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AMCDIFIED STRONGLY IMPLICIT PROCEDURE
FOR THE NUMERICAL SOLUTION
OF FIELD PROBLEMS

G. E. Schneider and M. Zedan
Thermal Engineering Group, Department of Mechanical Engineering,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1]

A modified strongly implicit procedure for solving the system of algebraic equations
that arise in the finite-difference or finite-analytic description of field problems is
presented. The method is derived for a nine-point difference scheme and can readily
be applied to the more conventional five-point scheme simply through the use of the
five-point scheme coefficients. The method is demonstrated by applicarion to several
examples and @ comparison is made between the performance of the modified
procedure and that of the strongly implicit procedure, the alternating direction
implicit method, and successive over-relaxation. In all cases examined the modified
strongly implicit procedure offers superior results when the number of iterations
required for convergence or the computational cost required for convergence is
wsed as the measure of performance. The method is also less sensitive 10 control
volume aspect ratio, relexaiion parameters, and mesh subdivision than other available
procedures. Savings in computational cost for a converged solution range from a
facicr of two to a factor of four over the strongly implicit procedure. It is felt that
the development of this procedure offers a significant advance in the state of the
art of solving the finite-difference equations that are used to describe field problems.

INTRODUCTION

In continuum problems, application of conventional finite-difference techniques to
the analysis of magretic, electric, temperature, velocity, and pressure fields within the
domain of interest’ irequently leads to a system of aigebraic equations having a well-
defined structure. When using a five-point schemne a pentadiagonal coefficient matrix
results, and when using a nine-point scheme a nine-diagonal coefficient matrix results. In
general, the system of equations can be represented by the matrix equation.

AT ={@ W

where in the analysis of thermal fields, the solution vector {T} represents the temperature
field as determined at discrete locations within the domain.

While the simplest methods of solution of the above matrix equation are direct
methods, these methods fail to take"advantage of the well-defined structure of the coeffi-
cient matrix. While direct methods are suitable for small systems, the cost of obtaining a
solution to large sets of equations rapidly becomes prohibitive as the number of equations
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NOMENCLATURE ‘
AN A coefficient matrices 7. average contact area tempera-
-B additional matrix - ‘ .- ture v .

ERRAV average error in-domain Ty fluid temperature

k heat transfer coefficient - : U upper triangular matrix

ij location indices for control X,y ' Cartesian coordinates

‘ volume o iterative parameter

IJ number of control'volumes in x 5 change in temperature for one
and y directions, respectively iteration

k thermal conductivity A difference in accompanying

kxs ky thermal conductivity in x and y variable
directions, respectively o', 0%, ¢°, ¢*  coefficients,

L *fower triangular matrix or W : relaxation parameter
characteristic length o, )

Nc.V. ‘number of control volumes Subscripts

NITER number of jterations . S

q , right-hand vector of finite- - ' x 105390“ n gr fd r
difference equations oo ¥ location in grid 3

00 strength of heat source, totai ) ‘
heat flow rate Superscripts.

R residual vector e east

RESAV ‘average residual in domain B north, iteration level

R* nondimensional thermal resis- p pole

: tance [= kL(Tp— Tf)/Q] s south -

T temperature W west

increases. This realization has provided the major motivation for the development of
iterative procedures that recognize the well-defined structure of the coefficient matrix.

One of the more common iterative procedures is successive over-relaxation (SOR)
in which an initial guess field is successively improved through application of the equa-
tion for each discrete location. Through the application of under- or over-relaxation,
the convergence of the guess field toward its final solution can be enhanced above that
available through a simple apphca’uon of the equation for each discrete location in the
field. As the problem size ‘increases, however, through finer mesh subdivisions, the con-
vergence of such iterative procedures decreases and a large number of iterations are
required. As the number of iterations increases, the cost of solution also increases, and
large systems of equations thereby become excessively expensive to solve. :

