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Abstract

A numerical technique to solve two-dimensional inverse problems that arise in aerodynamic design is

presented. The approach, which is well-established for inviscid, rotational flows, is here extended to the vis-

cous case. Two-dimensional and axisymmetric configurations are here considered. The solution of the

inverse problem is given as the steady state of an ideal transient during which the flowfield assesses itself

to the boundary conditions by changing the boundary contour. Comparisons with theoretical and experi-
mental results are used to validate the numerical procedure.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Aerodynamic design consists of finding the most convenient shape of a fluid-immersed body to
obtain the expected aerodynamic performances. There is a certain freedom in approaching aero-
dynamic design. The most-followed methods iterate on a sequence of direct problems. In compu-
tational fluid dynamics (CFD) the automation of this procedure is known as the classical shape
optimization [1]. The design problem mathematically can also be formulated as an indirect or, in-
verse problem, where the independent variables are now the flow variables and the geometry is
sought from a pressure or Mach number distribution that meets some performance requirements.
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By iterating on direct problems it is easier to satisfy geometrical constraints, while design con-
straints that involve the control of a flow feature are more effectively enforced by inverse proce-
dures. A typical inverse problem solves for the geometry that realizes a specified wall pressure
distribution. By a proper selection of this distribution one can, for instance, control the wall pres-
sure gradient to avoid the flow separation [2], or to obtain shock-free flowfields [3], or to reduce
aerodynamic noise [4]. In a multidisciplinary design environment the solution of an inverse prob-
lem should be considered an alternative approach of fulfilling various and heterogeneous require-
ments and constraints dictated by different disciplines. Optimization techniques based on the
adjoint method have recently been adopted to drive inverse problems towards the maximization
or minimization of target functionals [2].

First approaches to the solution of inverse problems were based on the potential flow theory and
conformal mapping techniques [5–8]. Other methods replace the body surface with singularity dis-
tributions while also trying to simulate boundary layer blockage [9]. Several examples of inverse
problem solution methodologies are shown in Elizarov et al. [10] and in the AGARD-R-780 vol-
ume [11]. Many of these solution techniques do not deal with rotational flows or shocks and often
cannot be extend to three-dimensional case. A generalisable way of solving inverse problems sim-
ulates a transient during which the flowfield accommodates itself to the design data, which are pre-
scribed at walls as boundary conditions [12]. These walls are modelled as flexible and impermeable
surfaces [12–14] either the wall is permeable and a transpiration velocity model is adopted [15].

The main advantage of this approach is that any well-proven analysis code, able to deal with
moving grids, can be adopted with some alterations of the boundary condition enforcement.
Using Euler solvers, the methodology has been extended to three-dimensional compressible
[15,16] and incompressible flows [17]. In Ref. [18] an inverse problem is solved for the simulta-
neous design of engine components interacting with the external flow.

Various extensions has been proposed to take into account viscous effects, either by introducing
a boundary layer approximation [9,19], or by coupling a Navier–Stokes direct solver to an Euler
inverse solver [20].

In the present paper a Navier–Stokes inverse solver is derived as a natural extension of the
approach of Ref. [12] to viscous inverse problems. As an initial step, the study is limited to
two-dimensional and axisymmetric flows, but the procedure can be straightly applied to three-
dimensional cases. The design case of wing or blade profiles is also feasible, but it is not considered
here, since it merits a more extended discussion about the way of formulating the inverse problem
and to satisfy or to overcome the related well-posedness issues [3,8,13,21].

The plan of the work is as follows: the mathematical model and the numerical technique are
explained in the context of a characteristic-based method in the first sections. Then the equation
of motion of impermeable surfaces is derived for the two-dimensional and axisymmetric cases; the
extension of the numerical procedure to viscous flows is explained and, finally, the accuracy of the
method is studied through comparisons with theoretical and experimental results.
2. Governing equations

Compressible viscous flows are governed by the Navier–Stokes equations. This set of equations
may be written in a compact integral conservative form as:
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where V represents an arbitrary volume enclosed in a surface S. System (1) is reduced to non-
dimensional form with the help of the following reference values: L for length, q1 for density,
T1 for temperature,

ffiffiffiffiffiffiffiffiffiffi
RT1

p
for velocity, RT1 for energy per unit mass and l1 for viscosity.

