# Modelos para escoamento reativo laminar 2D em tubeira com refrigeração regenerativa e radiativa

Códigos Mach2D 6.1 e RHG2D 1.0

## **Objetivos**

- Implementação de códigos computacionais para solução de escoamento 2D reativo laminar em motores-foguete operando com o sistema  $H_2/O_2$  (código Mach2D 6.1)
- Inclusão de efeitos de transferência de calor para refrigeração regenerativa ou radiativa (código RHG2D 1.0)

#### Problema

Divisão do problema em três partes:

- Câmara-Tubeira: escoamento reativo, laminar de gases na câmara e tubeira (modelo 2D).
- Parede: condução de calor através da parede entre os gases de combustão e o fluido refrigerante (modelo 1D).
- Canais (refrigeração regenerativa): escoamento turbulento do fluido refrigerante nos canais em torno da tubeira (modelo 1D).
- Radiação para o ambiente (refrigeração radiativa).



Figura 1: Esquemas de transferência de calor

(refrigeração regenerativa à esquerda e refrigeração radiativa à direita).

## Metodologia

- Método dos Volumes Finitos.
- Funções de interpolação de primeira ordem (UDS) e de segunda ordem (CDS), com correção adiada.
- Arranjo co-localizado de variáveis.
- Formulação apropriada a qualquer regime de velocidades.
- Malhas estruturadas, não-ortogonais.

## **Modelos físicos**

Monoespécie com propriedades constantes
 Monoespécie com propriedades variáveis
 Escoamento congelado

Escoamento em equilíbrio

# **Modelos químicos**

| Modelo | Número de<br>reações | Número de<br>espécies | Espécies envolvidas                                          |
|--------|----------------------|-----------------------|--------------------------------------------------------------|
| 0      | 0                    | 3                     | $H_2O, O_2, H_2$                                             |
| 1      | 1                    | 3                     | $H_2O, O_2, H_2$                                             |
| 2      | 2                    | 4                     | H <sub>2</sub> O, O <sub>2</sub> , H <sub>2</sub> , OH       |
| 3      | 4                    | 6                     | H <sub>2</sub> O, O <sub>2</sub> , H <sub>2</sub> , OH, O, H |
| 4      | 4                    | 6                     | H <sub>2</sub> O, O <sub>2</sub> , H <sub>2</sub> , OH, O, H |
| 5      | 8                    | 6                     | H <sub>2</sub> O, O <sub>2</sub> , H <sub>2</sub> , OH, O, H |
| 7      | 8                    | 6                     | H <sub>2</sub> O, O <sub>2</sub> , H <sub>2</sub> , OH, O, H |
| 10     | 6                    | 8                     | $H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$                     |
| 9      | 18                   | 8                     | $H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$                     |

### Mach 2D Laminar

• Equação geral:

$$C^{\phi}\left[\frac{\partial}{\partial t}(\rho\phi) + \frac{\partial}{\partial x}(\rho u\phi) + \frac{1}{r}\frac{\partial}{\partial y}(r\rho v\phi)\right] = \frac{\partial}{\partial x}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(r\Gamma^{\phi}\frac{\partial\phi}{\partial y}\right) + P^{\phi} + S^{\phi}$$

| Equação | $\phi$ | $C^{\phi}$ | $\Gamma^{\phi}$ | $P^{\phi}$                                    | $S^{\phi}$                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------|------------|-----------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Massa   | 1      | 1          | 0               | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                       |
| QML-x   | и      | 1          | μ               | $-\frac{\partial p}{\partial x}$              | $\frac{1}{3}\frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(\mu\frac{\partial v}{\partial x}\right) - \frac{2}{3}\frac{\partial}{\partial x}\left[\frac{\mu}{r}\frac{\partial}{\partial y}(rv)\right]$                                                                                                           |
| QML-y   | V      | 1          | μ               | $-\frac{\partial p}{\partial y}$              | $\frac{1}{3r}\frac{\partial}{\partial y}\left(r\mu\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{2}{3}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{4}{3}\lambda\frac{u}{r^2}v - \frac{2}{3r}\lambda v\frac{\partial \mu}{\partial y}$                                      |
| Energia | Т      | Cp         | k               | $\frac{\partial p}{\partial t} - uP^u - vP^v$ | $2\mu \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 + \lambda \left( \frac{v}{r} \right)^2 \right] + \mu \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 - \frac{2}{3} \mu \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \lambda \frac{v}{r} \right)^2 + S_{eq} + q''$ |