In attempting to alleviate the slow convergence characteristics of SOR procedures,
the alternating direction implicit (ADI) procedure was proposed by Peaceman and Rach-
ford [1]. In this procedure the system of equations is successively rearranged so that at
each stage of the process a tridiagonal system can be solved efficiently by direct means,
using a tridiagonal matrix algorithm for the modified set of equations. Through appro-
priate selection of the rearrangement procedure, “line-by dine” solutions ate ‘obtained
in each of the coordinate directions. This procedure has the advantage that the influence
of ‘boundary conditions is propagated throughout the entire domain when a complete
iteration has been completed, where a complete iteration requires obtammg a line-by-
line solution for each of the coordinate directions involved in the problem. The ADI
method, being more 1mp11<:1t than the SOR method, generally offers a higher convergence

rate than does the SOR method. However, both methods lose their effectiveness when
complex pr oblems are encountered and when the equation set’ becomes large.
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More recently, an iterative, strongly implicit procedure (SIP) was proposed by
Stone [2]. In this method the iterative procedure involves the direct, simultaneous solu-
tion of a set of equations formed by modification of the original matrix equation. The
modified matrix is constructed according to two criteria: (1) the equation set must re-
main more strongly implicit than in the ADI case, and (2) the elimination procedure
for the modified equation set must be economically efficient. The modified matrix
equation of the SIP procedure has the form

[A +B] {T} = {b} | @)
where {b} = {q} + [B] {T} 3)

The form of [B] is such that |[B][l < ||[A]ll and that the decomposition of [A + B]
into a lower and an upper triangular matrix product involves much less computation than
the direct decomposition of [A].

Since the right-hand side of Eq. (2) involves the unknown solution vector {T},
iteration is still required. The procedure given by Stone [2] is

[A+B]{TY"*"! = [A + B] {T}" ~ w([A] {T}" — {q}) @

where a value of unity for w was used. Although the SIP method can lead to a reduction
in computational cost for certain problems, there remain several disadvantages to this
procedure. These are

The method is restricted to five-point, pentadiagonal systems.

Reordering of the equations is required at each step of the iteration.

. The rate of convergence is sensitive to the control volume or grid aspect ratio.
Convergence is highly problem-dependent and in certam cases convergence is
slower than that provided by ADI methods.

5. The [L] [U] product matrix is strongly asymmetric.

H WK =

Dupont et al. [3], and Bracha-Barak and Saylor [4] adopted an approach similar to
that proposed by Stone [2] and succeeded in obtaining a symmetric [L] [U] decomposed
matrix product. They also provided a discussion of the influence of the parameter w in
Eq. (4). Although they do obtain a symmetric [L] [U] decomposed matrix, equation
reordering during the iteration process is still required and they do not discuss the sensi-
tivity of their procedure to control volume aspect ratio or to the complexity of the prob-
lem being examined. In addition, their procedure is restricted to the five-point penta-
diagonal system :

Saylor [5] proposed a second-order symmetnc factorization in which matrices
[A] and [B] are both symmetric. His results indicate, however, that this method is un-
stable and therefore is not of practical utility.

The present work provides a procedure that is a significant departure from the
SIP method. The motivation for the development of thlS modified strongly implicit
(MS]I) procedure is fourfold:

1. To remove the asymmetry of the [L] [U] decomposed matrix or to weaken its '
influence. - ‘
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2. To reduce the. computational effort required to obtain a converged solution.
3. To. extend the method’s capability to include nme~pomt dlfference formulations.
4. To reduce the sensitivity of the procedure to grld aspect ratio.

In addition to the above, extension of the methdd s capability to include the nine-point k

~difference formulations will also extend its utility to include the more recent ﬁmte-

differential method [6] .

