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The linear stability of steady attached oblique shock wave and pseudosteady regu-
lar shock reflection is studied for the nonviscous full Euler system of equations in
aerodynamics. A sufficient and necessary condition is obtained for their linear
stability under three-dimensional perturbation. The result confirms the sonic point
condition in the study of transition point from regular reflection to Mach reflection,
in contrast to the von Neumann condition and detachment condition predicted from
mathematical constraint. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2821982�

I. INTRODUCTION

As a shock front hits a planar wall with an incident angle �, an oblique reflected shock wave
is produced. For small incident angle �, the so-called regular shock reflection happens with the
incident and reflected shock fronts intersecting at a point P on the plane surface. Figure 1 shows
a regular shock reflection near the intersection point P on an infinite planar wall. In Fig. 1, I is the
incident shock wave and R the reflected shock wave, with incident angle � and reflection angle �.

In wind tunnel experiment, it has been long observed that for fixed shock strength of I, as the
incident angle � increases past a critical value �c, the configuration in Fig. 1 will change into a
more complicated Mach reflection,1,3,10,14,34 with a third shock �Mach stem� connecting the inter-
section point and the plane surface, as well as the appearance of other features such as vortex
sheet.

The relations governing the possible state on two sides of shock front are derived from
Rankine-Hugoniot conditions on shock front for the Euler system of equations. Such relations can
be graphically represented as a curve called shock polar, see Refs. 10 and 35, also Fig. 3. Any
point on the shock polar corresponds to an incident angle �. It is obvious from the shock polar that
there is a maximal angle �d corresponding to the so-called “detachment point” beyond which a
regular reflection is simply impossible.

The determination of the exact transition angle �c from regular reflection to Mach reflection
has been one of the focuses of shock wave research since von Neumann. In Refs. 30 and 31, von
Neumann introduced the “detachment condition” and “von Neumann condition.” The detachment
criterion is the above mathematical constraint of detachment point so that for an incident angle
���d, a regular reflection is impossible. The von Neumann criterion states that there is a von
Neumann angle �N��d such that for an incident angle ���N, a Mach reflection is impossible,
see also Refs. 13 and 16.

A sonic point on the shock polar is the angle �s with �s� ��N ,�d�, which corresponds to the
sonic speed in downstream flow. The “sonic point criterion” has also been proposed which predicts
that the transition from regular reflection to Mach reflection occurs at sonic point.3 For real gas,
the sonic point is very close to detachment point �not larger than 6°, see Refs. 1 and 14, their
difference in Fig. 3 is exaggerated� and therefore, it is very difficult to experimentally distinguish
the two angles �s and �d.
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The study on possible criteria for transition from regular to Mach reflection and Mach to
regular reflection has been a very active research field for decades. There are massive amount of
literatures on such criteria under various conditions, see also the extensive bibliography in Ref. 1.
Especially rich is the experimental and numerical work in addition to analytical method.

In particular, it has been shown that the transition point for regular to Mach reflection and for
Mach to regular reflection could be different, i.e., there is a hysteresis, see Refs. 4 and 17 and for
experimental and numerical, also see Refs. 1, 9, 8, 12, 17, 18, 20, 21, and 36.

It has also been shown, both experimentally and numerically, that the transition point may
depend on, among others,

• the Mach number of the incident shock,17

• the viscosity,15,24

• boundary layer effect,3 and
• downstream influence.4

In a recent mathematical survey on the topic,34 it is remarked concerning the transition from
regular to Mach reflection that “this anticipated transition must be due to some instability, but has
not been explained rigorously so far,” see Ref. 34 �Sec. 3A�.

The purpose of this paper is to address this issue and perform a rigorous three-dimensional
stability analysis on the regular shock reflection. The result of the analysis confirms the conjecture
in Ref. 34 and provides the mathematical support to the sonic point criterion for the transition
from regular shock reflection to Mach reflection.

The shock reflection phenomenon is closely related to the oblique shock waves. An oblique
shock wave is produced as an airplane flies supersonically in the air. With other conditions fixed,
the shape of such shock waves at the wings of the airplane is determined by the shape of the front
edge of the wing. At very small angle � of a sharp wing edge, the shock front is attached to the
wing. But the shock front becomes detached as the angle � increases past a critical angle �c. Figure
2 shows the profile of an attached shock wave S and the flow at a sharp wedge, see Refs. 1, 10, and
34.

Again it is of great interest to know the exact angle �c at which an attached shock front
transforms into a detached one, since a detached shock front drastically increases resistance to the

FIG. 1. Regular shock reflection at a planar infinite ramp: I, incident shock front; R, reflected shock front; �, angle between
incident shock front and planar ramp; and �, angle between reflected shock front and planar ramp.

FIG. 2. An attached oblique shock wave in supersonic flight: q�0, incoming upstream velocity; q� , inflected downstream
velocity; S, attached shock front; �, angle between incoming velocity and solid surface; and �, shock inflection angle.
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flight. Mathematically, it means the determination of the maximal angle �c which would guarantee
a stable attached oblique shock front and for any angle larger than �c, the shock front will become
detached.

There are also extensive studies on oblique shock waves using theoretical, numerical, and
experimental tools, see the references in Refs. 1 and 34. Rigorous mathematical analysis has been
done mostly for various approximate models, such as irrotational potential flow model and
others.5,6,33 Such analysis is only for sufficiently small incident angle � in shock reflection or � in
oblique shock wave, and usually also assumes for very weak incident shock front. Such analysis
is limited in dealing with the region far away from the transition point and therefore did not
provide any information to the transition criterion of oblique shock from “attached” to “detached,”
which always happens beyond “small” incident angle.

