e-36
Erro do Teqworks	0	1.6e-12	-5.6e-6	4.5e-15	1.6e-24	-1.3e-19	1.6e-22	1.5e-19	< 3.4e-35

Tabela 2.23 Resultados para as frações mássicas do problema E5.

* O modelo apresentou divergência.

Os modelos 3, 4, 5 e 7, todos com seis espécies, apresentam resultados idênticos entre si para todas as variáveis analisadas. O mesmo ocorre com os modelos 9 e 10 que têm oito espécies.

As Figuras 2.1 a 2.4 mostram graficamente as frações mássicas e seus erros para vários modelos e programas.

Figura 2.1 Comparação dos resultados de diversos modelos do programa Gibbs com os resultados dos programas Teqworks e CEA, para o problema E1.

Na quase totalidade dos testes, os resultados dos modelos 3, 4, 5 e 7, todos com seis espécies, estão dentro da mesma ordem de erro do modelo 9 (oito espécies) do programa Gibbs 1.3 e do Teqworks (nove espécies) quando comparados com o programa CEA (nove espécies). Verifica-se, também, a tendência dos resultados dos modelos 3, 4, 5 e 7 se distanciarem dos resultados do modelo 9, do Teqworks e do CEA apenas para condições de temperatura elevada (como é o caso do problema E1), nos quais os efeitos de dissociação se tornam mais significativos e um maior número de espécies se faz presente. Nota-se, contudo, que mesmo no problema E1, o aumento do erro ainda é pequeno o suficiente para que ele se apresente na mesma ordem de grandeza, quando comparado aos erros do modelo 9 do programa Gibbs e ao programa Teqworks.

Os modelos com menor número de espécies, entretanto, não demonstram a mesma acurácia que os modelos de seis e oito espécies do programa Gibbs ou o programa Teqworks (nove espécies). Para os problemas em que a temperatura é mais elevada (e os efeitos de dissociação são mais pronunciados), os modelos 1 e 2 não apresentam certas espécies em sua formulação cuja

participação aumenta significativamente na composição final da mistura de gases (como o hidrogênio e o oxigênio atômicos). Desta forma, os resultados desses modelos tendem a se distanciar daqueles obtidos através de modelos com um maior número de espécies. Nota-se, no entanto, que para problemas em que os efeitos das reações de dissociação são pequenos (como no caso do problema E5), os resultados obtidos pelos modelos de menor número de espécies é bastante satisfatório.

Figura 2.2 Erro absoluto (em módulo) na obtenção da composição de equilíbrio químico para o problema E1, utilizando modelos do programa Gibbs e o programa Teqworks [base de comparação: programa CEA].

Verifica-se, deste modo, a importância na escolha do modelo de reações químicas para a determinação das frações mássicas e propriedades da mistura de gases reativos. Modelos de menor número de reações e de espécies não são indicados quando os efeitos de dissociação são mais significativos (como no problema E1); para esses casos, modelos de seis espécies já apresentam resultados bastante confiáveis (modelos 3, 4, 5 e 7). No entanto, o modelo que apresenta os melhores resultados (quando comparados aos do programa CEA) é o modelo 9, com oito espécies.

2.14 CONCLUSÃO

Neste capítulo foram feitas comparações da fração mássica de cada gás, massa molecular média, massa específica total da mistura e o calor específico à pressão constante médio para cinco problemas. As comparações foram feitas entre três programas: Gibbs 1.3, que dispõe de nove modelos reativos com zero a dezoito reações de dissociação, envolvendo de três a oito espécies químicas; e os programas CEA e Teqworks, cujo modelo reativo usado contém nove espécies químicas. Com base nas comparações, verificou-se que:

 As variáveis dependem apenas do número de espécies químicas. Elas independem dos tipos e da quantidade das reações de dissociação. Portanto, os modelos 3, 4, 5 e 7, todos com seis espécies, apresentam resultados idênticos entre si para todas as variáveis analisadas. O mesmo ocorre com os modelos 9 e 10, que têm oito espécies.

Figura 2.3 Comparação dos resultados de diversos modelos do programa Gibbs com os resultados dos programas Teqworks e CEA, para o problema E4.

2) Para os cinco problemas analisados, os programas Gibbs (modelo 9) e Teqworks reproduzem os resultados do programa CEA dentro da mesma ordem de erro para as variáveis comparadas: os erros máximos de parâmetros globais são, respectivamente, de 0.15% e 0.085%; e os erros absolutos máximos das frações mássicas são, respectivamente, de 6.4x10⁻³ e 3.6x10⁻³. Portanto,

pode-se concluir que as propriedades de reações em equilíbrio químico estão sendo corretamente calculadas no programa Gibbs 1.3, para o modelo 9.

Figura 2.4 Erro absoluto (em módulo) na obtenção da composição de equilíbrio químico para o problema E4, utilizando modelos do programa Gibbs e o programa Teqworks [base de comparação: programa CEA].

- 3) Os resultados dos modelos (3, 4, 5 e 7) com seis espécies são muito próximos dos modelos (9 e 10) com oito espécies. Mas modelos com apenas quatro espécies ou menos podem apresentar erros significativos.
- 4) Em termos de tempo computacional para obter a solução convergida, geralmente o modelo 9 é o mais rápido, ou quase o mais rápido, dentre os modelos com seis e oito espécies.
- 5) Se o interesse for usar um modelo com seis espécies, recomenda-se o modelo 5. E no caso de oito espécies, o modelo 9.

3. TEMPERATURA DE COMBUSTÃO

Objetivos:

- Apresentar o modelo numérico usado para calcular a temperatura de combustão no programa Gibbs 1.3.
- Comparar os resultados fornecidos pelo programa Gibbs 1.3 aos programas CEA e Teqworks da NASA, e a outras fontes da literatura. Para dezessete problemas, são comparados os resultados da temperatura de combustão.
- Analisar a estabilidade e robustez numérica de nove modelos reativos do programa Gibbs 1.3, bem como o tempo computacional, para definir quais serão usados em simulações de escoamentos.

