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APPLICATION OF THE OPTIMIZED MODIFIED
STRONG IMPLICIT PROCEDURE TO
NONLINEAR PROBLEMS

P.L.C. Lage
- Programa de Engenharia Quimica, Coordenaciio dos Programas de

Pés-Graduagio de Engenharia, Universidade Federal do Rio de Janeiro, Ilha do
Fundao, CEP 21.945-970, Rio de Janeiro, RI, Brazil

This article applies a recently developed iterative method to solve the system of equations
obtained from the discretization of nonlinear, two-dimensional field problems. This method
is the modified strong implicit procedure with an adaptive optimization algorithm applied to
its iteration parameter, which eliminates the trial-and-error method usually necessary to
determine.its optimum value. Four nonlinear problems are used to compare the new method
to the original MSIP. The results show that, for nonlinear problems, the optimized MSI
Dprocedure is faster than the original MSI procedure, even when the latter is used with the
best value of its iteration parameter.

INTRODUCTION

The finite-difference or finite-element discretization of two-dimensional field
problems leads to large, sparse systems of algebraic equations that have to be
solved by iterative methods. Among the existing iterative methods [1], the modified
strong implicit procedure (MSIP), developed by Schneider and Zedan [2], is usually
considered the one with best convergence behavior.

Like other methods, the MSIP has an iteration parameter that has to be
chosen in advance. The convergence characteristics of the iterative methods are
strongly influenced by the value (or values) chosen for the iteration parameter,
which usually shows an optimum value (or a sequence of optimum values during
iteration) for each problem. Although the MSIP is the least sensitive to the value
of its iteration parameter, its optimization can accelerate the convergence appre-
ciably. Since the search of the best value for the iteration parameter has to be done
by a trial-and-error procedure, its is not worthwhile unless the problem has to be
solved several times. Besides, for nonlinear problems, its optimum value may vary
during problem solution. This explains why some implementations of the MSI
procedure hold the iteration parameter constant for every problem [3].

Recently, Lage [4] developed an adaptive optimization algorithm to search for
the best value of the iteration parameter during problem solution using the MSIP.
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NOMENCLATURE
A coefficient matrix Il f  Euclidean norm of a vector in an
B auxiliary matrix n-dimensional space
b right-hand-side vector « iteration parameter
¢,  specific heat at constant pressure 8 difference vector
f convergence rate € tolerance in F(a) estimation
F. asymptotic convergence rate of the €, tolerance in « values for matrix
residual norm decomposition
g convergence rate of arithmetic means € relative tolerance
k thermal conductivity €, absolute tolerance
L lower triangular matrix p density
n number of iterations
N number of iterations in the smoothing Subscripts
procedure
0] heat source n iteration counter
R residual vector
t time coordinate Superscripts
T temperature
U  upper triangular matrix n iteration counter
x vector of unknowns N number of iterations in the smoothing
x,y Cartesian coordinates procedure

His results for the solution of five linear heat transfer problems show that the
optimized MSI procedure (OMSIP) is almost as fast as the original MSI procedure
with its best iteration parameter. For a nonoptimal value of the iteration parame-
ter, the OMSIP is faster than the MSIP in almost all the cases analyzed.

The present work applies the optimized MSI procedure to four nonlinear,
two-dimensional heat transfer problems. Two of them-are steady-state problems
and the other two are the corresponding time-dependent problems. The results are
compared to those obtained by using the original MSI procedure. This comparison
demonstrates the advantages of the application of the MSI procedure with adaptive
optimization over the standard MSI procedure for nonlinear field problems.

THE STANDARD MSI PROCEDURE

The MSI procedure developed by Schneider and Zedan [2] is outlined in this
section. Further details can be found in the original work. The discretization of the
two-dimensional field problem leads to the system of algebraic linear (or lin-
earized) equations

A-x=b (€))

where the coefficient matrix A is pentadiagonal or nine-diagonal. The MSI proce-
dure consists of the definition of an auxiliary matrix B, which is chosen in order
that the modified coefficient matrix A + B has an LU factorization where the
upper and lower triangular matrices keep the sparse structure of A. The definition
of B includes a partial cancellation factor, «, which tries to minimize the difference
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between the modified and original systems of equations. This is the iteration
parameter of the MSI procedure. It should be noted that the LU decomposition of
the modified matrix is calculated by a very fast algorithm. Once « is chosen, B is
determined and the following iterative procedure is applied:

A+B) x*""1=(A+B)-x"—(A-x*—Db) )

Since A + B = L - U and defining the difference vector 8”*! = x"*! — x" and the
residual vector R” = b — A - x”, the iteration step consists of the solution of

L-0)-8""1=R" 3

which is obtained by a two-step process consisting of a forward substitution
followed by a backward substitution.

