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Richardson’s extrapolation process is a well known method to improve the order of several 
approximation processes. Here we observe that for numerical differentiation, Richardson’s 
process can be applied not only to improve the order of a numerical differentiation formula 
but also to find in fact the original formula.
© 2019 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Usually Richardson’s extrapolation process is used to improve the order of a formula which approximate a given quantity 
[1,2]. In this paper we observe that the Richardson’s extrapolation process can be used in a first phase to find a numerical 
differentiation formula of low order, and in a second phase to improve this order as usual.

Let us consider an expression

T (h) =
L∑

l=0

alh
l + O(hL+1), (1)

where T (h) is a given formula. Let 0 ≤ n ≤ L, our goal is to extract from (1) a formula for an as

an = An(h) + O(hL+1−n). (2)

This formula will be obtained in two phases. At the end of a first phase we get a formula of low order, and during the 
second phase we improve the order using the usual extrapolation process.

2. The process

We initialize the process by setting T (h) = T0(h), and

T0(h) =
L∑

l=0

a0,lh
l + O(hL+1)

where a0,l = al for l = 0, · · · , L.
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2.1. First phase: finding a formula

The goal of the first phase is to eliminate a0,l = al for l = 0, . . . , n − 1 as follows. Suppose we have already eliminated 
a0,l = al for l = 0, · · · , i − 1, and have the formula

Ti(h) =
L∑

l=i

ai,lh
l + O(hL+1)

where ai,n = an .
Let qi �= 1, and let us consider Ti(h) and Ti(qih). To eliminate ai,i leaving ai,n = an unchanged, we consider

qi
i T i(h) − Ti(qih) =

L∑
l=i+1

ai,l(q
i
i − ql

i)h
l + O(hL+1),

and

qi
i T i(h) − Ti(qih)

qi
i − qn

i

=
L∑

l=i+1

ai,l
(qi

i − ql
i)

(qi
i − qn

i )
hnl + O(hL+1).

Let us set

Ti+1(h) = qi
i T i(h) − Ti(qih)

qi
i − qn

i

and

ai+1,l = ai,l
(qi

i − ql
i)

(qi
i − qn

i )

for l = i, · · · , L. Let us observe that ai+1,i = 0 as expected, and ai+1,n = ai,n = an . At the end of this phase we have

Tn(h) = anhn +
L∑

l=n+1

an,lh
l + O(hL+1).

Since

L∑
l=n+1

an,lh
l + O(hL+1) = O(hn+1),

we have the approximation

anhn = Tn(h) + O(hn+1),

or for an the formula

an = Tn(h)

hn
+ O(h).

2.2. Second phase: improving the formula

Now we can use the standard extrapolation process to improve the order of the formula. Since we skip the elimination 
of an , let us set Tn+1(h) = Tn(h), and an+1,l = an,l for l = n + 1, . . . , L. So we have

Tn+1(h) = anhn +
L∑

l=n+1

an+1,lh
l + O(hL+1),

and we would like to eliminate an+1,l for l = n + 1, . . . , L.
Suppose we have already eliminated an+1,l for l = n + 1, . . . , n + m − 1. So we have

Tn+m(h) = anhn +
L∑

an+m,lh
l + O(hL+1).
l=n+m



F. Dubeau / Journal of Computational Physics: X 2 (2019) 100017 3
We consider

Tn+m(qn+mh) = an(qn+mh)n +
L∑

l=n+m

an+m,l(qn+mh)l + O(hL+1).

To eliminate an+m,n+m we perform

qn+m
n+m Tn+m(h) − Tn+m(qn+mh) = (

qn+m
n+m − qn

n+m

)
anhn +

L∑
l=n+m+1

an+m,l

(
qn+m

n+m − ql
n+m

)
hl + O(hL+1).

Let us set

Tn+m+1(h) = qn+m
n+m Tn+m(h) − Tn+m(qn+mh)(

qn+m
n+m − qn

n+m

) ,

and

an+m+1,l = an+m,l

(
qn+m

n+m − ql
n+m

)
(
qn+m

n+m − qn
n+m

) ,

for l = n + m, . . . , L. So we have to obtain an+m+1,n+m = 0, and

Tn+m+1(h) = anhn +
L∑

l=n+m+1

an+m+1,lh
l + O(hL+1).

Then we have

L∑
l=n+m+1

an+m+1,lh
l + O(hL+1) = O(hn+m+1),

and we repeat the process to get at the end of this phase

T L+1(h) = anhn + O(hL+1)

It follows that

an = T L+1(h)

hn
+ O(hL+1−n)

and An(h) = T L+1(h)

hn
is the formula we look for in (2) to estimate an .

3. Towards examples

The process to find derivation formulae with the Richardson’s process is based on the Taylor’s expansion of f (x) given 
by

f (x + h) =
L∑

j=0

f ( j)(x)

j! h j + O(hL+1). (3)

In the examples we will present, we have chosen qi = 2 for all indices i. Other choices are possible leading to other formulae. 
Moreover to simplify we have done only one elimination in the second phase of the process.