3.1 MODELO NUMÉRICO

O problema da determinação da temperatura de combustão é, basicamente, o problema do equilíbrio químico (capítulo anterior) com uma modificação: enquanto no equilíbrio químico a temperatura dos produtos da mistura de gases é um dado do problema, na determinação da temperatura de combustão é fornecida a temperatura (ou entalpia) dos reagentes. Desta forma, admitindo-se que a combustão seja adiabática, é necessário igualar a entalpia dos produtos a dos reagentes, de modo a se obter a temperatura de combustão. Nota-se, contudo, que a própria composição da mistura de gases é dependente da temperatura dos produtos, o que torna o problema não-linear.

O algoritmo implementado para a obtenção da temperatura de combustão é baseado no método da bisseção (Chapra e Canale, 1994). São informadas, inicialmente, a pressão na câmara e a temperatura ou a entalpia de cada um dos reagentes. Caso seja fornecida a temperatura, é necessário calcular a entalpia dos reagentes. A seguir, é determinada a composição química da mistura de gases para a temperatura de 3150 K (valor médio do intervalo de 300 a 6000 K). É, então, determinada a entalpia da mistura de gases e comparada à entalpia dos reagentes. Compara-se, a seguir, a entalpia dos reagentes à entalpia dos produtos a 3150 K: se esta for menor que aquela, a temperatura de combustão estará no segundo subintervalo (entre 3150 e 6000 K); se for maior, a temperatura se encontra no primeiro subintervalo (entre 300 e 3150 K). Determina-se, na seqüência, o novo valor médio do intervalo de temperaturas, bem como a composição de equilíbrio e a entalpia correspondentes. Verifica-se, então, se a entalpia obtida é maior ou menor que a dos reagentes, de modo a se determinar qual é o novo subintervalo no qual se encontra a temperatura de combustão.

Calcula-se, a seguir, o valor médio desse novo subintervalo de temperaturas, bem como a composição química e a entalpia da mistura de gases e assim sucessivamente até que seja atingido um critério de parada, baseado em uma certa tolerância ou em um número máximo de iterações.

Algoritmo do programa Gibbs 1.3 para determinar a temperatura de combustão adiabática:

- Definir os dados: número do modelo reativo, temperatura ou entalpia dos reagentes, pressão total (p), razão mássica oxidante/combustível (OF), e parâmetros numéricos (números de iterações e tolerâncias).
- 2) Ler os coeficientes termodinâmicos (a_{ki}) das Eqs. (1.1) a (1.3).
- Calcular os coeficientes da Eq. (2.18); *a* com a Eq. (2.19); *b*, *d* e *f* com a Eq. (2.20), (2.21) ou (2.22), dependendo do caso.
- 4) Inicializar os graus de reação (ε_j), de cada reação de dissociação, com o valor zero.
- Calcular o número inicial de moles de cada espécie (ni) do modelo reativo e o número total de moles (n) com base nas variáveis dos itens 3 e 4.
- 6) Calcular a entalpia total dos reagentes através de

$$H_R = h_{combustivel} + a h_{oxidante}$$
(3.1)

- Considerar inicialmente a temperatura de combustão igual a 3150 K (valor médio do intervalo de 300 a 6000 K).
- 8) Calcular a energia livre de Gibbs para cada espécie (g_i), com a Eq. (1.3), a variação da energia livre de Gibbs de cada reação j (ΔG_j), com a Eq. (2.16), e a constante de equilíbrio de cada reação j baseada na pressão parcial (K_i), com a Eq. (2.15).
- 9) Iterativamente, através do método de Newton-Raphson (Turns, 1996), até que seja atingido o número máximo de iterações (itimax) ou que a tolerância (tol_e) seja satisfeita, calcular o grau de reação da 1^a reação de dissociação (ε₁). Fazer o mesmo para a 2^a reação de dissociação e assim por diante até a reação L.
- 10) Com os ε_j obtidos no item 9, atualizar o número de moles de cada espécie (n_i) do modelo reativo e o número total de moles (n).
- 11) Calcular a variação do número total de moles (Δn). Voltar ao item 9 até que seja atingido o número máximo de iterações (itemax) ou enquanto Δn for maior do que a tolerância (tol_n).
- 12) Calcular a entalpia total dos produtos através da Eq. (2.12).
- Estimar uma nova temperatura de combustão com o método da bisseção (Chapra e Canale, 1994).

- 14) Calcular a diferença (ΔT) entre a temperatura de combustão anterior e a nova. Voltar ao item 8 até que seja atingido o número máximo de iterações (itemax) ou enquanto ΔT for maior do que a tolerância (tol_Tc).
- 15) Calcular as propriedades de mistura definidas nas Eqs. (2.2) a (2.11).

3.2 COMPARAÇÕES

As Tabelas 3.1 e 3.2 definem os dados dos dezessete problemas usados nas comparações entre os programas Gibbs 1.3, CEA e Teqworks. Nota-se que a entalpia de cada componente do propelente é fixa. A razão mássica oxidante/combustível (OF) e a pressão total em que ocorre a combustão são variáveis. Os valores de OF e da pressão (apresentados na Tabela 3.2) foram escolhidos para cobrir alguns resultados disponíveis na literatura e valores comumente usados em motores reais.

Tabela 3.1 Dados fixos usados em todos os problemas resolvidos com os programas Gibbs, CEA e Teqworks.

