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I. AERODYNAMIC DRAG OF
MODEL ROCKETS

Up to the launcher you go, slip the rocket on the rod,
connect the micro-clips. Step back, hold your breath
during the countdown. Your first model -- and all those
experienced rocketeers watching!

Three..two..one..Fire!

The model arcs up, twisting a little. There goes the
ejection charge.... The chute? There it is. Good shot!
You feel pleased as the model floats slowly down.

Another bird about to be launched. Hmm, same kit as
yours, wonder who built it? Launch! The model goes
straight up — no twisting — look at that altitude! Why'd
that model do so much better than yours? Better check.

At the Ready Area you get a chance to look at that
high performance bird. Colorful paint job, smooth finish.
Fins are even sanded, sort of round in front and sharp
at the rear. Looks a lot different than your model which
was stuck together in a couple of hours. "‘Is it really
worth all that work?’’ you ask the old modeler.

‘“*‘What do you think?’’ comes back, ‘‘'you saw the
height | got. You cut the drag and you really can get up
there!”’

“'Oh’’, you nod your head and wander away. ‘‘Wonder
what drag is?”’

DRAG

Drag is the theme of this report. In technical terms,
drag is the resistance caused by the motion of bodies
through fluids like air or water. When we push our way
through a swimming pool, the water resists our passage.
This is hydrodynamic drag which means, literally, the
drag due to the motion of the water about a body. When
we stick our hand out the window of a moving automobile

we feel a force due to the motion of the air past our hand.

When youhold your hand at different angles you can feel
the air push on it, sometimes up, sometimes down, some-
times just back. These motions are caused by
aerodynamic forces; again the term refers to forces due
to the motion of air about a body (in this case your
hand).

Aerodynamic forces can be put to use — airplanes
work because we know how to shape the wings to get a
favorable aerodynamic force. This favorable force is
called '‘Lift’’. Unfortunately, we must pay a price for
lift — even in nature we can never get something for
nothing — and an unfavorable force is also generated.
The unfavorable force is called ‘‘Drag’’. Model rockets
experience drag, just as airplanes and all other bodies
do. Together with gravity, drag opposes the rocket’s
thrust and is a very important factor in determining your
rocket’s performance.

WHY BOTHER WITH DRAG

Drag is important because it retards our models,
holding them back and preventing them from reaching
their potential altitudes. When rocket engines are ignited,
the models lift off the pad because the upward thrust is
greater than the downward pull of gravity on the rocket.
As the model gains speed, the aerodynamic resistance
builds up rapidly; the drag and the weight determine the
top speed of the model at rocket burnout. After rocket
burnout, during the coast upward, aerodynamic drag and
gravity slow the model until the upward velocity reaches
zero at the peak altitude and the rocket falls back to
earth. Thus the greater the drag of a rocket the lower the
burnout speed and the more rapid deceleration during
coast — both conditions reduce the height achieved with
a given model and engine. Many rocket competitions

depend upon peak altitude (payload, egg-lofting, even
parachute duration, since the higher a bird goes the
longer it takes to come down) so the desirability of
cutting drag to a minimum is obvious.

Another reason drag is important is that it is the one
factor we can do something about. Although we can
strive for light weight models, we can not change the
pull of gravity — so maybe we can find the rocket nose
cone that gives the least drag or the fin shape that is
best. These are the problems we’ll look at in this report.
We will give practical examples of ways to improve
model rocket performance.

As we proceed with our discussions, we’ll point out
some basic concepts of drag. We'll find that a few
equations will be helpful in our study. By treating these
equations as a sort of shorthand, we’ll be able to tell
precisely how certain factors affect the aerodynamic
resistance of a model rocket. Further, just as practicing
engineers and scientists, we'll use graphs and illustra-
tions to help us visualize the various features of
aerodynamic drag.

Il. BASIC CONCEPTS
FACTORS AFFECTING DRAG

If we think back to the example of holding our hand
out the window of a moving car we can get a little
insight, or physical feeling, about factors that influence
the drag of a body. Referring to Fig. 1, we might sense,
intuitively, that the size of a hand should make a differ-
ence; the larger the hand, the greater the force
anticipated. The area presented to the stream must,
therefore, be a factor. The speed of the air that hits
your hand certainly has an effect. If you hold your hand
out when the auto is doing twenty miles an hour, you
feel a lot less force or drag than when your hand is
exposed to a 40 mile an hour wind, so speed certainly is
important.

FIG. 1
FEELING AERODYNAMIC DRAG WITH YOUR HAND
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Maybe less obvious, but again important when we
think about it, is the density of the air. Density refers
to the amount of material present in a given space or
volume. Air has a certain amount of material in a cubic
foot (about 0.077 Ib); water has more material in the
same space (about 62.4 Ibs). The higher density of
water explains why it's more difficult to move your hand
through water than through air. Density of the fluid,
therefore, is a contributing factor to the resistance of a
body.



Other, more subtle factors, influence the drag of your
hand. For example, if you hold your hand parallel to the
road or perpendicular to it, you'll feel a different amount
of aerodynamic force. When you cup your hand or make it
into a fist, the air resistance or aerodynamic drag is
different, so we can say both angle of the wind and
shape influence the total resistance encountered by a
moving body.

