MODIFIED STRONG IMPLICIT PROCEDURE
WITH ADAPTIVE OPTIMIZATION OF ITS
ITERATION PARAMETER

P. L. C. Lage

Programa de Engenharia Quimica, Coordenacao dos Programas de
Pos-graduacio de Engenharia (COPPE), Universidade Federal do Rio
de Janeiro, Ilha do Fundiao, CEP 21.945-970, Rio de Janeiro,

RJ, Brazl

This article develops an algorithm to estimate the asymptotic rates of convergence of the
residual vector norm of a system of equations when it is solved by the modified strong
implicit procedure (MSIP). This algorithm is used to develop an adaptive optimization
procedure in _order to i . ing problem solution. This eliminates
‘the trial-and-error method usually necessary to determine the optimum value of the iteration

“parameter. Five problems are used to fest the new algorithm. The results show that the
optimized MSIP can be many times faster than the original procedure for a nonoptimal
value of its iteration parameter.

INTRODUCTION

The numerical solution of field problems using finite-difference or finite-
element procedures leads to systems of algebraic equations that have a sparse
structure. In the case of two-dimensional problems, a pentadiagonal or nine-
diagonal coefficient matrix is obtained, depending on the use of a five-point or
nine-point discretization scheme, respectively. Since the number of equations in
these systems is large, direct methods of solution are usually too costly to be used,
and then iterative methods of solution should be chosen. ,

Several iterative methods are available throughout the literature [1]. Among
them, the most commonly used are the point successive overrelaxation method
(SOR); the line successive overrelaxation method (LSOR); the alternating direction
implicit method (ADI), originally developed by Peaceman and Rachford [2]; the
strong implicit procedure (SIP), developed by Stone [3], and the modified strong
implicit procedure (MSIP), developed by Schneider and Zedan [4]. The implicitness

of the solution method increases in the order of presentation given above, and this
is responsible for the better convergence characteristics of the latter methods. All
of these methods have an iteration parameter that can be a relaxation factor (SOR, -
LSOR, and ADI) or a partial cancellation factor (SIP and MSIP). The convergence
characteristics of each of these methods are strongly influenced by the value (or
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NOMENCLATURE
A coefficient matrix [ Evclidean norm of a vector in a
b right-hand-side vector n-dimensional space
B auxiliary matrix a iteration parameter
f convergence rate o difference vector
F asymptotic convergence rate € tolerance in F(a) estimation
of the residual norm . &, absolute tolerance

g convergence rate of arithmetic means &, relative tolerance
h convective heat transfer coefficient £, tolerance in « values for
k thermal conductivity matrix decomposition
L lower triangular matrix
N number of iterations in the Subscripts

smoothing procedure

n number of iterations n iteration counter
q. heat flux X,y coordinate directions
Q heat source
R residual vector Superscripts
U upper triangular matrix
T temperature n iteration counter
X vector of unknowns N number of iterations in the
X,y Cartesian coordinates smoothing procedure

values) chosen for the iteration parameter, which usually shows an optimum value
(or sequence of values during iteration) for each problem. The modified strong
implicit procedure is the least sensitive to its iteration parameter, even though its
optimization can cause an order-of-magnitude reduction in computer time for
some problems. Moreover, the optimum value of the MSIP iteration parameter is
relatively insensitive to problem parameters. Those advantages over the original
strong implicit method have been pointed out by Schneider and Zedan [4] and are
the basis for some implementations of the modified strong implicit procedure
where the iteration parameter is held constant for every problem [5].

Due to these features, the modified strong implicit procedure is usually
considered the best method available for the solution of discretized two-dimen-
sional field problems. However, the optimum value of its iteration parameter has to

be obtained by a trial-and-error method for each problem. This involves the
solution of the problem Tor several values of the iteration parameter, which is
costly and becomes prohibitive if the solution is needed for only a few groups of
problem parameters values.