MSIP ASYMPTOTIC RATES OF CONVERGENCE

In order to optimize the iteration parameter of the MSI procedure, it is
necessary to define a measure of the convergence characteristics of the MSI
procedure for a given value of its iteration parameter. It has been found [4] that
there exists an asymptotic convergence rate for the sequence of the arithmetic
means of the norm of the residual vector,

F(a) = limg, (€3]
where
H n
%; = M M .\.‘w AMV
k=1
and
P ©
FORET

Since the sequence of arithmetic means converges too slowly to be used in an
adaptive optimization procedure, a faster estimate of the asymptotic convergence
rate has been obtained through a smoothed value of f, after a few iterations:

H n
F(a) = limgY) where gl=— Y f ™
n-s>wo Zwﬂx.*ulz

where N = 4 has shown to be a good choice [4]. The procedure for the estimation
of the asymptotic rate of convergence is explained elsewhere [4].
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ADAPTIVE OPTIMIZATION PROCEDURE

Once estimates of the asymptotic convergence rate become available for
some values of the iteration parameter, an algorithm should be used to determine
a better value for the iteration parameter for the next LU decomposition. The
details of this algorithm are found in [4]. It has been found in the present work
that, for nonlinear problems, the algorithm performs better if the tolerances for
F(a) determination (€) and for accepting a new « value (¢,) are increased from
0.001 to 0.01. The interval for searching the best a value is still [0.01, 0.99].

DESCRIPTION OF TEST PROBLEMS

In order to test the OMSIP for nonlinear problems, test problems 1 and 4 of
[4] (originally presented by Stone [5] and by Schneider and Zedan [2], respectively)
are modified by adding a temperature-dependent thermal conductivity to give our
present steady-state nonlinear problems 1 and 2, respectively. Then, the corre-
sponding transient problems are also solved. For the sake of completeness, these
test problems are described below.

The basic equation to be solved is the heat transfer equation in Cartesian
coordinates in a two-dimensional domain with a medium that might have tempera-
ture-dependent thermal conductivity, given by

mﬂl a wmu, a __«mﬂ
u&.m.nwmA |v+!A 1V+© ®

which is discretized using the control-volume technique. The above equation is
assumed to be in a dimensionless form.

Steady-state problem 1. The domain is a square with side length 1 that is completely
insulated. Point heat sources are located at (0.1,0.1), (0.1, 0.9), (0.767,0.133),
(0.467,0.5), and (0.9,0.9), with strengths 1.0, 0.5, 0.6, —1.83, and —0.27,
respectively. Also,

k(T) = exp(—0.23T) ©)

which corresponds to a dimensionless iron conductivity between 200 and
1,000 K. The initial guess for the temperature field is the uniform field with
zero temperature (T = 0).

Steady-state problem 2. The domain is 0 <x < 2,0 <y < 1. The two vertical sides
at x = 0,2 are insulated. The side at y = 0 is insulated for 1 <x <2 and
receives a uniform heat flux g, = 1 for 0 <x < 1. The upper boundary at
y = 1is subjected to a boundary condition of the third kind, with a convective
heat transfer coefficient of 5, losing heat to an ambient at zero temperature.
The thermal conductivity is given by Eq. (9) and the initial guess is the
uniform field with zero temperature (7 = 0).

Transient problems 1 and 2. These are the transient problems of the above
steady-state problems for an initial uniform field with zero temperature and
for pc, = 1. The fully implicit scheme is used in the control-volume dis-
cretization.
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These test problems have been solved in a fixed 30 X 30 mesh (identical to
the one used by Stone [5]). For the transient problems, the time interval in the
finite-difference discretization was varied, for each problem, in order to give 10, 20,
and 100 time points during the transient solution. The time necessary to practically
reach steady state was found to be ¢ = 2 for the first problem and ¢ = 8 for the
second one.