Variável	Valor
entalpia (J/mol) de injeção do combustível (H ₂) líquido na câmara a $T = 20.27$ K	- 9012
entalpia (J/mol) de injeção do oxidante (O ₂) líquido na câmara a $T = 90.17$ K	- 12979

Problema	razão em massa oxidante/combustível (<i>OF</i>)	Pressão total (bar)
C1	7.936682739	200
C2	2	200
C3	4	200
C4	6	200
C5	10	200
C6	12	200
C7	14	200
C8	16	200
C9	6.000	202.41
C10	8	5.1676
C11	16	5.1676
C12	4.13	68.948
C13	4.83	68.948
C14	3.40	68.948
C15	4.02	68.948
C16	4.00	68.948
C17	7.936682739	20

Tabela 3.2 Definição dos problemas usados nas comparações.

As Tabelas 3.3 a 3.6 os dados e os arquivos originais com os resultados das simulações efetuadas como os programas Gibbs 1.3, CEA e Teqworks. Nestes dois últimos foram consideradas nove espécies de gases, que se constitui no valor máximo de espécies admitido por tais programas para o sistema LOX/LH2. Para as simulações feitas utilizando-se o programa Gibbs, o modelo 9 (com oito espécies) sempre foi utilizado para fins de comparação e estudo; contudo, os demais modelos também foram testados para os problemas C1 e C17.

Problema	Nome do arquivo	Data da simulação
C1	CEA ph 1.out	2 Mar 05
C2	CEA_ph_2.out	4 Mar 05
C3	CEA_ph_3.out	4 Mar 05
C4	CEA_ph_4.out	4 Mar 05
C5	CEA_ph_5.out	4 Mar 05
C6	CEA_ph_6.out	4 Mar 05
C7	CEA_ph_7.out	4 Mar 05
C8	CEA_ph_8.out	4 Mar 05
С9	CEA_ph_9.out	4 Mar 05
C10	CEA_ph_10.out	4 Mar 05
C11	CEA_ph_11.out	4 Mar 05
C12	CEA_ph_12.out	4 Mar 05
C13	CEA_ph_13.out	4 Mar 05
C14	CEA_ph_14.out	4 Mar 05
C15	CEA_ph_15.out	4 Mar 05
C16	CEA_ph_16.out	4 Mar 05
C17	CEA_ph_17.out	4 Mar 05

Tabela 3.3 Arquivos com resultados originais do programa CEA.

Tabela 3.4 Arquivos com resultados originais do programa Teqworks.

Problema	Nome do arquivo	Data da simulação
C1	Tw_ph_1.out	4 Mar 05
C2	Tw_ph_2.out	10 Abr 05
C3	Tw_ph_3.out	10 Abr 05
C4	Tw_ph_4.out	10 Abr 05
C5	Tw_ph_5.out	10 Abr 05
C6	Tw_ph_6.out	10 Abr 05
C7	Tw_ph_7.out	10 Abr 05
C8	Tw_ph_8.out	10 Abr 05
C17	Tw_ph_17.out	7 Mar 05

Os erros relativos apresentados nas Tabelas 3.7, 3.8 e 3.9 são calculados através da Eq. (1.4), sendo o valor de referência aquele obtido através do programa CEA. O que está entre colchetes nestas tabelas indica a outra fonte de comparação; no caso [Tw] refere-se ao programa Teqworks.

Tabela 3.5 Dados fixos usados para executar o programa Gibbs.

Variável	Valor		
Programa Gibbs	Versão 1.3, Release 24 Fev e 23 Mar 2005		
Tipo de cálculo	4 (CÂMARA)		
número máximo de iterações para resolver a taxa de dissociação de cada reação e(j) (itimax)	5000		
tolerância para resolver e(j) (tol_e)	1.0e-12		
número máximo de iterações para resolver o número total de moles <i>n</i> (itemax)	5000		
tolerância para resolver <i>n</i> (tol_n)	1.0e-12		
número máximo de iterações para resolver a temperatura de combustão <i>Tc</i> (itemax)	500		
tolerância para resolver <i>Tc</i> (tol_Tc)	1.0e-12		
tipo de entalpia dos reagentes (tipo_hr)	2 (prescrito)		
microcomputador	Pentium III, 750 MHz, 786 MB RAM		

Tabela 3.6 Arquivos com resultados originais do programa Gibbs.