BRINGING THE FACTORS TOGETHER

Looking back to see what factors we thought about
that could influence the drag of a body we note that the
size, speed, shape, density of the air and angle will all
contribute to the drag. It's important to be able to
identify the things which affect drag, but it's even better
to be able to calculate exactly what the effects are, so
we are led to our first equation. From experimental
information accumulated during the last 70 years, we
know that it is possible to represent the drag of a body
by the shorthand statement below:

Drag = Drag coeff X%density x velocity? x area
To save time and space, we will represent this word

equation by letters and drop the x meaning multiplication.
Thus

1

D=5Cp PV2A (1)

Examining Eq. 1 we see direct evidence of the factors
which we’ve singled out more or less by intuition. That
is, the size of the body is represented by A; the speed
of the body is represented by V2 (note that V2 means
V x V, so the influence of the velocity on drag D is very
strong). The rho ''p'’ stands for the density of the
fluid.

One factor that needs a littie explanation is the drag
coefficient, Cp. This term has no dimensions; it is
simply a number used to describe how the shape of the
body and its angle to the wind influence drag. All shapes
that move through the air possess drag coefficients: your
hand, autos, airplanes, and, of course, your model

rockets. If we can find the value of Cp for a rocket,
we'll be able to compute its actual aerodynamic drag in
pounds or grams.

The full advantage of the shorthand notation of Eq. 1
and the use of drag coefficients can be demonstrated if
we work out an example. It might be interesting to find
the force of wind on your hand as you hold it out the
window of a moving auto. Looking at the equation, we
see we must determine the area of your hand, the air
density, and the speed of the car. We’ll assume that the
drag coefficient of your hand has been determined by an
earlier experiment. (Cp is approximately 1.2 for a hand
held perpendicularly to the air flow.)

We estimate the area of your hand and arm exposed to
the wind to be about 1/4 of a square foot and the air
density to be 0.00238 slugs/ft3. Note that we converted
the units of the air density from weight units of |bs/ft3
to mass units of slugs/ft3 to have the solution come out
correctly in Ibs.*

SUbSﬁtUtng these values into the drag equation,
1 2A
=
D CD > PV

1.2 x—;—-x 00238 xl—V2

D = 0.000357 V2 in Ibs (2)

In the above form, we can find the drag for any velocity.
If V=10 ft/sec for example

D = 0.000357 x 100 = 0.0357 Ibs
If V=100 ft/sec we find

D = 0.000357 x 10000 = 3.57 lbs

We can get a better feeling for how drag changes with
speed by constructing a graph by substituting different
velocities into Eq. (2). This is shown in Fig. 2. We can
also change the area in Eq. 1 and repeat the process.
For a smaller hand of just 1/8 of a square foot we see
the drag is just 1/2 the value of the large hand. You can
see how useful a curve of this type would be for the
study of the drag of your model rockets. Once we deter-

*

Since the weight of an object depends upon the
gravitational attraction of the earth, weight does not
correctly represent the amount of material, or the mass,
of an object. When the gravitational field changes, the
weight of the object will change, even though the mass
of the object remains constant. When our astronauts
walked on the moon, their weight was 1/6 of the value
on Earth, because the gravitational attraction of the
smaller moon is 1/6 that of Earth. Therefore, a 180 Ib
astronaut weighs only 30 pounds on the moon; even
though, of course, his mass is still the same. A more
convenient way to keep track of the material in an
object is to divide its weight by a property that is
proportional to the gravitational field. We know that a
ball dropped from a height in the Earth’s gravitation will
be pulled downward so that its velocity will change by
32.2 ft/sec every second. This acceleration is due to
the pull of gravity. On the moon, an object dropped from
a height will change its speed much more slowly, since
the pull of gravity is less — only about 5.4 ft/sec every
second. (Remember how slowly the items ejected from
the Lunar Landing Module fell to the moon’s surface?).
This acceleration due to gravity is the factor we are

looking for: we divide the weight of an object by the
acceleration due to gravity to obtain a value for the mass
of an object that is not affected by the gravitational
field. In equation form

Weight

a =
Mass Acceleration due to Gravity

Thus, on Earth an astronaut has mass

~ 180 _ 5.6 slugs

T 32.2

while on the moon, his reduced weight combines with
the slower acceleration to produce an identical value for
the mass:

M=230 _ 56 siugs
5.6

For use in aerodynamic studies, the air density is con-
verted to mass units.

0- 0.077 _ 0.00238 slugs
32.2 ft3
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mine the drag coefficient of a certain shape rocket, we
can find the drag at any speed. If we change the area, we
can examine the drag of any size rocket we care to look
at, even full scale rockets, since these same equations
work for them too.

WHERE DRAG COMES FROM

As we go deeper into the study of drag, we may ask

where does this drag come from? We've managed to

describe the factors that affect drag and we’ve even been
successful in determining the number of pounds of drag
for a particular case. (Incidentally, determining how
much of a quantity exists is always a lot harder than
just telling how a quantity is obtained.) There are only
two methods by which a force can be communicated
between the air and a model rocket. The first way is
through an unbalance in the air pressure on the rocket
and the second is through the friction of the air sliding
over its surfaces.

