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Order of accuracy of QUICK and related
convection-diffusion schemes

B. P. Leonard

Center for Computational Mechanics, The University of Akron, Akron, OH, USA

This paper explains significant differences in truncation error between finite-difference and finite-volume
convection-diffusion schemes. Specifically, the order of accuracy of the QUICK scheme for steady-state
convection and diffusion is discussed in detail. Other related convection-diffusion schemes are also considered.
The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable
(with a 1 / 8-factor multiplying the *‘ curvature’’ term) is indeed a third-order representation of the finite-volume
formulation of the convection operator average across the control volume, written naturally in flux-difference
form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1 / 6-factor) is
a third-order representation of the finite-difference single-point formulation; this can be written in a
pseudo—flux-difference form. These are both third-order convection schemes; however, the QUICK finite-volume
convection operator is 33% more accurate than the single-point implementation of SPUDS. Another finite-
volume scheme, writing convective fluxes in terms of cell-average values, requires a 1 / 6-factor for third-order
accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms
of cell averages and then express this in pseudo—flux-difference form; for third-order accuracy, this requires a
curvature factor of 5 / 24. Diffusion operators are also considered in both finite-difference and finite-volume
formulations. Finite-volume formulations are found to be significantly more accurate. For example, classical
second-order central differencing for the second dericative is exactly twice as accurate in a finite-volume
formulation as it is in a finite-difference formulation.
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1. Introduction where Pé (= constant > 0) is the macroscopic Péclet num-
. . . ber. This simplest model problem has been chosen to
The QUICK scheme' was introduced in 1979. From time N L N

to time since then there appears to have been some contro- hlghlflght thel basncf dlffelr ences betwheen {:nlte(-itélf;erence
. and finite-volume formulations, without the added com-
zzgiyorrle%:rrs::g,;gzr??;sle 0;2:; (;ftt:frf;; act}(r) chl;:li(f:yc?l?z; plexity of multidimensions, variable coeffici;ntg nonlin-
situation,>* but a recent journal article* indicates that the carities, and nonuniform grldsl. The same prlnc1pllcs out-
R . . .. : i i in more general cases,

distinction between finite-difference and finite-volume for- Elrtlﬁgu;l}?rgf Egir:ftsgetiﬁgh;?]? ge more com%;icate d ¢

mulations is still not widely understood in the computa- . . . . .
tional-fluid-dynamics (CFD})] literature. This paper pis a With appropriate boun@ary cpndmons, equation ) ep-
further attempt to correct some of the misunderstandings resents steady-state one-dimensional convection and diffu-
that have arisen £ sion of a scalar with a known source term. A finite-dif-

. . . . . ference numerical approximation of this problem simulates
First, for definiteness, consider a one-dimensional model PP p

. . . . the derivatives involved in equation (1), directly,
problem on a uniform grid of mesh-size &, numerically d 1 m y
simulating a (nondimensional) convection-diffusion equa-

X ) o a 1 {37
tion with constant coefficients _d) - _d: +S (2)
h R dx |, Pé\dx"], '
ad 1 i
9x  Pé ax’ +S5(x) (1 at each nodal grid-point, i. This will be called the single-
point (SP) formulation. By contrast, a finite-volume formu-
lation is obtained by integrating equation (1) across a
control-volume cell and dividing by A. This gives, for
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QUICK and related convection-diffusion schemes: B. P. Leonard

where left and right face-values of the variable and its
gradient are indicated, and S, is the control-volume aver-
age of the source term at control-volume cell i. This is the
operator-average (OA) formulation. Conservation of con-
vective-plus-diffusive flux is guaranteed if the modelled
face values and gradients satisfy the uniqueness conditions

d(i)=4¢,(i-1) (4)
and
o (i) =¢,(i— 1) (5)

Note that equation (3) is an exact equation and not an
approximation of equation (2). They are related by (the
one-dimensional form of) Gauss’ divergence theorem.
Similar (but obviously more complicated) exact finite-
volume forms are obtained in three dimensions by integrat-
ing over the control volume and converting volume inte-
grals into surface integrals using the divergence theorem.
This holds similarly in two dimensions.

In order to create numerical algorithms for (approxi-
mately) solving equations (2) or (3), one needs to estimate
either the derivatives in equation (2) or, alternatively, the
face values and gradients appearing in equation (3). Addi-
tionally, in making these estimates, one has the choice of
using either node values, ¢;, or cell averages, ¢,. For the
operator-average finite-volume equation, the formulation
will automatically be in flux-difference form. Numerical
models of single-point formulations of derivatives can
usually be written as the difference of terms satisfying
conservation, thereby generating a pseudo-flux-difference
construction. It is important to stress that such schemes are
not finite-volume formulations based on equation (3); they
are finite-difference formulations based on equation (2),
rewritten in the conservative pseudo-flux-difference form.

The one-dimensional QUICK scheme is based on esti-
mating face values and gradients using quadratic upstream
interpolation through node values of ¢ located at the
center of control-volume cells. For example, at the right
face, a parabola is interpolated through ¢,, . ¢,, and ¢, |
(for Pé > 0), giving the original' "1 /8-factor” face value

(6)"" " =261+ b))
(b, — 2+ ) (6)
and, for the gradient.
(..~ )
h

with left-face quantities obtained by lowering all indices
by 1. Substitution of the QUICK formulas into equation
(3) gives, using classical Taylor-series analysis,

(¢)" " = (7)

d’r_(é/ h} ;
+—¢M +O(h
[ P 16(1), (h")
_ ¢;_¢;+h:¢<"‘+o Myl +S 8
= e P 52 % (h") (8

In other words, in this finite-volume formulation, the
QUICK convection operator average terms are third-order

accurate, whereas the QUICK diffusion operator average
terms are only second-order accurate. Thus, the overall
QUICK scheme for the convection-diffusion equation gives
O(h*) convergence as the grid is refined. Controversy in
the literature concerning the third-order convection term
apparently stems from confusing finite-volume and finite-
difference formulations. In particular, equation (3) has
sometimes been construed as an approximation of equation
(2). 1t is not. It is a perfectly valid (control-volume)
equation in its own right.

1.1 Operator-average or single-point formulations

In order to clarify the distinction between finite-volume
(operator average) and finite-difference (single point) for-
mulations, consider the Taylor-series formulas

d(x) =+ dx+ 3/ x>+ x>+ ... (9)
(x)=¢ + P/ x+1d"x*+ 1M+ ...