The present work develops a method for the adaptive optimization of the
iteration parameter in the modified strong implicit procedure, eliminating the
trial-and-error optimization method. The method is based on the fact that, for each
value of the iteration parameter, an asymptotic convergence rate of the residual
vector norm can be determined. In a chosen closed interval for the iteration
parameter, inside [0, 1], there is a minimum for the asymptotic convergence rate,
which corresponds to the optimum value for the iteration parameter. The adaptive
optimization of the iteration parameter consists in the following steps:
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An estimate of the asymptotic covergence rate for the current value of the
iteration parameter;

An interpolation/extrapolation procedure, based on the previously obtained
asymptotic convergence rates, for choosing a new value for the iteration
parameter closer to its optimum value.

In the following sections, the MSIP with adaptive optimization of is iteration
parameter will be explained in detail. Its results will be compared to those of the
standard MSIP for five heat transfer test problems. This comparison demonstrates
the advantages of the application of the MSIP with adaptive optimization over the
standard MSIP.

THE STANDARD MSIP

The MSIP developed by Schneider and Zedan [4] will be outlined in this
section. Further details can be found in the original work. The discretization of the
two-dimensional field problem will lead to the system of algebric linear (or
linearized) equations

Ax=Db n

where the coefficient matrix A is pentadiagonal or nine-diagonal. The MSIP
consists of the definition of an auxiliary matrix B, which is chosen in order that the
modified coefficient matrix A + B has an LU factorization where the upper and
lower triangular matrices keep the sparse structure of A. The definition of B
includes a partial cancellation factor, a, which tries to minimize the difference
between the modified and original systems of equations. This is the iteration
parameter of the MSIP. It should be noted that the LU decomposition of the
modified matrix is calculated by a very fast algorithm. Once « is chosen, B is
determined and the following iterative procedure is applied:

A+B)-x""'=QA+B)-x"—(A:-x"—h) )

Since A + B = L - U and defining the difference vector 8"*! = x"*! — x” and the
residual vector R” = b — A - x”, the iteration step consists of the solution of

@L-Uv-3*!'=R" 3

which is obtained by a two-step process consisting of a forward substitution
followed by a backward substitution.

MSIP ASYMPTOTIC RATES OF CONVERGENCE

In order to optimize the iteration parameter of the MSIP, it is necessary to
define a measure of the convergence characteristics of the MSIP for a given value
of its iteration parameter. It has been found that there usually exists an asymptotic
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convergence rate for the norm of the residual vector, which is defined as

F(a) = u_mﬁ f, where = f, = E_Wum.m

“)
Sometimes, this limiting process does not converge because some oscillatory
behavior occurs. Thus, it is necessary to generalize the definition of the asymptotic
convergence- rate to be the limit obtained for the sequence of arithmetic means,
that is,

F(a) = lim g,  where

n-ow

3|n—~

M 6))

Although mathematically correct, the implementation of Eq. (5) shows that
the sequence of arithmetic means converges too slowly to be used in an adaptive
optimization procedure. A faster estimate of the asymptotic convergence rate has
been obtained through a smoothed value of f, after a few iterations:

1

n
F(a)= limgY where gl¥=— Y f, ©)
n-w N jent1-w

The value of N depends on the degree of smoothness needed for a specific
problem, but a value between 4 and 8 has been proved to be enough for all the
cases analyzed. Thus, the first step in the algorithm for the adaptive optimization
of «, which is the estimation of the asymptotic rate of convergence, has been
carried out through the following procedure:

1. Choose an a value and decompose the modified matrix.

2. Iterate to obtain new values of the unknowns, that is, solve Eq. (3).

3. Determine f,.

4. Check for divergence (f, > 1) after the second iteration, stopping the
iteration process (for the current « value) if it is found.

5. After N + 1 iterations, check if

I8N —ga_il < &= |f, + fo_y| <Ne Q)

6. If the assertion of Eq. (7) is true, let that smoothed converged value be the
estimate for F(a).

THE ADAPTIVE OPTIMIZATION PROCEDURE

Once estimates of the asymptotic convergence rate become available for
some values of the iteration parameter, an algorithm can be used to determine a
better value for the iteration parameter for the next LU decomposition. This
algorithm must have the following characteristics.
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It should try to determine the a value that gives the minimum of F(a); that is, it
is an optimization procedure.

It should use only the latest information for F(a) in order to compensate
estimation errors in past F(a) values and coefficient matrix updates in the
case of nonlinear problems, that is, it is an adaptive algorithm.