In the sections of -the paper that follow, the MSI procedure will be developed in
detail. Then the sensitivity of the method to grid aspect ratio and iteration parameter
will be investigated. Finally, the method will be compared with the SIP, ADI, and SOR

* methods for several different problems. This comparison, although performed for steady

heat conduction with no sources or sinks, demonstrates the advantages of the MSI pro- ‘
cedure over those methods previously avaﬂable

PROBLEM FORMULATION

The governing differential equatlon for two-dimensional, steady-state heat conduc-

thﬂ lS
8 (, oT\, 2 aT\ ‘ | :
ox (k" >+ ay (ky 8y> e | )

By performing an energy ‘balance on the finite control volume of Fig. 1a or by simply

adopting a Taylor series approximation of the governing differential equation, an alge-
braic equation is formed for each control volume: that takes the form, in the case of a
five-point scheme, of ‘

AUT11~1 +A1]T—lj+ApT +Ae 1+11+A1]T11+1 VQi,j‘ (6)

. The collection of equations in the form of Eq. (6) written for each location (7, /) in the

domain yields the matrix equation given as Eq. (1). For nodes lying outside the boundary
as shown in the grid network of Fig. 15, bounda.ry—condltlon equations replace the con-
servation balance and relate the temperature outside the boundary to that immediately
inside the domain. The equation form, however, can still be viewed as that given by Eq.
(6). In matrix form, the system of equations takes a form that clearly indicates a penta-
diagonal structure of the matrix [2]. This pentadiagonal structure results directly from
the five-point scheme given as Eq. (6) when an appropnate ordered numbering scheme
is adopted for the nodal pomts in the discretized mesh [2]

SOLUTION PROCEDURE
In the SIP method, an LU decomposition was p‘rc‘)posedlby Stone [2] suéh that’
LUl =[a1 M

where the L and U matrices are lower and upper triangular, respectively, with the prinei-
pal diagonal of U being the unity diagonal. Upon forming the LU product A’ there are
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Fig. 1 Control volume energy balance and grid net- ‘
work. ‘ (b)

two addmonal nonzero entries denoted by ¢' and ¢°. Denotmg the matrix consmtmg
solely of the ¢! and ¢* dxagonals by B, the matrix A’ can be written as

(A1 = [A]+[B] o ®

Directly from the defining equations determined by forming #he LU product, the
coefficients of the L and U matrices can be determined as well as thie additional nonzero
coefficients that appear in the modified matrix A’. The details of this determination are
given by Stone [2]. In this deterrmnatlon however, the coefficients of L and U are de-

“termined such that the coefficients in the A’ matrix in the locations of the nonzero
entries of the original matrix A are identical with those of the original A matrix. The
two additional coefficients obtained from the LU product are then simply accepted as
their nonzero values. A corrective and iterative procedure is therefore required to nullify
the influence of these latter two terms in the modified equation system. Details of one
method for accomphshmg this goal are given in Stone’s paper [2]. However, the asym-
metric influence of ¢} 7 and o} ;s strong, and requires reversing the numbermg scheme
for the grid system after every iteration by interchanging the 7 and j indices. ,

The solution to the above dilemma is to extend the consideration to a nine- -point
formulation. This has the additional advantage that the nine-point scheme formulations -
‘can be solved by using this technique and that the five-point scheme formulations become
simply ‘a- special case of the nine-point formulation. In the nme-pomt(formula’uon the
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coefficient matrix A has the form shown in Flg 2 The Land U matrices for use in the
nine-point scheme are illustrated in Fig. 3, @ and b. The modified coefficient matrix
A’ has the form shown in Fig. 3¢, where there are four additional entries, ¢, ¢*, ¢°, and
¢*, in excess of those present in the original matrix A. The equations to be used to de-
termine the coefflclents of L and U such that the original nine coefﬁcxents in A remain

unchanged in A’ are given by the following equatjons.
4 =AY
8jfi—1,j—1 +by;=Aj;
; bijlij—1 t e =Af
i jhi—yj—1 + by 8151 +d;;=AL;

@iy j—1 thijhyp g €8y +dijfi-—x‘j +ei=4;;

; bx]”t]-—-l +cz]hz+1;—1 + e, 1f;j
dijhi—yjte;g&;= =477
di]ux—-1]+ezj An

— ANe
€ Ui = Az',i
while the additional nonzero entries of 4’ are determined from

Yoo ' ’
i =Cijfivni—
o
Bij = ;j8i—1,j—1

<
Gij = Cijlit vj—1

o
Gij = dij8i—1,j

Sw S i W
- : A Ara AR

Fig. 2 Coefflment matrix for nine- pomt formulation.:

(%2)
(%)
(%¢)
(€))
(%9e)
7))
(%)
(h)
i)

(102)
(10B)
(10c).