PRESSURE DRAG

Looking at drag due to pressure first, we might
consider a baseball. When it is sitting on the ground, as
iflustrated in Fig. 3, the pressure around it, represented
by the arrows pushing perpendicutarly to the surface, is
the same. At sea level, this atmospheric pressure, which
is due to all the air piled above us, is 14.7 pounds on
every square inch of surface. Since the pressure on all
parts of the baseball has the same value, there is no
unbalance of pressure forces, and hence, no drag, But,
when you throw the ball, what happens? The air starts
to move around the ball, the pressures about the sphere
change, a pressure unbalance occurs, and aerodynamic
drag is created. In the illustration, the arrows represent
the pressure distribution on the ball, the longer the
arrow, the higher the pressure. The unbalance in pres-
sures and resulting drag is exhibited by the way the ball
slows after it is thrown.

More than 95% of the drag on a sphere comes from
pressure drag. We'll see later that more streamlined
shapes will have less pressure drag but more friction
drag. Because this type of drag depends on the shape of
the body, it is sometimes called “‘profile’’ drag by
aeronautical engineers.

FRICTION DRAG

To get a feeling for friction drag, we might consider a
very sharp, thin plate moving through the air as in Fig. 4.
When moving at zero angle to the air stream you can see
that there will be no unbalance of pressure forces. Does
this mean that the drag is zero? No, the air is rubbing on
the surface. The influence of this friction is confined to
a thin region close to the body surface. The second
sketch in Fig. 4 indicates how the friction effects in
this layer alter the air velocity near the surface. On the
surface, the velocity is zero, increasing to the air
velocity in the free stream outside the layer. This
behavior is due to another property of fluids, called
“‘viscosity”. In the thin region close to the body sur-
face, termed the ‘‘boundary layer”, viscosity is
important.

Just like density, viscosity is a property of air.
Instead of measuring mass, however, viscosity measures
the resistance of a fluid to flowing over a surface. The
viscosity of molasses, for example, is very high and we
know that molasses is hard to pour; water has a much
lower viscosity and flows quite freely. The viscosity of
air is extremely low and air flows easily over surfaces.
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Many times, in fact, the viscosity of air can be neglected
and flow patterns past bodies correctly represented.
However, in the boundary layer, viscous effects are the
dominant ones that give rise to the friction drag.

FiG. 4
ILLUSTRATION OF FRICTION DRAG
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To show how both pressure and friction effect the
drag on a family of shapes, examine Fig. 5. In this
graph, the drag coefficient for ellipsoids (which are
just elongated round bodies) is presented. A special
ellipsoid is the sphere which has a drag coefficient of
0.47. Another interesting ellipsoid is the football, which
has a length to diameter ratio of about 2 so that its drag

FIG. 5
DRAG OF ELLIPSOIDS
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drag coefficient according to Fig. 5 is 0.28. We could
use this information to find the drag force on these two
shapes. For a softball with a diameter of 0.3 feet moving
at 100 feet per second we could use Eq. 1 to obtain the
drag in pounds:

D- CD%pV2A= 0.47 x—;-x .00238 x (100)2 x 0.706

where A= 7R2=3.14 (0.15)2 = 0.0706

The drag is D = 0.395 Ibs. A football with a diameter of
about 0.5 feet and a drag coefficient of 0.28 would have
a larger drag force of 0.65 pounds at 100 ft/sec. What
speed must the football have for it to feel the same
aerodynamic resistance as the softbali? Just 78 feet/sec.
Check for yourself by calculating the football’s drag at
this speed.

Figure 5 illustrates another important feature of
ellipsoidal shapes. As bodies get more elongated, that
is, as their length to diameter ratio increases, the total
drag decreases rapidly to a minimum near a length to
diameter ratio of 5, then drag increases slowly. Pressure
drag is observed to be the major cause of aerodynamic
resistance for the blunt shapes, but friction is the major
contributor to drag of the high length to diameter bodies.
Observations like these are important, since they atlow
us to concentrate on the correct factors to reduce the
drag of our model rockets.

ANOTHER LOOK AT VISCOSITY

We’ve just introduced a property of air called viscos-
ity. Because viscosity has such a strong influence upon
the aerodynamic flows about bodies, we have to examine
this property more thoroughly. After all, the viscosity of
air at ‘‘standard conditions’’ is very, very low

Ib sec
(0.000,000,39
ft2
produce sizable drag forces must be important.

Viscosity plays a large part in the production of both
types of drag, pressure drag and skin friction drag. For
friction drag, viscosity acts directly to produce shearing
stresses in the boundary layer. For pressure drag,
viscosity acts indirectly to trigger a flow ‘‘separation’’
from the body. Separation refers to the behavior of the
flow when the air does not follow the body contour, but
breaks away into a turbulent wake. This separation of
the air flow is the real reason that the pressure unbal-
ance occurs on aerodynamic shapes.

Let’s re-examine pressure drag, this time drawing
streamlines past the body instead of representing the
pressure forces. Streamlines are simply lines drawn to
represent the path of air as it moves past an object. In a
wind tunnel, thin lines of smoke would trace out a
streamline pattern much like that shown in Fig. 6
about a circular cylinder held perpendicular to the flow.
As shown in this figure, the lines move smoothly around
the front of the cylinder but break away (or separate) on
the back side. The wake is the large turbulent region
behind the cylinder. The drag coefficient, Cp, is about
0.4 for this shape, mainly due to this separation and
large wake. Because of the wake the pressure on the
back of the cylinder is low relative to the pressure on
the front and the unbalance in pressure causes the drag.
Therefore, if we can prevent the flow from breaking away
we should be able to decrease the drag.