#### Mach 2D Laminar

• Termo-fonte da energia (equilíbrio local):

$$S_{eq} = -\frac{\partial}{\partial x} \left( \sum_{i=1}^{N_e} \rho h_i Y_i u \right) - \frac{1}{r} \frac{\partial}{\partial y} \left( \sum_{i=1}^{N_e} r \rho h_i Y_i v \right)$$

• Equação de estado:

$$p = \rho R T$$

• Relações auxiliares:

$$\gamma = \frac{c_p}{c_p - R} \qquad M = \sqrt{\frac{u^2 + v^2}{\gamma R T}}$$

## Refrigeração

• Termo-fonte da energia (interação com as paredes):

$$q'' = q''_{conv} + q''_{rad}$$

• Fluxo convectivo:

$$q_{conv}'' = h_g \left( T_{wall} - T_{aw} \right)$$
$$T_{aw} = T \left[ 1 + rec \frac{(\gamma - 1)}{2} M^2 \right]$$

• Fluxo radiativo:

$$q_{rad}'' = \overline{\varepsilon} \, \sigma \left( T_{wall}^4 - T^4 \right)$$

## Refrigeração regenerativa

• Escoamento nos canais:

$$\frac{d}{ds}(\rho_c u_c S_c) = 0$$

$$\frac{d}{ds}(\rho_c u_c S_c u_c) = -S_c \frac{d p_c}{ds} + F_c'$$

$$F_p)_c \frac{d}{ds}(\rho_c u_c S_c T_c) = \beta T_c u_c S_c \frac{d p_c}{ds} + q_c'$$

$$F_c' = -\frac{\pi}{8} f_c \rho_c u_c |u_c| D_c$$

$$q_c' = |u_c F_c'| + S_{wc}' h_c (T_{wc} - T_c)$$

11

#### Refrigeração regenerativa

• Condução através das paredes:

$$q_w'' = \frac{\overline{k}_w}{e} \left( T_{wh} - T_{wc} \right)$$

• Balanço de energia (refrigeração regenerativa):

$$q = (q''_{conv} + q''_{rad})S_{wh} = q''_w S_{wh} = q''_c S_{wa}$$

## Refrigeração radiativa

• Troca térmica com o ambiente:

$$q_{r\_ext}'' = \varepsilon \, \sigma \left( T_{wc}^4 - T_n^4 \right)$$

• Balanço de energia (refrigeração radiativa):

$$q = (q''_{conv} + q''_{rad})S_{wh} = q''_{w}S_{wh} = q''_{r_{ext}}S_{we}$$

# Algoritmo

- 1) Estimativa inicial da distribuição de temperaturas da parede.
- 2) Solução do escoamento laminar reativo 2D.
- Solução do escoamento de refrigerante (caso de refrigeração regenerativa) ou solução da equação de Stefan-Boltzmann (refrigeração radiativa).
- Estimativa da razão entre a taxa de transferência de calor dos gases de combustão e a taxa de transferência de calor do sistema de refrigeração.
- 5) Estimativa da temperatura da parede.
- 6) Estimativa do erro referente à taxa de transferência de calor.
- 7) Retornar ao item 2 até o número desejado de iterações ou até o atendimento de um critério de parada pré-definido.

## Refrigeração regenerativa



15

## Refrigeração radiativa



## **Coeficiente de descarga [adim.]**

| Modelo                                                            | Sem refrigeração<br>(tubeira adiabática) | Refrigeração regenerativa | Refrigeração radiativa |  |
|-------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------|--|
| Escoamento invíscido<br>monoespécie                               | 9,98771E-01                              |                           |                        |  |
| Escoamento laminar monoespécie                                    | 9,98515E-01                              | 9,98950E-01               | 9,99148E-01            |  |
| Escoamento invíscido congelado de mistura de gases (modelo 3)     | 9,98789E-01                              |                           |                        |  |
| Escoamento laminar congelado de mistura de gases (modelo 3)       | 9,98537E-01                              | 9,99297E-01               | 9,99439E-01            |  |
| Escoamento invíscido de mistura de gases em equilíbrio (modelo 3) | 1,01454E+00                              |                           |                        |  |
| Escoamento laminar de mistura de gases em equilíbrio (modelo 3)   | 1,01427E+00                              | 1,01492E+00               | 1,01473E+00            |  |