In particular, W is the vector of conservative variables while tensors FI, FV contain the inviscid
and the viscous fluxes, respectively.
W ¼ fq; qq;EgT

FI ¼ qq; pI þ qq� q; ðE þ pÞqf gT

FV ¼
ffiffiffi
c

p
M1

Re1
f0; s; jrT þ s � qgT

ð2Þ
Quantities q,p,T, q = {u,v}T and R are the local density, the pressure, the temperature, the veloc-
ity vector and the gas constant, respectively. E represents the total energy per unit volume:
E ¼ q eþ q2

2

� �
ð3Þ
where e is the internal energy per unit mass, M1 and Re1 are the free-stream Mach number and
the Reynolds number, c is the ratio of the specific heats, and finally I is the unit matrix. The
viscous stresses s are contained in tensor, given by:
sij ¼ l
oqj
oxi

þ oqi
oxj

� 2

3
ðr � qÞdij

� �
ð4Þ
The thermal conductivity j is calculated in non-dimensional form as
j ¼ c
c� 1

l
Pr

� �
ð5Þ
where Pr is the Prandtl number. The viscosity l is computed via Sutherland�s law and the perfect
gas relationship p = qT completes the set of equations.

A two-dimensional/axisymmetric formulation of system (1) is here solved using a finite volume
technique by discretizing the (x,y) plane by means of quadrilateral cells [22] on time-varying
computational domains.

In case of an axisymmetric flow, system (1) may be reduced to a two-dimensional form, where
the two independent variables are the axial direction x and the radial direction y. The discretized
system on the i, j cell at the k + 1 integration step takes the following form:
W kþ1
i;j ¼ W k

i;j �
Dt
Ayc

X4

l¼1

ðFI � FVÞlslyl �H I �HV

" #
ð6Þ
Source terms HI and HV account for the effects of pressure and shear stress tensor on lateral
surfaces of the elementary volume:
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H I ¼ f0; 0; pA; 0gT; HV ¼ 0; 0;�
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ð8Þ
where u and v are the axial and the radial components of the velocity, respectively. The two-
dimensional representation of an elementary control volume is shown in Fig. 1. Symbol A repre-
sents the cell surface, sl are its sides (l = 1,2,3,4), yl are the average distances of the sides from the
symmetry axis and yc is the distance of the cell center from the symmetry axis.

The integration in time is carried out according to a two-step Godunov scheme. At the predictor
step, a standard first order flux difference splitting (FDS) scheme is used [23]: the conservative
variables W are assumed as an averaged, constant value inside each cell. The fluxes FI are evalu-
ated by solving the Riemann�s problems pertinent to the discontinuities that take place at the
interfaces of the cells. At the corrector level, the second order of accuracy is achieved by assuming
a linear, instead of constant, behavior of the conservative variables inside the cells, according to
an essentially non-oscillatory (ENO) scheme [24]. The resulting scheme is second order accurate in
both time and space. The velocity and temperature gradients that are required to evaluate the vis-
cous fluxes FV in correspondence to the lateral surface are computed using a integral technique
that utilizes central differences and applies Gauss�s theorem.

2.1. Boundary conditions

The computational domain is bounded by artificial (i.e. far field boundaries) and physical con-
tours (i.e. impermeable walls), which can be solid, as in the direct problem, flexible, as in the in-
verse problem, or partly solid and partly flexible. The boundary condition (BC) enforcement
follows the guidelines given in Poinsot and Lele [25]. To the conditions corresponding to inviscid
flows, supplementary relations, the viscous conditions, are added, to complete the set of boundary
conditions needed by Navier–Stokes equations. This approach also ensures that Navier–Stokes
equations relax smoothly to Euler equations when the viscosity goes to zero. The unconventional
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Fig. 1. The finite volume in the axisymmetric case.
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part of the boundary condition enforcement is the moving wall BC which is therefore discussed
deeply in next section.
2.1.1. Moving wall boundary

When solving the inverse problem, walls on which a flow variable, e.g. the pressure, is imposed,
are treated as flexible and impermeable surfaces whose motion is tracked in time until a steady
state is reached. In inviscid flows, the velocity vector must be tangent to the wall surface, which
is therefore a flow surface and, it will move materially within the fluid. These considerations are still
valid for viscous flows, but the set of boundary conditions must be completed with the additional
viscous relations.