In Fig. 7, the flow pattern about a different shape is
shown. This shape is designed to reduce the amount of
flow separation by filling in the base region of the
cylinder to more gently contour (or streamline) the flow.

); any property that small that can



FIG. 6
FLOW ABOUT A CIRCULAR CYLINDER
LARGE WAKE Cp - 0.4

STREAMLINES

The effect of the flow pattern is clean, the streamlines
follow the body, flow separation is minimized, and the
size of the wake is significantly reduced. The drag
coefficient is decreased by a factor greater than ten ——
to Cp = 0.03 for this streamline shape. That is surely a
worthwhite reduction.

FIG. 7
FLOW ABOUT A STREAMLINED SHAPE
SMALL WAKE Cp - = 0.03

How was this drag reduction accomplished? By cut-
ting down on flow separation. How did this do it? By
allowing the pressure to increase on the back side of
the body. Remember the low pressure in the wake of the
cylinder which caused the pressure unbalance and hence
high drag? Keeping the flow attached to the body allows
the pressure to build back up to levels near the pressure
on the nose and thereby reduce this pressure unbalance
which, of course, cuts drag.

The basic rule to follow for preventing flows from
separating is to always use aerodynamic shapes that are
rounded gently and never have any sharp changes in
direction. The viscosity of the air makes the flow resist
these changes in direction and forces the flow to break
away. As an illustration of the practical importance of

FIG. 8
EXAMPLE OF SEPARATION
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this idea, consider the two egg-lofting birds of Fig. 8.
The bird on the left, with the sharp transition between
the payload and body tube, will have a higher drag than
the rocket on the right because of separation at the
transition. To prevent flow separation on any model
rocket that uses transition pieces (adapters), always
keep the angle less than 5° and you'll have a low drag
design with attached flow.

TURBULENT VS LAMINAR FLOW

Just as we’ve learned more about drag by studying
separation phenomena, we can increase our knowledge
still further by re-examining the role of viscosity in the
boundary layer. About a century ago, a scientist named
Osborne Reynolds conducted experiments with water
flows to determine how viscosity effected the fiow
patterns. He discovered two basic patterns of viscous
flows: one he called laminar, the other turbulent.
Aerodynamicists later found these same patterns existed
in the air boundary layers moving over aerodynamic
shapes. These two patterns are shown in Fig. 9. The
laminar boundary layer, so-named because the different
layers (or ‘‘lamina’’) of air slide smoothly over each
other, has an almost straight variation of velocity from
the outer edge of the layer to the zero surface velocity.
The other velocity pattern, termed turbulent because of
the large fluctuations of velocity and the mixing of the
different layers of air, has a much fuller pattern, with
the greatest variation of velocity occurring nearest the
surface.

FIG. 9
VELOCITY DISTRIBUTION IN A BOUNDARY
LAYER ABOVE A SURFACE
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These velocity variations within the boundary layer
become more significant when we find the shearing
stress — hence, friction drag — depends upon the rapidity
with which the velocity changes. We'll use another
equation to give a precise definition:

Shearing Stress = Coefiicient of Viscosity x velocity
change at surface

Using our short hand lettering notation

SS. = ;L% (3)

in Eq. 3, p (the Greek letter "'mu’’), stands for the
coefficient of viscosity, AV means the change in veloc-
ity over a small distance Ay from the surface. If we look
at the velocity profiles and then the equation we can
observe immediately that the turbulent profile must have
much more drag than the laminar profile. That's because
it has the greatest velocity change nearest the surface.

We can iflustrate this point by taking an example.
Consider the two velocity profiles shown in Fig. 10. The
laminar profile reaches 100 ft/sec at 0.001 feet from the



surface while the turbulent profile attains 100 ft/sec at
0.0001 feet. Employing Eq. 3 and the coefficient of
viscosity given earlier we find

Laminar Shear Str - AV
ess “Ay

_ 100 _ lb
- 0.00000037 x G =0.087 3

and
_ AV
Turbulent Shear Stress = “37

Ib
ft2
FIG. 10
ILLUSTRATION OF INCREASED SURFACE
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Now, since skin friction drag is simply the area times
the shear stress on a flat plate, we can see that the
turbulent drag on a one foot square plate would be 0.37
ibs. If a laminar boundary layer existed on this plate the
drag would be just one-tenth of this, only 0.037 Ibs. So
we have another important piece of practical information:
Our models will have less skin friction drag if we can
keep the flows laminar.

But, you can correctly ask, what factors determine
whether a boundary layer is laminar or turbulent? How
can we build models with laminar boundary layers?
These are certainly pertinent questions. To answer them
in part we must dig a little deeper into this study of
viscous flows.