(10)

(b(n)(x) — d)_(n)+ ¢("+1)X+%(l)-(n+2)x2
+idm It L (11)
Now compute finite-volume formulas by subtracting the
Taylor-expansions written for x=h/2 and x= —h/2,
giving
(n) _ g 2 4
& _ b + L¢gn+3>+ L¢gn+5)
h ' 2231 ™ 2451
h6
+

(n+7)
NET &b} + ... (12)

This formula is also valid for negative n (representing
integration); in particular, for n = —1, the control-volume
cell-average of the transported scalar itself is given by

— 1 2
d),=;f &(x)dx

—h/2
h2 4
=¢ +—¢'+——"™ + ... 13

The expression on the left side of equation (12) represents
the control-volume OA of the (n + 1)th derivative, whereas
the first term on the right is the SP form. Note that the
difference between the two always involves an O(h?)
quantity. This is an important point that is the key to
clarifying the confusion that has arisen in the literature. If
a finite-volume (OA) discrete operator is viewed as an
finite-difference (SP) term, there is an O(4?) discrepancy
between the two. This does not affect the leading trunca-
tion error of first-order schemes. Second-order schemes
show a change in the numerical value of the 4 coefficient.
But a third (or higher) order OA scheme is only second-
order accurate when viewed as an SP scheme, and vice
versa. This is apparently why the QUICK scheme has been
so controversial.
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2. Third-order-accurate steady transport

In a recent paper,’ Johnson and MacKinnon attempted to
clarify the distinction between finite-difference and finite-
volume formulations. Unfortunately, their conclusions are
exactly the reverse of the true situation. They claim, in
particular, that the QUICK(1 /8) scheme is only a second-
order accurate finite-volume convection scheme. For ex-
ample (using here "left-right” rather than "east-west"),
Johnson and MacKinnon’s equation (4) for the
QUICK(1 /8) convection scheme is
¢, — &, 3¢ +30, =T+ b,

n 8h

.

o " — ") + HOT 14

This is correct as written; but Johnson and MacKinnon
seem to imply, quoting Bradley et al.,” that this represents
an O(h*)-accurate operator. First of all, from equation
(12), with n = 3, the leading truncation error is

3 mo_ 2
h ( d)r i

h2 " a

3 5

o h .
— o AV) (V1)

16¢' +384¢' + ... (19)
Equation (14) is equivalent to the left side of equation (8),
showing the QUICK(1/8) convection term indeed to be a
third-order accurate finite-volume OA formulation of the
term (¢, — ¢,)/h. Second, it must be stressed that the
discrete operator in equation (14) is not intended to be an
SP numerical model of ¢;. If it is considered to be, as in
Ref. 4’s equation (5), it will appear to be O(A?) accurate;

this is easily seen from equation (12), with n = 0.
Johnson and MacKinnon claim to demonstrate the "sec-
ond" -order accuracy of the QUICK(1 /8) convection terms
by giving a numerical example of a simple convection-dif-
fusion problem with a known exact solution, using a

fourth-order accurate diffusion operator

_¢i+2+16¢i+l—30¢z+ 16¢,7|“¢, 2
12h°
+O(h*) (16)

the strategy being that the grid convergence will be domi-
nated by the lower-order convection term. As is well
known,® this is indeed a fourth-order finite-difference SP
approximation of the second-derivative at point i, consis-
tent with a quartic polynomial interpolated through node
points: ¢,_,, ¢;,_4, b, ¢;, . and ¢, ,. However, this is
not what is being modelled in a finite-volume formulation.
Rather, to be consistent, according to equation (3), one
should model the operator average across the control vol-
ume. The appropriate fourth-order finite-volume formula is

d)” —
i

¢, — &
h
— ¢t 28— 52d,+ 280, | &,
N 2441
+O(k4) (17)
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More specifically, the fourth-order right-face gradient can

be represented by
, by — ¢i+2_3¢i+1+3¢.’_¢i—1
{¢r]4l/l = -

h 24h

(18)

obtained by interpolating a cubic polynomial through node
points: ¢,_,, ¢, ¢, and &, ,.

The O(h®) convergence reported by Johnson and
MacKinnon using QUICK(1/8) for convection and equa-
tion (16) for diffusion occurs because their diffusion opera-
tor is only O(A?) accurate in a finite-volume formulation.
This can be seen immediately from equation (12), written
for n=1:

4

o, - &; W, P
r = " + — (1V) + — (VI) + ... 19
h ®; 24 ¢ 1920 ¢ (19)

3. Numerical example

The numerical example used by Johnson and MacKinnon
is (with a slight change in notation)

2
% - Plé % - (20)
with boundary conditions on the nodal values
$(0)=0  $(1)=1 (21)
The exact solution is
R (22)
e —1

Step sizes of 1/4,1/8, 1/16, 1/32, and 1/64 are used,
and Pé = 4. In the current formulation, pseudonode values
are required beyond each end of the physical domain. For
the purposes of this numerical test, these are taken here to
be exact values given by

e o1 23
¢ = (23)
and
e4(1+h)_1
by =i (24)

3.1 Exact derivatives and fluxes

In order to investigate the effect of individual modelled
terms, it is instructive to compute exact derivatives and
fluxes from the known analytical solution. For example,
errors introduced solely by modelled convection terms can
be studied in isolation by using exact diffusion terms and
vice versa. From equation (22), the first and second deriva-
tives are

dp  PéeH*

dx e —1

(25)
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and
d2¢ PéZePé\
dx? P —1

By integrating equation (20) from (x — h/2) to (x + h/2)
and dividing by #, the (exact) control-volume formation is

(26)

y— & I (&, - ¢,
(d)h ’)—E{‘éhd)’)ﬂ) (27)
where
¢/(x)=d,(x—h) (28)
and
¢ (x) =& (x—h) (29)

By defining the convective-plus-diffusive flux at any
point as

b(x)—¢'(x)/Pé
h -

equation (27) can be written in flux-difference form across
any control-volume cell of width 4 as

F(x) = F(x)=0 (31)

F(x)= (30)

where the exact convective-plus-diffusive fluxes are

1 -(elp‘:‘ePJ A 1) ePiiphs /2
Fr(x)zz T TR l (32)
and
L[ (ePre ™ o) oPerp B
F,(x)=; o TN }

introducing the grid Péclet number. P, = #Pé. Note that
conservation is guaranteed, since F,(x) = F.(x — h).