In Ref. 23, the stability of oblique shock waves is studied for large incident angle for an
isentropic Euler system model. Since physical shock waves are always accompanied with entropy
change and the shock strength cannot be assumed to be small for the oblique shock wave near the
transition from attached to detached, or the shock reflection near transition from regular to Mach
reflection, we need to study the stability condition for the full nonisentropic Euler system.

This paper will study oblique shock waves for the general nonviscous gas for arbitrary shock
strength and for large incident angle, in particular, for incident angle near transition point. Then
the results will be applied to regular shock reflection. The final stability conditions show that the
oblique shock wave and regular shock reflection are linearly stable with respect to geometric
configuration and upstream perturbation �see also Ref. 19� only up to the sonic angle �s��d. The
sonic angle �s corresponds to the sonic downstream flow, while angle �d is the detachment point
�see Theorems 2.1 and 3.1�. The theorem provides the analytical support to the sonic point
criterion in the transition from regular to Mach reflection3 and confirms the conjecture in Ref. 34.

The paper is arranged as follows. In Sec. II, we give the mathematical formulation of the
problem and state the main theorem �Theorem 2.1� for oblique shock waves. In Sec. III, the main
theorem in Sec. II is applied in the analysis of regular shock reflection and obtain Theorem 3.1
regarding its stability and its physical implications. The detailed proof of Theorem 2.1 on the
linear stability of oblique shock front is given in Sec. IV.

II. FORMULATION AND THEOREM FOR OBLIQUE SHOCK WAVES

The full Euler system for nonviscous flow in aerodynamics is the following:

�t� + �
j=1

3

�xj
��v j� = 0,

�t��vi� + �
j=1

3

�xj
��viv j + �ijp� = 0, i = 1,2,3, �2.1�

�t��E� + �
j=1

3

�xj
��Ev j + pv j� = 0.

In �2.1�, �� ,v� are the density and the velocity of the gas particles, E=e+ 1
2 �v�2 is the total energy,

and the pressure p= p�� ,E� is a known function.
In the region where the solution is smooth, the conservation of total energy in �2.1� can be

replaced by the conservation of entropy S, see Ref. 10, and system �2.1� can be replaced by the
following system:
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�t� + �
j=1

3

�xj
��v j� = 0,

�t��vi� + �
j=1

3

�xj
��viv j + �ijp� = 0, i = 1,2,3, �2.2�

�t��S� + �
j=1

3

�xj
��v jS� = 0,

with pressure p= p�� ,S� satisfying

p� � 0, p�� � 0. �2.3�

Shock waves are piecewise smooth solutions for �2.1� which have a jump discontinuity along
a hypersurface ��t ,x�=0. On this hypersurface, the solutions for �2.1� must satisfy the following
Rankine-Hugoniot conditions, see Ref. 10, 34, and 35:

�t�
�

�v1

�v2

�v3

�E
� + �x1�

�v1

�v1
2 + p

�v1v2

�v1v3

��E + p�v1

� + �x2�
�v2

�v1v2

�v2
2 + p

�v2v3

��E + p�v2

� + �x3�
�v3

�v1v3

�v2v3

�v3
2 + p

��E + p�v3

� = 0. �2.4�

Here �f�= f1− f0 denotes the jump difference of f across the shock front ��t ,x�=0. In this paper,
we will use subscript “0” to denote the state on the upstream side �or, ahead� of the shock front
and subscript “1” to denote the state on the downstream side �or, behind�.

Rankine-Hugoniot condition �2.4� admits many nonphysical solutions to �2.1�. To single out
physical solution, we could impose the stability condition, which argues that for observable physi-
cal phenomena, the solution to mathematical model should be stable under small perturbation. In
the case of one space dimension, this condition is provided by Lax’ shock inequality which
demands that a shock wave is linearly stable if and only if the flow is supersonic �relative to the
shock front� in front of the shock front and is subsonic �relative to the shock front� behind the
shock front, see Refs. 10 and 35.

In the case of high space dimension, it is shown that for isentropic polytropic flow, Lax’ shock
inequality also implies the linear stability of the shock front under multidimensional perturbation.
However, an extra condition on shock strength is needed for general nonisentropic flow, see Refs.
27 and 26.

In the study of steady oblique or conical shock waves, the issue is the stability of shock waves
with respect to the small perturbation in the incoming supersonic flow or the solid surface. This is
the stability independent of time as in Ref. 7, in contrast to the stability studied in Refs. 27 and 38,
and is also different from the study of other unsteady flow, see Refs. 5 and 25.

The result on the stability of oblique shock waves for the full Euler system is the following
theorem �Theorem 2.1�. The corresponding theorem �Theorem 3.1� on regular shock reflection
will be stated in Sec. III.

Theorem 2.1: For three-dimensional Euler system of aerodynamics �2.1�, a steady oblique
shock wave is linearly stable with respect to the three-dimensional perturbation in the incoming
supersonic flow and in the sharp solid surface if the following is obtained.

1. The usual entropy condition or its equivalent is satisfied across the shock front. For example,
shock is compressive, i.e., the density increases across the shock front:
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�1 � �0. �2.5�

Or equivalently, Lax’ shock inequality is satisfied.
2. The flow is supersonic behind the shock front

�v� � a . �2.6�

3. The shock strength �1 /�0 satisfies

	 vn

�v�

2	�1

�0
− 1
 � 1. �2.7�

In �2.7�, vn denotes the normal component of the downstream flow velocity v.

Conditions �2.5�–�2.7� are also necessary for the linear stability of a planar oblique shock.
Remark 2.1: The necessity part of the theorem follows from the fact that Kreiss’ condition22 is

the necessary and sufficient condition for the well posedness of the initial-boundary value problem
for hyperbolic systems under consideration.