INTRODUCING THE REYNOLDS NUMBER

In his experiments, Reynolds found that by properly
grouping the physical quantities of importance (velocity,
viscosity, density and a factor describing the size of the
experiment), he obtained a number which allowed him to
predict whether the viscous flow would be laminar or
or turbulent in a particular experiment. The particular
groupings of terms leads to a number which we now call
_ Reynolds’ number in his honor. In equation form it is
given by Eq. (4). First in words

Reynolds Number = density x Velocity x fength
Viscosity

then

PV
RN =__—_
. (a)

All the symbols have been defined earlier with the
exception of |I. This factor is simply a characteristic
length in the experiment or in the problem; for most of
our work we can consider | to be the length of our model
rocket.

For air flows, when RN is less than 100,000, the
boundary layer will be laminar; when RN is greater than
1,000,000, the boundary layer will be turbulent. In
between these two limits, either laminar or turbulent
boundary layer flows can exist, depending upon many
factors — smoothness of the surface, turbulence in the
air, surface temperature and others. This in-between
region is termed the transition zone and it is exceedingly
difficult to predict accurately what is going to happen in
this region. It is of interest then to look at the expected
Reynolds number on a one foot long model rocket,
travelling at 100 ft/sec. The Reynolds number becomes:

RN = PVl 0.00238 x 100 x 1 _
i 0.00000039
RN = 610,000

This value of Reynolds number is right in the transi-
tion region! That means we can’t tell what kind of
boundary layer we’ll have on the rocket. But this is not
bad, for we now have the opportunity to keep the
boundary layer laminar and thereby keep the drag down.
We'll go into these details later, but just think: Real
rockets with lengths like 30 feet would have RN =
18,300,000. This is certainly in the turbulent boundary
layer range and there is little chance to cut friction drag
by keeping the boundary layer laminar.

The Reynolds number is a term that is used continu-
ally in aerodynamics. You can see its importance in our
present discussion concerning the character of the
boundary layer. In the next section we’ll use the
Reynolds number again to find the drag on a golf ball.
Any problem that includes viscosity will usually involve
the Reynolds number, so get used to using the term.

THE GOLF BALL

So far, we’'ve introduced many ideas which are useful
to our study of model rocket drag. Drag coefficients, the
difference between pressure and skin friction drag,
influence of viscosity, the concepts of boundary layers
and separation all have been defined. Before we continue
our discussion it might be wise to pull these concepts
together. One of the most intriguing illustrations is the
aerodynamics of a golf ball. Did you ever wonder why
golf balls have dimples? The answer, as we shall see, is
aerodynamic.

FiG. 11
DRACG OF SMOOTH SPHERES
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Imagine a test of a smooth sphere, six inches in
diameter, in a wind tunnel. When the tunnel is started,
we’ll measure the drag and, as the speed of the air builds
up to 400 ft/sec., we’ll continue to record the drag force
on the sphere. If we plot the measurements, as shown in
Fig. 11, we’ll see the drag build up rapidly until 100
ft/sec, then hold constant and at about 150 ft/sec

suddenly drop off. At 200 ft/sec the drag again increases.

This is certainly erratic behavior. Now we’ll repeat the
test sequence with a smaller sphere of 3 inches in
diameter. The same abnormal behavior is exhibited, but
shifted towards the higher velocities, as shown in the
dashed lines in Fig. 11.

FIG. 12
DRAG COEFFICIENT OF SMOOTH SPHERES
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Possibly we can reduce these fluctuating drag values
by examining the corresponding drag coefficients instead
of the force. We obtain this information by solving Eq. 1
for the drag coetficient, Cp:

Cp=-2L
%PVZA (3

FIG. 13
DRAG COEFFICIENT VS REYNOLDS NUMBER
FOR SMOOTH AND DIMPLED SPHERES
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This procedure produces the curves shown in Fig. 12,
when appropriate values of density, area and velocity are
used to divide into the measured drag. Although the
curves are much smoother, the drag coefficients show a

sudden drop at about 95 ft/sec for the 6 inch sphere, and
a similar drop at 185 ft/sec for the 3 inch sphere.
Another step is even more illuminating; instead of
plotting the drag coefficient against velocity, plot it
against Reynolds number. Now see what happens! Figure
13 shows that all the data has collapsed into a single
solid line. This is a striking example of the advantages
that can be obtained by a proper choice of factors. Look
back at Fig. 11 and see how complicated the curve of
drag vs. velocity looks; further, a new curve must be
generated for each diameter sphere. But by using drag
coefficient and Reynolds number, we have determined a
universal curve that can be used for a wide variety of
velocities and sphere diameters.

DIMPLING THE SPHERE

If we were to run a test of a dimpled sphere we would
find that the drag coefficient would follow the dashed
line of Fig. 13. For a given Reynolds number in the
range of 105 (100,000) the drag coefficient is lower for
the dimpled sphere than for the smooth sphere. Now if we
apply this data to a 1.7 inch diameter sphere, the size of
a golf ball, we find the drag as a function of velocity
shown in Fig. 14. It is obvious that the drag is a lot less
for the dimpled sphere whenever the sphere velocity is
greater than 150 ft/sec. This is, of course, the range of
velocities encountered by the golf ball. By keeping the
drag low, our golf ball will trave! a lot farther, since the
distance a ball can be driven with a given swing depends
upon gravity (which pulls the ball down) and drag (which
slows the ball).