3.2 Evaluation of discrete operators

With a uniform grid of step-size # and a control volume
centered at x,, a numerical model of the convective flux

can be tested by using a hybrid formulation of equation
(30)

et ety

1 Péx, Py, 2
FrHYB( xi) — ; [d)rmndcl . “ (34)

P —1
and, assuming the numerical model to be conservative,
FY%(x) =F"P(x, — h) (35)

If the modelled face values. ¢ and @' are written
in terms of nodal values of ¢

¢ = &(x,) (36)
a solution of the flux-difference equation
FYP(x) = F™%(x,) =0 (37)

Table 1. Grid-refinement study of the model convection-
diffusion equation, using a finite-volume flux-difference
OA formulation, with exact diffusive fluxes calculated
from the analytical solution. Two convection schemes are
compared. Values shown are those of the node-point error
at x=0.75.

ho QUICK(1/8) SPUDS(1/6)
4 ~3.93435739 x 10~ 2 —1.33129698 x 10~ 2
8 —9.24652759 x 10~ ¢ +3.72661451 % 10~ *
16 —2.75420514 x 10~ * +4.77048555 x 10~ ¢
32 —4,12098809 x 10~ 5 +1.76208352 x 10~ *
64 —5.30547084 x 10~ 8 +5.08534128 x 10~ 3
Rate Ol h3) Ol h?)

then gives the computed ¢, values corresponding to the
particular convection model, treating the diffusive fluxes
exactly. The node-point error is then, using equation (22),

Péx, __

NPE, = ¢,(computed) — T (38)
oPE _

A grid-refinement study (with 2~ =4, 8, 16, 32, and 64)
then shows the true convergence rate of the convective

model in isolation. The rate, R, can be obtained from
INPE,( k)|
— =R (39)
INPE, (h/2)]

and should approach an asymptotic value as A becomes
smaller and smaller.

Standard QUICK scheme. —Equation (6) for the right
face value is rewritten here for convenience

( d’r)QUlCK = %(¢i+1 + ;)
—%(¢z'+1—2¢i+d)i—]) (40)

with the left face value given by
( d’[)QUCK = %(d’z +é,_))
_%(¢1—2¢i—1+¢i—2) (41)

Using exact diffusive fluxes as described above, the results
in the QUICK(1/8) column of Table I show that the
node-point error at x = 0.75 converges at a rate of O(4%).

The SPUDS formulation. —An alternate formulation,
recommended by a number of researchers,’ is based on a
single-point upwind difference scheme modelling the
derivative, 1.e.,

(dé SPups 20, +3¢,— 60,1+ &,
— = (42)
Cdx ], 6h
This is then written in pseudo-flux-difference form
S . s +  SPUDS
o\ (4))" - ()
— = (43)
L dx ], h

where
(o] )SPUDS =3(d.1 + &)
'_'(1:((1),‘+]—2¢i+¢i—1) (44)
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and
(&) =4(d+ )
—5(d =20, + ¢, .) (45)

Johnson and MacKinnon call this a "finite-volume"” for-
mulation.* When this convection model is used in equation
(37), using the exact diffusive flux of equation (34), the
node-point error asymptotes to a second-order trend, as
seen in the SPUDS(1/6) column of Table 1. Clearly,
SPUDS represents a second-order finite-volume formula-
tion of the convective term.

However, SPUDS was not really designed to simulate
(¢, — &,)/h. Instead, it is a model of the single-point
differential formulation given by equation (20), which is
then written in pseudo-flux-difference form. Testing the
scheme with the exact finite-volume form of the diffusive
fluxes is, therefore, inappropriate. A proper test would use
the exact second derivative of equation (26) in pseudo-
flux-difference form. This can be achieved by writing

(d%) _ () (4D

where (for the particular model problem under considera-
tion) the exact right pseudo-gradient is

N PéePé"'ePJ”/z)( P,/2 )
() =~ SinhP_,/Z)

(47)
and the exact left pseudo-gradient is obtained by replacing
x; by (x; — h). When these formulas are used in the hybrid
flux formulation, the node-point error shows a third-order
trend, as seen in the SPUDS(1/6) column of Table 2.

As a matter of interest, using the QUICK(1 /8) convec-
tion scheme in combination with the single-point exact
diffusion operator gives an O(h*) trend. This is shown in
the QUICK(1/8) column of Table 2. This is to be ex-
pected from equation (12), since the finite-volume
QUICK(1/8) scheme is now being used out of context in
a single-point formulation, just as the SPUDS(1 /6) scheme
is O(h*) when used in a finite-volume formulation.

Of the two third-order convection schemes considered
~—the QUICK(1 /8) finite-volume formulation in Table 1
and the SPUDS(1,/6) formulation in Table 2—note that

Table 2. Grid-refinement study of the convection-diffu-
sion equation, using the SP differential equation ex-
pressed in pseudo-flux-difference form, with exact diffu-
sion terms calculated from the analytical solution. Two
convection schemes are compared. Values shown are
those of the node-point error at x = 0.75.

h? SPUDS(1/6) QUICK(1/8)
4 —4.35438228 < 10 ~ ? - 7.45209055 x 10 ~ 2
8 —1.86968335 x 10 3 —-2.38132421x 103
16 —3.97474350 x 10~ ¢ -1.07787069 x 10 " *
32 —-5.50611000 x 10~ ° ~2.71242977 x 10 *
64 —7.06282736 x 10~ © —~6.32202472x 10 °
Rate O(hd) ol h?)
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Table 3. Grid-refinement study of diffusion schemes
using exact convection terms. Node-point errors are shown
at x=0.75. In column 1, the QUICK finite-volume OA
scheme is used. Column 2 gives results for classical
central differencing using an SP formulation.

Al QUICK CcDS

4 +1.59466830 x 10~ 2 +3.12478024 x 102
8 +4.07354976x 103 1+8.10497409 x 103
16 +1.02395148 x 103 +2.04524126 x 103
32 +2.56328047 X 10~ *  +5.12489289x 10~ *
64 +6.38006991 x 10~ % +1.27591015x 10~ *

Rate O(h?) oth?)

the finite-volume formulation is asymptotically 33% more
accurate. The reason for this is explained by a formal
discretization error analysis in the Appendix.

3.3 Diffusion models

For evaluating numerical models of diffusion terms, the
hybrid finite-volume flux is written

1 (ePéx,ePJ/2 — 1) _ (d’;)model

FHys - i

(48)

with a corresponding formula, F"Y®(x,)=F"8(x;,—h)
for the left face. If a single-point formulation is used,
written in pseudo-flux-difference form, then the appropri-
ate formula (for the current exponential solution) is

F' L Py(eren/? = 1) (#1) moder
=5 (€™ — 1)2sinh P, /2 Pé

(49)

3.4 QUICK diffusion flux

Interpolating a parabola through node values ¢,_,, &,
and ¢,, ,, on a uniform grid, leads to

QUICK _ ¢l+| - d)i

(¢)) -

Because of a geometric property of the parabola, this is
indistinguishable from linear interpolation between node
values ¢, and ¢,,,. When used with a finite-volume
formulation of the exact convection terms, equation (48),
this leads to the O(h*) convergence shown in the QUICK
column of Table 3.