It should be fast enough in order not to cause excessive overhead in the computa-
tional implementation of the method.

Thus, a simple second-order curve fitting for F(a) was chosen for the adaptive
optimization of a. This method satisfies the characteristics cited above because it
is fast, uses only the last three values of F(a), and allows the determination of a
minimum for F(a). Therefore, the adaptive optimization is carried out by the
following procedure.

1. For the given initial value of a, a,, decompose the modified matrix and
iterate until an estimate of F(a;) can be made.

2. Choose another a value, a,, using the heuristic procedure a, =1 — (1 —
@;)/2. Then if a, > 09, let a, = a; — 0.02. Decompose the modified
matrix and iterate until F(a,) is estimated.

3. Using the values of F(a,) and F(a,), obtain, by a linear extrapolation, the
a; value, using the heuristic condition F(a;) = 0.98 min[F(a;,), F(a,)] —
0.02. Decompose the modified matrix and iterate until F(a;,) is estimated.

4. Using the last three estimates for F(a), fit a second-degree polynomial in
terms of a and determine F,;, = min[F(«;), F(a,_,), F(a;_,)] and the
corresponding ;..

5. Find the new a value, a,, ,, as follows:

If the polynomial fit has a minimum inside the interval of interpolation,
choose a;,, asthe minimum point.

Otherwise, if there are real roots for F(a) = 0.98F_,, — 0.02, choose the
one nearest to o as the ;. value.

If there is no real root, choose the point of minimum outside the interval
of interpolation as the a;,, value (note that the extreme point must be
a minimum when F(a) = 0.98F,;, — 0.02 has no real roots).

6. Check whether a,, , is inside the interval of allowable @ values, [, a'].
If it is greater than a!, let o, ; = (o, + a')/2; if it is less than nc let
o = (o + a®)/2.

T I lag,; = ol > &,, perform the LU amooavom:mos of the modified
matrix and iterate until F(e,,,) is estimated; otherwise continue to
iterate with the current «, value.

8. Return to step (4) if the desired convergence criterion is not met.

If, by any chance, two of the three « values are equal in step 4, a linear

extrapolation is used, as described in step 3. The heuristic criterion used for

extrapolation simply tries to increase the convergence rate, decreasing the value of

NAQV In Ew present implementation, the following values have been chosen:
=0.01, ¢! = 0.99, and & = &, = 0.001.
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DESCRIPTION OF TEST PROBLEMS

In order to test the new procedure, five heat transfer problems have been
selected from the existing literature. Stone [3] gives four two-dimensional heat
transfer problems in a square insulated domain with point heat sources and sinks.
His first three problems, in a grid with 31 X 31 nodes, are our current Test
Problems 1, 2, and 3, in the same order. Schneider and Zedan [4] give three heat
transfer problems. One of them is a one-dimensional problem in a square grid with
two insulated boundaries, which will also be used. Our final test problem, num-
bered 4, is the last heat transfer problem presented by Schneider and Zedan [4],
which is a problem in a rectangular domain with boundary conditions of mixed
kinds. Since Schneider and Zedan [4] verify that, for the MSIP, the optimum value
of a is insensitive to problem parameters, we will not analyze the behavior for
different meshes. For the sake of completeness, the five test problems used in this
work are described below.

The basic equation to be solved is the steady-state heat transfer equation in
Cartesian coordinates in a two-dimensional domain with a medium that might have
anisotropic thermal conductivity, given by

m w mﬂ m » mﬂ .. Amv
il %) ) - -

This equation is considered here to be in a dimensionless form. The problems are
characterized by their source terms, boundary conditions, and anisotropic thermal
conductivity field. The hear transfer equation is discretized using the control-volume
technique. _

One-Dimensional Test Problem. The domain is a square with side length 1, there are
no heat sources, the two horizontal sides (y = 0,1) are insulated, the two
vertical sides have prescribed temperature levels, T =0 at x =0and 7 =1
atx=1,and k, =k, =1

Test Problem 1. The domain is also a square with side length 1, but it is completely
insulated. There are point heat sources located at (0.1,0.1), (0.1,0.9),
(0.767,0.133), (0.467,0.5), and (0.9,0.9) with strengths 1.0,0.5, 0.6, — 1.83, and
—0.27, respectively. Also, k, =k, = 1.