Remark 2.2: It is interesting to compare condition �2.7� with the following conditions in Ref.
27 �see �1.17� in Ref. 27�:

M2��1/�0 − 1� � 1, M � 1. �2.8�

We notice that �2.7� and �2.8� have very similar forms. The only difference is that the Mach
number M in the first relation of �2.8� is replaced here by vn / �v� in �2.8�. Since Mach number
M �1 in �2.8� and �v��a in �2.6�, we have

vn

�v�
� M .

Hence condition �2.7� is weaker than conditions �2.8� in Ref. 27.
Despite the similarity, we emphasize that �2.7� and �2.8� deal with two different types of

stability. �2.7� is about the time-independent stability with respect to the perturbation of incoming
flow and solid surface, while �2.8� is about the transitional stability with respect to the perturbation
of initial data, see also Remark 2.3 in the following.

Remark 2.3: In Ref. 38, the linear stability was studied for oblique shock wave and shock
reflection and it was shown that all weak �relative to strong, but with large incident angle� oblique
shock waves are linearly stable, which obviously differs with the conditions in �2.6� and �2.7� in
Theorem 2.1. The difference originates from the fact that different types of stability are consid-
ered.

The stability in Ref. 38 is with respect to an initial perturbation and hence is reduced to an
initial-boundary problem for a nonstationary linearized system as in Ref. 27. So the result in Ref.
38 only confirms the condition in Ref. 27 and does provide any insight into the effect of geo-
metrical contour on the mechanism of transition from attached shock wave to detached or from
regular reflection to Mach reflection.

In this paper, the stability condition in Theorem 2.1 is with respect to a genuine three-
dimensional perturbation in the incoming flow and reflection surface for a stationary flow. It is
important to notice that the resulting boundary value problem is independent of time. This “global
in time” �independent of time� condition is stronger than the ones in Refs. 38 and 27 and produces
the criterion which depends purely on the geometrical property of the object. This provides the
analytical confirmation to the sonic point criterion to the transition from regular to Mach reflec-
tion.

Theorem 2.1 predicts a drastic change in the behavior of oblique shock waves as shock
strength increases such that the downstream flow becomes subsonic.
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To better understand the physical implication of the conditions in Theorem 2.1, let us examine
the shock polar in Fig. 3, which determines the dependency of downstream velocity q� upon the
angle �, assuming other parameters unchanged.

In Fig. 3, every incident angle � corresponds to two theoretically possible oblique shock
waves, with the strong ones being well-known unstable. In this paper, we consider only the
“weak” ones, even though they may have large incident angle �, and with relatively big shock
strength. The critical velocity q�c=q�s has magnitude of sound speed and corresponds to a critical
angle �s on the so-called “sonic point” on shock polar. For all ���s, the downstream flow is
supersonic ��q� ��a� and the oblique shock wave is linearly stable, and for all ���c, the down-
stream flow is subsonic ��q� ��a� and the linear stability conditions fail. In particular, at the de-
tachment point, the theoretically maximal angle �d��s �the difference between �s and �d in Fig.
3 is exaggerated here on purpose�, the downstream flow is subsonic. Therefore, for all �
� ��s ,�d�, Theorem 2.1 predicts an unstable weak oblique shock wave. The angle �s��d provides
a prediction of the exact transition angle from an attached shock front to a detached shock front.

III. ANALYSIS OF REGULAR SHOCK REFLECTION AND ITS TRANSITION TO MACH
REFLECTION

We consider the planar regular shock reflection along an infinite plane wall, as in Fig. 1.
Because the stability result in Theorem 2.1 is with respect to three-dimensional perturbation, our
discussion also applies to the case of a curved shock front along an uneven solid surface. In
addition it also applies to the local discussion near the intersection point of a regular reflection
along a ramp or wedge.

As in Fig. 1, a planar incident shock wave with shock front velocity v0 is reflected along an
infinite wall X and the angle between incident shock front and wall is �, and the angle between
reflected shock front and wall is �.

Because of the Galilean invariance of Euler system of equations, if �� ,v ,e� is a solution, then
���x+Ut , t�, v�x+Ut , t�, e�x+Ut , t�� is also a solution for any constant velocity vector U. There-
fore, we can choose the coordinates moving with the intersection point P in Fig. 1, which is
moving with constant velocity U= �v0� /sin � along the X axis. In this coordinate system, the
pseudosteady regular planar reflection at an infinite plane wall becomes steady, with the flow
velocity q�0 in front of incident shock front I, the velocity q�1 between the incident shock I and the
reflected shock R, and the flow velocity q�2 behind the reflected shock R, as in Fig. 4.

It is obvious that velocity vector �q�0�= �v0� /sin �. In shock reflection, the state of the flow on
two sides of the incident shock I is given, i.e., the state of the flow region of q�0 and q�1 is given.
The reflected shock front R as well as the flow state in its downstream region need to be deter-
mined. It has been known10,34,38 that the downstream state is uniquely determined by a relation

FIG. 3. Shock polar determines the downstream velocity q�: q�0, incoming upstream velocity; q� , inflected downstream
velocity; �, shock inflection angle; �d, the detachment angle, the maximal possible shock inflection angle; q�s, the velocity
with magnitude of sound speed a; �s, the sonic angle, the critical angle for shock stability; and S, shock front.
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derived from Rankine-Hugoniot conditions on the incident and reflected shock fronts. For a given
incident shock I, the incident angle � determines uniquely the downstream flow, in particular, the
slope of the vector q�1 and hence �.