(50)

3.5 Classical central differencing

If the second derivative at point i is approximated by
the second central difference

maodel

'dl‘b _ ¢i+1_2¢i+d>i—1

(51)
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Table 4. Grid-refinement study of diffusion schemes,
using a finite-volume flux-difference OA formulation, with
exact convective fluxes calculated from the analytical
solution. Two diffusion schemes are compared. Values
shown are those of the node-point error at x = 0.75.

h1 Equation (17} Equation (16)
4 —1.74276854 x 10~ 3 —-1.70401744 x 10~ ?
8 —1.12027932 x 10~ * —4.02705160 x 10~ °
16 —7.10364599 x 10~ © —1.00591394 x 10 " 3
32 —4.47274921x 107 —-2.53235117 x 10 " *
64 —2.79314528 x 10 ~ 8 —6.33685964 x 10 ~°
Rate ol h*) O(h?)

the corresponding pseudo-flux-difference formulation in-
volves the pseudo-gradient

« i1~
’ —

(¢) P
which, of course, is superficially identical to the QUICK
formulation of equation (50). But, in this case, the appro-
priate (pseudo-) convective flux is given by equation (49).
The grid convergence behavior is, therefore, not identical
to that of the QUICK diffusive formulation. As seen in the
CDS column of Table 3, single-point classical second-order
central differencing for diffusion asymptotically generates
errors exactly twice as large as the identical operator used
in a finite-volume formulation, using exact convective
terms in each case. The reason for this is seen in the
Appendix.

(52)

3.6 Fourth-order diffusion terms

Consider the diffusion operators given by equations
(16) and (17). Table 4 shows the finite-volume formulation
using exact convective fluxes from equation (48). As
expected, equation (17) shows an O(h*) trend, whereas
equation (16)—being used out of context—is only O(A").
according to equation (12).

Alternatively, Table 5 shows the single-point formula-
tion using the same diffusion operators together with equa-
tion (49) for convection. In this case, the convergence is
reversed, as expected, since now equation (17) is being
used out of context.

Table 5. Grid-refinement study of diffusion schemes,
using the SP differential equation expressed in pseudo-
flux-difference form, with exact convection terms calcu-
lated from the analytical solution. Two diffusion schemes
are compared. Values shown are those of the node-point
error at x=0.75.

h=? Equation (16) Equation (17)
4 —3.81023176 x 10~ 3 +1.24370324 < 102
8 -2.56261277 x 10~ * +3.78389793 x 10 ~ 3
16 —1.65684268 x 10~ ° +9.97608855 x 10~ *
32 ~1.05202438 x 10~ ¢ +2.5365009¢ x 10 " *
64 —6.59600528 x 10 ~ 8 +6.35095680 x 10~ °
Rate O(h*) O(h?)

Table 6. Grid-refinement study of the convection-diffu-
sion equation, using a finite-volume flux-difference (or
pseudo-flux-difference) formulation of two schemes: (i)
the standard QUICK convection-diffusion scheme; and (ii)
the SPUDS convection operator together with CDS for
diffusion. Values shown are those of the node-point error
at x=0.75.

h! Standard QUICK

4 +9.96622011 x 10~ *
8 +1.25198293 x 10~ 3
16 +5.56979450 x 10~ ¢
32 +1.74361676 x 10~ * +3.73713298 x 10~ ¢
64 +4.82503616 x 10~ ® +9.97187451x 105

Rate O( h?) o(h?)

SPUDS + CDS

+7.58488389 x 10~ 2
+3.87320949 x 103
+1.30280308 x 10 3

Note that the fourth-order single-point diffusion opera-
tor in Table 5 generates errors more than twice as large as
those of the fourth-order finite-volume operator in Table 4.
This, again, appears to suggest that a true finite-volume
formulation is likely to be more accurate than the corre-
sponding single-point scheme of the same formal order of
accuracy.

3.7 Convection-diffusion schemes

For reference, Table 6 shows a grid-refinement study of
two convection-diffusion schemes: (i) the standard finite-
volume QUICK scheme, using equation (6) for convection
and equation (50) for diffusion; and (ii) the SPUDS scheme,
equation (44), for convection, together with classical sec-
ond-order central-differencing, equation (52), for diffusion.
Both schemes are O(h*) because of the dominance of the
diffusion terms at the fine-grid end of the spectrum. Note,
however, that the SPUDS + CDS scheme asymptotically
generates errors twice as large as those of the standard
finite-volume QUICK formulation. This is clarified in the
Appendix.

4. Cell averages as dependent variables

Up until this point in the discussion, modelled derivatives
and fluxes have been written in terms of nodal point values
of the dependent variable. But many CFD schemes
—especially finite-volume formulations—treat the cell av-
erages as the dependent variables, writing the convective
and diffusive fluxes directly in terms of the ¢’s. (It is also
theoretically possible to write single-point formulations in
terms of cell averages, although this does not appear to
have ever been proposed in the CFD literature.) Note that
the distinction only occurs at third order and above; for
first- and second-order schemes, ¢, = ¢,.

From the analytical solution to the model problem being
studied, the exact formula for the cell average, defined in
equation (13), can be found as

_ €™ (sinhPy/2) /(Py/2)] — 1
3= It »/ )/(Pa/2)] (53)
e —1
The only difference between this and the exact nodal point
solution for ¢;, equation (22), is the appearance of the
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Table 7. Comparison of exact node-point
values, ¢;, with exact cell-average values,
¢,, for the model convection-diffusion prob-
lem with h=1/8.

X; (b/ d)(
0 0.0 0.000194956
0.125 0.012103427 0.012424854
0.25 0.032058603 0.032588548
0.375 0.064959128 0.065832859
05 0.119202922 0.120643461
0.625 0.208635820 0.211010867
0.76 0.356085740 0.360001531
0.875 0.599189560 0.605645608
1 1.0 1.010644223

hyperbolic-sine factor (in square brackets). For a given Pé,
this factor depends on the grid size: Table 7 shows ¢, and
¢, values for A =1/8. Note that the sinh factor has a
Taylor expansion given by

sinh P, /2 P; P

+ =+
P,/2 241920

+. (54)

which should be compared with equation (13), for exam-
ple.