- (10d)
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Fig. 3 'L, U, and LU matrices for MSI procedure.

It is noted that the subscript i, j refers to location within the grid network rather than the
matrix row-column designation and that, as in the original proposal of Stone [2], the
additional coefficients ¢*, ¢2, ¢, and ¢* are simply accepted as their calculated values.

The influence of the additional entries of A’ is again asymmetric, but their location
of influence is further removed from the central location and hence their influence is
expected to be weaker. Our experience indicates that this is indeed the case. The nu- -
merical molecule associated with this modified matrix A’ is shown schematically in Fig.
4a, wherein the nine central coefficients (solid circles) are the correct ones and may
correspond to a five-point scheme, in which case A} = A{} = Aj§=A]; =0.

For boundary-condition application, the samieapproach is used .as previously
described. However, since boundary relations are not available for the corner nodes, a
five-point formulation is used at the four interior corner control volumes. The influence
of the additional coefficients is partially canceled in the same manner as employed in

Stone’s method and an iterative approach to the true solution of the original matrix
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Fig. 4 Numerical molecule representation of MSI pro-
cedure: (¢) nine-point and () five-point formulations.

equation is performed. The above procedure constitutes the MSI procedure presented in
this work. " , . ‘ ‘ :

To partially cancel the influence of the additional terms in the A" matrix, for the
complete nine-point scheme, a Taylor series expansion is used to express the temperature
at locations (1 —=2,7), (¢ + 2,7), (i — 2,7+ 1), and (i + 2,/ — 1) in terms of those tempera-
tures involved in the original matrix equation. Thus the apﬁroximations are employed that

Tjmay=—Ty+2l0; (1)
Ti+2,j‘='_Ti,j+‘2Ti+l,i’ . (118)
Tivo,j—1 =205+ 2T54 05+ Ty 5y o (11¢)
Ti—ajer = —2T3+ 2Ty ; + Ty s | (11d)

Higher-order Taylor series expansions have also been employed, but with a negligible
improvement in-the results. It is noted that the use of the above Taylor“seriés representa-
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tions affects only the appro‘ac'hr to convergence of the iteration algorithm and that the
influence of these representations vanishes when the solution is obtained.

An iterative parameter a is employed to implement the partial cancellation of the
influence of the additional terms of A'. This is done by writing the modified equations
A’ for the nine-point scheme-in the form:

A5 Ty oy + AYTyy g+ AR T+ AL Tijer AL T+ AfYTio1,j—
+ AT qjer Y AL Tivrjer T ASSTi 51 + 00 Tidz,j—1
—o(—2T;; + 2Tipr,j+ Tij=1)] + 07 [Ti—2,j fa(*Ti,i +2T; 4, )]
+ 03[ Tiga —a(—Tij+ 2Ti, )l + ¢3i[Tima,je1 — (2T
+ 2T 1+ Tijen)] =4y R AR - (12)
which is more closely representative of the original system of equétidns for which a solu-
* tion is sought. The equations, Egs. (9) and (10), are modified to simultaneously include
the influence of partial cancellation present in Eq. (12) prior to effecting the solution.
‘The equations to be used to determine the coefficients of L and U such that the -originai

nine coefficients in A’ remain unchanged from those given by Eq. (12) are given, after
rearrangement to permit their explicit evaluation, by the following equations.