Let us consider a Cartesian coordinate system (x,y). A generic surface moving in time can be
represented, for example, by equation y = b(x, t). Without any loss of generality, let us also as-
sume that b(x, 0) = 0. Thanks to the change of variable B ¼ y � b the surface is now defined
by the manifold
Bðx; y; tÞ ¼ 0 ð9Þ
This manifold moves materially within the fluid, that is,
oB

ot
þ q � rB ¼ 0 ð10Þ
or
ob
ot

¼ v� u
ob
ox

ð11Þ
The flow velocity q at boundary is obtained by imposing the target pressure on the moving wall
and solving the related Riemann problem [12,13,18]. For convenience, when imposing boundary
conditions, the flow velocity is expressed both in a local frame of reference q ¼ ~unþ ~vs, where n, s
are the unit vectors normal and tangential to the boundary contour respectively, and in Cartesian
coordinates q = ui + vj. For example, by using the approach of Ref. [23] to approximate the solu-
tion of the Riemann problem, we have
~u ¼ 2

c� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpwðxÞ

c�1
c e

Sb
c

q
� ab

� �
þ ~ub ð12Þ
where subscript b refers to the ENO reconstruction of the flow state close to the boundary, a is the
sound speed, S is entropy and pw(x) the prescribed wall pressure distribution. It will be shown that
the tangential component ~v does not enter directly in the final expression for bt. Nevertheless, we
can consider ~v as known from the slip or no-slip condition. In conclusion, q ¼ ~unþ ~vs is known at
the boundary, so that the wall velocity ob/ot can be deduced from (11). The latter is then inte-
grated in time to find the new wall shape. In this context, the no-through-flow condition repre-
sents a kinematic constraint from which the motion of the wall surface is derived. The grid is
adjusted to fit the updated wall geometry at each time step.

As an example, let us consider a channel that, in a Cartesian frame of reference (x,y) is bound
by two inlet and exit permeable boundaries x = xin, x = xou and by two impermeable flexible walls
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y = b(x, t), y = c(x, t). A boundary fitted grid can be defined by the n = constant, g = constant
coordinate lines of the frame of reference n, g defined by the mapping:
n ¼ x� xin
xou � xin

; g ¼ y � bðx; tÞ
cðx; tÞ � bðx; tÞ ð13Þ
The impermeability of the walls is therefore expressed by the kinematic conditions:
ob
ot

¼ v� u
ob
ox

;
oc
ot

¼ v� u
oc
ox

ð14Þ
Once ob/ox and oc/ox are approximated by finite differences, the new wall shapes y = b(x, t + Dt),
y = c(x, t + Dt) are updated by integrating Eqs. (14) and a new grid is determined according to the
mapping (13). From geometrical considerations, as shown in Fig. 2, an alternative form of the
time derivatives ob/ot is
ob
ot

¼ eu
cosu

¼ eu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ob

ox

� �2
s

ð15Þ
which also applies to oc/ot.
The same inverse method can be used to determine the shape of plumes and interfaces. For in-

stance, in flow regions such as after-bodies or dual nozzles in a bypass turbofan, contact surfaces
are generated by the different stagnation conditions and thermodynamic properties of the incom-
ing flows. These discontinuities are interfaces that can be computed explicitly according to the
present inverse method. In the inviscid case they are considered as impermeable and deform-
able boundaries separating different flow regions, across which the pressure and the normal com-
ponent of the flow velocity are imposed to be C0 continuous and equal to the moving-boundary
velocity.