4.1 Subcell interpolation

Given a set of ¢ (cell-average) values, one would like
to interpolate a subcell @(x) satisfying equation (13). This
can be done quite easily by introducing a discrete integral
variable, ¢, defined by

Y=, +ho, (55)

where it is understood that , values occur at the right
face of the corresponding cell i. An interpolation, (x),
collocated at ¥, values can then be differentiated to give

o(x):

dy(x)
dx

automatically satisfying equation (13), no matter what type
of interpolation is used for {(x), provided the collocation
conditions

Y(x,+h/2)=4, forall. (57)

are satisfied, where x; is located at the center of cell /.

For example, piece-wise polynomial interpolation can
be used for interpolating ¢(x) over each cell i. In this
case, discontinuities in slope occur in {(x) at cell faces;
these correspond to discontinuities in value in ¢(x) across
cell faces.

d(x) = (56)

4.2 Third-order finite-volume convection terms

Just as with the QUICK(1 /8) finite-volume convection
scheme using nodal point values, the corresponding third-
order cell-average formula is based on local (piece-wise)

646 Appl. Math. Modelling, 1995, Vol. 19, November

quadratic interpolation of ¢(x). This requires piece-wise
cubic interpolation of (x). For cell i, a symmetrically
located cubic is interpolated by collocation through ;_,,

W, . ¢, and W, giving

w(§)=w.-+(%%wi”
_ "/’i+1_3¢’i+3¢'i-1_¢'i—2)(£)
6 h
(wi+1_2¢i+d/i41)(§)2
+ J—
2 h
+(¢i+l—3wi+3¢i—l—¢i—2)(é)3
6 h

(58)

over the range: —h < &<0, where é=x—(x,+h/2).
From its definition, equation (56), the subcell interpolation
across cell i is then given by the quadratic

d(¢) = %(giﬂ + Ez) o %($i+l —2$i+ 5,--1)

2

+%($,-+,—2$,-+$~)(§) (59

For steady flow (with Pé > 0), the right face value of cell i
is given by

b(i)=d(£=0)=3(d., + &)
—%(Eiﬂ _2$i+ 351—1) (60)

This "1/6" formula in terms of cell averages is consistent
with the "1 /8" formula using nodal point values. This can
be seen by using equation (59) to evaluate ¢, in terms of
the ¢’s:

¢ =d(&=—h/2)= _i_ 5%($E+1 _29_[’1"*’ Ei-l)
(61)
and noting that 1/6 =1/8 +1/24,

Table 8. Grid refinement study of the finite-volume con-
vection scheme corresponding to equation (60), based on
cell-average values and using exact diffusive fluxes. The
cell-average error is shown together with the corresponding
node-point error using equation (61).

h? CAE (@ x=0.75) NPE (@ x=0.75)
4 —4.53809633 x 10 2 -5.18134013x 102
8 —1.88922017 x 10~ 3 —1.90618632 x 10~ 2
16 —3.98510249 x 10~ * —4.48060981 X 10~ *
32 —-5.50969540 x 10 ~ 5 —6.76253568 x 10 5
64 —~7.06397697 x 10~ © -1.01264031x 10~ %
Rate Ol h®) o(h®)
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Table 9. Grid refinement study of the SP convection
scheme corresponding to equation (64), based on cell
average values and using exact diffusion terms. The
cell-average error is shown together with the correspond-
ing node-point error using equation (61).

h=? CAE (@ x=0.75) NPE (@ x =0.75)
4 —4.86965236 x 10 ~ 2 —5.52922960 x 10 2
8 —2.86590535 x 10 ~ 3 ~2.90394004 x 10~ 3
16 —5.11359278 x 10~ * —5.62692325 x 10~ ¢
32 —6.86685845 x 10~ ° —8.11969093 % 10~ °
64 —~8.81228514%x 10§ —1.18744119x 10~ °
Rate O(h®) O h3)

4.3 Grid-refinement using cell averages

If equation (60) for ¢,(i) and the corresponding for-
mula for ¢, given by conservation, ¢ i) = ¢ (i — 1), are
used together with exact diffusive fluxes, using equations
(34) and (35), solution of the resulting difference equation
will, of course, generate approximate ¢, values (as op-
posed to ¢, values). These should be compared with the
corresponding exact ¢, values by introducing the cell-
average error

CAE, = ¢,(computed) — ¢, (exact) (62)

using equation (53) for ¢exact). Table 8 shows CAE
values at x =0.75 for convective modelling errors using
equation (60) together with exact diffusive fluxes. As
expected from the quadratic construction of face values.
this is a third-order accurate scheme. One can, of course.
retrieve node values by using equation (61). The corre-
sponding NPE at x = 0.75 is also shown in the table.

!

4.4 Single-point formulation using cell acerages

For completeness, the single-point formulation using
cell averages should be considered. To achieve third-order
accuracy, this requires an upwind-weighted cubic subcell
reconstruction of ¢(x) corresponding to a quartic piece-
wise polynomial interpolation of ¢r(x), collocated at i, _;,
2 Wy, W, and y,,, (for Pé > 0). This gives

dqb)““’"el 7¢,., + 154, — 27, |, +5, ,
x|, 24k

(63)
This can be expressed in pseudo-flux-difference form by
identifying
¢r*(i) = %(EHrl + .(Z)t) - %($i+] - 2$1 + $1 1 )
(64)

with ¢, (i) = ¢, (i — 1), as usual. Table 9 shows the
corresponding grid convergence of CAE and NPE at x =
0.75.

5. Conclusion

In constructing convection-diffusion schemes, there are
four general categories. First, one can choose to model

first and second derivatives at a single point; this is the SP
formulation. Alternatively, one can choose to model the
face values and gradients in a finite-volume formulation;
this is the operator-average, or OA, formulation. Each of
these formulations can use either nodal point values or
cell-average values of the dependent variable. Control-
volume formulations are automatically in conservative
flux-difference form. The two SP formulations can also
usually be written in a pseudo-flux-difference form; in this
case, conservation is satisfied even though the modelled
"fluxes" do not represent the true physical fluxes. When
working with third (or higher)-order convection methods,
it is important to model all terms in the equation in the
same manner (i.e., either all SP or all OA); a mixed
formulation is condemned to (at best) second-order accu-
racy, no matter how accurate the individual terms.

For a model problem with a known analytical solution,
the order of accuracy of the convection terms in isolation
can be studied in a grid refinement test, using exact
diffusion terms (and vice versa). Tests of this type showed
that, for methods using nodal point values:

- QUICK(1/8) is O(h*) accurate in an OA formulation
but only O(4?) accurate in an SP formulation.
SPUDS(1/6) is O(h*) accurate in an SP formulation
but only O(k?) accurate in an OA formulation.