Test Problem 2. The problem is basically the same as Test Problem 1, but with
k, =001, k, = 1.

Test 3&2«5 3. This problem is also basically the same as Test Problem 1, but with
a different thermal conductivity field, given as k, = k, = 1, except in the
following regions: 0.467 <x < 1 and 0 <y < 0.533, where k, = 100, k, = 1;
0.167 < x < 0.4 and 0.167 <y < 0.4, where k, = 1, k, = 100; and 04 <x <
0.633 and 0.7 <y < 0.933, where k, = k, = 105 (being practically a barrier
for heat flow).

Test Problem 4. The domain is 0 <x <2, 0 <y < 1. The two vertical sides at
x =0, 2 are insulated. The side at y = 0 is insulated for 1 <x <2 and
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receives a uniform heat flux g, = 1 for 0 <x < 1. The upper boundary at
y = 1is subjected to a boundary condition of the third kind, with a convective
heat transfer coefficient # = 5, losing heat to an ambient at zero tempera-
ture. Also, k, =k, = 1.

All these test problems have been solved in a fixed mesh with 31 X 31 control
volumes (similar to the one used by Stone [3]) and for initial guesses of zero for all
problem variables. Since all these problems are linear, the coefficient matrix of the
discretized system of equation is calculated only once.

ASYMPTOTIC CONVERGENCE RATES OF MSIP

The cornerstone of the optimization procedure is the existence of asymptotic
convergence rates for the MSIP and the ability of their estimation during the
problem solution. A numerical study of the convergence rates of all test problems
has been carried out in order to determine their behavior. The convergence rate
characteristics of all test problems have proven to be very similar, and only the
results for the Test Problem 1 are shown in Figure 1. Figure 1a shows the norm of
the residual vector, |[R"|, during the iterative solution of the problem using the
MSIP for several values of the iteration parameter. It can be seen that the
convergence rate of the residual norm achieves an asymptotic rate very quickly,
usually within 20-30 iterations, where the residual norm is still in the range
10~!'-10"2. Figure 1b shows the convergence rates f,, g,, and g, with N = 4, 6,
and 8, for three values of a. It is clear that the sequence of arithmetic means
reaches the asymptotic convergence rate much more slowly than the original series.
Although it may sometimes present an oscillatory behavior, the sequence of f,
reaches the asymptotic rate for each a value in Figure 1b in less than 20
iterations. The sequence of g7, for each value of N, also reaches the asymptotic
rate quickly (20-30 iterations), with no oscillatory behavior. Since the asymptotic
rate of convergence has to be estimated quickly, a sequence of smoothed f, values
(gX) was chosen for its estimation, as described previously.

The proposed procedure for the estimation of the asymptotic convergence
rate has to be verified. Figures 2a and 2b show the asymptotic convergence rate,
F(a), as obtained by MSIP simulations for Test Problems 1 and 2, respectively.
These figures also show the estimated values of F(a) using Eq. (6) with N = 4, 6,
and 8, for the optimized MSIP (OMSIP) runs for Test Problems 1 and 2, with an
initial @ value of 0.10. The predictions of F(a) are fairly good, except near the
point of minimum, where the estimated asymptotic convergence rate is usually
smaller than F(a). This error, however, does not affect appreciably the optimiza-
tion of &, because the point of minimum of F(a) is estimated with a small error.
Besides, as we shall see later, the sequence of different « values during an OMSIP
run may lead to a faster convergence than the MSIP run with the best a value.
Similar results have been obtained for the other test problems. From Figures 2a
and 25, it is clear that there is no difference among the F(a) predictions for the
three values of N for these problems. Since a small N value implies a larger
number of a values, and thus LU decompositions, during the OMSIP run, the



o

262 P. L. C. LAGE

ADAPTIVE OPTIMIZATION OF MSIP 263

not affect the procedure appreciably because, when the first estimation of F(a) is
made, the norm of the residual vector has already reached a reasonably small value
(around 1072), that is, the problem variables are partially converged.