The extension of the moving boundary condition to the viscous case follows the same guidelines
of the boundary treatment for the direct problem solution. Once the wall impermeability is en-
forced by (15), which applies to both Euler and Navier–Stokes equations, appropriate physical
boundary conditions as the slip/no-slip condition and a condition for the temperature field at
boundary are imposed. Convective fluxes at boundary are evaluated as a wave signal propagation
problem, i.e. a Riemann problem. At boundary one flow state is missing and unavailable signals
∂
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Fig. 2. Inverse problem: moving wall velocity.
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are replaced by an equivalent number of boundary conditions, as requested for hyperbolic systems
[23,25]. The differences rely therefore in the quality of the additional boundary conditions that one
has to enforce. For instance, in the inviscid case one enforces the slip condition at walls, i.e.
~v ¼ ~vinner, being evinner the velocity component, tangential to the boundary, of the cell closest to
the wall. Navier–Stokes equations requires the no-slip condition ~v ¼ 0 at wall. In details, for iso-
thermal walls, suitable BC are
ev ¼ 0; T ¼ T w ð16Þ

while for adiabatic walls we impose
ev ¼ 0;
oT
on

¼ 0 ð17Þ
and, for the fitting of the previously mentioned contact surfaces
ev ¼ ev inner; oT
on

¼ 0 ð18Þ
Relations (11), (15)–(18) are still valid in the axisymmetric case. The extension to the three-
dimensional case follows the same guidelines given in this section. For instance, one can represent
the unknown aerodynamic surface as a function z = b(x,y, t) and enforce impermeability, obtain-
ing formally again Eq. (10). In fact, the procedure explained here applies straightforward to 3D
design at the cost of an unsteady Navier–Stokes computation.
2.2. Remarks on problem well-posedness

One drawback of inverse problems is that they may be ill-posed. If certain wall pressure distri-
butions are required on airfoils, the result is an open or self-intersecting profile. Lighthill discov-
ered the solvability conditions that have to be respected by pressure distributions within an
incompressible potential flow model [6], whereas the similar integral conditions for compressible
flows and other issues were investigated in Refs. [13,11,3,8]. These issues are typical of problem as
airfoil or blade inverse design since they are related to the closure of the body contour. This prob-
lem has already investigated in the proposed literature and can be addressed in two ways: one can
satisfy the closure conditions or reformulate the inverse problem in order to automatically satisfy
such constraints [13].

As far as the design of two-dimensional duct is concerned, just some reasonable consideration
on the acceptable pressure distribution are needed; for instance, the target pressure imposed at
wall cannot be greater that the inlet total pressure.

The well-posedness problem in our approach is addressed with different attitude: we use ‘‘phys-
ical’’ time dependent technique and the problem is a well-posed problem from the point of view of
the unsteady motion. As a matter of fact, we solve a mixed initial-and-boundary-value problem
and we satisfy the requirements this kind of problem needs to be well-posed. If the design data
we impose are violating the constraints needed by the ‘‘steady’’ well-posed problem, what we ex-
pect is that the computation will never reach a steady solution. Sometimes, the expected geometry
is not obtained for a lack of problem uniqueness. More than one solution could be admissible for
the same inverse problem and the numerical procedure is numerically triggered towards one of the
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possible configurations. Often by changing a boundary condition the problem uniqueness is
recovered [13].
3. Numerical results

With the aim of validating the viscous inverse solver and of focusing on its accuracy, few test
cases were investigated. These tests consider some typical flow phenomena that occurs in simulat-
ing flowfields of practical interest of aerodynamic design, such as boundary layer or wakes treat-
ment, shock–boundary layer interaction, strong expansion fans, etc. For validation purposes, the
computed flowfields and shapes are compared with theoretical solutions or available experimental
data.