For methods using cell-average values as dependent
variables:

- The "1/6" formula gives O(h’) convergence in an OA
formulation.

- An SP formulation requires a "5 /24" factor for O(h)
accuracy.

In general, finite-volume formulations are considerably
more accurate than the corresponding finite-difference for-
mulation of the same formal order. For example, the
QUICK(1 /8) third-order finite-volume convection scheme
is 33% more accurate than the SPUDS(1/6) third-order
finite-difference scheme. Similarly, the QUICK(1/8) con-
vection-diffusion scheme in a finite-volume formulation is
asymptotically twice as accurate as using SPUDS(1/6) for
convection with CDS for diffusion in an single-point for-
mulation, although both schemes are formally only
second-order accurate because of the dominance of the
diffusion terms in the fine-grid limit.
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Appendix A: Relationship between truncation error
and discretization error

In the following analysis, it is assumed that the problem is
linear, steady, and one-dimensional involving a uniform
spatial grid of mesh-size h. Generalization of these condi-
tions are relatively straightforward. The analysis estab-
lishes the (often taken for granted) fact that discretization
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error in the solution is of the same order of accuracy as
truncation error in the operator in a single-point formula-
tion. The same is true of finite-volume formulations.

Single-point formulation

Consider a linear operator involving derivatives of vari-
ous orders at a single point. This (exact) differential opera-
tor is represented by L. Assume that U(x) is the exact,
O(1), solution of the exact differential equation

L(U) =S(x) (A1)

where S(x) is a known source term. Now consider a
discrete operator representing a numerical approximation
to the single-point differential operator; this is represented
by D. Assume that u; is the exact nodal-point solution of
the approximate numerical difference equation, defined at
nodal points i, i.e.,

D(u;) =S, (A2)

where S, =S(x;) is known exactly (an approximate S,
will, of course, introduce source-term errors).

To define the truncation error of the numerical operator,
assume that v(x) is a test function possessing all deriva-
tives. Then the truncation error can be defined as the
difference between the approximate and exact operators,
operating on v at the nodal point i

TEgp(v)l; =D(v)li = L( 1)l (A3)

By making Taylor series expansions of the terms in D(¢)l;,
the truncation error will be found to depend on 4, as
follows

TEgp(v)l; = P(¢)lih? + HOT = O(h") (A4)

where P(v) involves derivatives of ¢, and p is an integer.
Note that using U as the test function in equation (A3)
gives

D(U)|;=L(U)|, + TEg(U)l, =S, + TE,:(U),
(AS)

using equation (A1) evaluated at i. This equation is valid
only at points where U and all its derivatives are continu-
ous. Singular points require special treatment and are
excluded from the following analysis.

Define the nodal-point discretization error as the differ-
ence between the exact nodal-point solution of the approxi-
mate numerical equation and the exact solution of the
exact differential equation, evaluated at /:

e;=u;— U (A6)

This is the same as the node-point error defined previ-
ously. [Note that the present analysis uses a consistent
definition of "error" as

€ITor = approximate — exact (A7)

Some authors sometimes use the reverse (negative) of this,
which strictly should be called correction rather than error.]

Consider the discrete operator applied to the discretiza-
tion error (using the assumed linearity property)

D(e;) =D(u;) — D(U,) (A8)

648 Appl. Math. Modelling, 1995, Vol. 19, November

or, from equations (A2)—(A5), e; satisfies the discrete
equation

D(e;,) = —TEg(U)|;= —P(U)|;h? + HOT

(A9)

Note that S, from equations (A2) and (A5) has cancelled;
otherwise, additional source-term errors must be retained.
Now rewrite the left-hand side as

D(e,) =L(e)li+[D(e) —L(e)l]

=L(e)l;+ TEgp(e)l; (A10)

where e(x) is a continuous function, with e, = e(x;). This

means that e(x) satisfies the differential equation
L(e)li, = —TEsp(U)li, — TEgp(e)ls, (Al11)

where i, is the nodal value of a fixed point, x = constant,
as h is varied. Assume that, to leading order,

e=0(h?) (A12)
where g > 1. Then equation (A11) becomes
L(e)l;, = —P(U)|; h” + HOT + O(h?*7)
=0(h") (A13)

Since L is a linear homogeneous operator, independent of
h, this also means that the leading single-point discretiza-
tion error is

e’ =0(h?) (A14)
i.e., that g=p. The discretization error of a discrete
operator in a single-point formulation is thus of the same
order as the single-point truncation error.

Finite-volume formulation

Assume that the exact differential operator given by
equation (A1) is averaged over a finite-volume cell, i. The
corresponding (exact) finite-volume equation is then

L(U) =S8(x) (A15)
where, in general, the operator average is

_ 1 _

L=Wffdev (A16)
or, in one dimension,

— 1 x+h/2

L= [""Lax (A17)

h'x—ns2

Again, U(x) is considered to be the exact solution of the
exact finite-volume equation, where S(x) is the known
cell-average source term.

Let the corresponding approximate numerical finite-
volume difference equation be represented by

D(u,) =S, (A18)

where u; is the exact nodal-value solution of this approxi-
mate equation, and S, is the known exact cell-average
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source term at cell i. Note that finite-volume (or, for that
matter, single-point) formulations can be written in terms
of cell-average values, u,, rather than nodal values, u,. In
general, this will involve a different discrete operator. The
present analysis will focus on nodal values, but entirely
similar conclusions can be reached using cell-average val-
ues.

Once again, the truncation error of the discrete finite-
volume operator is defined as the difference between
approximate and exact operators, operating on a test-func-
tion, v, at cell i:

TEFV(”)':‘:D(")‘i'Z(")|i (A19)
Taylor series analysis leads to
TEp (v)l; =R(v)|;A"+ HOT (A20)

analogous to equation (4). Using U instead of ¢ gives

DU =L(U)|; + TE . (U)l, =5, + TE,(U)/,
(A21)

for each cell, i.

The nodal-point discretization error is again defined by
equation (A6). This now satisfies the following discrete
equation

D(e;) = —~TE (U)li= —R(U)|;h" + HOT
(A22)

Using equation (A10) results in a differential equation for
e:

L(e)li, = =TEw(U)l, = TEg(e)l,, (A23)

Note that the left-hand side has been written in terms of L
rather than L, since L depends on 4. Assume that, to
leading order,

e=0(h") (A24)

Then equation (A23) becomes
L(e)l, = —=R(U)|, " + HOT + O(h'*?) = O( k")
(A25)

as assumed, since p > 2, according to equation (12). The
discretization error of a discrete operator in a finite-volume
formulation is thus of the same order as the finite-volume
truncation error:
efxv=0(h’) (A26)

Note, however, that for a given discrete operator, treated
alternatively as a single-point or a finite-volume operator,
the corresponding respective truncation (and, hence, dis-
cretization) errors will be different. In fact, according to
equation (12), they will differ by O(4?).