FIG. 14
DRAG OF SMOOTH AND DIMPLED SPHERES
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We’ve shown the effect of dimpling the golf ball, and
in the process, reviewed drag, drag coefficients, and
Reynolds number, but we have not found why the drag is
lowered. To determine this, we conduct another series of
tests, this time in a tunnel where we can use smoke to
observe the flow streamlines. Looking at the low
Reynolds number (or low velocity) case we see the first
pattern shown in Fig. 15. The flow is observed to sepa-
rate from the sphere and a large wake is formed. From
our previous discussions, we know that the large wake is
associated with a high drag because we have a large
pressure unbalance. The high Reynolds number case
shown in Fig. 15 produces less flow separation and
therefore exhibits a much smaller wake; we recall that
this should lead to the lower drag observed in the tests
at high speed. In our examinations of drag, we have
uncovered one feature of aerodynamic flows which depend
strongly upon Reynolds numbers — that was the character
of the boundary layer.



For high Reynolds numbers a turbulent boundary layer
exists, for low Reynolds numbers, the laminar one. it
appears, then, that the turbulent boundary layer will tend
to resist separation to a greater extent than the laminar
layer. This appears reasonable since the velocity
profiles of the turbulent layer were much fuller and had
higher velocities near the surface. This higher velocity
allows the turbulent layer to ciing to the surface of the
sphere more than the laminar layer.

The last step in our discussion of the golf ball is the
observation that the size and speed of a smooth ball
places it in the range of Reynolds numbers which have
laminar flows, therefore early separation, and large
wakes with corresponding high drag. In order to promote
turbulent flow, the dimples are added to the ball. Be-
cause. of this roughness the boundary layer becomes
turbulent, and as shown in Fig. 16, the wake is reduced
in size, lowering the drag of the ball considerably. Now
don’t be misled. Turbulent boundary layers still have
higher skin friction drag than laminar boundary layers.

FI1G. 15
FLOW PATTERNS PAST SMOOTH SPHERES
AT HIGH AND LOW REYNOLDS NUMBERS
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We were able to decrease the total drag of the golf ball
by producing a turbulent boundary layer only because the
majority of this drag was due to pressure drag caused by
flow separation.

The golf ball has served as a review of many aspects
of aerodynamics. The concepts of finding what actually
causes the drag on a particular body and then taking
steps to reduce this drag is the lesson we must apply to
our model rocket designs.

FIG. 16
COMPARISON OF FLOWS OVER SMOOTH
AND DIMPLED SPHERES
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Il1l. INTRODUCTION TO
ROCKET DRAG ANALYSIS

The speed, altitude and range of a full size rocket,
just like our models, depends upon its aerodynamic drag.
Therefore, one of the first tasks of a rocket designer is
to estimate the drag of any new configuration. The drag
analysis of rockets, which have fairly complicated
aerodynamic shapes (compared to our golf ball, for ex-
ample) is usually simplified by considering the rocket
to be made up of several simple basic components. In
this process the drag of each separate part is determined
and any portion of the rocket which develops excessive
drag is identified. Steps to improve this high drag
component can then be taken. This is exactly the
procedure we will follow. We’ll determine where the drag
of our model comes from, reduce it where possible, and
thus improve the overall performance of our birds.

SOURCES OF DRAG

How should we break our model into basic compo-
nents? Our models have two major parts — a rocket body
and a set of fins. Drag of these two components will
have to be examined in detail. Note how these two parts
fit into our previous discussion of basic aerodynamics.
The fins are similar to the flat plate shown in Fig. 4;
fins will generate mostly friction drag. The nose cone
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and body tube are much like the ellipsoids shown in
Fig. 5, and will produce both pressure drag and skin
friction drag. Like the ellipsoids, the amount of each
type of drag will depend upon the nose shape and the
length to diameter ratio of a particular rocket. Unlike the
ellipsoids, our rockets have squared rear portions
(engineers say the rocket have ‘‘blunt bases’’) which
create more pressure drag than the pressure drag of the
ellipsoids.

In the next section, we’ll examine rocket body drag.
In order that we may use our drag analysis directly for
improvement of our models, we’ll break the drag of the
body into three parts; the drag of the nose cone, the drag
of the cylindrical body and the drag of the base. In this
manner, we’'ll be able to evaluate the drag of the individ-
ual parts which is, of course, the way we build our
models. We will then be able to take practical steps to
reduce the drag of these components to the lowest value.

The fin drag will be treated in the section following
the rocket body drag analysis. The total drag is the sum
of the drag of the two basic portions; Fig. 17 illustrates
how all the parts combine to give an indication of the
total rocket drag.