Figure 3 shows the convergence characteristics of the MSIP and OMSIP
applied to Test Problem 1. These results are typical for all the cases analyzed.
Figure 3a shows the reduction of the residual vector norm during the problem
solution for N = 4 and for initial « = 0.10, 0.50, and 0.90. The value of a remains
constant during the iterations for the MSIP. For this problem, the minimum value
of F(a) is for a = 0.90. The abscissa is the number of iterations, that is, the
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Figure 1. Asymptotic convergence rate of the MSIP:
(a) norm. of residual vector during iteration; (b)
behavior of several convergence rates during iteration.

choice of the N value is then a compromise between the need of estimated F(a)
values to perform the optimization and the overhead necessary for the extra LU
decompositions.

APPLICATION OF THE OPTIMIZED MSIP

The optimized MSIP (OMSIP) has been applied for the five test problems
described previously, using different initial values of a and for N = 4, 6, and 8. It
should be noted that the particular choice of initial guesses for the variables does
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Figure 3. Comparison between the MSIP and the
OMSIP for Test Problem 1: () norm of residual vector
during iteration; (b) convergence rate during iteration.

number of times the system given by Eq. (3) has been solved. From this figure, it is
clear that the OMSIP dramatically increases the convergence rate when the
iteration parameter is far from its optimum value. For all initial a values, the
convergence rate of the OMSIP tends quickly to the asymptotic convergence rate
of the MSIP with its optimum « value (0.90, in this case). For the worst case
(a = 0.10), the OMSIP reaches a convergence rate close to the optimum asymp-
totic convergence rate of the MSIP for a residual vector norm value of 107, It
should be noted that the OMSIP can achieve a given convergence in a smaller
number of iterations than the MSIP with its optimum « value. This is shown in
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Figure 3a for the solution with initial a = 0.50, when the residual norm is below
10~*, and for the solution with initial & = 0.90, when the residual norm is below
10~2. Figure 3b shows the convergence rates for the solution of Test Problem 1
using the OMSIP for the same cases presented in Figure 3a. The convergence rate
behavior of the MSIP for the best a value (0.90) is also shown in Figure 3b. It can
be seen that the OMSIP keeps the convergence rate close to the optimum
asymptotic rate of the MSIP, even though it cannot reach this asymptotic rate
exactly because of its adaptive characteristics and the errors in the F(a) predic-
tion.

The convergence of the OMSIP in fewer iterations, as shown in Figure 3a for
Test Problem 1, is not uncommon, as can be seen from Table 1, where the number
of iterations for a given tolerance in the residual norm is presented for the two

Table 1. Comparison of solution methods in terms of the number of iterations

OMSIP
a MSIP N=4 N=6 N=8§8
One-dimensional test problem (tolerance of the residual norm = 107'%)
0.10 500 119 121 126
0.50 347 110 116 121
0.89 113 94° 97 101
0.90 105° 96 974 101
0.91 119 97 97 99¢
Test Problem 1 (tolerance of the residual norm = 2.1 X 10712)
0.10 417 118 120 127
0.50 292 98 110 118
0.80 160 99 96° 102
0.85 131 96 100 105
0.90 107° 100 104 107
091 149 103 100 1014
Test Problem 2 (tolerance of the residual norm = 2.1 X 1071%)
0.10 2,278 264 251 319
0.50 1,904 262 250 271
0.90 852 247 253 265
0.98 291 219 221 225
0.99 180° 201° 2034 205°
Test Problem 3 (tolerance of the residual norm = 2.1 X 10-19)
0.10 471 158 168 168
0.50 338 199 148 156
0.87 146° 132¢ 132 139
0.90 Diverge 137 131° 136°
Test Problem 4 (tolerance of the residual norm = 107!2)
0.10 724 140 149 147
0.50 518 132 140 148
0.90 172 121 128 130
0.92 146 121 125¢ 117°
0.93 132¢ 117 126 128
0.94 154 116° 125° 128

¢ Smallest number of iterations in the corresponding method.
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solution procedures for different « values and for all Smﬁ.ﬁuo_u_oam. For all S.mﬁ
problems except Test Problem 2, and for all N values used in the present analysis,
the OMSIP with its best a value converges in fewer iterations Em:. the Kmaw
using its best a value. This is not true for Test Problem 2 because its point of
minimum of F(a) in the [, a'] interval is the chosen a' value (0.99). Actually,
the minimum of F(a) is somewhere inside the interval (0.99, 1], which makes the
adaptive optimization worse. However, this minimum is quite sharp, which makes
the OMSIP better than the MSIP for any o value below 0.98 (see Table 1).

