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Introduction

The Technical Brief by Roache [1] presents ten items of discus-
sion of our factor of safety (FS) method for solution verification
[2]. Our responses are listed below item-by-item using the same
numbering as Roache. The nomenclature mostly follows our own
and not Roache’s such as pgg for the order of accuracy calculated
using the Richardson Extrapolation as opposed to the observed
order of convergence and the GCI and GCI, methods as opposed
to the GCly and the real GCI methods. However, we agree with
Roache to use Fy for the factor of safety used in all the verification
methods. In response to item (10), we have used our approach to
evaluate two new variants of the GCI method and one new variant
of the FS method.

Response

(1) The GCI and FS methods can be written in the following
general form:

2
P —1
The FS method is substantially different from and not a variant of
the GCI method. In the FS method we use P = pgg/pum to deter-
mine Fg and always use p = pgg. Only the FS method, compared
with different variants of the GCI method, provides a reliability R
larger than 95% and a lower confidence limit (LCL) greater than
or equal to 1.2 at the 95% confidence level for the true mean of
the parent population of the actual factor of safety. This conclu-
sion is true for different studies, variables, ranges of P values, and
single P values where multiple actual factors of safety are avail-
able. Fs is a smooth linear function of P and has no jumps.

There are a few variants of the GCI method. We have used the
definition of the GCI method, which arguably is the most common
version/interpretation applied in the literature [3-5]. The GCI,
method was proposed by Logan and Nitta [6]. The guideline for the
GCL, method was communicated to us by Roache' [7] in his
criticisms of an earlier version of our FS method [8], which he now
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refers to as the real GCI method. Roache’s most recent book [9]
does point out that the choice of Fs and p requires user judgment
calls; however, no single guideline was provided. The lack of a sin-
gle guideline clearly has caused considerable confusion. We take
no responsibility for this confusion. Statistical analysis showed that
none of the GCI variants shows R > 95% and LCL > 1.2 for differ-
ent studies, variables, ranges of P values, and single P values where
multiple actual factors of safety are available. As a result, there are
high risks to use these GCI variants in certain circumstances, espe-
cially for P > 1. Except the original GCI method, all variants of
the GCI method have jumps of Fg versus P.

Our purpose is not to add to this confusion but rather to evalu-
ate the performance of the outcomes of selecting any of these var-
iants of the GCI method and compare with the FS method using
our approach. The correction factor and pgg are used to define the
GClL, and other verification methods as defined by Egs. (10)—(15)
in Ref. [2] in order to compare their relative conservativeness
using the same error estimate Ogg.

(2) We disagree with Roache to refer to the GCI as the GClI
method and the GCI; as the GCI method for reasons given in item
(1). The lack of a single guideline for selecting Fs and p and when
to use which variant of the GCI method is highlighted by
Roache’s current discussion. Roache accepts using prr When it is
within a 5% difference of p;, in item (2), whereas later in item
(10), Roache considers two other judgment calls as reasonable.

The GCI, method discards the “coarse” grid solution in the
uncertainty estimate when P > 1, which is difficult to justify. For
example, four grid solutions from the coarsest grid 4 to the finest
grid 1 can build two grid triplet studies, (1, 2, 3) and (2, 3, 4).
Grid convergence studies for industrial applications often show
the oscillation of pgg such that (1, 2, 3) could estimate P > 1 but
(2, 3, 4) could estimate P < 1. Based on the GCI, method, S3
should be discarded in the uncertainty estimate for (1, 2, 3) but
not for (2, 3, 4). Of course, we agree that ideally one would con-
duct additional grid triplet studies until the solution is at or as
close as possible to the asymptotic range; however, clearly this is
not always possible especially for industrial applications [10].

We agree that a grid-triplet study with P = 0.08 is not desira-
ble. However, it is not uncommon for solution verification studies
(e.g., local pgg ranges from 0.012 to 8.47 in Ref. [4]). Additionally,
Roache’s criticism of using P = 0.08 is inconsistent with one of his
previous conclusions that there is no necessity to discard results
with pre < 1 (P < 0.5 for a second order method in Ref. [11]).