# **Impulso específico [s]**

| Modelo                                                            | Sem refrigeração<br>(tubeira adiabática) | Refrigeração<br>regenerativa | Refrigeração radiativa |
|-------------------------------------------------------------------|------------------------------------------|------------------------------|------------------------|
| Escoamento invíscido monoespécie                                  | 3,43442E+02                              |                              |                        |
| Escoamento laminar monoespécie                                    | 3,43197E+02                              | 3,43289E+02                  | 3,43004E+02            |
| Escoamento inviscido congelado de mistura de gases (modelo 3)     | 3,43541E+02                              |                              |                        |
| Escoamento laminar congelado de mistura de gases (modelo 3)       | 3,43298E+02                              | 3,433104E+02                 | 3,43068E+02            |
| Escoamento inviscido de mistura de gases em equilíbrio (modelo 3) | 3,58306E+02                              |                              |                        |
| Escoamento laminar de mistura de gases em equilíbrio (modelo 3)   | 3,58003E+02                              | 3,57733E+02                  | 3,57879E+02            |

## **Empuxo total (vácuo) [N]**

| Modelo                                                            | Sem refrigeração<br>(tubeira adiabática) | Refrigeração regenerativa | Refrigeração radiativa |
|-------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------|
| Escoamento invíscido<br>monoespécie                               | 1,63253E+04                              |                           |                        |
| Escoamento laminar monoespécie                                    | 1,63095E+04                              | 1,63209E+04               | 1,63106E+04            |
| Escoamento inviscido congelado<br>de mistura de gases (modelo 3)  | 1,63303E+04                              |                           |                        |
| Escoamento laminar congelado de mistura de gases (modelo 3)       | 1,63146E+04                              | 1,63250E+04               | 1,63157E+04            |
| Escoamento inviscido de mistura de gases em equilíbrio (modelo 3) | 1,73008E+04                              |                           |                        |
| Escoamento laminar de mistura de gases em equilíbrio (modelo 3)   | 1,72815E+04                              | 1,72790E+04               | 1,72806E+04            |

#### Distribuição de temperaturas – escoamento congelado



#### Refrigeração regenerativa



Refrigeração radiativa 20

#### Distribuição de temperaturas – escoamento em equilíbrio





#### Refrigeração regenerativa



Refrigeração radiativa

## Frações mássicas (H<sub>2</sub>O) – escoamento em equilíbrio



#### Refrigeração regenerativa



Refrigeração radiativa 22

#### Conclusões

- Ratificação de resultados observados no modelo unidimensional: resultados de modelos de 6 e 8 espécies muito próximos; temperatura máxima da parede (com refrigeração) alcançada com o modelo de escoamento congelado.
- Maior dependência do modelo físico adotado do que do sistema de refrigeração escolhido.
- Temperatura na parede: temperaturas muito superiores quando empregada a refrigeração radiativa em relação à regenerativa.

# Modelo químico reduzido

Modelo químico 13

#### **Dados gerais**

- 5 espécies químicas (H<sub>2</sub>O, O<sub>2</sub>, H<sub>2</sub>, O, H)
- 3 reações:

 $H_{2} \leftrightarrow 2 H$  $H_{2} + O \iff H_{2}O$  $4 H + O_{2} \iff 2 H_{2}O$ 

#### **Testes realizados**

- Razão OF = 7.936682739 (estequiométrica)
- Condições de equilíbrio químico

| Problema   | Temperatura (K) | Pressão total<br>(bar) |
|------------|-----------------|------------------------|
| <b>E</b> 1 | 4000            | 200                    |
| E2         | 3000            | 20                     |
| E3         | 2000            | 2                      |
| E4         | 1500            | 0,2                    |
| E5         | 600             | 0,02                   |