Since the extra LU decompositions of the modified matrix have some
computational cost, it is not quite fair to compare the MSIP and OMSIP by the
number of iterations needed to achieve a given convergence. Therefore, the
computer time spent by each method to solve each one of the test ﬁnoEan.sm for a
given accuracy must be compared. The I/0O operations used to monitor Fn
intermediate results are eliminated to avoid any effect in the actual computation
time needed for each calculation. All the results shown above have _umn.n o?.&:&
by using strict convergence criteria for the residual norm. Although this is aom.:m_u_o
to test the optimization procedure fully, it is unrealistic for the usual solution of
field problems. Therefore, a series of calculations using the MSIP and the OMSIP
is also made for all test problems using the following convergence criterion for

every point in the field:

_ué: — N,?Lv_

<1 ©
&IT™| + ¢,

where &, = 107 and &, = 107°. . .
Figures 4—7 show the relative time necessary to satisfy the prescribed conver-
gence criterion as a function of a, for each one of the two-dimensional test
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Figure 4. Comparison between the MSIP and. the
OMSIP: Relative time spent in computations for the
Test Problem 1.
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OMSIP: Relative time spent in computations for the
Test Problem 2.

problems. The results for the one-dimensional test problem are very similar to
those for Test Problem 1 and are not shown. The relative time is the computational
time for a given case divided by the computational time spent by the MSIP, using
its best a value, to solve the same problem. Results for both convergence criteria,
that is, the strict tolerance in the residual norm and that given by Eq. (9), are
shown. From these figures, it is clear that, in general, the OMSIP is faster than the
MSIP for all range of a values except those very close to the minimum point. The
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Figure 6. Comparison between the MSIP and the
OMSIP: Relative time spent in computations for the
Test Problem 3.
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Figure 7. Comparison between the MSIP and the
OMSIP: Relative time spent in computations for the
Test Problem 4.

only exception is Test Problem 3, where the OMSIP is slower than the MSIP for
some cases and for initial « €[0.7,0.8]. For that problem, which is the most
difficult among those that have been analyzed, the. OMSIP calculation time-oscil-
lates vigorously with the a value. However, the difference between the calculation
times is not too large. It can also be seen that the OMSIP is quite insensitive to the
initial a value used to start' the algorithm. Nevertheless, the OMSIP has an
optimum value for the initial a which sometimes gives a smaller calculation time
than the MSIP with its best a value (see Figure 7). Finally, these figures show that
the computational time spent by the OMSIP to solve a given problem does not
depend much on the value of N used in Egs. (6) and (7). Small values of N are
slightly better for simple problems (one-dimensional test problem, Test Problems 1
and 4), while more difficult problems seem to behave better with larger N values
(Test Problems 2 and 3).

A comparison can be made between the computational time needed to solve
each one of the test problems using the MSIP and OMSIP with their best «
values. Of course, we should not expect the OMSIP to perform better than the
MSIP, because of the existing overhead of the optimizing algorithm. Although
there are some cases where the OMSIP is really faster than the MSIP, the
difference in computational time is small, being around 10% (Test Problem 4). In
general, the OMSIP is 5-10% slower than the MSIP when both procedures are
started with their best values of a. For Test Problem 2, which has a sharp
maximum for F(a) outside the search interval, the OMSIP is 20 -30% slower than
the MSIP. However, it is not fair to compare these algorithms at their best «
values for a given convergence criterion, because the trial-and-error procedure of
finding the best value of the iteration parameter is exactly what the OMSIP is
trying to avoid. Therefore, one should use a fixed initial value of the iteration
parameter to compare the relative performance of the algorithms. Thus, a = 0.5 is
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chosen, as used by some implementations of the MSIP {5], to compare the MSIP
and the OMSIP. Table 2 shows the relative computation time (time spent by the
OMSIP over time spent by the MSIP) for all the cases analyzed. It can be seen that
the OMSIP is faster than the MSIP by a factor of 1.47 to 7.09 for those cases. In
general, the OMSIP is about twice as fast as the MSIP.