(3) The fact that “the use of the GCI; method is closer to a 68%
than a 95% confidence level” was one of the conclusions by
Logan and Nitta [6]. This conclusion was not just based on the
dataset with intentional choice of grid studies with oscillations in
both exponent p and output quantity. As stated in page 367 in Ref.
[6], “However, for our contrived and mechanics example Ny = 18
sets (most of which were non-smooth), the use of GCI=1.25 is
much closer to a 68% confidence estimate than 95%.” It was also
recommended in Refs. [6] and [2] that a sample with the number
of grid convergence studies much larger than 100 is needed to
draw general conclusions.

We did not recommend the GCI; method but rather evaluated it
using much larger sample sizes than Ref. [6]. For the largest sam-
ple 3 with size N = 329, the reliability R (Eq. (19) in Ref. [2]) is
90.3% for the GCI; method.

(4) We disagree with Roache’s evaluation in Ref. [11] where it
states that “Briefly, the net result is 14 NC (nonconservative) of
176 entries, or 8.0%.” Only 151 of the 176 grid triplet studies
have the actual error E. This results in 24 nonconservative of 151
(note there are nine nonconservative grid-triplet studies that esti-
mate U = E). So, the reliability for the GCI method [12] is
actually 84.1%, which agrees very well with the reliability 83.9%
estimated using our 329 grid-triplet studies (sample 3 in Ref. [2]).

Based on our own evaluation above and the fact that Cadafalch
etal. [12] used Fg = 1.25 for P > 1, the method they applied was not
the GCI, method and more likely the GCI method. The claim of “an
original and reasonable variant of the real GCI” [1] again is confusing.
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(5) We take 95% coverage as the common uncertainty target
for both experiments and computations [5]. Although the GCI,
method only misses the overall reliability by 0.8% for sample 3,
more importantly it fails to provide sufficient conservatism for
other samples including the reliabilities of 91.4%, 90%, and
87.5% for samples 5, 8, and 16, respectively [2]. It is possible that
another dataset could slightly change our evaluations. Nonethe-
less, the current sample size is large and the range of P values is
wide such that a further increase of the number of samples is not
likely to significantly alter the FS method and its results.

(6) The FS method was calibrated/validated against the avail-
able dataset. Note that calibration/validation requires that the true
error can be evaluated, i.e., the solution numerical benchmark
(Syp) or solution analytical benchmark (S4p) is known. We wel-
come additional validation of the FS method and if necessary re-
calibration and improvement, but again Syp or Ssp must be
known. The claim of Roache and others of the 95% reliability for
the GCI method is undocumented and based on anecdotal infor-
mation. We doubt that Syg or Ssp is available for many of the
cases cited by Roache and others. It should be a simple matter to
provide proper documentation.

Note that the FS method is more conservative than the GCI,
method except for 1 < P < 1.136 due to the jump of the factor of
safety at P = 1 for the GCI, method. If the FS method is not con-
servative enough for another dataset, the GCI, method will likely
be worse.

The claim that the GCI, method has been stable for over 12
years is not well founded. Due to the lack of a single guideline on
the choice of Fg and p, different variants of the GCI method have
been used by different users based on their own judgment calls.
For example, Cadafalch et al. [12] did not use the GCI, method,
and Logan and Nitta [6] used the GCI; method. Furthermore, the
GCI method may have been applied to O(1000) cases but no sta-
tistical evidence for reliability has been documented.

(7) We disagree with Roache’s suggestion that the FS method
has problems in predicting monotonic convergence for fine grids.
The uncertainty estimates in Table 6 for the FS method in Ref. [2]
for the three finest grid triplets are not monotonically decreasing
since P shows large oscillations, and the factor of safety for the
second finest grid triplet (2, 3, 4) at P = 1.49 is much larger than
that for the other methods evaluated at the same P. However, the
larger factor of safety is required to ensure the reliability for
P > 1. For the three grid triplets discussed, it is interesting to
evaluate the convergence ratio R for the fine grid solution S
(Rs,), P (Rp), and Ug (Ry,). All the five verification methods
have the same Rg, and Rp, which show monotonic convergence.
The GCI, GCI;, and CF methods show monotonic convergence
for Ug, whereas the GCI, and FS methods show monotonic diver-
gence (Ry, = 2.74) and oscillatory divergence (Ry, = —4.53),
respectively.