@ =Afy L (13a)
b= Ajj _ai,jfi—“x,j—1 —aAfifivr1j—1 | ‘ ”(131))
G 1 —afj—1fit1,j— : |
| ‘Ci,]" =A% — by fij—1 . (130
_,A,?j’,- a1 —b;j8ij—1 —2aai,jgééx,j—1 )

RTINS R A A e, —
e;;=AL; — a1 j—1 —bijhij—1 T Cij8it 11 dijfi-v,i

+a(29}; + ¢} + 91+ 28 (13e)
" Afj "éi,iui,j—rl '“Ci,jzl: ‘1,j~‘1' 3z 20{(¢?,j + 655 | ' 13
8ij = i -:i;.jhi*_]’j | - (13g)
e A7) —di,f‘:;l.’f o a3k

where the ¢} ;, ¢1?,j~s_¢?,j, and ¢;-',; used above are evaluated by using Eq. (10) and where
the values of g, ¢, d, f, g and uin Eq. (10) are those obtained through application of Eq.

(13). Note that the ¢’s are required, and therefore should be evaluated, as soon as the
evaluation of d; ; is complete :

)=61
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In the special case of appl‘iéatién toa ﬁyefpoint forfﬁtjlation we have
moAfy A=A T0 a9
which leads to the fesulfc th;‘at
| “i,i%‘ui.i:¢?.j=¢i,;=~ o | , S (15)
The resulting‘ numerical molecule co'rresponding to the modified coefficient matrix A’ for
the five-point scheme is shown schematically in Fig. 4D, and illustrates that the influence

of the additional terms of the LU product is further rémoved from the (7, /) location than
are those in Stone’s Qriginal method [2]. ‘ ‘

ITERATIVE PROCEDURE

Following the same procedure as outlined by Stohe for the SIP procedure [2], we

assign w = 1 in Eq. (4). Thus we form the iteration equation

(A+BIT" = (A+BIT" —(Al{TY — @) 16)

Defining a difference vector and a residual vector according to the relations

(3y"+1 = Mt — (1) (174)

RY" = {q} — [A{T}" - amy

the iteration equation, Eq. (16), becomes

[A+B] 8" =R} e - (18)

wherein the elements of B for the five-point scheme are simply the ¢' and ¢* values as
determined from Eq. (10). Replacing [A + B] by the LU product results in

(L] [U] )"+ = RY" | (19)

Deﬁning an intermediate vector V by

vyrer = U )t . (0
 the solution procedure takes on the familiar two_‘-step process given by | ;
Wt =mye B IP
and : N [U] {6}n+1 = {V}n+1 g : (21b)

The process represented by Eq. (21) consists simply of a forward substitution followed
by a backward substitution. Since the coefficients remain unchanged for the process, each
iteration requires simply an evaluation of the new tesidual vector by a forward and back-
ward triangular substitution procedure. o ; ‘
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TESTING OF THE PROCEDURE

It is essential in the presentation of new methods that the procedures be thoroughly
‘evaluated to determine their sensitivities, advantages, disadvantages, and relative merits- -
when compared to the existing procedures. This section of the paper addresses this need
by first examining the sensitivities of the method to -mesh and relaxation parameters for
a relatively simple ‘problem. Subsequently, the method is applied to more complicated
problems and its performance compared with that of existing procedures. Fmally, the
influence of different boundary-condition spemﬁcatlons is examined.

The first problem examined is- that illustrated in Fig. Sa, for which the solution is
a simple one-dimensional temperature distribution for steady-state heat conduction with
no heat generation. Although the problem is one-dimensional, the two- dimensional
five-point formulation was employed to determine the numerical solution. The reasons
for selecting thxs problem for prehmmary examlnatmn are threefold:

1. To check the computer code operation.

2. To gain familiarity with the method.

3. To determine the method’s sensitivity to the 1teratlon parameter, - control
volume aspect ratio, number of control volumes employed problem orlentatlon,
and relaxation parameter.