CONCLUSIONS

This article demonstrates numerically the existence of asymptotic rates of
convergence of the residual norm of a system of equations when it is solved by the
MSIP, developing an algorithim to their estimation. Based on the prediction of the
asymptotic rates of convergence, an algorithm for the adaptive optimization of the
iteration parameter is developed to improve MSIP performance during problem
solution. This eliminates the trial-and-error procedure usually necessary to deter-
mine the optimum value of the iteration parameter. Five heat transfer problems
are solved by the optimized MSIP, called OMSIP, to verify its performance. From
the results shown above, the following conclusions can be drawn.

The OMSIP is about 5-10% slower than the MSIP when both are used with their

best values for the iteration parameter. That is, even if one chooses the best

“values for both procedures, the time that will be spent by the optimization

algorithm and extra LU decompositions is almost completely compensated by

the reduction in the number of iterations necessary. to achieve convergence.

The performance of the OMSIP is only slightly dependent on the value of the

iteration parameter used to start the algorithm and on the value of N used in

the smoothing process necessary to estimate the asymptotic rate of conver-
gence.

For a fixed value of 0.5 for the iteration parameter, the OMSIP is 47-700% faster

than the MSIP in the cases analyzed. In the mean, the OMSIP is about twice
as fast as the MSIP.

Furthermore, the adaptive characteristic of the optimization algorithm of the
OMSIP allows its usage in nonlinear or time-dependent field problems that require
iterative solution of linearized systems of equations. It is believed that the OMSIP
using the idea of optimization of the iteration parameter during problem solution
is a significant contribution to the state of the art of field problem solution.

Table 2. Comparison of computation times of the MSIP and the OMSIP with « = 0.50

Time ratio Convergence of the residual norm* = Convergence given by Eq. (9)

(OMSIP /MSIP) N=4 N=6 N=8 N=4 N=6 N=38
One-dimensional 0.377 0.390 0.398 0.542 0.585 0.609
1 0.385 0.432 0457 0457 0.581 0.571
2 0.150 0.141 0.155 0.220 0178 0219
3 0.679 0.490 0.513 0.669 0.634 0.642
4 0.284 0.299 0306 0417 0.406 0.421

“See Table 1 for residual norm tolerances used in each test problem.
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COMPARISON OF EQUATION OF TRANSFER
WITH SIMULATIONS ON LARGE ARRAYS OF
CYLINDRICAL REFLECTOR ELEMENTS

Bruce J. Palmer
Energy and Environmental Sciences Division, Pacific Northwest
Laboratory, Richland, Washington 99352, USA

M. Kevin Drost
Energy Division, Pacific Northwest Laboratory, Richland,
Washington 99352, USA

James R. Welty
Department of Mechanical Engineering, Oregon State University,
Corvallis, Oregon 97331, USA

The suitability of modeling an array of fixed, discrete surfaces as a homogeneous medium is
investigated by comparing a Monte Carlo simulation of the equation of transfer for the
homogeneous medium with the results of a Monte Carlo model of the array as discrete
elements. The results show that when ordered arrays are considered, the assumptions
underlying the equation of transfer are violated, and simulation results differ significantly
from the discrete model. The results indicate that great care must be used when assuming
that a regular array can be modeled as a homogeneous medium.

INTRODUCTION

Highly ordered arrays of fixed, discrete surfaces are encountered in a number
of important applications, including volumetric air heating solar central receivers
[1, 2], fibrous insulation [3, 4], and ceramic fabrics. As Howell has observed, when
the orientation of an absorbing array element is fixed, the scattering phase
function depends on the angle of incidence as well as the angle of reflection [5].
This increases the complexity of the problem. Howell observes that methods for
treating this problem are not available.

The usual analytical approach to modeling arrays of fixed, discrete surfaces is
to model the array as a homogeneous participating medium that has been parame-
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