The oscillation of P may be caused by many factors. Grid 4 is
still too coarse for the solution to be in the asymptotic range.
Additionally, reducing the iterative error to machine zero is very
difficult for large-scale computations. With the small grid refine-
ment ratio r = v/2, solution changes ¢ will be small, and the sensi-
tivity to grid-spacing and time step may be difficult to identify
compared with iterative errors U;. As shown in Fig. 6(b) in
Ref. [10], Uy /€12 = 61.6% for the cases in Table 6 [2]. When r
increases, Uy /¢ will likely decrease. For example, the grid uncer-
tainty decreases from 5.04 for (2, 4, 6) to 4.02 for (1, 3, 5) with
U1,1/813 =20% for r = /2. However, it should be noted that a
large r may be problematic, too, as different grids may resolve
different flow physics.

There are some other cases that the GCI, GCI;, GCI,, CF, and
FS methods show non-monotonic convergence for multiple grid-
triplet studies, including the “well-behaved” problems Cadafalch
et al. [12] and Roache [11] used to evaluate the conservativeness
of the GCI method. For the radial velocity using the SMART
scheme in the study of premixed methane/air laminar flat flame on
a perforated burner [13-15], the uncertainty estimates using the
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FS and GCI, methods monotonically decreased whereas the other
three methods did not as the grid is refined. Another example is
for the uncertainty estimates for temperature at a monitored loca-
tion for a two-dimensional natural convection in square cavities at
Ra = 10°, which had five grid-triplet studies with r =2 [16].
Uncertainty estimates using the five verification methods discussed
in Ref. [2] first monotonically decreased as the grid is refined but
suddenly increased for the finest grid-triplet. Thus, it is unreason-
able to blame the FS method as the reason for such behavior.

The verification results for our industrial application example
are far from the asymptotic range. Although we evaluated the con-
vergence characteristics for the 98 verification variables using P
and |E| as functions of Axge/AXfines [2], a standard criterion for
achieving the asymptotic range is still lacking. A possible crite-
rion is that monotonic convergence should be established based
on evaluation of the convergence ratio R for fine grid solution S
(towards S¢), P (towards 1), and U (monotonically decreasing) for
multiple (at least three) grid-triplets with the same grid refinement
ratio r and U; < U. In some cases, oscillatory convergence may
be acceptable; however, this would require many grid triplets
[17]. Although R still needs to be evaluated for all the variables in
our dataset, 41.5% of the variables that have more than two grid-
triplet studies do show that S, approaches S¢, P approaches 1, and
U monotonically decreases as the grid is refined. For the other
58.5% of the variables, S| also approaches S¢ as shown by monot-
onically decreased error magnitude |E|, but P and Ug often show
mixed convergence conditions as the grid is refined.

(8) As discussed in item (6), without statistical evidence, the
claim of the conservativeness of the GCI, method is undocu-
mented. Furthermore, we doubt very much how many applications
have Syp or Sap. If they do, we will be glad to add them to our
dataset. The work by Dr. C. J. Freitas and his group is not publicly
available [9]. Therefore, the claim of achieving the 95% reliability
is again undocumented and based on anecdotal information.

(9) We agree that the actual factor of safety is undefined when a
solution not in the asymptotic range happens to predict the true
value. If this happens, it should be excluded from the dataset used
to derive the FS method. However, monotonic convergence ensures
that the uncertainty estimate is always greater than zero so that a
zero error will be automatically bounded by the uncertainty.

The contrived example created by Roache only proves that the
average actual factor of safety (X) cannot be used alone to deter-
mine if a solution verification method is conservative enough. But
it can be used to determine the relative conservativeness between
different verification methods.

It should be noted that we used both the reliability R and LCL as
defined by Eq. (22) in Ref. [2] to develop the FS method and deter-
mine if a method is conservative enough. Larger X does not neces-
sarily mean larger R (readers can refer to sample 6 in Ref. [2]).

(10) As requested by Roache, we use our approach to evaluate
two new variants of the GCI method proposed by Oberkampf and
Roy [18] (GClpRr) and by Roache [1] (GCI5).