During the solution of all problems, the following convergence criterion was
used:

_u‘?v . ﬂ?iv_
eIT™ + ¢,

<1 10)

for every point in the field, where €, = 107* and ¢, = 107°. Since these problems
are nonlinear, the coefficient matrices of the discretized system of equations have

to be updated during the solution of the steady-state problems or during a

time-step fully implicit integration of the transient problems. The iteration scheme
applied to both cases, using either the MSIP or the OMSIP, is given in Figure 1. In
this figure, the iterative method (MSIP or OMSIP) is applied until the convergence
criterion given by Eq. (10) is met internally. Then, the temperature field is checked
against the temperature field at the beginning of the iteration. If the convergence
criterion given by Eq. (10) is not met, new iteration is started; otherwise the
steady-state problems are considered to be solved and, for the transient problems,
a new time-step integration is then started. The only difference in the iterative
scheme is that the OMSIP reevaluates the coefficient matrix each time it chooses a
new « value.

RESULTS

Since the OMSI procedure is based on evaluation of the asymptotic rate of
convergence, our first aim is to verify its behavior during the solution of a
nonlinear problem. For a nonlinear problem, a unique F(a) curve does not exist
because its coefficient matrix changes during solution. However, if the linearity is
not too severe, one should expect that most of the (a, F) values obtained during
problem solution belong approximately to a single curve. For all the problems
analyzed, this fact has been verified, as can be seen in Figures 2, 3, 4, and 5, for the
steady problems 1 and 2 and the transient problems 1 and 2, respectively. These

Store field as last field

Coefficient matrix
calculation [Comeeee 1
- H

Iterative method: | newa:
o check f-oo=" > Figure 1. Iterative scheme for nonlinear
[ convergence chock: problem solution (the path with dashed
field x last field line occurs only when using the OMSI
v procedure).
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Figure 2. Asymptotic convergence rate for steady-state
problem 1.

figures show the F(a) values obtained during problem solution with the OMSIP
for several initial a values. From these figures, it is clear that there is considerable
data scatter due to two factors: (1) the problem nonlinearity and (2) the large
tolerance used in F(a) estimation. The same a data are plotted against the total
number of iterations [the number of times Eq. (3) is solved] in Figures 6, 7, 8, and
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Figure 3. Asymptotic convergence rate for steady-state
problem 2.
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Figure 4, Asymptotic convergence rate for transient prob-
lem 1.

9, for the steady problems 1 and 2 and the transient problems 1 and 2, respectively.
It should be noted that only the first 200 iterations are shown in Figures 8 and 9
for the solutions of the transient problems. From these figures, it is clear that the
optimization algorithm is able to bring the « value close to its optimum for both
problems, even though some oscillations occur, most of them during the first
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Figure 5. Asymptotic convergence rate for transient prob-
lem 2.
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Figure 6. Behavior of the iteration parameter during
solution of steady-state problem 1.

iterations. Carefully comparing the data on these figures, we find out that the
points out of the F(a) curves of Figures 2 and 4 are exactly those obtained for the
first iterations as shown in Figures 6 and 8. Thus, the points out of the F(a) curves
for test problem 1 are due mainly to the change in the coefficient matrix during
problem solution, even though there exists some error in the evaluation of the
asymptotic convergence rates as shown below. This error is much larger for the
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Figure 7. Behavior of the iteration parameter during
solution of steady-state problem 2.
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Figure 8. Behavior of the iteration parameter during
solution of transient problem 1.

steady-state or transient solution of test problem 2, as can be seen from the large
data scatter in Figures 7 and 9.