For the reflected shock front R, the angle � in Fig. 4 is the same inflection angle � in the
oblique shock wave, as in Figs. 2 and 3. Therefore, the reflected shock R can be looked at as an
oblique shock wave generated by an incoming flow q�1 by a ramp with inflection angle �. Conse-
quently, we can apply the results in Theorem 2.1 to the regular shock reflection and obtain the
following theorem.

Theorem 3.1: For three-dimensional Euler system of gas dynamics �2.1�, a steady regular
planar shock reflection is linearly stable with respect to the three-dimensional perturbation in the
incident shock front I and in the solid surface if the following is obtained.

1. The usual entropy condition or its equivalent is satisfied across the shock front. For example,
shock is compressive, or equivalently, Lax’ shock inequality is satisfied.

2. The flow is supersonic downstream from the reflected shock front R

�q�2� � a . �3.1�

3. The shock strength �2 /�1 satisfies

	 qn

�q�2�

2	�2

�1
− 1
 � 1. �3.2�

Here qn denotes the component of the flow velocity q�2 normal to the reflected shock front R.

The above conditions are also necessary for the linear stability of a planar regular shock
reflection formed by a uniform incident along an infinite planar wall.

We now turn back to the shock polar in Fig. 3 to see the physical implications of Theorem 3.1,
especially in relation to the transition of a regular shock reflection in Fig. 1 to a Mach reflection.
Experimental data show that with fixed incident shock I, as incident angle � increases, the re-
flected angle � also increases. The regular reflection pattern in Fig. 4 will persist until � reaches
a critical value �c �hence � reaches a critical value �c�, beyond which the flow pattern in Fig. 4
will give way to the Mach reflection, with the intersection point P lifted away from the wall and
connected to the wall by Mach stem, as well as with the appearance of a slip line or even more
complicated features, see Refs. 10, 17, and 34.

The shock relation derived from Rankine-Hugoniot conditions gives the detachment point
which corresponds to the maximal possible angle �d in Fig. 3. However, there have been neither
rigorous analytical proof to pinpoint this point nor accurate experimental data to support this
detachment point criterion and exclude the possibility that the transition would actually happen at
a smaller �c��d.

In Ref. 14, it has been argued from information criteria that Mach reflection is not possible for
supersonic downstream flow, i.e., Mach reflection requires that ���s with �s denoting the angle at
sonic point corresponding to sonic downstream flow. Otherwise, the results with mathematical
rigor are available only for small incident angel � �hence small ��.

FIG. 4. Steady regular shock reflection at an infinite wall: I, incident shock front; R, reflected shock front; q�0, upstream
velocity in front of incident shock; q�1, inflected flow velocity between incident and reflected shocks; q�2, downstream
velocity from reflected shock; �, angle between incident shock front and planar ramp; �, angle between reflected shock
front and planar ramp; and �, inflection angle between q�1 and planar ramp.
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Theorem 3.1 tells us that �c=�s, i.e., if the downstream flow is supersonic �i.e., �3.1� is
satisfied�, then the regular reflection pattern is stable with respect to three-dimensional perturba-
tion for moderate shock strength �i.e., �3.2� is automatically satisfied�. This confirms the sonic
point transition conclusion in Ref. 14 based on the physical information criteria as well as the
stability conjecture in Ref. 34.

Since the condition in Theorem 3.1 is a necessary and sufficient for uniform planar shock and
wall, the subsonic downstream flow implies that the onset of instability consequently indicates that
the regular reflection pattern in Fig. 1 could not be preserved, unless some extra conditions are
imposed in the far fields of downstream flow, see Refs. 2 and 7.

Consequently Theorem 3.1 predicts the transition from regular reflection to Mach reflection
exactly at the critical angle �c=�s which is the sonic point corresponding to sonic downstream
flow.

IV. PROOF OF THEOREM 2.1

Because of the invariance of Kreiss’ conditions for hyperbolic boundary value problems, we
need only to consider the linear stability of a uniform oblique shock wave produced by a wedge
with plane surface and choose the coordinate system �x1 ,x2 ,x3� �see Fig. 5� such that the following
is obtained.

• The solid wing surface is the plane x3=0.
• The downstream flow behind the oblique shock front is in the positive x1 direction.
• The angle between the solid wing surface and oblique shock front is �.
• The angle between the incoming supersonic flow and the solid wing surface is �.

Consider a small perturbation in the solid surface x3=0, as well as in the uniform incoming
supersonic steady flow. The perturbed solid surface is x3=b�x1 ,x2�, with b�0,0�=bx1

�0,0�
=bx2

�0,0�=0, the downstream flow after shock front should be close to the direction of positive
x1-axis. The perturbed oblique shock front is described by x3=s�x1 ,x2� such that s�0,0�
=sx2

�0,0�=0 and sx1
��=tan ��0. Obviously we have b�x1 ,x2��s�x1 ,x2� for all �x1 ,x2�.

In the region b�x1 ,x2��x3�s�x1 ,x2�, the steady flow is smooth. Hence Euler system �2.1� can
be replaced by �2.2� and we have

�
j=1

3

�xj
��v j� = 0,

�
j=1

3

�xj
��viv j + �ijp� = 0, i = 1,2,3, �4.1�

�
j=1

3

�xj
��v jS� = 0.

FIG. 5. An attached oblique shock wave in supersonic flight: q�0, incoming upstream velocity; q� , inflected downstream
velocity; S, attached shock front; �, angle between incoming velocity and solid surface; and �, shock inflection angle.
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On the shock front x3=s�x1 ,x2�, Rankine-Hugoniot condition �2.4� becomes

sx1�
�v1

�v1
2 + p

�v1v2

�v1v3

��E + p�v1

� + sx2�
�v2

�v1v2

�v2
2 + p

�v2v3

��E + p�v2

� − �
�v3

�v1v3

�v2v3

�v3
2 + p

��E + p�v3

� = 0. �4.2�

On the solid surface x3=b�x1 ,x2�, the flow is tangential to the surface and we have the
boundary condition

v1
�b

�x1
+ v2

�b

�x2
− v3 = 0. �4.3�

The study of oblique shock wave consists of investigating the system �4.1� with the boundary
conditions �4.2� and �4.3�.

