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“equations in axtsymm_gg_:c_ f_argn The present method is an extension of a prﬂ.’lﬂus
2D method, which was developed to solve the problem for a gas having the general
_equation of state in the form p=p (p, i). In the present work the method is generalized

Jor an arbitrary P-V-T equation of state introducing an iterative procedure for the
determination of the temperature from the specific internal energy and the flow
variables. The solution procedure is applied for the study of real gas effects in an
axisymmetric nozzle flo w]

1_ Introduction
‘IThc numerical solution of the comprcssible Euler equations

were developed mainly for perfect alr “The mcorporatmn of

“the real gas effects requires the introduction of a general equa-
tion of state. In the present paper a generalized method is
presented for the simulation of real gas flows and test cases
are presented for nozzle flows.

In recent years _efforts have been made by many authors for
the construcuon of algor:thms for the solution of the equat:ons

“Liou et al., 1990; Grossman and Walters, 1989; Glaister, 1988;
Drikakis and Tqangans 1991). These eff‘orts mainly ongmaled_

an equation of state in the form p=p(p, :), wherc p, p, i are

the pressure, density, and specific internal energy of the gas.
In the aforementioned papers modern numerical methods, as

Flux Vector Splitting methods and Riemann solvers, have been

‘modified for hypesonic flow simulation. All the above meth-
“odologies concernap = p(p, i) E.O.S.and they cannot directly
‘be used for a P-V-T equation of state.

Drikakis and Tsangaris (1991) developed a real gas method,
in combination with a Riemann solver, for the discretization
of the inviscid fluxes, introducing thermodynamic parameters,
such as the pressure derivatives with respect to density and
specific internal energy. This method can not directly be used
for an arbitrary P-V-T E.O.S., because it needs the dr:fmmon

“of the pressure as a function of the density and the specific
internal energy. In the present paper, this method is extended
1o apply to any P-V-T equauon of state bv an iterative pro-

cific internal encrgy On the other hand, the extension of the

“2-D method in axisymmetric form, with source terms, is pre-

sented. The solution of the inviscid axisymmetric gas dynamic
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equations with source terms is obtained by a Godunov type,
finite volume scheme. The variation of the pressure along a
characteristic line is calculated in terms of the thermodynamic
parameters. The present method is general because it does not
make any assumption in the real gas manipulation, formulating
the real gas problem along the characteristic lines in conserv-
ative form. The method has the advantage that it can also be
used for P-V-T equations of state, while the methods men-
tioned in the literature have been developed on the basis that
pressure is a function of the density and the specific internal
enérgy or on the basis of an ‘“‘equivalent’ ratio of specific
heats.

““The solution procedure is used for the numerical simulation
of real gas effects in an axisymmetric convergent-divergent
nozzle. Results and differences from the perfect gas assumption
are presented for nitrogen and superheated steam flow. The
study of real gas effects is also presented for the gas flow with
the addition of heat. The introduction of the heat source terms

'_causes large variations in the gas flow, especially in the tem-
perature ﬁeldrl

2 Governing Equations

The Euler equations for axisymmetric gas flow with real gas
effects and source terms, such as a volumetric heat addition,
are solved. The equations can be written in an extended con-
servation law form for a generalized coordinate system as:

U+E+Gi+rH=0Q (la)
where
U=J(p, pu, pw, €)”
E=J(pU, pUu+ pt,, pwU+pt., (e+p)0)’
G=J(pW, puW+pt,, pwW+pl., (e+p) W)’
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(pw, puw, pw’, (e+p)w)’

HI'-...

‘-: HEE + wz:
W=ug, + wi
e=pf+.5p{u3+w2) (1b)

If r=1 the equation is in axnymmelr:c form. If r=0itisin
2-D form. The source term Q conmms a volumemc heat ad
dmon -

Q=J(0,0,0,9)"

Body fitted arbitrary coordinates £, { are used and the Ja-
cobian of the transformation ¢ =¢(x, 2), {={(x, z) from
Cartesian coordinates x, z to generalized coordinates £, { is
written as:

=X 22Xy

The quantities p, p, u, w represent the density, the pressure
and the Cartesian velocity components respectively and e, i
represent the total energy and the specific internal energy. The
indices ()¢, (); denote partial derivatives with respect to £, ¢.
The formulation of the governing equations is completed by
a general equation of state in the form:

p=p(p, i) or p=plp, T)

where T is the temperature of the gas.
The solution is obtained by an implicit procedure. The first
order in time discritized implicit form of Eq. (1) is written as:

Uﬂ+ | Un -
T+E§’“+GF”+J’H"=Q 2
A Newton method can be constructed for U™ by linearizing
the fluxes in Eq. (2) about the known time level n. Then Eq.
(2) is written as follows:

‘;—U+ (A"AU) + (C"AU);=RHS (3a)

where
RHS= — (Ef+G{+rH") +Q (3b)

A, C are the Jacobians of the flux vectors E, G, respectively,
and AU is the time variation of the solution.