We can write a word equation to represent this
procedure:

Nose Cone Drag + Body Tube Drag + Base Drag + Fin
Drag Equal Total Component Drag

As we learned in Section Il, the drag depends upon rocket
size, velocity and air density, which means that if any of
these quantities changes, the drag will also change. We
can be more flexible if we deal with drag coefficients,
rather than with the drag force in pounds or grams. Once
we get the coefficients for a particular rocket we can
multiply by the proper factors (as indicated in Eq. 1) to
obtain the aerodynamic drag in pounds or grams. There-
fore, we will use the coefficient form of the word
equation:

Cpy + Cogt + CDg + CDE = CD¢ (6)

where

Cpy i's the drag coefficient of the nose shape

CDBT is the drag coefficient of the body tube

Cpg is the drag coefficient of the base
CDF is the drag coefficient of the fins

CDC is the drag coefficient of the sum of the components

INTERFERENCE DRAG

To these basic components of Eq. (6), two other drag
increments must be added to obtain the total rocket drag
(or drag coefficient). The first additional amount of drag
is caused by the joining of the fins to the rocket body.
When joined together, the air flows about the rocket
body and fin tend to '‘interfere’’ with each other. This
altered flow pattern causes the drag to increase above
the value of the simple sum of the two components. The
increased drag is termed '‘interference drag'’; we’ll
give it the symbol CDint' Interference drag can be as

much as 10% above the sum of the fin and body tube
drag. In Section VI we'll use a simple method to estimate
the value of CDint'

Additional drag is caused by any other rocket
components — launch lugs, for example. We can use the
symbol CDLL to represent the drag coefficient of the

launch lug, so the final equation becomes:

Cbg = Coy + Chgt + CDg + COE + CDjpy + COL | (7)

Our job then, is to find the drag coefficients of all the
components, using theory or experiment, and then add
them up to find the total rocket drag coefficient, CDO'

INDUCED DRAG

The subscript, O, in CDO’ is used for a special

reason. This drag coefficient represents the drag of the
rocket when it is moving directly into the wind. The
angle between the rocket’s centerline and the oncoming
air stream is zero in this case, as shown in Fig. 18. This
figure also defines the ‘‘relative wind'’: it’s the oncom-
ing air stream, directly opposed to the flight path of the
rocket. By finding the drag coefficient at zero angle to
the refative wind, Cp, which is given by Eq. (7), we

find the lowest possible drag of the rocket. Any angle
to the wind will produce higher drag coefficients than
the value given by CDO.

FIG. 18
ROCKET MOVING AT ZERO ANGLE TO
RELATIVE WIND
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This is an important point; let's look at Fig. 19 to
see where this exira drag comes from. In this figure,
the rocket is shown at an angle to the wind. The angle
between the relative wind and the rocket centerline is
termed the ‘‘angle of attack’’. Any time the rocket is at
an angle of attack, the air flow is altered and the rocket
develops an aerodynamic force at right angles to the -
wind. On airplanes, which travel horizontally, this
force is called lift; we'll use the same name. Now,
remember one of our first statements about aerodyrfamic
forces? Whenever we get lift, we'll get some "drag.
Aerodynamicists say the lift causes or ‘‘induces’’ this
drag, so we call this type of drag due to lift *"i

induced
drag’’. This kind of drag comes about solely from the
angle of attack; that’s why we wanted to examine the
rocket flight at an angle to the relative wind. -



FIG. 19
ROCKET AT ANGLE OF ATTACK
TO RELATIVE WIND
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Obviously, we could get rid of the fin induced drag
by eliminating the fins. However, our birds do not have
the automatic guidance systems of ‘‘big birds’’ so, in
order to assure straight up flights, we have to build in
stability. We make rockets stable by putting fins on
them, and the price we pay for this stability is the
added drag of the fins — friction drag, pressure drag and
induced drag.

it’s not possible to discuss rocket stability in detail
at this time, but we must recognize that stability does
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affect the drag of our models. For example, as shown in
Fig. 20, when a model climbs vertically at 200 ft/sec
and encounters a sudden horizontal wind of 20 ft/sec,
an angle of attack near 5° is created. How the model
reacts to this angle depends upon its stability. Stable
rockets, which have sufficient fin lift to overcome the
body lift, will return to zero angle of attack by rotating
about the center of gravity. How long the rocket requires
to return to zero angle, and the magnitude of the angles
attained during this return to zero depends upon the
particular design. In general, very stable rockets return
rapidly to zero angle, while less stable rockets require
more time. The more time spent at an angle to the wind,
the higher the total air resistance encountered by a
mode!l rocket. So we can see how stability can affect our
model drag.

It is time to return to the detailed drag analysis of
our rockets and find how we can use our knowledge of
aerodynamics to predict the drag. It’ll be fun to employ
our new terms, angle of attack, relative wind, and
induced drag too. We'll observe, for example, that the
induced drag from the fins will be influenced by the
planform, so maybe we can give some ideas how to
shape fins to reduce this type of drag.

IV. DRAG OF
ROCKET BODIES

NOSE CONES

The drag of the nose cone is composed of both
pressure drag and skin friction drag. When we examine
the body tube drag later, we'll find the tube drag is all
skin friction, so we’ll include the skin friction part of
the nose cone drag in the discussion of the body tube
drag. For now, let’s look only at the pressure drag of
the nose cone.

Probably the worst nose cone we could use on a
rocket is the flat nose shown in Fig. 21. It is not too
difficult to imagine the high drag we’d get from this
nose shape; just look at the high pressure region in the
front (shown by the large arrows) that pushes on this
flat surface. The drag coefficient for this shape is
CDN = 0.80.

FIG. 21
PRESSURE DISTRIBUTION
ON FLAT FACED CYLINDER CDN = 0.8
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FIG. 22
PRESSURE DISTRIBUTION ON
OGIVE NOSE CONE CDN = 0.004
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Now, by simply rounding the nose we can really cut
this nose drag. A rounded contour is shown in Fig. 22;
shown also is the pressure distribution that would occur
on this nose shape. If you examine this figure carefully,
you’ |l see that the pressure on the surface falls below
the atmospheric level; this means there is a suction on
certain parts of the nose cone. If enough of the nose
cone has a suction on it we can attain a negative pres-
sure drag coefficient. This means the nose cone will
actually contribute in a small thrust to the rocket!