3.1. Flat plate

The laminar flow over a flat plate is often used to validate viscous flow solvers because this flow
problem has an analytical solution. The test case has been built up as follows: an initial, arbitrary
shape of the lower boundary of the computational domain is selected, e.g. the solid curve labeled
as (0) in Fig. 4, and a constant pressure distribution, the theoretical one, is imposed over it. The
flat plate is L = 5 unit length wide, �1 < x < 4. Computational domain starts at x = 0 with an inlet
velocity profile corresponding to the Blasius velocity solution at Re = 10,000 and the Reynolds
number per unit length is Re = 10,000. A schematic view of the test-case configuration is given
in Fig. 3. The free-stream Mach number has been chosen as (Min = 0.3) to consider the flow as
being approximately incompressible, while maintaining good convergence properties as far as a
compressible flow solver is used. The adiabatic, viscous boundary conditions have been imposed.
Nevertheless, the incompressibility approximation guarantees that the fluid dynamic field effec-
tively remains independent of the temperature field.

The initial flowfield imposed does not match the target pressure at the wall, which starts moving
to alleviate the pressure gap and to satisfy the viscous boundary conditions.

After a transient, whose duration depends on how far the initial configuration is from the final
one, the system relaxes to a steady state that represents the target flowfield. The presented simu-
lation uses 80 · 40 stretched grid to compute the flow. Fig. 4 shows the initial (0), two transient
((1), (2)), and the final shape (3) of the lower boundary of the computational domain, respectively.
Curve (3) is the obtained, numerical approximation of the flat plate wall. Configuration (1) is
OOU Computational Domain
Flat Plate

10–1 3 42

Fig. 3. Schematic view of the flat plate test-case.
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reached in 5 · 104 time steps, configuration (2) in 2 · 105 time steps, and the final geometry is
obtained after 3 · 105 time steps. The computation takes about 1 h of CPU time on dual pro-
cessor CompaQ DS20 workstation. At convergence the L2-norm qu residual is less than 10�8

and (bt)max/U1 6 10�6. Since the expected geometry is the straight line y = 0, line (3) of Fig. 4 also
represents the absolute error in shape. As visible, the maximum absolute error � occurs at the end
of the flat plate is less than �m = 0.004 unit length. The mean error along the moving part of the
plate is then about 0.001. Common causes that explain the presence of such error are the accuracy
of the discretization and integration scheme, and a slight, though non-zero, compressibility effect
(Min = 0.3). There is also an additional source of error due to the approximated treatment of the
upper boundary. The convective fluxes on the upper boundary are extrapolated from the flow
state at the last inner cells and the asymptotic conditions for y !1, that is
uð1Þ ¼ U1; vð1Þ ¼ V 1 ¼ 0.8604 � U1

ffiffiffiffiffiffiffiffiffiffi
m

U1x

r

The vertical velocity varies with Reynolds number and x-location, and it is known only for few
simple flows. In general one set v1 ’ 0, since it is very small as the Reynolds number increase.
We used here this approximation even if the Reynolds number was not very high. Since the
numerical method is conservative, the mass flow is preserved accurately. As a consequence the
lower boundary find a steady configuration a little downward deflected to allow the discharging
form the exit boundary of the mass not allowed to flow through the upper boundary. Accounting
for the correct asymptotic conditions or by using non-reflecting boundary conditions we found a
reduction of the shape error of about the 60%. Nevertheless the results obtained neglecting the
vertical asymptotic velocity are in good agreement with the theoretical ones. Fig. 5 shows that
the shape error is also very small if compared to the local boundary layer thickness d and the
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displacement thickness d1. Moreover, the computed velocity profile well matches the correspond-
ing Blasius solution, as shown in Fig. 6.

3.2. Laminar wake

An inverse problem can be formulated not only to obtain the shape of the wall that realizes
a prescribed pressure distribution over it, but also to fit contact surfaces that separate two
u/U