The fluxes on the right-hand side are calculated at the cell
faces of the finite volume by a Tinear, locally one dimensional

"Riemann solver (Godunov type differencing) (Eberle, 1985).

in space and locally monotonic. The Jacobians of the fluxes
of the left-hand side are formulated for a genecral equation of
state.

3 Real Gas Formulation
The Euler equations are splitted into two one-dimensional
equations.

Ur + E{ = 0
U+G,=
The Riemann invariants are a transformation of noncon-

servative Euler equations on the characteristic directions. These
invariants are given by the following expressions:

P=po=5(p—po) =0 (4a)

(W= wo)X¥— (u—1up)Z=0 (4b)
p—pr+psfE(u—w)+Z(w—w)]=0 (4¢)
p—pa+psl—X(u—u) —Z(w—w;)]=0 (4d)

The subscripts indicate the point locations (points on the
characteristic lines) at which p,, p;, u;, wj, j=0, 1, 2, should
be interpolated.

Since we make use of the homogeneous property, the in-
variants have to be inverted into conservative variables. Con-
sidering that the pressure can be written as a function of the
density and specific internal energy, p=p(p, i), we obtain:

Ap=p,Ap+pjAi )

Our goal is to formulate the equations by means of the
pressure derivatives p, and p;. The development of the method
for a general equation of state is analytically presented in the

literature (Drikakis and Tsangaris, 1991).

Finally, we find the conservative cell face flow values p,
I=pu, n=pw, e from which the Euler fluxes on the right-hand
side of Eq. (3), can be calculated. All the conservative values
are given by the following equations:

p=potp+r+n (6a)
I=ly+r (u+S%)+ry(u—sx)+Xd+up (6b)
n=ng+r(w+sZ)+r(w—si)+2d+wp (6¢)

e=dh+ (H+5N)p1+ (H—5N)p2

+é+5(q2+pg) -pe2Q (6d)
2 P

i i
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“The characteristic flux averaging scheme is of third accuracy  with
Nomenclature

A, C = Jacobians of the flux vectors

e = total energy per unit volume p, = pressure derivative with re- AU = time variation of the conserv-
E, G = flux vectors spect to density ative solution vector
i = specific internal energy p = density £, ¢ = Body fitted coordinates
J = Jacobian matrix s = sound velocity x, z = Cartesian coordinates
H = total enthalpy T = gas temperature N, = eigenvalues
p = pressure u, w = Cartesian velocity compo- a
p; = pressure derivative with re- nents Indices
spect to internal energy U = conservative solution vector n = iteration level
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p= :S‘z (é—-e.,—ani) (7a)
é=uly+ wng (b)
d= pohy— lpX—npZ (7c)
and
hNo=uxX+wi
n= 5.25[91( —sh+ Q)+ (' “%"‘5’?)

+ m(— w’i‘+sz*) +e1-@] (7d)
p p

}'2.—_9.25\_02(3)\0+ Q)—!z(—u%+sf)

s
+ nz(— wa+si) “+ 82&} (7e)
I P

H is the total enthalpy while the sound velocity s and the
term Q are given as:

s=pZi+p, (8a)
p
and
0=p,+p % (8b)
o P

The %, Z terms contain metric derivatives:

£x £:

RN AN

The implementation of the method in the right-hand side of
the equation, in order to include real gas effects, is obtained
by the derivation of the Jacobian matrices and the eigenvectors
for a general equation of state. For this reason, as with the
expressions on the right-hand side, the matrices on the left-
hand side are defined by introducing the pressure derivatives.
The Jacobian matrix A is defined as follows:

4 _OE_ (9E OE OE OE
TaU \ap al' an’ de

In accordance with the assumption that the pressure is a
function of the density and the internal energy, the partial
derivatives for the pressure are given by the following relations:

ap . ap . ai ap i
'a_p{pv ‘]i!. n, rsa_p (o, '}I!+E;{p9 "'9 n, 8) I.‘. n, e'é} (p. i) ‘,0

ap . ap o
o | el Ao 1
al (p, f) p. N, € ai (o, 1)1"6!(‘0' "'sn e) p,on,

d, . d - ai
EE (0r )1, .=ai: (0 )y (oo b m @)Ly e

ap

. ad o, o
ae (,O. l)lp_ 1, n=£ (P- f) Ep_e (.0- !1 n, e)la. Ln
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and the internal energy is defined by:

(1*+n?)

i(p, I, n, €)=~—0.5
[ P

The analvtical expressions of Jacobian matrices and the ei-

genvectors for a real gas can be found in reference (Drikakis

and Tsangaris, 1991).