Problema	Modelo	Nome do arquivo	Data da	Iterações	tempo de
C1		Gibbs 1n3 camara 001a out	A Mar 05	52	
	1	Gibbs 1p3 camara 001h out	4 Mar 05	52	0.01
	2	Gibbs 1p3 camara 001a out	4 Mar 05	52	0.01
	2	Gibbs 1p3_camara_001d out	4 Mar 05	53	0.03
	3	Gibbs 1p3 camara 001a out	4 Mar 05	52	0.50
	5	Gibbs 1p3_camara_001f.out	4 Mar 05	52	0.30
	7	Gibbs 1p3_camara_001g out	26 Mar 05	53	0.23
	10	Gibbs 1p3_camara_001g.out	20 Mar 05	53	0.33
	10	Cibbs 1p3_callara_001i.out	4 Mar 05	52	0.92
	9	Cibbs 1p3_callata_0011.001	4 Mar 05	52	0.39
C_2	9	Cibbs 1p3_camara_002.out	4 Mar 05	52	0.20
<u>C3</u>	9	Cibbs 1p3_camara_003.000	4 Mar 05	52	0.20
C4	9	Cibbs 1p3_camara_004.0ut	4 Mar 05	52	0.22
<u> </u>	9	Globs 1p3 camara 005.000	4 Mar 05	53	0.40
<u> </u>	9	Globs_1p3_camara_006.001	4 Mar 05	53	0.30
C/	9	Gibbs 1p3 camara 007.out	4 Mar 05	53	0.37
	9	Glbbs_1p3_camara_008.out	4 Mar 05	53	0.38
<u>C9</u>	9	Gibbs_1p3_camara_009.out	4 Mar 05	52	0.19
C10 C11	9	Gibbs_1p3_camara_010.out	4 Mar 05	53	0.30
	9	Gibbs_Ip3_camara_011.out	4 Mar 05	53	0.40
C12 C12	9	Gibbs_Ip3_camara_012.out	4 Mar 05	53	0.23
C13	9	Gibbs_Ip3_camara_013.out	4 Mar 05	52	0.16
<u>C14</u>	9	Gibbs_lp3_camara_014.out	4 Mar 05	53	0.18
<u>C15</u>	9	Gibbs_1p3_camara_015.out	4 Mar 05	52	0.16
<u>C16</u>	9	Gibbs_1p3_camara_016.out	4 Mar 05	53	0.28
<u>C17</u>	0	Gibbs_1p3_camara_01/a.out	4 Mar 05	52	0
<u>C17</u>	1	Gibbs_1p3_camara_017b.out	4 Mar 05	52	0.02
<u>C17</u>	2	Gibbs_1p3_camara_017c.out	4 Mar 05	52	0.04
C17	3	Gibbs_1p3_camara_017d.out	4 Mar 05	53	0.38
C17	4	Gibbs_1p3_camara_017e.out	4 Mar 05	53	0.34
C17	5	Gibbs_1p3_camara_017f.out	4 Mar 05	53	0.18
C17	7	Gibbs_1p3_camara_017g.out	26 Mar 05	53	0.27
C17	10	Gibbs_1p3_camara_017h.out	4 Mar 05	53	0.56
C17	9	Gibbs 1p3 camara 017i.out	4 Mar 05	53	0.30

Problema	Modelo Gibbs	CEA	Gibbs	Erro (%) Gibbs	Outra fonte	Erro (%) outra fonte
C1	0	3737.73	4674.85	-25	[Tw] 3748.86	-0.30
C1	1	3737.73	4060.30	-8.6	[Tw] 3748.86	-0.30
C1	2	3737.73	3838.08	-2.7	[Tw] 3748.86	-0.30
C1	3	3737.73	3742.51	-0.13	[Tw] 3748.86	-0.30
C1	4	3737.73	3742.51	-0.13	[Tw] 3748.86	-0.30
C1	5	3737.73	3742.51	-0.13	[Tw] 3748.86	-0.30
C1	7	3737.73	3742.51	-0.13	[Tw] 3748.86	-0.30
C1	10	3737.73	3741.97	-0.11	[Tw] 3748.86	-0.30
C1	9	3737.73	3741.97	-0.11	[Tw] 3748.86	-0.30

Tabela 3.7 Resultados para a temperatura de combustão (K) do problema C1.

Tabela 3.8 Resultados para a temperatura de combustão (K) dos problemas C2 a C16.

Problema	Modelo Gibbs	CEA	Gibbs	Erro (%) Gibbs	Outra fonte	Erro (%) outra fonte
C2	9	1797.78	1796.65	0.063	[Tw] 1798.71	-0.052
C3	9	2974.69	2976.10	-0.047	[Tw] 2986.92	-0.41
C4	9	3595.43	3599.98	-0.13	[Tw] 3610.55	-0.42
C5	9	3644.31	3649.47	-0.14	[Tw] 3658.22	-0.38
C6	9	3507.10	3513.33	-0.17	[Tw] 3523.28	-0.46
C7	9	3368.28	3374.95	-0.20	[Tw] 3385.28	-0.50
C8	9	3234.72	3241.35	-0.20	[Tw] 3251.62	-0.52
C9	9	3596.61	3601.17	-0.13	[Wang] 3639.0	-1.2
C10	9	3237.61	3240.86	-0.10	[Kim] 3300	-1.9
C11	9	2964.90	2970.91	-0.20	[Kim] 3073	-3.6
C12	9	2998.45	3000.31	-0.062	[Huzel] 3013	-0.49
C13	9	3235.70	3238.85	-0.097	[Huzel] 3251	-0.47
C14	9	2668.70	2669.55	-0.032	[Sutton] 2959	-11
C15	9	2954.33	2956.01	-0.057	[Sutton] 2999	-1.5
C16	9	2946.10	2947.75	-0.056	[Sarner] 2977	-1.0

Tabela 3.9 Resultados para a temperatura de combustão (K) do problema C17.

Problema	Modelo Gibbs	CEA	Gibbs	Erro (%) Gibbs	Outra fonte	Erro (%) outra fonte
C17	0	3420.33	4674.85	-37	[Tw] 3426.92	-0.19
C17	1	3420.33	3786.55	-11	[Tw] 3426.92	-0.19
C17	2	3420.33	3561.60	-4.1	[Tw] 3426.92	-0.19
C17	3	3420.33	3424.19	-0.113	[Tw] 3426.92	-0.19
C17	4	3420.33	3424.19	-0.113	[Tw] 3426.92	-0.19
C17	5	3420.33	3424.19	-0.113	[Tw] 3426.92	-0.19
C17	7	3420.33	3424.19	-0.113	[Tw] 3426.92	-0.19
C17	10	3420.33	3424.04	-0.108	[Tw] 3426.92	-0.19
C17	9	3420.33	3424.04	-0.108	[Tw] 3426.92	-0.19

O problema C9 compara os resultados obtidos por Wang e Chen (1993), em que foi utilizado um modelo com quatro reações de dissociação e seis espécies (H₂O, H₂, O₂, OH, H e O),

aos obtidos através de simulações com os programas CEA e Gibbs (modelo 9). Para este problema, a razão *OF* é de 6.000, as temperaturas de injeção dos combustíveis são de 90.56 K e 20.56 K para o oxigênio e o hidrogênio, respectivamente, e a pressão na câmara é de 29357 psia (20.241 MPa).