4. One sided numerical differentiation formulae

We will present some one-sided formulae which use the value of the function at the point we look for the derivative, 
that is to say f (x), and others that don’t use this value f (x).
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4.1. Formulae with the point value of the function

For a formula which use f (x), we rewrite (3) as follows

f (x + h) − f (x) =
L∑

j=1

f ( j)(x)

j! h j + O(hL+1),

and then use the two phases to find f (n)(x), which correspond to eliminating the derivatives f ( j)(x) for j = 1, . . . , n − 1, n +
1, . . . , L.

4.1.1. Formulae for the first derivative
In the first phase we have directly

f ′(x) = f (x + h) − f (x)

h
+ O(h).

In the second phase we eliminate f ′′(x) to get

f ′(x) = − f (x + 2h) + 4 f (x + h) − 3 f (x)

2h
+ O(h2).

4.1.2. Formulae for the second derivative
In the first phase we eliminate f ′(x) to get

f ′′(x) = f (x + 4h) − 2 f (x + 2h) + f (x)

h2
+ O(h).

In the second phase we eliminate f (3)(x) to get

f ′′(x) = − f (x + 4h) + 10 f (x + 2h) − 16 f (x + h) + 7 f (x)

4h2
+ O(h2).

4.2. Formulae without the point value of the function

For a formula which does not use f (x) as such we consider directly (3), and then use the two phases to find f (n)(x), 
which correspond to eliminating the derivatives f ( j)(x) for j = 0, . . . , n − 1, n + 1, . . . , L.

4.2.1. Formulae for the first derivative
In the first phase we eliminate f (x) and get

f ′(x) = f (x + 2h) − f (x + h)

h
+ O(h).

In the second phase we eliminate f ′′(x) to get

f ′(x) = − f (x + 4h) + 5 f (x + 2h) − 4 f (x + h)

2h
+ O(h2).

4.2.2. Formulae for the second derivative
In the first phase we eliminate f (x) and f ′(x) to get

f ′′(x) = f (x + 4h) − 3 f (x + 2h) + 2 f (x + h)

3h2
+ O(h).

In the second phase we eliminate f (3)(x) to get

f ′′(x) = − f (x + 8h) + 11 f (x + 4h) − 26 f (x + 2h) + 16 f (x + h)

2
+ O(h2).
12h
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5. Symmetric numerical differentiation formulae

5.1. Odd order derivatives

In this case we use (3), with L = 2(n + m + 1), for f (x + h) and f (x − h), and substract the two series. As a consequence 
only odd order derivatives remain. We have

f (x + h) − f (x − h) = 2
n+m∑
j=0

f (2 j+1)(x)

(2 j + 1)! h2 j+1 + O
(

h2n+2m+3
)

.

Then use the two phases to find f 2n+1)(x), which correspond to eliminating the derivatives f (2 j+1)(x) for j = 0, . . . , n −
1, n + 1, . . . , n + m.

5.1.1. Formulae for the first derivative
In the first phase there is nothing to do, we get directly

f ′(x) = f (x + h) − f (x − h)

2h
+ O(h2).

In the second phase, we eliminate f (3)(x) to get

f ′(x) = − f (x + 2h) + 8 f (x + h) − 8 f (x − h) + f (x − 2h)

12h
+ O(h4).

5.1.2. Formulae for the third derivative
In the first phase we eliminate f ′(x) and get

f (3)(x) = f (x + 2h) − 2 f (x + h) + 2 f (x − h) − f (x − 2h)

2h3
+ O(h2).

In the second phase, we eliminate f (5)(x) to get

f (3)(x) = − f (x + 4h) + 34 f (x + 2h) − 64 f (x + h) + 64 f (x − h) − 34 f (x − 2h) + f (x − 4h)

48h3
+ O(h4).

5.2. Even order derivatives

In this case we use (3), with L = 2(n + m) + 1, for f (x + h) and f (x − h), and add the two series. As a consequence only 
even order derivatives remain. We have

f (x + h) − 2 f (x) + f (x − h) = 2
n+m∑
j=1

f (2 j)(x)

(2 j)! h2 j + O(h2n+2m+2).

Then we use the two phases to find f 2n+1)(x), in other words to eliminate the derivatives f (2 j+1)(x) for j = 0, . . . , n −1, n +
1, . . . , n + m.

5.2.1. Formulae for the second derivative
In the first phase there is nothing to do, we get directly

f ′′(x) = f (x + h) − 2 f (x) + f (x − h)

h2
+ O(h2).

In the second phase we eliminate f (4)(x) to get

f ′′(x) = − f (x + 2h) + 16 f (x + h) − 30 f (x) + 16 f (x − h) − f (x − 2h)

12h2
+ O(h4).

5.2.2. Formulae for the fourth derivative
In the first phase we eliminate f ′′(x) and get

f (4)(x) = f (x + 2h) − 4 f (x + h) + 6 f (x) − 4 f (x − h) + f (x − 2h)

h4
+ O(h2).

In the second phase, we eliminate f (6)(x) to get

f (4)(x) = − f (x + 4h) + 68 f (x + 2h) − 256 f (x + h) + 378 f (x) − 256 f (x − h) + 68 f (x − 2h) − f (x + 4h)

48h4

+ O(h4).
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6. Conclusion

In this short paper we have pointed out that Richardson’s extrapolation process can be used not only to improve the 
order of a given numerical differentiation formula but also to find in fact the given basic numerical differentiation formula 
of low order. This process could be included in any computer code which already use the Richardson process.
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