1.25‘%, 09<P<1.1
P —1
Uccior = £1
’,ﬂmin<max<o,sm>,p,h> - 1), 0<P<09 or P>11
)
1.25‘# . 09<P<I1lI
rmm(I’REﬁm) —1
Uccr, = a1
)_—, 0<P<09 or P>1.1
pmin(prepm) — |
3)

To address Roache’s concern of using pgg when pgrg >> py,, we
also evaluate an alternative form of the FS method (FS; method).
The FS; method is the same as the FS method for P < 1 but uses
pu instead of pgg in the error estimate for P > 1. Thus, Eq. (14) in
Ref. [2] becomes
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Following the same procedure described in Sec. 2.4 of Ref. [2],
FSy =2.45, FS; = 1.6, and FS, = 6.9 are recommended, and the
final form of the FS; method is

To compare the relative conservativeness between different verifi-
cation methods, the three new methods are rewritten in terms of
the same error estimate Opg.
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The factors of safety for all the verification methods discussed so
far are shown in Fig. 1. One problem of the GCI, method is the
jump of factor of safety across the asymptotic range at P = 1. For
two grid-triplet studies with one at P = 0.999 and the other at
P = 1.001, the factor of safety suddenly increases from 1.25 to 3
even though P only varies by less than 0.2%. Eca et al. [19] gave
similar comments on this issue: “However, it is not easy ‘to
accept’ a jump of a factor of 2.4 in the uncertainty when the
observed order of accuracy may vary by only 0.1.” Similar prob-
lems exist for the GClpr and GCI; methods when pgg differs
from p,, by 10%. It should be noted that the GCIpg method set
the lower limit of pgg to be larger than 0.5, which corresponds to
P > 0.25 for a nominal second order method. Thus, the factor of
safety for P < 0.25 for the GCIpr method shown in Fig. 1 is only
a result of the mathematical reformulation. Figure 1 also shows
that the GCIpr and GCI; methods are much more conservative
than the other methods for 0.25 < P < 0.9 and coincide with the

&21
45 - 0. e < .
(245-0 85P)‘rpms — 10 O<P<1 GCI, method for P > 1.1. The FS| method is less and more con-
Urs, = . ®) servative than the FS method for 1 < P < 1.235 and P > 1.235,
(8.5P — 6.9)‘m , P>1 respectively.
Table 1 Statistics for different ranges of P values using non-averaged actual factor of safety
Sample P N Statistics GCIL, GClIpr GCI; FS FS, t
3 02 329 R (%N) 94.2 93.62 93.92 96.96 96.96 1.645
(P =0.94) X 2.39 2.78 3.10 3.04 3.02
S¢(%X) 5.9 5.4 8.6 8.2 7.1
LCL 2.16 2.53 2.67 2.63 2.67
4 ~0-04 12 R (%N) 100 100 100 100 100 1.796
(P =0.24) (3.65%) X 7.34 9.9 17.63 13.52 13.52
S3(%X) 29 15 29 30.8 30.8
LCL 3.51 7.23 8.44 6.03 6.03
5 0.4-09 81 R (%N) 91.4 96.3 96.3 95.1 95.1 1.664
(P =0.70) (24.62%) X 2.01 4.81 4.83 3.03 3.03
S (%X) 6.5 6.5 6.5 7.3 7.3
LCL 1.79 4.28 4.30 2.66 2.66
6 0.9-1.1 176 R (%N) 95.5 93.18 93.75 97.7 97.7 1.646
(P =0.98) (53.50%) X 1.88 1.29 1.36 1.87 1.83
Sz (%X) 3.7 2.1 22 2.1 23
LCL 1.76 1.25 1.31 1.80 1.76
7 L1-15 50 R (%N) 94 90 90 96 96 1.676
(P =1.19) (15.20%) X 3.27 2.77 2.77 3.74 3.48
S (%X) 6.45 6.99 6.99 6.93 7.23
LCL 2.92 2.44 2.44 3.31 3.06
8 1.5-2.0 10 R (%N) 90 90 90 100 100 1.833
(P =1.63) (3.04%) X 4.08 4.08 4.08 7.67 9.06
S¢(%X) 18.7 18.7 18.7 18.4 17.7
LCL 2.68 2.68 2.68 5.08 6.12
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Table 2 Statistics excluding outliers at seventeen P values