Figure 10 shows the behavior of f, during solution of steady-state problem 1
using the MSI and OMSI procedures, for an initial a value of 0.5. It is clear that
the asymptotic rate is reached for the first two calls of the MSI procedure. Those
determined by the OMSI procedure have some error, due to the increase in the €
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Figure 9. Behavior of the iteration parameter during
solution of transient problem 2.
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Table 2. Comparison between methods for transient problem 1

10F Steady-state Problem 1 b
! MSIP OMSIP
E
m 7] « Zﬁu N, LU trel gﬁu N, LU et
3 Transient problem 1 (100 time steps to steady state)
m i 0.10 1,741 307 1.363 1066 317 0.997
k-] 0.30 1,617 308 1.298 1072 316 1.001
£ ] 0.50 1,463 308 1.216 1081 316 1.007
8 0.70 1,268 312 1.118 1089 316 1.010
S T 0.90 1,037 315 1.000 1191 314 1.067
2 ] Transient problem 1 (20 time steps to steady state)
2 0.10 1,502 81 1.671 733 85 0.954
8 . 030 1,354 81 1.527 889 86 1117
h 0.50 1,184 82 1.365 741 84 0.960
. _ 1 0.70 953 83 1.141 727 89 0.957
ol Ilinl o= 080 0.90 796 87 1.000 684 % 0915
o 100 . 200 300 Transient problem 1 (10 time steps to steady state)
Total number of iterations 0.10 1,468 48 1.881 622 50 0.920
Figure 10. Behavior of the convergence rate during solu- 030 1,324 48 1714 615 50 0.910
tion of steady-state problem 1. 0.50 1,147 48 1.504 609 49 0.901
0.70 926 48 1.242 617 48 0.907
0.90 718 49 1.000 629 49 0.917
value used in the algorithm. This can be noted by comparing the first call of both
procedures and v_w <od.@5m that the curves for the OMSIP calls barely flatten ; on the fastest result for the MSIP for each problem, which was obtained by using
before the algorithm interrupts the process to choose a new a value. The a = 0.9 for all problems.
corresponding results .mOn steady .E.oEnE 2 show similar behavior but with a For the steady-state problems, as can be seen from Table 1, the OMSIP
somewhat larger error in F(a) estimation. needs less iterations and is faster than the MSIP even for the best « in this table.
A comparison of the two methods is shown in Tables 1, 2, and 3, for the This direct comparison might not be quite fair because the algorithm of the

steady-state problems, transient problem 1, and transient problem 2. N,., is the
total number of iterations [solutions of Eq. (3), Ny is the total number of

coefficient matrix evaluations followed by its LU decomposition, and #, is the Table 3. Comparison between methods for transient problemn 2

relative CPU time spent for the problem solution. This relative CPU time is based MSIP OMSIP
«a z»on N, Lu 14 ret 33—‘ N, j81) Lret

Table 1. Comparison between methods for steady-state problems 1 and 2 Transient problem 2 (100 time steps to steady state)
0.10 1,909 255 1.570 911 264 0.975
MSIP OMSIP 0.30 1,761 257 1.487 933 264 0.986
0.50 1,575 256 1.374 897 264 0.964
o Niter Npy Lrel Niter Npy frel 0.70 1,330 259 1.235 935 262 0.986
0.90 929 261 1.000 911 263 . - 0971

0.10 368 7 mamnw.wﬁ%mﬂn Problem HSQ Transient problem 2 (20 time steps to steady state)
030 pood . 12 0.641 0.10 1,585 72 2218 522 106 1.026
050 e W wwmm N 10 0.538 030 1,443 72 2.042 509 104 1.003
070 e i T - 9 0.536 0.50 1,269 74 1.835 513 105 1.011
0,90 3 . 10 0.678 0.70 1,017 73 1.519 500 103 0.989
: 5 7 Stead H..mw Prob Nsc 7 0.690 0.90 604 ! 1.000 518 106 1.023