η

0 0.2 0.4 0.6 0.8 1

10

20

30

40

Numerical
Exact

Fig. 6. Flat plate. Velocity profile at x/L = 3.5 compared with the Blasius solution.
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co-flowing streams with different thermodynamic properties. In the inviscid case this corresponds
to concentrating the shear layers between the two streams by an ideal slip surface. The shape of
such a surface is unknown a priori and is derived as part of the final solution of an inverse prob-
lem, as described in Ref. [18]. In the same work it has been shown that this approach is superior to
using capturing techniques for such contact discontinuities, since it does not suffer from numerical
diffusion problems. The result is an almost grid independent solution and an accurate treatment of
shock reflections over the contact discontinuity. A laminar wake can be seen as an enhancement
of the previously mentioned shear layer model. From the applicative point of view, the fitting of
viscous slip surfaces is of interest because it allows the interaction between the aerodynamic body
and the external flow to be directly included in the design problem. One can, for example, design
the nozzle contour that realizes a given expansion ratio and also some specified adaptation char-
acteristics at the cruise condition.

In the present test case we formulate an inverse problem that has, as objective flowfield, the
laminar wake behind a flat plate for which an analytic solution of the asymptotic velocity profiles
is given by Schlichting [26]. A schematic representation of the computational domain is given in
Fig. 7. A constant pressure distribution pwall(x) = 0.9395 along the wake centerline has been im-
posed. The lower boundary of the computational domain is considered partly the solid wall of the
flat plate and partly a viscous slip surface. The inverse problem follows the guidelines of the pre-
vious test: an arbitrary initial geometry is guessed for the wake centerline and the pressure distri-
bution is enforced. The imposed boundary conditions are
p ¼ pwallðxÞ; ~u ¼ 0; ~v ¼ ~vinner;
oT
on

¼ 0 ð19Þ
The evolution of the boundary surface is qualitatively similar to the previous cases. The main dif-
ference is that now the final shape of the lower boundary corresponds to the wake centerline in-
stead of representing the final wall contour. The initial and final geometry of this surface are
shown in Fig. 8a. As observed in the first test case proposed, i.e. the Blasius solution, the shape
error per unit of length is about constant, �m ’ 0.001. The computed axial velocity profile at
x/L = 5 is compared in Fig. 8b to the asymptotic solution given by Schlichting [26]
U1 � uðx; yÞ
U1

¼ 0.664ffiffiffi
p

p x
L

� ��1
2

exp � 1

4

y2U1

mx

� �
ð20Þ
OOU

Flat Plate
Computational Domain

Wake

Fig. 7. Schematic view of the laminar wake test-case.
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The slip velocity on the surface is underestimated by about the 5%. Nevertheless, this error does
not affect the accuracy of the final geometry.

3.3. Supersonic ramp

The supersonic corner flow is a fundamental problem that has been studied extensively to inves-
tigate complex phenomena related to the shock–boundary layer interaction. From the engineering
point of view, compression corners and ramps are the preferred devices used to decrease total
pressure losses in supersonic air intakes by originating favourable shock patterns. In the present
test case, the target flowfield corresponds to the M1 = 2.85 viscous flow over two-dimensional
compression corner of 16� angle. Fig. 9 shows the initial computational domain. The numerical
solution has been computed on a 100 · 50 stretched grid. The upper boundary of the computa-
tional domain has been chosen to avoid any interference between the shock originated at the cor-
ner and the boundary itself. The Reynolds number is 105. The initial condition is an uniform
flowfield at M = 2.85.

The target pressure distribution imposed on the moving wall is obtained from the direct simu-
lation of Navier–Stokes equations at the corresponding ramp angle. Fig. 13 shows the final corner
geometry and the Mach number contour lines. Target and computed pressure distributions and
wall shapes are compared in Figs. 10 and 11, respectively. We remark that the pressure distribu-
tions are indistinguishable while the computed ramp geometry is approximable as a straight line.
The geometry accuracy could be evaluated simply as a difference between target and computed
ramp angle. Table 1 reports the imposed and obtained ramps for four different angles. The maxi-
mum relative error is very small, about 1%. The convergence history of the L2-norm of q u-resid-
ual is plotted in Fig. 12.