Finally, it should be clear that for any two different
discrete operators or different (SP or FV) formulations
representing a physical quantity (e.g., convection) the ratio
of the discretization errors will be in the same proportion
as the ratio of the respective truncation errors, as 4 — (.
This will be demonstrated in the following section.

Examples

The model convection-diffusion problem introduced
earlier forms of a good example for studying the relation-
ship between truncation error and discretization error. For
convenience, the governing equations are repeated here;
written in terms of the exact solution, U(x).

Single-point formulation

au 1 d’U

dc  Pé dx*

=0 (A27)

Finite-volume formulation

U-U 1 /0 -U
( - — ’ ) =0 (A28)
. A Pé h
Boundary conditions
U(0)=0 U(l)y=1 (A29)
Exact solution
ePéx -1
U( x) = eP—é——l (A30)
Derivatives
dU  Pée®* d*U  Pée* A31)
E—ePé_l de—ePé—l"“ (
Fundamental FV-SP relationship
ny _ (n) 2 4
L S 4 h_¢(n+3) n _h_¢(n+5)
h ' 22317 2451 7
h6
+ "+ . (A32)

2071

Convection operators

The single-point upwind difference scheme for convec-
tion recommended in Ref. 4 can be written as

2¢i+1 + 3d’i - 6¢i—1 + ¢i—2
6h

In terms of a test-function, v, this has a Taylor expansion
about grid-point i as follows

[SPUDS] = (A33)

dv p{v) ) oD
=|—| +—=#-——n+—=0
[spuDs] (dx) 12 30 72
U(vii)
- 2'52 RO+ ... (A34)
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This is the appropriate form for a single-point formulation.
Using equation (A32), for #n =0, gives the corresponding
finite-volume formulation

" )
—_ \ l.(

L'r t 14 5 i a
[SPUDS] = ( ’) ~—h+ "
. h 24 12

13049 e el
4 s 6

384 727 15360
+ (A35)

The QUICK convection operator can be obtained from
equations (40) and (41) as

NCK .
d)r()l,[( 7(1)[0UI(]\

[QUICK(C)] = p

3d)1+l + 34)1 - 7¢I*| + (bl*:

8h
(A36)
The Taylor expansion about grid-point 7 is
CK(C)] ( L) e
UICK(C)|=| — | + —h + :
[ (©) \ dx ), 24 16
lll‘;\) l,](vi) ) 591,;“0
— + —_— S 1 36
480 96 20160
+ ... (A37)

This would be the form used in a single-point formulation.
However, QUICK is specifically designed for a finite-
volume formulation; using equation (A32), for n = 0, leads
to

Aiv) ,(V)

Gy I
UICK(C =( |+ -
[QUICK(O] ={ == |+ 57"~ 5
l,(\i) ‘;{,(\ii)
s T 6
9% 1024
(A38)

Numerical values

To get some idea of the relative size of truncation error
terms, the known exact solution of the model problem is
used, with # = 1/64. This would normally be considered a
"very fine" grid; and asymptotic trends have been estab-
lished, as seen in the previous tables. The truncation error
for the single-point formulation of the SPUDS operator is
derived from equation (A34) using U in place of v:

U(iv) U(v] U»(Vi)
TE,[SPUDS] = —&* — ——h* + ——4°
sel ] 12 30 72
‘lvin
—-2‘—5h6+ (A39)
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For the particular model problem being considered, this
gives, at x = 0.75,

TE,[SPUDS]
54 25 46 57
= _Pih3__Pih4+Pih5__Pi 6
12 30 72 252

£075P¢
X y A40
a -
For Pé =4 and h=1/64, the numerical values of the
individual terms are, respectively

TE,,[SPUDS] = (8.13802 — 0.20345 + 0.00530

—0.00010) X 3.74743 x 10~°
(A41)

or
TE,[SPUDS] = 2.97538 X 10~ (A42)

Note that the second, O(A*), term in the truncation error is
not insignificant.

If SPUDS is now considered (albeit inappropriately) as
a finite-volume formulation, equation (A35) gives the cor-
responding truncation error as

l]im (Ji(jV) 13(]5(\’)
TEy [SPUDS] = = —-i® + ——h* = — ok
U-(Vi) 61U(Vii)
+——h— ——h+ ...
72 15360
(A43)

with numerical values
TE, [SPUDS]
= (—65.10417 + 8.13802 — 0.20663 + 0.00530
—0.00002) X 3.74743 X 10~° (A44)

or
TE,, [SPUDS] = —2.14231 x 10~* (A45)

From equation (A37), the QUICK convection scheme
used (inappropriately) in a single-point formulation would
have a truncation error

TE, [QUICK(C)]
U»W U_(iv) 11 U»( v) U(vi)
=L L Lot s
24 16 480 96
59l]i(vii)
- B+ (A46)
20160
giving numerical values
TE, [QUICK(C)]
= (65.10417 + 6.10352 — 0.13987 + 0.00397
—0.00007) X 3.74743 x 10~° (A47)
or
TE, [QUICK(C)] = 2.66336 x 10~* (A48)
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By contrast, the (appropriate) finite-volume formulation
of QUICK leads to

U U
_ ! 3 ! 4
TEry [QUICK(C)] o e
U(vi) 3u_(Vii)
{ 5_ I hﬁ-ﬁ-
96 1024
(A49)

with numerical values
TE &y [QUICK(C)]
= (6.10352 — 0.14305 + 0.00397 — 0.00007)

X 3.74743 X 10 ° (A50)
or
TE;, [QUICK(C)] = 2.23511 x 10 ° (AS1)

Recall from Tables 1 and 2, node-point errors for
h=1/64:

NPE, [QUICK(C)] = —5.30547084 x 10°

(AS2)
NPE,, [SPUDS] = +5.08534128 X 10°°  (A353)
NPE,,[SPUDS] = —7.06282736 x 10™*  (A54)

NPE, [QUICK(C)] = —6.32202472 x 10 °
(AS5)
Note, in particular, the ratio of the single-point SPUDS

error to the finite-volume QUICK (C) error (i.e., the two
third-order methods):

NPE,[SPUDS]
NPE,, [QUICK(C)]

1.33... (A56)

This is virtually the same as the ratio of the respective
leading truncation error terms. From equations (A39) and
(A49),

LTE,[SPUDS] 4
LTE, [QUICK(C)] 3

(A57)

This relationship will be found to be (approximately) true
for other ratios, as well.