#### **Resultados globais – problema E1**

| Modelo   | M<br>(kg/kmol) | ho (kg/m <sup>3</sup> ) | c congelado<br>(J/kg.K) | γ congelado<br>( <i>adim</i> .) | <i>R</i><br>(J/kg.K) | C<br>(mol/cm <sup>3</sup> ) |
|----------|----------------|-------------------------|-------------------------|---------------------------------|----------------------|-----------------------------|
| 0        | 18,015         | 10,8336                 | 3295,5                  | 1,1629                          | 461,53               | 6,0136e-4                   |
| 1        | 16,865         | 10,1421                 | 3300,0                  | 1,1756                          | 493,00               | 6,0136e-4                   |
| 2        | 16,196         | 9,7395                  | 3288,8                  | 1,1850                          | 513,37               | 6,0136e-4                   |
| 3        | 15,536         | 9,3425                  | 3293,5                  | 1,1940                          | 535,19               | 6,0136e-4                   |
| 4        | 15,536         | 9,3425                  | 3293,5                  | 1,1940                          | 535,19               | 6,0136e-4                   |
| 5        | 15,536         | 9,3425                  | 3293,5                  | 1,1940                          | 535,19               | 6,0136e-4                   |
| 7        | 15,536         | 9,3425                  | 3293,5                  | 1,1940                          | 535,19               | 6,0136e-4                   |
| 10       | 15,537         | 9,3433                  | 3293,6                  | 1,1940                          | 535,14               | 6,0136e-4                   |
| CEA      | 15,516         | 9,3309                  | 3290,8                  |                                 |                      |                             |
| 9        | 15,537         | 9,3433                  | 3293,6                  | 1,1940                          | 535,14               | 6,0136e-4                   |
| Teqworks | 15,503         | 9,3230                  |                         |                                 |                      |                             |
| 13       | 16,131         | 9,7008                  | 3304,6                  | 1,1848                          | 515,42               | 6,0136e-4                   |

#### Frações mássicas – problema E1

| Modelo   | H <sub>2</sub> O | <b>O</b> <sub>2</sub> | $H_2$     | OH        | 0         | H         | HO <sub>2</sub> | $H_2O_2$  | <b>O</b> <sub>3</sub> |
|----------|------------------|-----------------------|-----------|-----------|-----------|-----------|-----------------|-----------|-----------------------|
| 0        | 1,0000e-0        | 0                     | 0         |           |           |           |                 |           |                       |
| 1        | 8,6362e-1        | 1,2112e-1             | 1,5260e-2 |           |           |           |                 |           |                       |
| 2        | 7,7532e-1        | 7,7639e-2             | 1,7462e-2 | 1,2958e-1 |           |           |                 |           |                       |
| 3        | 7,5268e-1        | 7,7291e-2             | 1,7347e-2 | 1,2886e-1 | 2,1134e-2 | 2,6914e-3 |                 |           |                       |
| 4        | 7,5268e-1        | 7,7291e-2             | 1,7347e-2 | 1,2886e-1 | 2,1134e-2 | 2,6914e-3 |                 |           |                       |
| 5        | 7,5268e-1        | 7,7291e-2             | 1,7347e-2 | 1,2886e-1 | 2,1134e-2 | 2,6914e-3 |                 |           |                       |
| 7        | 7,5268e-1        | 7,7291e-2             | 1,7347e-2 | 1,2886e-1 | 2,1134e-2 | 2,6914e-3 |                 |           |                       |
| 10       | 7,5214e-1        | 7,6915e-2             | 1,7376e-2 | 1,2865e-1 | 2,1082e-2 | 2,6935e-3 | 9,2804e-4       | 2,1200e-4 |                       |
| CEA      | 7,4839e-1        | 7,4654e-2             | 1,7424e-2 | 1,3508e-1 | 2,0636e-2 | 2,6850e-3 | 9,2359e-4       | 2,0703e-4 | 2,6050e-6             |
| 9        | 7,5214e-1        | 7,6915e-2             | 1,7376e-2 | 1,2865e-1 | 2,1082e-2 | 2,6935e-3 | 9,2804e-4       | 2,1200e-4 |                       |
| Teqworks | 7,478e-1         | 7,8259e-2             | 1,7690e-2 | 1,318e-1  | 2,1167e-2 | 2,7045e-3 | 5,6768e-4       | 5,534e-13 | 1,3402e-6             |
| 13       | 8,3970e-1        | 1,1686e-1             | 1,5445e-2 |           | 2,5502e-2 | 2,4922e-3 |                 |           |                       |