Although the present implementation of the inverse solver assumes the flow to be laminar, a
comparison with experimental (turbulent) data [27] can give more information on the level of
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approximation obtained by the numerical simulations. A comparison of the wall pressure distri-
butions for three different ramp angles (8�, 16� and 20�) is shown in Fig. 14. The wall pressure and
the x abscissa are normalized by the ambient pressure P1 and the boundary-layer thickness at the
corner position d0, respectively. Numerical simulations, due to the laminar flow approximation,
incorrectly capture the dimensions of the recirculating bubble. Nevertheless, from Fig. 14 it is
shown that this effect is confined in a region smaller than 4d0 wide. Outside this region the wall
pressure distribution are in good agreement.
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Table 1

Supersonic ramp. Comparison between the numerical and experimental ramp angle

Mach number Exp. ramp angle Comp. ramp angle

2.85 8� 8.07�
2.85 14� 14.10�
2.85 16� 16.01�
2.85 20� 20.21�
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Fig. 12. Supersonic ramp. Convergence history.
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3.4. Linear plug nozzle

The plug nozzle design should be considered a severe test, since it involves a rapidly expanding,
transonic-to-supersonic flow. Any geometrical modification has a great influence on the whole
flowfield and can cause the formation of shocks, which lead abruptly the system to a completely
different flow pattern. Following Angelino�s method [28], an ideal contour of the plug has been
defined, which will hereafter be called the target plug contour. We set the design pressure ratio
PR = 200. The outcoming jet is expanding in a quiescent flow. Reference flow conditions are
taken from experiments within the FESTIP Research Program (plug LNP1) [29], where
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performances of truncated plugs, also called aerospikes, are compared to the ideal behaviour of
the full length nozzle. The Reynolds number, based on the plug length, was set at Re = 107, a
value which is in the range of practical applications. Regardless of the Reynolds number, as
for the previous tests, the flow is assumed to be laminar. Again, to set up the test case, for the
given plug geometry, the wall pressure is computed using a direct Navier–Stokes flow solver. This
pressure distribution is then enforced as the target pressure at the plug wall and the inverse prob-
lem is solved for the nozzle geometry. No matter what the initial condition is, we expect the final
geometry to accurately replicate the target plug contour. The numerical test was solved on a
100 · 52 grid. Stretching was used in the y-direction, to better refine the region close to the upper
and lower boundaries, and also in the x-direction, to cluster points in the region where most of the
expansion takes place.

The upper boundary is implemented as a far-field condition, while the bottom boundary moves
according to the procedure of inverse designing. A sequence of the flowfield evolution during the
transient is presented in Fig. 15. The starting geometry is visible in Fig. 15a. The target flow solu-
tion is characterized by a continuous expansion, without discontinuities, while the presence of a
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Fig. 15. Inverse problem on a plug nozzle. Snapshots of the evolving flowfield in terms of Mach number isocontours.

(a) Initial, (b–e) intermediate, (f) final flowfield.
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shock and its reflection are quite visible in the initial flowfield. The initial flowfield can therefore
be considered sufficiently far from the target one. The inverse problem procedure is in fact driven
by flow evolution, so that the complexity of the initial flowfield, rather than the initial geometry of
the domain, is of relevance. A typical evolution of the boundary subjected to conditions (15) and
(16) or (17) dictated by the inverse procedure is also visible in Fig. 15. After a motion that some-
how resembles a ‘‘whip lash’’, the contour assesses to the imposed boundary pressure, and a
microscopic motion, on the scale of the boundary-layer thickness, takes place to balance the vis-
cous fluxes in the proximity of the wall. The plug shape is obtained with high accuracy. In Fig. 16
the target and the computed geometry are indistinguishable. An expected result is the good agree-
ment between the imposed and the obtained wall pressure distribution, as confirmed by the grid
refinement study in Fig. 18. The design of a plug nozzle, due to its non-banal geometry, is in fact a
good candidate to performing a grid refinement study. The computed geometry and wall pressure
distributions are obtained on three different grid sizes 50 · 30, 100 · 52, 150 · 80, respectively.
The results confirm that the methodology is independent of the grid size and a logarithmic scaling
is necessary in Fig. 18 to highlight minimal discrepancies between the target and computed plug
contours. The highest mismatch is observed in the proximity of the spike end, the relative error in
the plug geometry being of the order of 10�3 for the coarsest grid (50 · 30 cells). The geometrical
differences between the solution of the viscous and inviscid inverse problem are shown in Fig. 17.
From a practical point of view, the test-case seems to be almost inviscid and one could account for
viscous effects efficiently by evaluating the boundary layer blockage by using a viscous–inviscid
coupling technique. The added value of the proposed methodology is the higher confidence that
the resulting plug geometry realizes a steady flowfield that does not suffer of unwanted laminar
separations and periodic flow fluctuations. This key feature is of relevance when flow quality con-
trol is required, as, for instance, in rocket nozzle design. In this case any kind of unsteadiness that
can lead to significant side-loads must be avoided, as they are a major cause of uncontrolled
motions and mission failure.
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Fig. 16. Comparison between computed and target plug nozzle.
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3.5. Dual bell nozzle