Os problemas C10 e C11 têm por objetivo permitir a comparação de resultados entre os programas CEA e Gibbs com aqueles obtidos por Kim e VanOverbeke (1991), que utilizaram o programa CET85, de Gordon e McBride, com um modelo de oito espécies. A pressão da câmara de combustão é de 5.1 atm, com razões *OF* de 8 e 16 para os problemas C10 e C11, respectivamente.

A finalidade dos problemas C12 e C13 é a de permitir a comparação de resultados com aqueles obtidos por Huzel e Huang (1992), em cujo trabalho as razões *OF* escolhidas são de 4.13 e 4.83 (para os problemas C12 e C13, nesta ordem). A pressão adotada no interior da câmara é de 1000 psia (aproximadamente 6.8948 MPa).

Outros dois problemas (C14 e C15) foram incluídos para oferecer subsídios para estudos comparativos com os resultados obtidos por Sutton (1992). A pressão de combustão adotada é de 1000 psia (cerca de 6.8948 MPa), com razões *OF* de 3.40 e 4.02 para os problemas C14 e C15, respectivamente. Também é mostrada a massa molecular da mistura de gases.

Por último, cita-se o problema C16, cujos resultados são apresentados por Sarner (1966), em que se utiliza uma pressão de câmara de 1000 psia e razão *OF* de 4.0.

Com base nos resultados apresentados na Tabela 3.8, para os problemas C9 a C16, verificase que as temperaturas de combustão dos trabalhos da literatura apresentam diferença mínima de 0.47% para os resultados do programa CEA, e diferença máxima de 11%. Para estes mesmos problemas, os resultados do programa Gibbs apresentam erros na faixa de 0.032% a 0.20%.

A Figura 3.1 mostra o comportamento da temperatura de combustão em função da razão OF para os problemas C1 a C8. O ponto de máximo do gráfico corresponde à razão OF de, aproximadamente, 7.9367, que se constitui na razão da condição estequiométrica. A Figura 3.2 apresenta também os resultados dos problemas C1 a C8, porém, sob outra perspectiva. Ela mostra os erros relativos ao se utilizar o modelo 9 do programa Gibbs e o programa Teqworks para solucionar o problema da temperatura de combustão (a referência adotada, como no restante do trabalho, é o programa CEA). Nota-se que, exceto para OF = 2, os resultados do programa Gibbs apresentam erros menores que o programa Teqworks.

Para os problemas C1 e C17, com os resultados das Tabelas 3.7 e 3.9 e da Figura 3.3, verifica-se que:

- (a) Para o modelo 0, com três espécies e sem qualquer reação de dissociação, a temperatura de combustão (T_C) difere em 25% e 37% dos resultados do programa CEA.
- (b) Para o modelo 1, com três espécies e uma reação de dissociação, T_C difere em 8.6% e 11% dos resultados do programa CEA.

Figura 3.1 Temperatura de combustão em função da razão *OF*. Pressão total na câmara de 200 bar. Problemas C1 a C8.

Figura 3.2 Erro relativo dos programas Gibbs 1.3 (modelo 9) e Teqworks para os problemas C1 a C8. Base de comparação: programa CEA.

- (c) Para o modelo 2, com quatro espécies e duas reações de dissociação, T_C difere em 2.7% e 4.1% dos resultados do programa CEA.
- (d) Para os modelos 3, 4, 5 e 7, com seis espécies e quatro ou oito reações de dissociação, T_C difere em 0.13% e 0.11% dos resultados do programa CEA.
- (e) Para os modelos 10 e 9, com oito espécies e seis ou dezoito reações de dissociação, T_C difere em 0.11% dos resultados do programa CEA.
- (f) Para o programa Teqworks, com nove espécies, T_C difere em 0.30% e 0.19% dos resultados do programa CEA.

Figura 3.3 Temperaturas de combustão obtidas para os diversos modelos implementados no programa Gibbs, e programas Teqworks e CEA. Pressão de 20 bar. Problema C17.

3.3 CONCLUSÃO

Neste capítulo foram feitas comparações da temperatura de combustão (T_c) para dezessete problemas. As comparações foram feitas entre três programas: Gibbs 1.3, que dispõe de nove modelos reativos com zero a dezoito reações de dissociação, envolvendo de três a oito espécies químicas; e os programas CEA e Teqworks, cujo modelo reativo usado contém nove espécies químicas. Além disso, foram consideradas outras fontes da literatura. Com base nas comparações, verificou-se que:

- A temperatura de combustão depende apenas do número de espécies químicas. Ela independe dos tipos e da quantidade das reações de dissociação. Portanto, os modelos 3, 4, 5 e 7, todos com seis espécies, apresentam o mesmo resultado. O mesmo ocorre com os modelos 9 e 10, que têm oito espécies.
- 2) Para os dezessete problemas analisados, os programas Gibbs (modelo 9) e Teqworks reproduzem a temperatura de combustão do programa CEA dentro da mesma ordem de erro: para o programa Gibbs (modelo 9), os erros oscilam na faixa de 0.032% a 0.20%; e para o programa Teqworks, os erros oscilam na faixa de 0.052% a 0.52%. Portanto, pode-se concluir que a temperatura de combustão está sendo corretamente calculada no programa Gibbs 1.3, para o modelo 9.
- 3) A temperatura de combustão obtida com os modelos 3, 4, 5 e 7 (seis espécies) é muito próxima daquela dos modelos 9 e 10 (oito espécies); a diferença entre eles é menor do que 0.015% nos problemas C1 e C17. Mas modelos com apenas quatro espécies ou menos podem apresentar erros significativos; suas diferenças máximas para o modelo 9 são de 4.1% (modelo 2), 11% (modelo 1) e 37% (modelo 0).
- 4) Em termos de tempo computacional para obter a solução convergida, o modelo 5 é o mais rápido entre aqueles com seis espécies, e o modelo 9 entre aqueles com oito espécies.
- 5) Se o interesse for usar um modelo com seis espécies, recomenda-se o modelo 5. E no caso de oito espécies, o modelo 9.