System �4.1� can be written as a symmetric system for the unknown vector function U
= �p ,v1 ,v2 ,v3 ,S�T in b�x1 ,x2��x3�s�x1 ,x2�:

A1�x1
U + A2�x2

U + A3�x3
U = 0, �4.4�

where

A1 =�
v1/a2� 1 0 0 0

1 �v1 0 0 0

0 0 �v1 0 0

0 0 0 �v1 0

0 0 0 0 �v1


 , A2 =�
v2/a2� 0 1 0 0

0 �v2 0 0 0

1 0 �v2 0 0

0 0 0 �v2 0

0 0 0 0 �v2


 ,

�4.5�

A3 =�
v3/a2� 0 0 1 0

0 �v3 0 0 0

0 0 �v3 0 0

1 0 0 �v3 0

0 0 0 0 �v3


 .

When downstream flow is supersonic, we have v1
2�a2 and it is readily checked that matrix A1

is positively definite. Therefore �4.4� is a hyperbolic symmetric system11,32 with x1 being the
timelike direction.

On the fixed boundary x3=b�x1 ,x2�, the boundary matrix

A3 − A1bx1
− A2bx2

=�
0 − bx1

− bx2
1 0

− bx1
0 0 0 0

− bx2
0 0 0 0

1 0 0 0 0

0 0 0 0 0


 . �4.6�

It is readily checked that the boundary condition �4.3� is admissible with respect to system �4.4� in
the sense of Friedrichs11,32 and there is a corresponding energy estimate for the linearized problem.
Therefore, we need only to study the linearized problem for �4.1� �or �4.4�� and �4.2� near the
shock front.

We perform the coordinate transform to fix the shock front x3=s�x1 ,x2�:
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x1� = x1, x2� = x2, x3� = x3 − s�x1,x2� . �4.7�

In the coordinates �x1� ,x2� ,x3��, the shock front becomes x3�=0 and the shock front position x3

=s�x1 ,x2� becomes a new unknown function, coupled with U. To simplify the notation, we will
denote the new coordinates in the following again as �x1 ,x2 ,x3�. The system �4.4� in the new
coordinates becomes

A1�x1
U + A2�x2

U + Ã3�x3
U = 0, �4.8�

where Ã3=A3−sx1
A1−sx2

A2. The Rankine-Hugoniot boundary condition �4.2� is now defined on
x3=0 and takes the same form

sx1�
�v1

�v1
2 + p

�v1v2

�v1v3

��E + p�v1

� + sx2�
�v2

�v1v2

�v2
2 + p

�v2v3

��E + p�v2

� − �
�v3

�v1v3

�v2v3

�v3
2 + p

��E + p�v3

� = 0. �4.9�

System �4.8� with boundary condition �4.9� is a coupled boundary value problem for unknown
variables �U ,s� with U defined in x3�0 and s being a function of �x1 ,x2�. To examine Kreiss’
uniform stability condition, we need to study the linear stability of �4.8��4.9� near the uniform
oblique shock front with downstream flow:

U1 = �p,v1,0,0,S�, s = �x1, �4.10�

where �=tan �, with � being the angle between solid surface and oblique shock front. Under the
assumptions in Theorem 2.1, behind the shock front we have

v1 � a, vn � v1 sin � � a , �4.11�

where vn is the flow velocity component normal to the shock front.

Let �V ,	� be the small perturbation of �U ,s� with V= �ṗ , v̇1 , v̇2 , v̇3 , Ṡ�. The linearization of
�4.8� is the following linear system:

A10�x1
V + A20�x2

V + A30�x3
V + C1	x1

+ C2	x2
+ C3V = f . �4.12�

Here A10=A1 in �4.5� and

A20 =�
0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , �4.13�

A30 =�
− a−2�−1�v1 − � 0 1 0

− � − ��v1 0 0 0

0 0 − ��v1 0 0

1 0 0 − ��v1 0

0 0 0 0 − ��v1


 . �4.14�

The explicit forms of C1, C2, and C3 are of no consequence in the following discussion.
Direct computation shows that A30 has one negative triple eigenvalue −��v1 and other two

eigenvalues satisfy the quadratic equation
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y2 + �v1	� +
1

a2�

y −

1

a2 �a2 + a2�2 − �2v1
2� = 0. �4.15�

Lax’ shock inequality implies that the normal velocity behind the shock front is subsonic, hence
a2−vn

2�0. The quantity �a2+a2�2−�2v1
2� in �4.15� will be used often later and will be denoted as


2 = �a2 + a2�2 − �2v1
2� = �1 + �2��a2 − vn

2� � 0. �4.16�

Therefore �4.15� has one positive root and one negative root and matrix A30 has four negative
eigenvalues and one positive eigenvalue.

Denote U0 and U1 the upstream and the downstream state of shock front, respectively. To
simplify the notation, we drop the subscript 1 when there is no confusion:

U0 = �p0,v10,0,v30,S0�, U1 = �p1,v11,0,0,S1� � �p,v1,0,0,S� .