Diffusion operators

The second-order central-difference operator for diffu-
sion is

b~ 24+ &,
[CDS2] = —— - ‘ (A58)
This can be viewed as a single-point operator
2., l‘giv) (Vi) Jviih)
CDS2]=|— | + —= "+ ——h*+ ——h°
[ ] ( dx- 12 360 20160
+ ... (AS9)

or a finite-volume operator, using equation (12), with
n=1,

r 1

1300
h +
24 5760

h4

v, — U v
[CDS2] = ( )

(viii)
{

+
21504

Note that the latter form (with the smaller truncation error)
corresponds to the QUICK finite-volume formulation of
diffusion, QUICK(D).

For Pé =4 and h=1/64, the respective numerical
values are

v

He+ (A60)

TEg,[CDS2] = (5.20833 X 10~* + 6.78168 X 10~
+4.73053 X 107 ')

X 3.74743 X 107" (A61)

and
TE;, [QUICK(D)] = (2.60417 X 102 + 5.51012
X 1077 +4.43487 X 10~ 1!)

X 3.74743 X 107! (A62)
In either case, the leading term is dominant. Note that
LTE,|CDS2
o[CDS2] (A2
LTE, [QUICK(D)]

This is reflected in the node-point error of Table 3, where

NPE., [QUICK(D)] = +6.38006991 X 103
(A64)

and

NPE,[CDS2] = +1.27591015 x 10~ (A65)

This means that the finite-volume (QUICK) formulation of
diffusion is twice as accurate as the single-point CDS2
formulation, although both are formally second-order accu-
rate.

The fourth-order single-point diffusion operator given
by equation (16) has a single-point truncation error

(vi) U_(viii)

TE, [equation (16)] = — —gl.Th‘t - 11008

W+ ..
(A66)

When used (inappropriately) as a finite-volume operator,
this gives

TE -y [equation (16)]
107(]i(viii)
4 _ 6
107520

[]i(iV) 13Ui(vi)
_ h? —
24 1152

(A67)

which, of course, is only second-order accurate, according
to equation (12).
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By contrast, the fourth-order finite-volume operator
given by equation (17) has a finite-volume truncation error

) 3(][(»‘1) ) 193[][_(\'iii) .
TE.y [equation (17)] = — 20 h - 33560 h

+ .. (A68)

And if this were used (inappropriately) in a single-point
formulation, the truncation error would be

TEg;, [equation (17)]
U‘(iv) U-(Vi) lgu(wii)
=—p - ——p- s (A69)
24 240 1080
again, second-order, according to equation (12). Note that
LTEg, [equation (16)
e : (16)] =237... (A70)
LTE ., [equation (17)]

From Tables 4 and 5, for h=1/64,

—6.59600528 x 10 ¢
~2.79314528 x 10"

NPEg, [equation (16)]
NPE,, [equation (17)]

=2.36... (AT1)

Again, one sees that the finite-volume fourth-order formu-
lation is significantly more accurate than the single-point
fourth-order formulation.

Convection-diffusion operators

The standard QUICK scheme for both convection and
diffusion can be written

34)1*1 +3d)z77d)1 1 + d)‘,z\
[QUICK]z( )
8h
_L(d)1+l_2d)z+(bifl‘) (A72)
Pé\ h*

Viewed as a finite-volume formulation, this gives

jouiek = (1) - L)
U ) Pél k.

1 L,(n‘) ’[,(ivb
(el
pé | 24 16

3 1 {1309
— Yy ( . i
128 Pé\ 5760

RO+ .

'1” (vii) { (Vi)
1 + o 1
1024 Pé ( 21504 )
(A73)
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Whereas a single-point analysis would give

[QUICK]
d*v L«:" 1 o™
- h
ax® 24 Pé 12

=(%),.

U(w) 11U(V) U(Vi)
h4
360 )
(H) (vn) ( viii)}
— ||t
[ 20160 ( 20160)
(A74)

Although the truncation error terms look different, it is not
hard to show that, in fact, in terms of U, they are identical.
For example, since U satisfies the exact equation

au 1 d°U
& Pt (A73)
then
1 .
Um — P_éU(lv) (A76)

and the leading single-point truncation error term becomes

l]{lﬂ 1 U,( iv) 1 Ui( iv) 1 Ui( iv)
hZ = — _ hZ
Pé 24 Pé¢ 12

24 Pé 12
(iv)
U -
Pél 12

and, similarly for the other terms.
The SPUDS-plus-CDS2 convection-diffusion scheme
can be written as

[SPUDS + CDS2]
_ ( 2¢.+3¢,~ 6d)i~l +é_, )
6h

(A77)

(A78)

h2

. l ¢i+1
Pé

’2d’i+¢i-1)

As a single-point formulation, this gives

[SPUDS + CDS2]

dv 1 (d*v 1 {0l
= o hl
( dx) a? ] pél 12
(w) U;v) 1 U[(Vi)
—_— + — nt
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(vx) U;Vii) 1 Ul(viii)
+ — e
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(A79)
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whereas, for a finite-volume formulation,

[SPUDS + CDS2]

(1',-0,) L=
B h Pé\ h )

[ o 1 ) [ v)
-[=+ — | |h | = |
24 Pé( 24 ) ( 12 )

3ol 113000 POy
- +— ) B+ ——)h’
384 Pé\ 5760 72
()11':\‘“) 1 / I,:wn) \
—|—+ = ) o+ ... (A80)
1530 Pé \ 21504

Once again, in terms of U, the two truncation errors are
identical.

Note that, because of the dominance of the second-order
diffusion terms, as 4 — 0,

LTE[SPUDS + CDS2]
LTE[QUICK]

=2 (A81)
This is borne out in Table 6, where it is seen that, for
h=1/64,
NPE[SPUDS + CDS2]
NPE[QUICK]

9.97187451 x 107
482503616 X 10°°
=2.07 (A82)

Finally, it should be noted that in high-convection prob-
lems, where the grid Péclet number

P,=hPé

(A83)

is large, the appropriate way to write the leading truncation
error terms is as follows:

(iv) 2
LTE, [QUICK] = — |1 - — | #* A84
slovick] = 1= e as
and
i(iV) 1
LTEg,[SPUDS + CDS2] = 1-—|A

12 P,

(A85)

This means that, for most flows of interest, using practical
grids (so that P, is very large), these convection-diffusion
schemes are effectively third-order accurate (even though
only formally second-order accurate as & — 0).
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