The above formulation of the method imposes the calcu-
lation of the thermodynamic derivatives of the pressure. These
derivatives are approximated by the values of the pressure,
density and the specific internal energy on the left and right
states of the volume cell face. These approximations are de-
fined as follows:

A
Pi=73i13 (p(pg, ir) +P(pLs ir))

1
3 (p(pr, 1) +P (oL, fa)l} (9a)
*Ll(( ig) +P(pr, iL))
Pp—Ap 2 P(pry Ir) + P\PR, I
1
3 (p(pL, ir) +P(pL, Il}l} (9b)
for Ai#0, Ap#0 and
1 . .
Pi=3 (P (oL, i) +PopR, 1)) (9¢)
1 . .
Po=3 (polp, i) + P, (0, iR)} (9d)

for Ai=0, Ap=0, respectively.
Where

A =()r— ()

The indices R, L represent, for a cell face i+ 1/2, the volumes
i+ 1, i, respectively (Fig. 1(a)).

4 Coupling of the Temperature With the Specific In-
ternal Energy

E’:rhc equations of state for real gases are defined either by
the density and the specific internal energy or by the density
(or specific volume) and the temperature (P-V-T equation of
state). To the second category belong the best known equations
of state. In this case the calculation of the temperature of the
gas is needed because from the conservative variables only the
internal energy can be defined. For a real gas the specific
internal energy is defined by the following relation: '

i(p, T)= g(%) dv+ E(;—,;.) dT
T ¥

The derivaitve in the second term of the above relation is
the specific heat for constant voluem v.

The derivative of the internal energy in the first term can
be calculated by the pressure and the pressure derivative with
respect to temperature as follows:

(&) 7(5)
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Fig.1 Typical control volume and labeling scheme-Computational mesh
50 x 25 for the JPL nozzle

Pu"‘The specific heat for constant volume c, for a real gas de-
pcnds on the specific volume and the temperature, while for
a perfect gas depends on the temperature alone. On the other
hand, if the temperature of the gas is greater than the critical
temperature ( T,) the variations of the ¢, are not large (Hittmair

and Adam, 1971). Thus a first approximation can be consid-_

ered with constant c,.
For the Van der Waals equation of state:

RT a

v—b ¥

and using Egs. (10a, b), the specific internal energy can be
defined as follows:

p:

i(T, v) —i(To, vo) = \cl.dr-a(l—l) (11a)

v U

Thus a value for the temperature can be defined by the
known specific internal energy. If we consider that ¢, is a
function of the pressure and the density, an iterative procedure
is needed in order to satisfy Eq. (11a). An uerauve procedure,

_such as the Newton-Raphson techmque is also necessary if

the internal energy from the Eq. (10a) is a complex function

of the temperature. For instance if we consider the Benedict-

Webb-Rubin equation of state and assummg. for the sake of

“simplicity, that T> T, the Eq. (10a) is written as follows:

i=T—T (v)+f2(v) (11b)

where f; (v), f>(v) are functions of the specific volume. From
Egs. (11a) or (11b) by an iterative procedure we can find the
temperature and consequently the pressure from the P-V-T
equation of stale:i

5 Heat Addition

{_]n the computational method, source terms have also been
introduced in order to simulate real gas flows with the addition
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Fig. 2 Wall pressure distribution. Perfect air

of heat. As it seems from the results in the following section
of the real gas effects are stronger when heat is added in the
gas flow. The source term is defined in terms of an algebraic
function F(x, y) as (Merkle and Choi, 1987):

q=Pmin{2F**-3F+1, 1}

where
x=—x1 P+ (z—7)°
(a=x) "+ (z2—21)°

F(x, y)=

(x;, z;) is the position of the maximum heat addition. The
‘source term is normalized by the coordinate (x;, z3). In the
nozzle calculations we consider the position of the maximum
heat addition at the axis of the nozzle in the throat region.
The parameter P is defined as input parameter. For the present
test cases P=1x10" W/m ]

6 Results and Discussion

The computational code in axisymmetric form is used form
the simulation of the gas flow into JPL nozzle !Fig. 1(b)).
For the present conical nozzle with angles of ¢ onvergence 45
been performed by Cuffe fel et al. (1969). . The computanonal
mesh is 50 x 25 grid pomts Grld depena ence s sludlcs s (Drikakis,

flow. The present flow is a steady flow problem. In order to
accelerate the convergence 1o steady state solution, the local
time stepping technique is used. The time step is varied in the
computational domain by the following relation:

CFL
Al =
max(|\;1)
where \;, j=0, 1, 2 are the eigenvalues of the equations while
CFL is the Courant-Friedrichs-Lewy number. The unfactored
implicit procedure allows the use of CFL numbers up to 150.
The CPU time on a workstation computer system (main pro-
cessor consists of the R3000 and R3010 floating point copro-
cessor with 20-MHz clock frequency) is 30 min for the perfect
gas case. '

Comparison, in Fig. 2, of the ratio of static pressure to
stagnation pressure along the wall with the corresponding ex-
perimental results shows the reliability of the numerical method.
In Fig. 3 comparison is also presented with the ‘experimental
results for the Mach number distributions.
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Table1 Summary table of the equations for the test problems

Euler equations written in curvilinear coordinates system and axisym-
metric form.