## Temperatura de combustão

| Problema | CEA     | Gibbs<br>(mod. 9) | Erro (%)<br>Gibbs<br>(mod. 9) | Gibbs<br>(mod. 13) | Erro (%)<br>Gibbs<br>(mod. 13) | Outra fonte   | Erro (%)<br>outra fonte |
|----------|---------|-------------------|-------------------------------|--------------------|--------------------------------|---------------|-------------------------|
| C2       | 1797,78 | 1796,65           | 0,063                         | 2067,40            | -15,0                          | [Tw] 1798,71  | -0,052                  |
| C3       | 2974,69 | 2976,10           | -0,047                        | 3208,91            | -7,87                          | [Tw] 2986,92  | -0,41                   |
| C4       | 3595,43 | 3599,98           | -0,13                         | 3862,27            | -7,42                          | [Tw] 3610,55  | -0,42                   |
| C5       | 3644,31 | 3649,47           | -0,14                         | 3918,00            | -7,51                          | [Tw] 3658,22  | -0,38                   |
| C6       | 3507,10 | 3513,33           | -0,17                         | 3810,02            | -8,64                          | [Tw] 3523,28  | -0,46                   |
| C7       | 3368,28 | 3374,95           | -0,20                         | 3688,90            | -9,52                          | [Tw] 3385,28  | -0,50                   |
| C8       | 3234,72 | 3241,35           | -0,20                         | 3563,97            | -10,2                          | [Tw] 3251,62  | -0,52                   |
| C9       | 3596,61 | 3601,17           | -0,13                         | 3863,74            | -7,40                          | [Wang] 3639,0 | -1,2                    |
| C10      | 3237,61 | 3240,86           | -0,10                         | 3385,99            | -7,60                          | [Kim] 3300    | -1,9                    |
| C11      | 2964,90 | 2970,91           | -0,20                         | 3186,87            | -7,49                          | [Kim] 3073    | -3,6                    |
| C12      | 2998,45 | 3000,31           | -0,062                        | 3222,44            | -7,47                          | [Huzel] 3013  | -0,49                   |
| C13      | 3235,70 | 3238,85           | -0,097                        | 3469,01            | -7,21                          | [Huzel] 3251  | -0,47                   |
| C14      | 2668,70 | 2669,55           | -0,032                        | 2900,94            | -8,70                          | [Sutton] 2959 | -11                     |
| C15      | 2954,33 | 2956,01           | -0,057                        | 3178,25            | -7,58                          | [Sutton] 2999 | -1,5                    |
| C16      | 2946,10 | 2947,75           | -0,056                        | 3170,06            | -7,60                          | [Sarner] 2977 | -1,0                    |

#### **Conclusões**

- As temperaturas de mistura de gases são superestimadas.
- De modo geral, os resultados são menos acurados que os do modelo 2 (de 4 espécies).
- A não inclusão do radical hidroxila (OH) não o torna adequado para estudos aprofundados em escoamentos reativos.

Alterações no transporte de informações para o escoamento em equilíbrio

Código Mach1D 5.0

## Modificação proposta

 Transportar informações quanto a frações mássicas e graus de reação de dissociação de uma iteração para outra para as diversas subrotinas do código Mach1D 5.0.

## **Resultados obtidos**

| Modelo    | 80 volumes |            |         | 640 volumes |            |         |
|-----------|------------|------------|---------|-------------|------------|---------|
| químico   | Original   | Modificado | Redução | Original    | Modificado | Redução |
| Modelo 3  | 1,127 min  | 38,47 s    | 43,11%  | 1,180 h     | 44,05 min  | 37,78%  |
| Modelo 4  | 50,07 s    | 29,45 s    | 41,18%  | 52,96 min   | 35,00 min  | 33,91%  |
| Modelo 5  | 2,974 h    | 28,33 s    | 99,74%  |             | 40,02 min  |         |
| Modelo 7  | 4,555 h    | 37,83 s    | 99,77%  |             | 49,29 min  |         |
| Modelo 9  | 1,744 h    | 40,28 s    | 99,36%  |             | 1,080 h    |         |
| Modelo 10 | 1,474 min  | 51,80 s    | 41,43%  | 1,564 h     | 59,97 min  | 36,09%  |

#### **Resultados obtidos**

#### • Modelo químico 3 (Estimador GCI)

| Varióval          | 80 vo                                | lumes                                | 640 volumes                           |                                       |  |
|-------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--|
|                   | Original                             | Modificado                           | Original                              | Modificado                            |  |
| $C_d$ [adim]      | $0,98 \pm 1 \mathrm{x} 10^{-2}$      | $0,980 \pm 5 \mathrm{x10^{-3}}$      | $0,9784 \pm 6 \mathrm{x10}^{-4}$      | $0,9784 \pm 5 \mathrm{x10}^{-4}$      |  |
| <i>F</i> * [adim] | $1,01 \pm 1 \mathrm{x} 10^{-2}$      | $1,013 \pm 5 \times 10^{-3}$         | $1,0116 \pm 1 \mathrm{x10}^{-4}$      | $1,01159 \pm 3 x 10^{-5}$             |  |
| $P_{ex}$ [Pa]     | $3,63 \times 10^4 \pm 5 \times 10^2$ | $3,63 \times 10^4 \pm 2 \times 10^2$ | $3,618 \times 10^4 \pm 6 \times 10^1$ | $3,618 \times 10^4 \pm 6 \times 10^1$ |  |
| $T_{ex}$ [K]      | $2461,2 \pm 3x10^{-1}$               | $2461,2 \pm 1 \mathrm{x} 10^{-1}$    | $2460 \pm 1$                          | $2460 \pm 1$                          |  |
| $u_{ex}$ [m/s]    | $3427\pm2$                           | $3426,7 \pm 7 \mathrm{x} 10^{-1}$    | $3429 \pm 2$                          | $3429 \pm 2$                          |  |
| $M_{ex}$ [adim]   | $2,911 \pm 2 \times 10^{-3}$         | $2,9111 \pm 6 \times 10^{-4}$        | $2,914 \pm 3 \times 10^{-3}$          | $2,914 \pm 3 \times 10^{-3}$          |  |