The last example refers to the design of an axisymmetric dual bell nozzle. This nozzle concept is
of actual interest for its unique feature of a one-step altitude adaptation, achieved only by a wall
inflection and, thus, without moving parts. At low altitudes, controlled and symmetrical flow sep-
aration occurs at the wall inflection, which results in a smaller effective area ratio without gener-
ating dangerous side loads. At higher altitudes, the nozzle flow is attached to the wall until the exit
plane and the full ratio is used. Because of the higher area ratio, an increase in vacuum
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performance is achieved. The overall design parameters are kept from Hagemann et al. [30] and
refer to the truncated ideal base nozzle and a nozzle extension with favourable wall pressure
gradient (TICNP).

The numerical tests was solved on a 100 · 52 stretched grid. The initial configuration has been
arbitrarily chosen as the supersonic flowfield in a constant duct, with the Mach number linearly
varying from Min = 1 to Mou = 3. The pressure distribution imposed on the upper boundary is a
spline fitting of the experimental data given in Ref. [30] (with symbol –x– in Fig. 21) and refers to
the case of adapted nozzle. The design pressure ratio PR = pc/pa is set to 200, where pc and pa are
the chamber and ambient pressure, respectively. The Reynolds number, based on the throat ra-
dius rthroat is Re = 2 · 105. The nozzle length is L/rthroat = 17. A sequence of the flowfield evolution
during the transient is presented in Fig. 19. Pressure contour lines are also showed in the same
figure. The evolution of the moving grid is shown in Fig. 20. Wall pressure data pw/pc computed
by the inverse method (cpf) (dotted line) are compared with the experimental results (epf) (right
triangles) are shown in Fig. 21. Since the exact nozzle geometry was not given in Ref. [30], an
alternative way of validation has been sought. To put on evidence the correctness of the results,
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Fig. 19. Dual bell nozzle. Flowfield evolution: (a) initial; (b) and (c) transient (d); final configuration.
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the computed shape has been fixed and some off-design conditions of the nozzle are investigated
by a direct, laminar solver. The off-design pressure data are ranging between 30 6 PR 6 50. A
reasonable agreement between the numerical and experimental pressure distributions is shown
in Fig. 21.
4. Conclusions

A viscous, inverse solver based on Navier–Stokes equations has been proposed and validated
through theoretical and experimental test-cases. This approach, which essentially tracks a unstea-
dy flow surface until a steady configuration is reached, extends to viscous flows a well-established
procedure for Euler equations. The additional boundary conditions, required for a correct bound-
ary treatment in viscous flows, are introduced in the original technique in the same way as for the
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‘‘direct problem’’ solution. The tests have shown that the technique gives an accurate representa-
tion of the target flowfield geometry and of the flow solution, in the limit of a laminar approxi-
mation. Since only the steady configuration is of interest, the procedure could be greatly
enhanced using over-relaxing techniques. Some remarks on well posedness has be given. The case
of airfoil and blade design is avoided intentionally, since inverse problem formulation and the re-
lated issues on problem uniqueness merit a separate investigation. The extension to three-dimen-
sional flows is straightforward, at the cost of a fully unsteady viscous flowfield evaluation.
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