O número de iterações do ciclo mais externo, itens 8 a 14 do algoritmo da seção 3.1, só depende praticamente da tolerância (tol_Tc) admitida para obter a temperatura de combustão (T_C). Ele independe do modelo reativo.

4. REFERÊNCIAS BIBLIOGRÁFICAS

BARROS, J. E. M.; ALVIM, FILHO, G. F.; PAGLIONE, P. Estudo de escoamento reativo em desequilíbrio químico através de bocais convergente-divergente. In: III ENCONTRO NACIONAL DE CIÊNCIAS TÉRMICAS. Anais... Itapema, 1990.

CHAPRA, S. C.; CANALE, R. P. Introduction to Computing for Engineers. 2 ed. New York: McGraw-Hill, 1994.

GLENN RESEARCH CENTER. CEA - Chemical Equilibrium with Applications, 2005a. Disponível em: <<u>http://www.grc.nasa.gov/WWW/CEAWeb/ceaHome.htm</u>> . Acesso em: 16 fev. 2005.

GLENN RESEARCH CENTER. Thermobuild, 2005b. Disponível em: <<u>http://cea.grc.nasa.gov/</u>>. Acessos em: 24 fev. 2005, 28 mar. 2005, 29 mar. 2005

GORDON, S.; McBRIDE, B. J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. **NASA SP-273:** Cleveland, Ohio, 1971. [Teqworks – Thermochemical Information and Equilibrium Calculations, version 1.0. KSG Associates, 1990.]

HUNZEL, D. K.; HUANG, D. H. **Design of Liquid Propellant Rocket Engines**. Washington DC: AIAA, 1992, p.20.

KEE, R. J.; GRCAR, J. F.; SMOOKE, M. D.; MILLER, J. A. A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames. Albuquerque: Sandia National Laboratories, 1990. SAND85-8240 • UC-401.

KIM, S. C.; VANOVERBEKE, T. J. Performance and flow calculations for a gaseus H_2/O_2 thruster. Journal of Spacecraft and Rockets, 28: 433 – 438, 1991.

KUO, K. K. Principles of Combustion. New York: John Willey & Sons, 1986.

MARCHI, C. H.; LAROCA, F.; SILVA, A. F. C.; HINCKEL, J. N. Numerical solutions of flows in rocket engines with regenerative cooling. **Numerical Heat Transfer, Part A**, 45: 699-717, 2004.

McBRIDE, B. J.; GORDON, S.; RENO, M. A. Coefficients for calculating thermodynamic and transport properties of individual species. **NASA Technical Memorandum 4513**, Cleveland, Ohio, USA, 1993.

NIST. **Standard Reference Database 69; NIST Chemistry WebBook**. Disponível em: < <u>http://www.nist.gov/srd/</u>>. Acesso em: 5 mai. 2005

SARNER, S. F. Propellant Chemistry. New York: Reinhold Publishing, 1966, p. 84-87.

SMITH, T. A.; PAVLI, A. J.; KACYNSKI, K. J. Comparison of Theoretical and Experimental Thrust Performance of a 1030:1 Area Ratio Rocket Nozzle at a Chamber Pressure of 2413 kN/m² (350 psia). Cleveland: NASA Lewis Research Center, 1987. NASA Technical Paper 2725.

SUTTON, G. P. Rocket Propulsion Elements. 6 ed. New York: John Wiley & Sons, 1992. p 194.

SVEHLA, R. A. Thermodynamic and Transport Properties for the Hydrogen-Oxygen System. Cleveland: NASA Lewis Research Center, 1964. NASA SP-3011.

TURNS, S. R. An Introduction to Combustion. New York: McGraw-Hill, 1996. p 551-553.

VAN WYLEN, G.; SONNTAG, R.; BORGNAKKE, C. Fundamentos da Termodinâmica Clássica. 4 ed. São Paulo: Editora Edgard Blücher LTDA, 1995. p. 32 - 46, 548.

WANG, T. S.; CHEN, Y. S. Unified Navier-Stokes flowfield and Performance Analysis of Liquid Rocket Engines. Journal of Propulsion and Power, 9: 678 – 685, 1993.

ANEXO A - Coeficientes e resultados originais do Thermobuild

Н	HO2	Н2	Н2О
H2O2	0	ОН	02

OPTIONS: joules

TEMPERATURE SCHEDULE

298.150 800.000 2000.000 4000.000

NOTE: Thermodynamic properties calculated for temperatures outside the range of the fitted data may have large errors. This program allows calculations only for temperatures within 20% above or below the fitted temperature range.

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

D0(H2):Herzberg,1970. Moore,1972. Gordon,1999. Н 3 g 6/97 Н 1.00 0.00 0.00 0.00 0.00 0 1.00794 217998.828 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 0.00000000E+00 0.00000000E+00 2.50000000E+00 0.0000000E+00 0.0000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.547370801E+04-4.466828530E-01 1000.000 6000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 6.078774250E+01-1.819354417E-01 2.500211817E+00-1.226512864E-07 3.732876330E-11 -5.687744560E-15 3.410210197E-19 0.00000000E+00 2.547486398E+04-4.481917770E-01 6000.000 20000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 2.173757694E+08-1.312035403E+05 3.399174200E+01-3.813999680E-03 2.432854837E-07 -7.694275540E-12 9.644105630E-17 0.00000000E+00 1.067638086E+06-2.742301051E+02

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR H

Т	Cp	H-H298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-6.197	0.	INFINITE	211.801	216.035	INFINITE
298.15	20.786	0.000	114.718	114.718	217.999	217.999	-35.6124
800	20.786	10.432	135.234	122.195	228.430	221.080	-11.5378
2000	20.786	35.375	154.280	136.593	253.374	226.899	-2.7881
4000	20.786	76.948	168.688	149.452	294.947	231.522	0.2031

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

Hf:Hills,1984 & NASA data. Jacox,1998 p153.