Comparlsons are provided for this problem with the SIP procedure, For all cases con-
sidered the SIP method was used in the form that entails the grid renumbering scheme

ADIABATIC WALL ) T:0
ADIABATIC
el T-0 WALL
; i ; T=)
(o] ‘ (b)
¥y : |
~ T ~
i_
a=1
b b=2
E c =l
h =5
D
© al{x)=1
k (umform)
4 a
: . q'(x) ol

Fig. § - Test problems: (d) model for sensitivity studies, () model of (a) rotated through 90°,
(¢) -circular cylmder constriction problem, and (d) constriction with convective and Neuman,
boundaries.,
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suggested by Stone [2], but comparable results were realized when reordering was not
used. The iterative parameter «, when used with the SIP method, has the same meaning
as' implied in Eq. (12), although' different nodal locations will be involved. See [2] for
details. The results 'presented are selected from a large number of tests performed.

The impact that the partial cancellation factor a and the grid aspect ratio Ax/Ay
has on the MSI performance was examined first. The influence of these parameters is
presented in Fig. 6. In Fig. 6a the sensitivity of the convergence to a is presented for a
uniform 7 X 7 mesh and compared with the SIP method. It can be seen from the figure
that the MSI procedure is somewhat less sensitive to o ‘than is the SIP method, and
moreover that the average residual over the domain is significantly smaller for the MSI
procedure. The curves presented are for a fixed computing time of 0.8 s, using the
WATFIV compiler on an IBM 370/158 installation. It is also noted that the SIP pro-
cedure diverges for a greater than 0.8, while the MSI procedure does not exhibit this
divergence. ‘

Figure 6b indicates the sensitivity of the MSI convergence characteristics to the
partially canceling parameter « for values of the control volume aspect ratio ranging from
0.1 to 10.0. In general, although it is not shown in the figure, the sensitivity of the MSI

as
53— 0 162/ Fa
/a3
i
9
|
6%
5| N |64_-.
10 ‘
. t t
S ,
”n z =
@ 2 2
‘ & &
-6 -5
10 16
i} \Ms1
-] -6 .
10 |~ 10 ™
58 T Py ENES IR T U B DA QU NS B
0/ 6305 07 03 0 02 04 06 08 10 0 0 20 30 40
a a NITER

(a)

(b)

(c)

Fig.6  Dependence of MSI and SIP on« and Ax/Ay.
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Fig. 7 Convergence characteristics of MSI and SIP.

procedure to Ax/Ay is less than that of SIP over the entire range of a. All curves shown

. are for a 7 X 7 mesh with the size of the domain adjusted to obtain the indicated Ax/Ay
ratio. Identical results were observed, however, when the domain was fixed and the
discretization level changed in the x and y directions to yield the indicated Ax/Ay ratio.
It is observed that the optimal value of « is relatively high and stable except for Ax/Ay <
1. Figure 6¢ indicates that the SIP procedure diverges at an aspect ratio -of 10 for all
except very small values of ‘. Indeed, even where the SIP procedure does converge, the
computational time required for solution is approximately eight times that required by
the MSI procedure. ‘ : :

" Figure 7 indicates the influence of the number of control volumes on the con-
vergence. characteristics of the MSI method and provides selected comparisons with the
SIP procedure. As expected, for the larger number of control volumes the convergence

. rate is lower than for the smaller number of control volumes. However, the sensitivity is
not extreme. These trends are displayed in Fig. 7, @ and b. In Fig. 7c a comparison is
made with the SIP procedure for 400 control volumes and the average residual over the
domain for a fixed computational time is presented for both methods. It is seen that
residuals for the MSI procedure are at least an order of magnitude smaller than for the
SIP procedure. Figure 7d provides a dramatic demonstration for 400 contiol volumes
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of the rapid convergence of the MSI procedure when. compared to the SIP procedure. The
-abscissa in this figure i is the actual (WATFIV) computatxonal time rather than the number
of iterations. :

‘The influence of problem onentatlon has been exammed through testing of the
method in a manner similar to that described above for the problem orientation shown
in Fig. 5b. The influence of the relaxation factor c is illustrated in Fig. 8 fora 7X 7
grid. In Fig. 8a results are presented for @ = 0.4 and the value of w near unity appears to
provide the most rapid convergence. This is further exemplified in Fig. 8b, where «w =1.0
provides the lowest residual for seven iterations for near-optimal values of . It would
appear; therefore, that the use of a relaxatlon factor other than unity is of little, if any,
benefit to the procedure.