The linearization of boundary condition �4.9� has the form

a1�x1
	 + a2�x2

	 + BV = g . �4.17�

Here a1 and a2 are vectors in R5:

a1 =�
a11

a12

0

a14

a15


 ��
�v1 − �0v10

�v1
2 + p − �0v10

2 − p0

0

− �0v10v30

��E + p�v1 − ��0E0 + p0�v10


 , a2 =�
0

0

p − p0

0

0

 , �4.18�

and B is a 5�5 matrix defined by the following differential evaluated at uniform oblique shock
front:

BdU � �d�
�v1

�v1
2 + p

�v1v2

�v1v3

��E + p�v1


 − d�
�v3

�v1v3

�v2v3

�v3
2 + p

��E + p�v3


 . �4.19�

Denote

�u�� = 	�
−



 �
−



 �
0




e−2�x1�u�x��2dx3dx2dx1
1/2

,

�u�� = 	�
−



 �
−





e−2�x1�u�x1,x2,0��2dx2dx1
1/2

,

�u�1,� = 	 �
t0+t1+t2�1

�
−



 �
−





�2t0e−2�x1��x1

t1 �x2

t2 u�x1,x2,0��2dx2dx1
1/2

.

The boundary value problem �4.12��4.17� is said to be well posed and the steady oblique
shock front is linearly stable if there is an �0�0 and a constant C0 such that
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��V��
2 + �V��

2 + �	�1,�
2 � C0	 1

�
�f��

2 + �g��
2
 �4.20�

for all solutions �V ,	��C0

�R1�R2��C1


�R2� of �4.1��4.2� and for all ���0.
Denote

ã�s,i�� = sa1 + i�a2, �4.21�

then we have from �4.18�,

ã�s,i�� � 0 on �s�2 + ���2 = 1. �4.22�

Let � be the projector in C5 in the direction of vector ã�s , i��, then

p�s,i�� = �I − ��B �4.23�

is a 5�5 matrix of rank 4, with elements being symbols in S0, i.e., functions of zero-degree
homogeneous in �s , i��, see Ref. 27. The study of linear stability of oblique shock front under
perturbation is reduced to the investigation of Kreiss’ condition for the following boundary value
problem:

A1�x1
V + A20�x2

V + A30�x3
V = f1 in x3 � 0,

�4.24�
PV = g1 on x3 = 0.

Here P is the zero-order pseudodifferential operator37 with symbol p�s , i�� in �4.23�.
The stability result of this section is the following theorem about the well posedness of �4.24�.
Theorem 4.1: The linear boundary value problem �4.24�, describing the linear stability of

steady oblique plane shock front, is well posed in the sense of Kreiss22,29,28 if the following is
obtained.

1. ���0, i.e., the shock is compressive. This is the usual entropy condition.
2. The downstream flow is supersonic, i.e., v1�a−. This guarantees the hyperbolicity of system

in �4.24�.
3. The following condition on the strength of shock front � /�0−1 is satisfied

	 vn

�v�

2	 �

�0
− 1
 � 1. �4.25�

The above conditions are also necessary for the problem �4.24� with constant coefficients.
To prove Theorem 4.1 �and hence Theorem 2.1�, we construct the matrix M�s , i�� as in Refs.

22, 29, and 28

M�s,i�� = − A30
−1�sA1 + i�A20� . �4.26�

We have

sA1 + i�A20 =�
sv1/a2� s i� 0 0

s s�v1 0 0 0

i� 0 s�v1 0 0

0 0 0 s�v1 0

0 0 0 0 s�v1



and
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A30
−1 =

���v1�2

�D� �
���v1�2 − �2�v1 0 ��v1 0

− �2�v1 ��2v1
2/a2� − 1 0 − � 0

0 0 − 
2/a2 0 0

��v1 − � 0 �2��v1
2/a2� − 1� 0

0 0 0 0 − 
2/a2

 ,

where �D�= ���v1�3
2 /a2�0 is the determinant of A30 and


2 = �a2 + a2�2 − �2v1
2� = �1 + �2��a2 − vn

2� � 0.

Consider the eigenvalue and eigenvectors of matrix N�s , i��:

N�s,i�� �
�D�

���v1�2 M�s,i�� , �4.27�

which has the following expression by straightforward computation:

N�s,i�� =�
s�2�v1�1 − �v1

2/a2�� 0 − i����v1�2 − s���v1�2 0

s s�v1
2/a2 i��2�v1 s��v1 0

i�
2/a2 0 s�v1
2/a2 0 0

s��1 − �v1
2/a2�� 0 − i���v1 s�2�v1�1 − �v1

2/a2�� 0

0 0 0 0 s�v1
2/a2

 .

Beside the obvious double eigenvalue �1=s�v1
2 /a2, other eigenvalues are roots of

det�s�2�v1�1 − �v1
2/a2�� − � − i����v1�2 − s���v1�2

i�
2/a2 s�v1
2/a2 − � 0

s��1 − �v1
2/a2�� − i���v1 s�2�v1�1 − �v1

2/a2�� − �
� = 0.

Hence the five eigenvalues for N�s , i�� are

�1 = �2 = �3 = s�v1
2/a2,

�4.28�

�4,5 = s�2�v1	1 −
v1

2

a2
 ± ��v1a−1�s2�v1
2 − a2� + �2
2.

By 
2=a2+�2a2−�2v1
2�0, we have

���v1a−1�2�v1
2 − a2� � ��2�v1�2	v1

2

a2 − 1
2

.

For �=Re s�0, one of �4,5 has positive real part and one has negative real part in �4.28�.
Consequently N�s , i�� has four eigenvalues with positive real parts and one with negative real part
when ��0.

For the eigenvalues �1 ,�2 ,�3 ,�4 which have positive real parts when ��0, we compute the
corresponding eigenvectors or generalized eigenvectors for N�s , i��.

For the triple eigenvalue �1=�2=�3, there are three linearly independent eigenvectors:
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�1 = �0,1,0,0,0�T,

�2 = �0,0,s,− i��,0�T, �4.29�

�3 = �0,0,0,0,1�T.