2 g 4/02 H 1.000 2.00 0.00 0.00 0.00 0.00 33.00674 12020.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 10002.162 -7.598882540E+04 1.329383918E+03-4.677388240E+00 2.508308202E-02-3.006551588E-05 1.895600056E-08-4.828567390E-12 0.00000000E+00-5.873350960E+03 5.193602140E+01 1000.000 6000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 10002.162 -1.810669724E+06 4.963192030E+03-1.039498992E+00 4.560148530E-03-1.061859447E-06 1.144567878E-10-4.763064160E-15 0.00000000E+00-3.200817190E+04 4.066850920E+01

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR HO2

Т	Cp	н-н298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-10.002	0.	INFINITE	2.018	14.932	INFINITE
298.15	34.893	0.000	229.106	229.106	12.020	12.020	-4.2674

HO2

800	45.047	20.292	268.171	242.806	32.312	9.123	-3.0784
2000	55.722	81.592	314.246	273.450	93.612	7.936	-2.7529
4000	61.900	201.076	355.406	305.137	213.096	10.671	-2.6353

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

н2 Ref-Elm. Gurvich, 1978 pt1 p103 pt2 p31. 3 tpis78 H 2.00 0.00 0.00 0.00 0.00 0.00 2.01588 0.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8468.102 4.078323210E+04-8.009186040E+02 8.214702010E+00-1.269714457E-02 1.753605076E-05 -1.202860270E-08 3.368093490E-12 0.00000000E+00 2.682484665E+03-3.043788844E+01 1000.000 6000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8468.102 5.608128010E+05-8.371504740E+02 2.975364532E+00 1.252249124E-03-3.740716190E-07 5.936625200E-11-3.606994100E-15 0.00000000E+00 5.339824410E+03-2.202774769E+00 6000.000 20000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8468.102 4.966884120E+08-3.147547149E+05 7.984121880E+01-8.414789210E-03 4.753248350E-07 -1.371873492E-11 1.605461756E-16 0.00000000E+00 2.488433516E+06-6.695728110E+02

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR H2

Т	Cp	Н-Н298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-8.468	0.	INFINITE	-8.468	0	INFINITE
298.15	28.836	0.000	130.681	130.681	0.000	0	0
800	29.629	14.701	159.550	141.173	14.701	0	0
2000	34.276	52.950	188.418	161.943	52.950	0	0
4000	39.087	126.848	213.840	182.128	126.848	0	0

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

H2O Hf:Cox,1989. Woolley,1987. TRC(10/88) tuv25. 2 g 8/89 H 2.000 1.00 0.00 0.00 0.00 0 18.01528 -241826.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9904.092 -3.947960830E+04 5.755731020E+02 9.317826530E-01 7.222712860E-03-7.342557370E-06 4.955043490E-09-1.336933246E-12 0.00000000E+00-3.303974310E+04 1.724205775E+01 1000.000 6000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9904.092 1.034972096E+06-2.412698562E+03 4.646110780E+00 2.291998307E-03-6.836830480E-07 9.426468930E-11-4.822380530E-15 0.00000000E+00-1.384286509E+04-7.978148510E+00

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR H20

Т	Cp	H-H298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-9.904	0.	INFINITE	-251.730	-238.922	INFINITE
298.15	33.588	0.000	188.829	188.829	-241.826	-241.826	40.0453
800	38.728	18.003	223.821	201.317	-223.823	-246.444	13.2862
2000	51.756	73.043	264.918	228.397	-168.783	-251.334	3.5404
4000	59.325	185.852	303.718	257.255	-55.974	-252.323	0.2519

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

H2O2 Hf:Gurvich,1989 pt1 p127. Gurvich,1978 pt1 p121. 2 g 6/99 H 2.000 2.00 0.00 0.00 0.00 34.01468 -135880.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 11158.835 -9.279533580E+04 1.564748385E+03-5.976460140E+00 3.270744520E-02-3.932193260E-05 2.509255235E-08-6.465045290E-12 0.00000000E+00-2.494004728E+04 5.877174180E+01 1000.000 6000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 11158.835 1.489428027E+06-5.170821780E+03 1.128204970E+01-8.042397790E-05-1.818383769E-08 6.947265590E-12-4.827831900E-16 0.00000000E+00 1.418251038E+04-4.650855660E+01

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR H2O2

Т	Cp	Н-Н298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-11.159	0.	INFINITE	-147.039	-129.891	INFINITE
298.15	42.388	0.000	234.527	234.527	-135.880	-135.880	18.5136
800	58.482	25.760	283.869	251.668	-110.120	-140.659	3.3542
2000	73.860	106.898	344.751	291.302	-28.982	-141.133	-2.1871
4000	81.406	263.639	398.777	332.868	127.759	-138.091	-4.0121