Number of
Sample P N outliers Statistics GCI, GClpr GCI; FS FS, t
9 0.705 9 0 R (%N) 100 100 100 100 100 1.86
X 2.08 4.99 4.99 3.08 3.08
Sz (%X) 10.4 10.4 10.4 10.4 10.4
LCL 1.68 4.02 4.02 2.48 2.48
10 0.755 5 0 R (%N) 100 100 100 100 100 2.13
X 1.87 4.49 4.49 2.71 2.71
Sy (%X) 11.2 11.2 11.2 11.2 11.2
LCL 1.43 342 342 2.07 2.07
11 0.805 15 0 R (%N) 100 100 100 100 100 1.76
X 1.76 4.22 4.22 2.49 2.49
Sy (%X) 54 54 54 54 54
LCL 1.59 3.82 3.82 2.26 2.26
12 0.855 6 0 R (%N) 100 100 100 100 100 2.02
X 1.58 3.79 3.79 2.18 2.18
Sz (%X) 9.6 9.6 9.6 9.6 9.6
LCL 1.27 3.06 3.06 1.76 1.76
13 0.905 29 0 R (%N) 100 93.1 100 100 100 1.70
X 1.61 1.36 1.61 2.17 2.17
S (%X) 6.8 6.9 6.8 6.8 6.8
LCL 1.42 1.20 1.42 1.92 1.92
14 0.925 5 0 R (%N) 100 100 100 100 100 2.13
X 1.42 1.27 1.42 1.89 1.89
Sy (%X) 3.1 2.2 3.1 3.1 3.1
LCL 1.33 1.21 1.33 1.76 1.76
15 0.945 6 0 R (%N) 100 100 100 100 100 2.02
X 1.37 1.27 1.37 1.81 1.81
Sz (%X) 2.0 1.5 2.0 2.0 2.0
LCL 1.32 1.23 1.32 1.73 1.73
16 0.955 16 0 R (%N) 87.5 87.5 87.5 100 100 1.75
X 1.42 1.32 1.42 1.87 1.87
Sx(%X) 6.8 6.6 6.8 6.8 6.8
LCL 1.25 1.16 1.25 1.64 1.64
17 0.965 6 0 R (%N) 100 100 100 100 100 2.02
X 1.46 1.39 1.46 1.91 1.91
Sz (%X) 7.1 7.0 7.1 7.1 7.1
LCL 1.25 1.19 1.25 1.63 1.63
18 0.975 7 0 R (%N) 100 100 100 100 100 1.94
X 1.33 1.28 1.33 1.73 1.73
Sz (%X) 3.6 33 3.6 3.6 3.6
LCL 1.24 1.20 1.24 1.61 1.61
19 0.985 9 0 R (%N) 100 100 100 100 100 1.86
X 1.27 1.24 1.27 1.64 1.64
S (%X) 1.1 1.0 1.1 1.1 1.1
LCL 1.25 1.22 1.25 1.60 1.60
20 0.995 8 0 R (%N) 100 100 100 100 100 1.90
X 1.24 1.22 1.24 1.59 1.59
Sz (%X) 2.0 2.1 2.0 2.0 2.0
LCL 1.19 1.18 1.19 1.53 1.53
21 1.005 56 4 R (%N) 98.2 98.2 98.2 100 100 1.68
X 2.08 1.33 1.33 1.71 1.71
Sz (%X) 5.6 3.0 3.0 3.0 3.0
LCL 1.88 1.26 1.26 1.63 1.62
22 1.015 6 0 R (%N) 100 100 100 100 100 2.02
X 2.90 1.21 1.21 1.74 1.67
Sy (%X) 3.0 3.0 3.0 3.6 34
LCL 2.73 1.14 1.14 1.62 1.56
23 1.055 6 0 R (%N) 100 100 100 100 100 2.02
X 4.39 1.83 1.83 3.25 2.98
Sz (%X) 8.9 8.9 8.9 8.6 8.6
LCL 3.60 1.50 1.50 2.68 2.46
24 1.105 13 2 R (%N) 100 84.6 84.6 100 100 1.78
X 3.65 1.71 1.71 343 2.99
Sz (%X) 14.1 12.2 12.2 14.3 14.1
LCL 2.73 1.33 1.33 2.56 2.24
25 1.205 12 1 R (%N) 100 100 100 100 100 1.80
X 3.32 3.32 3.32 4.08 3.66
Sx(%X) 8.9 8.9 8.9 8.9 8.9
LCL 2.79 2.79 2.79 343 3.07
115502-4 / Vol. 133, NOVEMBER 2011 Transactions of the ASME
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Fig. 2 Actual factor of safety for sample 3, sample 3 averaged using AP = 0.01, and X+ iS; for samples 9 to 25: (a) GClor