Since

s�2�v1	1 −
v1

2

a2
 − �4 = − ��v1a−1�, s�v1
2/a2 − �4 = �v1�s − �a−1�� ,

the eigenvector �4 corresponding to the eigenvalue �4 is parallel to

�4 = �− �v1�s − �a−1��,s − �a−1�,i�
2/a2,a−1� − s��v1
2/a2 − 1�,0�T, �4.30�

where

� � �s2�v1
2 − a2� + �2
2. �4.31�

The four eigenvectors �1, �2, �3, and �4 are linearly independent at s��a−1�.
At s=�a−1�, we have s2=�2�2 and �1=�2=�3=�4. �4 is parallel to �0,0 , i� ,−a−1� ,0�T which

is parallel to �2 at s=�a−1�. A generalized eigenvector needs to be computed.

A. Simplify „4.17…

The Kreiss’ condition for �4.24� requires that five vectors �B�1 ,B�2 ,B�3 ,B�4� and sa1

+ i�a2 are linearly independent of �s�2+ ���2=1, ��0.
We first simplify the following operator in �4.17� by elementary row operation:

�
sa11

sa12

i�a23

sa14

sa15


 + ��
d��v1�

d��v1
2 + p�

d��v1v2�
d��v1v3�

d��v1E + pv1�

 −�

d��v3�
d��v1v3�
d��v2v3�

d��v3
2 + p�

d��v3E + pv3�

 . �4.32�

Noticing that the linearization is at the uniform oblique shock front, �4.32� becomes

�
sa11

sa12

i�a23

sa14

s�a15 − Ea11�

 + ��

d��v1�
d��v1

2 + p�
�v1dv2

�v1dv3

�v1dE + d�pv1�

 −�

�dv3

�v1dv3

0

dp

pdv3



and

�
sa11

s�a12 − v1a11�
i�a23

sa14

s�a15 − Ea11�

 + ��

d��v1�
�v1dv1 + dp

�v1dv2

�v1dv3

�v1dE + d�pv1�

 −�

�dv3

0

0

dp

pdv3


 .

Since dE=de+v1dv1, �4.32� further changes into
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�
sa11

s�a12 − v1a11�
i�a23

sa14

s�a15 − �E − v1
2�a11 − v1a12�


 + ��
d��v1�

�v1dv1 + dp

�v1dv2

�v1dv3

�v1de + pdv1


 −�
�dv3

0

0

dp

pdv3


 .

Multiplying first row by −p /� and adding to the fifth row, we obtain

�
sa11

s�a12 − v1a11�
i�a23

sa14

s�a15 − �E − v1
2 + p/��a11 − v1a12�


 + ��
d��v1�

�v1dv1 + dp

�v1dv2

�v1dv3

�v1�de − p/�2d��

 −�

�dv3

0

0

dp

0

 .

Because de=TdS− pd�, ��=1 /��, �4.32� finally becomes

�
sa11

s�a12 − v1a11�
i�a23

sa14

s�a15 − �E − v1
2 + p/��a11 − v1a12�


 + ��
d��v1�

�v1dv1 + dp

�v1dv2

�v1dv3

�v1TdS

 −�

�dv3

0

0

dp

0

 .

Therefore, �4.17� is equivalent to

b1�x1
	 + b2�x2

	 + B1V = g , �4.33�

with

b1 =�
b11

b12

0

b14

b15


 ��
�v1 − �0v10

a12 − v1a11

0

− �0v10v30

a15 − �E − v1
2 + p/��a11 − v1a12


 , b2 =�
0

0

p − p0

0

0

 ,

and 5�5 matrix B1 is

B1 ��
�v1/a2 �� 0 − � 0

� ��v1 0 0 0

0 0 ��v1 0 0

− 1 0 0 ��v1 0

0 0 0 0 ��v1T

 . �4.34�

Here in computing B1, we have made use of the fact that the flow satisfies system �1.2� behind the
shock front.

B. Case I: sÅ�a−1�

Consider the five vectors �B1�1 ,B1�2 ,B1�3 ,B1�4� and sb1+ i�b2, where B1 and b j are defined
as above.

• Vector B1�1= ��� ,��v1 ,0 ,0 ,0�T is parallel to and hence can be replaced by

�1 = �1,v1,0,0,0�T.
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• Vector B1�2= �i��� ,0 ,s��v1 ,−i��2�v1 ,0�T is parallel to

�2 = �i�,0,sv1,− i��v1,0�T.

• Vector B1�3= �0,0 ,0 ,0 ,��v1T�T is parallel to

�3 = �0,0,0,0,1�T.

• Vector B1�4= �−��
2 /a3 ,0 , i���v1
2 /a2 ,s�v1
2 /a2 ,0�T is parallel to

�4 = �− a−1�,0,i��v1,sv1,0�T.

• Vector sb1+ i�b2��5 can be simplified by using Rankine-Hugoniot relations satisfied by the
states U0 and U1:

���v1 − �0v10� + �0v30 = 0,

���v1
2 + p − �0v10

2 − p0� + �0v10v30 = 0,

�4.35�
��0v10v30 + �p − �0v30

2 − p0� = 0,

����E + p�v1 − ��0E0 + p0�v10� + ��0E0 + p0�v30 = 0.

Solving p− p0 from the third equation in �4.35�

p − p0 = − ��0v10v30 + �0v30
2 = �0v30�v30 − �v10�

and substituting it into the second equation in �4.35�, we obtain

���v1
2 − �0v10

2 + �0v30�v30 − �v10�� + �0v10v30 = 0,

which simplifies to

��v1
2 = �0�v10 + �v30���v10 − v30� .