Figure 9 presents results for the‘ same test problem but with the full nine-point
difference scheme employed in the MSI procedure. Comparisons with the SIP method
cannot be made in this case, since the SIP method is incapable of utilizing the complete
nine-point formulation. The figure illustrates that even with the use of the full nine-point
formulation, the attributes of the MSI procedure are similar to those already presented.
It is noteworthy, here, that the inclusion of the complete nine-point formulation capa-
bility is in itself a significant advance in the application of strongly implicit methods.

o o B~ wels
GRID 7%7
a =04

RESAV. —=
RESAV —=

w=08
GRID 7x7
S NITER =7
O < SN R R R
3 4 5 6 7 8 9 0 02 04 06 08 10
’ NITER : a

(a) : (b)

Fig. 8 ' Influence of relaxation parameter for MSI procedure.
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Fig.9 Influence of :on MSI for nine-point formulation

APPLICATION TO TWO SPECIFIC PROBLEMS

Having gained. familiarity with the characteristics and attributes of .the proposed
MSI method, it is instructive to examine its application to problems for which the heat
flow pattern is more complex than that of the previously described problem. This is
done for two specific problems in this section of the paper. The first problem, as illu-
strated in Fig. Sc, is that of two-dimensional, steady-state heat conduction with no
heat sources or sinks and is posed in a circular cylinder coordinate system. There is an
isothermal inflow boundary and an isothermal outflow boundary, with the remaining
surface being adiabatic. The motivation for examining this problem is twofold: (1) to
examine the MSI performance for a problem having a more complex heat flow pattern
and (2) to verify its usage in circular cylinder coordinates. e RN

‘The analytical solution to this problem, in terms of the thermal resistance, has
recently been obtained by Schneider and Yovanovich [7]. The first phase of the compari-
son was in the form of a convergence study to determine the numerically asymptotic
value of the thermal resistance. The value obtained numerically agrees well with the
analytical solution obtained by Schneider and Yovanovich [7]. The second phase, and
more relevant to this work, was to compare the MSI procedure with the common alter-




16 ) G. E. SCHNEIDER AND M. ZEDAN

nate metihods, namely the SIP, ADI, and SOR methods. The Comparison is based on the
average relative error from the fully converged numerical solution for each grid size con-
~sidered. The relative error at each node in the grid network is defined by R

b T

Ti; @

Error =

where T7; is the exact value of the numerical solution at location (7, /) and T} is the cor-
responding value after the nth iteration. : ‘ S

For a finite-difference mesh of 24 X 24 control volumes,-the computational times
required to achieve an average relative error of less than 10™* are presented in Table 1 for:
the various methods considered. It is seen from the table that the MSI procedure achieves
this accuracy with a computational time requirement 2.426 times smaller than that of its
nearest competitor for this problem, the SIP method. It is seen from Fig. 10, where the
computational time required to achieve a specified accuracy is plotted, that the time
savings increase as the desired accuracy is increased (error is reduced). Figure 10a corre-
sponds to an 8 X 8 grid network, while Fig. 10b corresponds to a 24 X 24 grid network.
By comparing Fig. 10a with Fig. 10b it is also seen that the computational savings in-
crease as the problem size (in terms of the number of control volumes) increases.