method, (b) GCI; method, and (¢) FS; method

The GClpg, GCI3, and FS| methods are evaluated using statisti-
cal analysis of the 25 samples following Ref. [2], with focus on
samples 3 to 25. Table 1 shows the statistics for samples 3 to 8 [2]
based on six different P ranges for the three new methods. The
FS; method has the same reliability as the FS method for samples
3 to 8. The GClpr and GCI; methods almost have the same reli-
ability, but the GCI; method is a little more conservative. Com-
pared to the GCI, method, the GCIpgr and GCI; methods improve
the reliability for P < 1 to be larger than 95% but are not conserva-
tive enough for P > 1, especially near the asymptotic range. Exami-
nation of 18.2% of the data for 1.1 < P < 2.0, which cover samples
7 and 8, shows that only the FS and FS; methods achieve 95% reli-
ability, but the GClpg and GCI; methods achieve only 90%. The
largest X for samples 3-5, sample 6, sample 7, and sample 8 are the
GCl;, GCL, FS, and FS; methods, respectively. For all the verifica-
tion methods, the LCLs are larger than 1.2 for all the P ranges.

Table 2 shows the statistics at the seventeen P values (samples
9 to 25) ranging from 0.705 to 1.205. For samples 9 to 19
(P < 0.99), all the verification methods achieve reliabilities larger

Journal of Fluids Engineering

than 95% except 93.1% for the GClpr method at P = 0.905,
87.5% for the three GCI methods at P = 0.955, and 84.6% for the
GClog and GCI; methods at P = 1.105. The largest X for samples
9-12, samples 13-20, samples 21-24, and sample 25 are the GCIpg
and GClI;, FS and FS;, GCI,, and FS;| methods, respectively. Only
the FS and FS; methods satisfy the requirement that LCL > 1.2
for samples 9 to 25. The GCI, method has LCL < 1.2 for sample
20; the GClpgr method has LCL < 1.2 for samples 13, 16, 17, 18,
20, and 22; and the GCI; method has LCL < 1.2 for samples 20
and 22.

The actual factor of safety for sample 3, sample 3 averaged
using AP = 0.01, and the upper and lower band of the confidence
interval XS5 for samples 9 to 25 are shown in Fig. 2. 7 is the
factor for the student-¢ distribution and S5 is the standard devia-
tion of the mean of the sample, as defined in Ref. [2]. The GClpr
and GCI; methods do not satisfy LCL > 1.2 near the asymptotic
range. Compared to the FS method (Fig. 4(e) in Ref. [2]), the FS;
method shows a larger actual factor of safety when solutions are
farther from the asymptotic range for P > 1.
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Concluding Remarks

The choice of Fg and p in the GCI method requires user judg-
ment calls, for which no single guideline is currently available.
We recommend that a single guideline be provided.

The GClpgr and GCI3 methods have almost the same reliability.
But the GCI3 method is a little more conservative. Compared to the
GCI, method, the GClpg and GCI; methods improve the reliability
for P < 1. However, they are too conservative for P < 0.9 using a
factor of safety 3 and not conservative enough for P > 1.1.

The FS; and FS methods are the same for P < 1. For p;, =2
and r = 2, the FS; method is less and more conservative than the
FS method for 1 < P < 1.235 and P > 1.235, respectively. As a
result, the FS; method may have an advantage for uncertainty esti-
mates when P > 2 where the FS and other verification methods
likely predict unreasonably small uncertainties due to small error
estimates. However, since the current dataset is restricted to P < 2,
the pros/cons of using the FS or FS; method cannot be validated.
Thus, until additional data is available for P > 2, all verification
methods should be used with caution for such conditions and, if
possible, additional grid-triplet studies conducted to obtain P < 2.

The authors’ statistical approach based on many analytical and
numerical benchmarks provides a robust framework for develop-
ing solution verification methods. The authors welcome additional
validation of the FS method and, if necessary, re-calibration and
improvement using additional rigorous verification studies with
Sap or Syp available. More research is needed to establish the cri-
terion for achieving the asymptotic range along with its use in pro-
viding high quality numerical benchmarks.
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