From the first equation in �4.32�, we obtain

��v1 = �0��v10 − v30� .

Combining the two relations above, we obtain

v1 = v10 + �v30.

Therefore, we have

�0v10 =
�0 + �2�

1 + �2 v1, �0v30 =
���0 − ��

1 + �2 v1.

Consequently we obtain

�v1 − �0v10 =
� − �0

1 + �2v1,

�v1
2 − �0v10

2 + p − p0 =
�� − �0���0 + �2��

�0�1 + �2�2 v1
2,

�4.36�

p − p0 =
�2v1

2

1 + �2

��� − �0�
�0

=
��� − �0�

�0
vn

2,
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− �0v10v30 =
��� − �0���0 + �2��

�0�1 + �2�2 v1
2.

Therefore we obtain

�5 =�
s

� − �0

1 + �2v1

s
�� − �0�2v1

2�2

�0�1 + �2�2

i�
�2v1

2

1 + �2

��� − �0�
�0

=
��� − �0�

�0
vn

2

s
��� − �0���0 + �2��

�0�1 + �2�2 v1
2

sb15


 , �4.37�

where b15 can be computed from Rankine-Hugoniot condition

b15 = −
�� − �0�2v1

3�2

�0�1 + �2�2 .

It will be obvious in the following that the explicit form of b15 is of no importance. Hence
�5=is parallel to

�s�1 + �2��0,s�� − �0��2v1,i��1 + �2��2�v1,s���0 + �2��v1,− s�� − �0��2v1
2�T.

Kreiss’ condition states that the oblique steady shock front is linearly stable if five vectors
�1 ,�2 ,�3 ,�4 ,�5 are linearly independent, or the following matrix with these five vectors as column
vectors is uniformly nondegenerate on �s�2+ ���2=1, ��0:

�
1 i� 0 − a−1� s�1 + �2��0

v1 0 0 0 s�� − �0��2v1

0 sv1 0 i��v1 i��1 + �2��2�v1

0 − i��v1 0 sv1 s���0 + �2��v1

0 0 1 0 − s�� − �0��2v1
2

 . �4.38�

Obviously, it is nondegenerate if and only if the following 4�4 matrix J is nondegenerate:

J =�
1 i� − � s�1 + �2��0

1 0 0 s�� − �0��2

0 s i��a i��1 + �2��2�

0 − i�� sa s���0 + �2��

 . �4.39�

Compute the determinant of J,

det J = s3a��2� − �0 − 2�2�0� − sa�2�2�1 + �2��� − 2�0� − ���s2��0 + �2�� − �2�1 + �2��2�� .

�4.40�

We have the following lemma.
Lemma 4.1: Under condition �4.25�, there exists an ��0 such that for all �s ,��, with s

��a−1�,
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�det J� � �, ∀ �s�2 + ���2 = 1, � = Re s � 0. �4.41�

Proof: Noticing that �4.40� is the same as �4.20� in Ref. 23, we can prove similarly as in Ref.
23. Hence the details are omitted here.

C. Case II: s=�a−1�

In the case s=�a−1�, we have s=���0 and �=�a�0. Since

s�2�v1	1 −
v1

2

a2
 − �1 = − s�v1,

N�s,i�� − �1I =�
− s�v1 0 − i����v1�2 − s���v1�2 0

s 0 i��2�v1 s��v1 0

i�
2/a2 0 0 0 0

s��1 − �v1
2/a2�� 0 − i���v1 − s�v1 0

0 0 0 0 0

 . �4.42�

At the point s=�a−1�, the vectors �2 in �4.29� and �4 in �4.30� are parallel, and there are only
three linearly independent eigenvectors corresponding to the eigenvalue �1:

�1 = �0,1,0,0,0�T,

�2 = �0,0,1,− i,0�T, �4.43�

�3 = �0,0,0,0,1�T.

A generalized eigenvector �4� corresponding to �1 can be found by solving the equation
�N�s , i��−�1I��4�=�2, i.e.,

a2�1 + ��v1�i�3 + �4� = 0,

a2�1 + ��v1�i�3 + �4� = 0,

�4.44�
i
2�1 = 1,

�2�a2 − v1
2��1 − ��v1�i�3 + �4� = − i .

System �4.44� has a solution of generalized eigenvector

�4� = �− ia2�−1
−2,0,a2����v1�−1
−2,0,0�T,

which is parallel to

���v1,0,i,0,0�T.

Computing B1�1, B1�2, B1�3, B1�4�, and sb1+ i�b2 at s=�a−1�, we obtain the matrix correspond-
ing to �4.38� as follows
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�
1 i� 0 �2�v1

2a−2 s�1 + �2��0

v1 0 0 �2�v1 s�� − �0��2v1

0 sv1 0 i��v1 i��1 + �2��2�v1

0 − i��v1 0 − ��v1 s���0 + �2��v1

0 0 1 0 − s�� − �0��2v1
2

 , �4.45�

which is nondegenerate if and only if

det�
1 i� �2�v1

2a−2 s�1 + �2��0

v1 0 �2�v1 s�� − �0��2v1

0 sv1 i��v1 i��1 + �2��2�v1

0 − i��v1 − ��v1 s���0 + �2��v1


 � 0,

i.e.,

det J� � det�
1 − 1 �2v1

2a−2 �1 + �2��0

1 0 �2 �� − �0��2

0 1 1 �1 + �2��
0 1 − 1 ��0 + �2��


 � 0. �4.46�

It is readily checked that

det J� = �� − �0�
2/a2 + 2�� + �0� + �2�3� + �0� � 0.

This completes the proof for the case s=�a−1�. The proof of Theorem 4.1 and hence Theorem 2.1
is complete.
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