The second problem examined, as illustrated in Fig. 5d, is a plate of rectangular
cross section, one of whose surfaces is convectively coupled to-a uniform fluid environ-
ment while the opposite surface has a flux prescribed over a portion of its boundary. The
remaining surfaces are adiabatic. The motivation for examining this problem was to ex-
amine the performance of the method on a problem for which both convective and spe-
cified heat flux boundary conditions are applied and to examine its performance on a
second problem with a somewhat more complex heat flow pattern: Performing a con-
vergence study on this problem to determine the numéiic’ally asymptotic value of the
. thermal resistance yielded an asymptote that is in good ‘agreement with the analytical
solution obtained by Schneider et al. [8]. Further testing was then directed at comparing
the MSI procedure with the SIP, ADI, and SOR methods for this problem. Results of the
. comparison are presented in Table 2 and Fig. 11. ;

' - The results presented in Table 2 are the computational times required to achieve
an average relative error in the domain of less than 10~° for two mesh sizes, 8 X 8 and
24 X 24. It is seen that the computational time requirements for this problem are lower
by a factor in excess of 2.8 for both mesh sizes. Moreover, it is also observed for the
8 X 8 case that the ADI procedure provides a more economical solution than does the
SIP procedure. For a larger number of nodes, however, the relative performance of SIP

Table 1. Comparison of Solution Methods for Circular Cylinder

Problem
e . CPU time :
- Method o (s) ‘ Ratio
MSI 7.689 1
SIP 18.653 2.426
ADI . 30.722 3.996

SOR : 38.756 . 5.04
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Fig. 10 Companson of computatlonal methods for circular cylinder
problem

and ADI reverts to that previously observed. The computational time requirements for
each of the methods for a specified average relative error are presented graphlcally for
the two mesh arrangements in Fig. 11. Again it is observed that the computational cost
savings available through the use of the proposed MSI procedure increase as higher ac-
curacy of the solution to the algebraic equation set is demanded. Further, as higher
accuracy. of the solution to the physical problem (through the use of a larger number of :
control volumes) is demanded, the economic advantage of the proposed MSI procedure
becomes even more pronounced :

‘Table 2  Comparison of Solution Methods for Convective/Neuman Bouodary Problem '

: CPU time CPU time .
Method - (8X8,98) Ratio (24'%x 24,5 Ratio
MSI 10.3466 1 11399 1
SIp 1.3433 3.876 45.42 3.985
ADI - 1.0000 2.885 88.24 ‘ 7.741

- SOR: 2.43328 to 0 1.020 119.638 10.50
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DISCUSSION AND CONCLUSIONS

A new procedure for solving the algebraic equations that arise in the finite-

_ difference representation of field problems has been presented. The motivation for devel-

opment of this MSI procedure has been to lower the computational cost from that cur-

rently required, to enable the application of strongly implicit>methods to nine-point

difference formulations, and to reduce the dependence of the éonvergence, characteristics.

of the strongly implicit method on the partial cancellation parameter a. All of these
objectives have been realized by the work presented in this paper. o :

The new MSI procedure has been extensively examined through its application to
the test problem illustrated in Fig. 5, @ and b. By application to this relatively simple
problem, it was possible to examine in detail the many important attributes of an equa-
tion solver and to make comparisons with the previously available strongly implicit
method. Having established the characteristics of the method, it was then possible to
examine two different problems for which the heat flow pattern is far more complex than
that for the first test problem. The method performed extremely well on both of these

problems in comparison to the currently employed methods:




NUMERICAL SOLUTION OF FIELD PROBLEMS 19

On the basis of the testing and experience gained with the new MSI procedure and’
the comparisons made with the alternate procedures, the following conclusions can be
advanced regarding the procedure.

1. The MSI procedure is less sensitive to the parameter « than is the SIP method.

2. The MSI procedure can be confidently employed for a very wide range of
Ax/Ay.

. The optimum value of « is relatively insensitive to problem parameters.

The MST procedure is insensitive to boundary-condition specification, _

. Relaxation is not useful for improving the convergenge-BTtﬁ'e procedure.

. Renumbering the grid network after each iteration is not required.

The computational cost for solution varies from 25 to 50% of that of the most

economical alternative, based on the problems WMer.

Nonhw

. The MST procedure is capable of use with nine-point formulations with no in-
crease in computational cost, I

In view of the above conclusions, and their relevance to the state of the art of
solving field problems, we feel that this work provides a significant contribution to those
involved in the solution of field problems.

o]
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