#### Conclusões

- Redução mínima de 30% do tempo de CPU para determinada malha.
- Para os modelos químicos 3, 4 e 10, não houve mudança significativa do número de algarismos significativos; no caso dos demais modelos, houve aumento do número de algarismos significativos.
- Não houve alteração nos resultados numéricos obtidos, com base na análise de erros numéricos.

# Modificação das condições de contorno na entrada da tubeira

Parede parcialmente catalítica e não-catalítica

# Definições

- Parede com equilíbrio catalítico: reações químicas ocorrem a uma taxa infinita (equilíbrio químico local).
- Parede parcialmente catalítica: as reações químicas são catalisadas a uma taxa finita. Caso limite: quando não há recombinação na parede – parede não-catalítica.
- Parede totalmente catalítica: todos os átomos (espécies monoatômicas) são recombinados.

#### **Resultados obtidos**

#### Coeficiente de descarga [adim.]

| Modelo químico | Equilíbrio Catalítico            | Parcialmente<br>Catalítica       | Não Catalítica                   |
|----------------|----------------------------------|----------------------------------|----------------------------------|
| Modelo 31      | $1,008 \pm 3 \times 10^{-3}$     | $0,891 \pm 5 \mathrm{x10^{-3}}$  | $0,891 \pm 4 \mathrm{x} 10^{-3}$ |
| Modelo 32      | $1,007 \pm 3 \times 10^{-3}$     | $0,891 \pm 5 \mathrm{x} 10^{-3}$ | $0,890 \pm 3 \mathrm{x} 10^{-3}$ |
| Modelo 5       | $1,007 \pm 3 \mathrm{x} 10^{-3}$ | $0,890 \pm 5 \mathrm{x10^{-3}}$  | $0,890 \pm 3 \mathrm{x} 10^{-3}$ |
| Modelo 10      | $1,008 \pm 3 \mathrm{x} 10^{-3}$ | $0,891 \pm 5 \mathrm{x10}^{-3}$  | $0,891 \pm 4 \mathrm{x} 10^{-3}$ |

#### **Temperatura** [K]

| Modelo químico | Equilíbrio Catalítico          | Parcialmente<br>Catalítica     | Não Catalítica                 |
|----------------|--------------------------------|--------------------------------|--------------------------------|
| Modelo 31      | $1910 \pm 1 \mathrm{x} 10^{1}$ | $2350 \pm 2 x 10^{1}$          | $2350 \pm 1 \mathrm{x} 10^{1}$ |
| Modelo 32      | $1980 \pm 1 \mathrm{x} 10^{1}$ | $2440 \pm 1 \mathrm{x} 10^{1}$ | $2439\pm8$                     |
| Modelo 5       | $2059\pm9$                     | $2440 \pm 1 \mathrm{x} 10^{1}$ | $2438\pm8$                     |
| Modelo 10      | $1910 \pm 1 \mathrm{x} 10^{1}$ | $2350 \pm 2 \mathrm{x} 10^{1}$ | $2350 \pm 1 \mathrm{x} 10^{1}$ |

#### **Resultados obtidos**

Malha de 80 volumes,

modelo químico 31



## Conclusões

- Mudanças significativas entre as CC de parede com equilíbrio catalítico e as paredes parcialmente catalítica e não-catalítica. Comparando-se estas últimas duas, não houve variação significativa nos resultados.
- Novas C.C: não há descontinuidade nos perfis (temperatura e frações mássicas, por exemplo).
- Parede parcialmente catalítica: menor número de iterações e maior quantidade de algarismos significativos.
- Número de iterações para as novas CC: superior ao da parede com equilíbrio catalítico.