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

0		D0 (02):Briz	c,1954.	Moore,	L976. (Gordon	,1999	•		
3	g 5/97 O	1.00	0.00	0.00	0.00	0.	00 0	15	.99940	2491	75.003
	200.000	1000.000	7 -2.0	-1.0	0.0 1.0	2.0	3.0	4.0	0.0	672	25.403
-7	.95361130	DE+03 1.60	71777878	E+02 1.	96622643	38E+00	1.0130	67031)E-03-	1.11041542	23E-06
6	.51750750	DE-10-1.58	4779251	E-13 O.	0000000	00E+00	2.8403	36243'	7E+04	8.40424182	20E+00
	1000.000	6000.000	7 -2.0	-1.0	0.0 1.0	2.0	3.0	4.0	0.0	672	25.403
2	.619020262	2E+05-7.29	87220301	E+02 3.	3171772	70E+00	-4.2813	33436	DE-04	1.03610459	94E-07
-9	.438304330	DE-12 2.72	50382971	E-16 0.	0000000	00E+00	3.3924	42806)E+04-	6.67958535	50E-01
	6000.000	20000.000	7 -2.0	-1.0	0.0 1.0	2.0	3.0	4.0	0.0	672	25.403
1	.779004264	4E+08-1.08	23282571	E+05 2.	8107783	55E+01	-2.9752	23226	2E-03	1.85499753	34E-07
-5	.796231540	DE-12 7.19	1720164	E-17 0.	0000000	00E+00	8.8909	94263)E+05-2	2.18172815	51E+02

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR O

Т	Cp	H-H298	S	-(G-H298)/T	н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-6.725	0.	INFINITE	242.450	246.790	INFINITE
298.15	21.912	0.000	161.060	161.060	249.175	249.175	-40.5984
800	20.984	10.671	182.118	168.779	259.846	251.927	-13.0977
2000	20.826	35.713	201.250	183.393	284.888	255.288	-3.1747
4000	21.302	77.676	215.775	196.356	326.851	257.351	0.1725

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

OH		D0 (1	H-OH): Ru	scic,200	2. Gurv	ich,1978	pt1 p110	pt2 p37.
3	g 4/02 O	1.00H	1.00	0.00	0.00	0.00 0	17.007	34 37278.206
	200.000	1000.000	7 -2.0 -	1.0 0.0	1.0	2.0 3.0	4.0 0.0	8813.106
-1	.998858990	E+03 9.30	0136160E+	01 3.050	854229E	+00 1.529	529288E-0	3-3.157890998E-06
3	.315446180	E-09-1.13	8762683E-	12 0.000	00000E	+00 2.991	214235E+0	3 4.674110790E+00
	1000.000	6000.000	7 -2.0 -	1.0 0.0	1.0	2.0 3.0	4.0 0.0	8813.106
1	.017393379	E+06-2.50	9957276E+	03 5.116	547860E	+00 1.305	299930E-0	4-8.284322260E-08
2	.006475941	E-11-1.55	6993656E-	15 0.000	00000E	+00 2.019	640206E+0	4-1.101282337E+01
	6000.000	20000.000	7 -2.0 -	1.0 0.0	1.0	2.0 3.0	4.0 0.0	8813.106
2	.847234193	E+08-1.85	9532612E+	05 5.008	240900E	+01-5.142	374980E-0	3 2.875536589E-07

Т	Cp	H-H298	S	-(G-H298)/T	Н	delta Hf	log K
deg-K	J/mol-K	kJ/mol	J/mol-K	J/mol-K	kJ/mol	kJ/mol	
0	0.	-8.813	0.	INFINITE	28.465	37.039	INFINITE
298.15	29.886	0.000	183.740	183.740	37.278	37.278	-5.7043
800	29.913	14.866	212.981	194.398	52.144	36.874	-1.6115
2000	34.765	53.793	242.351	215.455	91.071	34.995	-0.1954
4000	38.536	127.621	267.790	235.885	164.899	31.975	0.2476

THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR OH

COEFFICIENTS FOR FITTED THERMODYNAMIC FUNCTIONS

02		Ref	-Elm. C	Gurvich,	,1989 pt	1 p94 j	pt2 p9	•		
3	tpis89 O	2.00	0.00	0.00	0.00	0.0	00 0	31	.99880	0.000
	200.000	1000.000) 7 -2.0	0 -1.0	0.0 1.	0 2.0	3.0	4.0	0.0	8680.104
-3	.425563420	DE+04 4.84	£7000970	DE+02 1.	.1190109	61E+00	4.293	88924	0E-03-	-6.836300520E-07
-2	.02337270	DE-09 1.03	89040018	3E-12 O.	.0000000	00E+00	-3.391	45487	0E+03	1.849699470E+01
	1000.000	6000.000) 7 -2.0	0 -1.0	0.0 1.	0 2.0	3.0	4.0	0.0	8680.104
-1	.037939022	2E+06 2.34	4830282	2E+03 1.	.8197320	36E+00	1.267	84758	2E-03-	-2.188067988E-07
2	.053719572	2E-11-8.19	3467050	DE-16 0.	.0000000	00E+00	-1.689	01092	9E+04	1.738716506E+01
	6000.000	20000.000) 7 -2.0	0 -1.0	0.0 1.	0 2.0	3.0	4.0	0.0	8680.104
4	.97529430	DE+08-2.86	6106874	4E+05 6.	.6903522	50E+01	-6.169	95902	0E-03	3.016396027E-07
-7	.42141660	DE-12 7.27	8175770	DE-17 0.	.0000000	00E+00	2.293	55402	7E+06-	-5.530621610E+02

THERMODYNAMIC	FUNCTIONS	CALCULATED	FROM	COEFFICIENTS	FOR	02
---------------	-----------	------------	------	--------------	-----	----

T deg-K	Cp J/mol-K	H-H298 kJ/mol	S J/mol-K	-(G-H298)/T J/mol-K	H kJ/mol	delta Hf kJ/mol	log K
0	0.	-8.680	0.	INFINITE	-8.680	0	INFINITE
298.15	29.378	0.000	205.149	205.149	0.000	0	0
800	33.745	15.838	235.928	216.130	15.838	0	0
2000	37.784	59.202	268.772	239.171	59.202	0	0
4000	41.707	139.001	296.271	261.520	139.001	0	0