0.10 i3 . M cmmm roblem o Transient problem 2 (10 time steps to steady state)
030 Pt 4 i e 19 0.630 : 0.10 1,452 43 2438 378 71 0.914
050 pad 4 a5 122 21 0.708 0.30 1,321 2 2235 381 74 0.938
0.70 148 p 1820 106 19 0.640 050 1,154 42 1970 387 75 0.948
0.90 240 p 1000 16 0.573 0.70 923 2 1617 374 7 0910
g . 9 16 0.540 0.90 530 41 1.000 366 67 0.877
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OMSIP evaluates the coefficient matrix more often than the MSI iterative proce-
dure. That is, during problem solution using the OMSIP, time is saved by not
requiring high convergence for nonconverged coefficient matrices. For steady-state
problem 1 and « = 0.9, both methods evaluate the coefficient matrix seven times
but the OMSIP is still superior to the MSIP. In order to minimize the effect 0m
requiring high convergence before the coefficient matrix converges, the iterative
procedure given in Figure 1 is modified by starting it with €, = ¢, = 0.05 and
decreasing these values one order of magnitude for every new :nnwmoz until the
final tolerance values, €, =5 X 107> and €, =5 X 1077, have been reached
Steady-state problem 1 has been solved by both methods using this Bo&mmm
iteration algorithm and a = 0.9. Both methods need eight LU decompositions to
obtain the solution; the OMSIP needs only 80 iterations, while the MSIP needs 95
iterations. The relative computation time is ¢, = 0.856. These results show that
the OMSIP is 15% faster than the MSIP, requiring 15% fewer iterations to achieve
convergence. Since both methods evaluate the coefficient matrix the same number
of times and the value of a used in both methods varies only slightly (0.88 to 0.90)
the difference in performance must be accounted for by the points chosen a%. Em,
OMSIP to reevaluate the coefficient matrix.

Thus, the difference in performance between the methods is due to two
factors: (1) the optimization of a and (2) the fact that the algorithm used by the
OMSIP to choose the points to reevaluate the coefficient matrix is highly effective
in reducing the computational time. The reason for this effectiveness is that the
coefficient matrix is reevaluated when a new @ value is chosen by the algorithm
which happens only when the system is fairly converged. But this is exactly the vmmm
point to update the coefficient matrix. Therefore, the comparison of the two
methods by the results given in Table 1 is really fair. Thus, we can conclude that
the Mu?nmwuw Vmom., all « values in Table 1, is 30~45% faster than the fastest MSIP
run (a = 0.9). For the same initial value of a [ i
o , the OMSIP can be 4.7 times faster

For the transient problems, the initial guess for every time integration is not
too far from the converged solution for the next time point. This eliminates part of
the effect of the choice of points at which to reevaluate the coefficient matrix. Of
course, this effect should decrease with the time step, because the initial guess
becomes better. Therefore, it is not expected that the OMSIP would be much
faster than the MSIP with its best a value, due to the extra computational
overhead, especially for small time steps. These trends can be seen in Tables 2 and
3, where the results for transient problems 1 and 2 are shown for three different
time steps, corresponding to 10, 20, and 100 time integrations before the systems
reach their steady states. Accordingly, the results show that, for 100 time steps, the
OMSIP is basically equivalent to the MSIP with its optimum value of #ammmon
parameter; that is, only the optimization of « contributes to the better perfor-
mance of the OMSIP, which is up to 61% faster than the MSIP for the same initial
value of . As the number of time steps decreases, and so the time step increases
the effect of the choice of points for the coefficient matrix reevaluations wgoamm
appreciable. For 10 time steps the OMSIP is about 10% faster than the MSIP with
its best a value. For the same initial a value, the OMSIP is up to 2.6 times faster
than the MSIP.
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It is worth noting that, in all the cases analyzed, the computational time spent
by the OMSI procedure to solve a given problem varies less than 25% for an initial
« value between 0.1 and 0.9, being of the order of, or smaller than, the computa-
tional time used by the MSI procedure with its optimum value of a.

CONCLUSIONS

The recently developed optimized MSI procedure is applied to nonlinear heat
transfer problems in this work. From the results obtained, the following conclu-

sions can be drawn.

1. The OMSI procedure is able to estimate roughly the asymptotic rate of
convergence of the residual norm of the system of equations obtained by
the discretization of a nonlinear problem.

2. The F(a) curve can be approximately obtained for problems with weak

nonlinearity.

For steady-state problems, the OMSI algorithm also chooses good points

at which to reevaluate the coefficient matrix.

4. For this reason, the OMSIP is shown to be 30-45% faster than the MSIP

for the steady-state problems that have been analyzed.

. For transient problems, the OMSI procedure is still effective in optimizing

the a value, with a computational time within + 10% of that used by the
MSTI procedure with the optimum value of its iteration parameter.

w
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