U+E:+G+rH=0Q

Van der Waals EOS

RT a
u}

p=u~b

(Ag, Bo, Co, @, b, ¢, vy, a constants)

Benedict-Webb-Rubin ROS

RT Co\ | 1 aa
p=“v—+(BDRT—AO—-—J)?+(!)RT—G)F+F

T
x
C(l+v7‘) | §

Coupling of the specific internal energy with the temperature

1
(7T, v) —i(Ty Vo) = Sft.dT—a(l——)

voUy

As a first test case for the real gas flow in the JPL nozzle,

_the nitrogen flow has been studied. For the present cases the
Van der Waals E.O.S., the Benedict-Webb-Rubin E.O.S. and
the constant compressibility factor have been used. The set of
equations which are solved for the test problems is summarized
in Table 1.

| in ?;gs. 4(a) and 4(b), comparisons of the pressure and the
temperature distributions at the wall are presented. In those
figures comparisons between “‘perfect’’ nitrogen with Van der
Waals E.O.S., Benedict-Webb-Rubin (BWR) E.O.S. and ni-
trogen with a constant compressibility factor z=pv/RT=0.3
are presented. From these figures we observe small differences
in the temperature distributions, between the two equations
of state (Van der Waals, BWR) and the perfect gas assumption.
Greater differences are presented for the constant compress-
ibility factor z=0.3 especially in the temperature distribution.
A significant result is that the ideal gas assumption underpre-
dicts the temperature distribution in the supersonic region of
nozzle. The influence of real gas on the supersonic region is
stronger because of the compressibility effect.

The pressure rise in the throat region just downstream of
the tangency is larger for z=0.3. This result is important be-
cause the pressure rise influences significantly the boundary
layer and the heat transfer in high temperature gas flows. For
the above test cases the calculation of the temperature is ob-
tained for each computational volume by an iterative process
(Newton-Raphson) and for each time step. This increase the
computational cost by a factor of two.

Another test case is the flow of superheated steam through
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Fig. 4(a,b) Wall pressure and temperature distributions for nitrogen
(N2)

the JPL nozzle. The real gas behavior of the steam is described

by thermodynamic relations (Galis, 1990) which have been

incorporated as thermodynamic subroutines in the computa-
tional code in order to obtain real gas flow simulation. These
subroutines also define the specific heats for constant volume
and pressure as function of the p, T:

Cu:clr(p| T}; Cp=cp(p| T)

The flow of superheated steam has also been studied with the
addition of heat using the source term. In Fig. 5 the pressure
distributions for perfect and real steam are shown and the
differences are small. In the case of heat addition, not shown
here, the pressure rise is larger than the corresponding rise in
the case with no heat addition. On the other hand, large dif-
ferences between steam as perfect gas and steam as real gas
are presented in the temperature field (Fig. 6). The influence
of real gas effect is stronger in the case of heat addition (Fig.
6). Finally in Fig, 7 differences for perfect and real steam
(without heat addition) in the location of the isotemperature
lines are shown. The real gas effects are significant especially
in the divergent region (supersonic) of the nozzle where the
compressibility is strongerﬂ

7 Conclusions
E\ previous real gas method (Drikakis and Tsangaris, 1991)
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Fig. 6 Wall temperature distributions for superheated steam

is generalized for any P-V-T equation of state. Using the pres-
ent method it is not necessary to consider the pressure as a
function of the density and the specific internal energy. The
pressure canbea complex function of the density or the specific
volume and the temperature. In this case thermodynamic equa-
tions are used in order to correlate the thermodynamic and
the flow variables. Numerical simulation of the nitrogen and
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Fig. 7 Iso-temperature lines for superheated steam (PG = periect gas,
RG =real gas)

steam flow in an_axisymmelric nozzle shows that the ideal gas-

assumption underpredicts the temperature distribution along
the wall of the nozzle, while there are significant differences
between perfect and real gas in the temperature profiles. Dif-
ferences between perfect and real gas in the pressure distri-

i

bution are small. On the other hand, in the case of heat addition -

‘the influence of the real gas on the temperature distribution
is more intense; that means that the reformulation of the com-
putational methods for real gases is necessary for the under-
standing of the complex gas flows. |
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