PERCENT OF FLAT FACE DRAG

FIG. 24
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To be sure, we've neglected the skin friction drag,
so far. We've also neglected the low pressure at the
rear of the rocket. We'll pick up this base drag as a
separate contribution later, just as we will include the
skin friction with the body tube analysis. The fact does
remain, though, that the rounded nose cone shown in
Fig. 22 has far less pressure drag than the flat faced
shape of Fig. 21.

Many nose cone shapes can be used on your rockets,
of course. Some of these are shown in Fig. 23. To show
how the drag of each shape compares with the drag of
the flat face, the drag coefficient of each shape has
been divided by the flat-face drag coefficient. You might
be surprised to find that the pointed cones show much
higher drag than the rounded nose shapes. Many model
rocketeers, recalling pictures of real rockets with
pointed cones, use pointed shapes, believing these will
give low drag. These modelers forget that the real
rockets fly many times faster than the speed of sound.
In supersonic flight pointed cones, which can cut
through the shock waves generated by such high speed,
are indeed better than the round shapes. Our model
rockets, however, do not fly faster than sound, and
therefore do not build up any shock waves. Without
shock waves the rounded shapes which guide the flow
gently around the nose contour are definitely superior.

A good, low drag nose cone contour is shown in
Fig. 24. It is a blunted, three-to-one ogive. An ogive is
a simple shape, generated by an arc of a circle; specific
ogives are named by giving the length to diameter ratio
of the ogive. Thus, a three-to-one ogive has a length
three times the diameter. The small radius at the tip is
used to prevent flow separation when the nose oscillates
slightly during rocket ascent.

The details of construction of an ogive shape are
provided in Fig. 25. To find the radius to draw the arc
for a 3-to-1 ogive, simply multiply the body tube diameter
by 9.25. For example, an ogive nose cone to fit a BT-50
body tube is obtained by drawing an arc of 9.25 x .976 =
9.03 inches. After drawing this arc on a cardboard
template the ogive contour can be cut out of the card-
board and used to shape your own low drag nose cone.

BODY TUBE DRAG

Now, let’s look at the drag of the body tube. We’ll
limit this examination to the drag at zero lift; this will
give us the lowest drag for the body tube since it is the
body drag at zero angle to the relative wind. It’s always
a good idea to get the miminum drag because this
gives us a goal to try to attain. In this section we’ll
include the drag of the nose cone as well as the drag
of the body tube, since we neglected the friction drag of
the component earlier.

To begin, what factors contribute to the drag of the
nose cone and body tube? Any pressure unbalance and
air friction, of course; that’s why we discussed these
terms. Recall that, in Fig. 5, we found that the drag of a
series of ellipsoids depended upon the length to diameter
“ratio (L/d) of the ellipsoids. We can expect, therefore,
that the nose cone and body tube drag will also depend
-upon length to diameter ratio. Further, Fig. 5 shows that
as the length to diameter ratio increases, friction drag
gets more and more important; so we can anticipate that
our mode! rockets, which usually have high L/d, will
encounter a large amount of skin friction. That means
the boundary layer will be important in our drag analysis.

Let's imagine a wind tunnel test of a specific rocket
body, say a one inch diameter tube with a 3 to 1 ogive
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nose cone. We’ll make the model one foot long, so its
L/d will be 12. These dimensions are representative of
many sport model rockets; therefore our drag analysis
can be applied directly to these types of models.

FIG. 26
DRAG OF NOSE CONE AND BODY TUBE
FOR L/d = 12 MODEL WITH LAMINAR AND
TURBULENT BOUNDARY LAYER
AS SPEED VARIES
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Just as we did for our golf ball illustration, we’ll

install the model in a wind tunnel and record the drag
as the air speed past the model is increased from zero to
500 ft/sec. As the speed is increased, the drag force
will also build up. The level of the drag force, as shown
in Fig. 26, will depend upon the kind of boundary layer
that covers the model. We'll get the lowest drag if we
can keep the boundary layer laminar; we'll get the
highest drag if the boundary layer is turbulent every-
where. These two limits are shown in Fig. 26. An
intermediate case, with the nose cone laminar and body
tube turbulent (which is likely) is also shown in the
figure; its drag force falls between the two limits as we
would expect.

FIG. 27
NOSE CONE AND BODY TUBE
DRAG COEFFICIENT AS SPEED VARIES
FOR SEVERAL L/d
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We can see from this figure that doubling the speed
from 200 ft/sec to 400 ft/sec increases the drag by a
factor of three--from 0.014 to 0.042 Ibs for the laminar
boundary layer. For the turbulent case, the drag is
increased by a factor of almost four--from 0.052 Ibs to
0.19 Ibs. We see also that, at any given speed, the
turbulent boundary layer gives much more drag (four to
five times greater) than the laminar boundary layer. The
laminar layer is certainly one we'd like to keep on our
models if we can. (We'll discuss this in more detail
later, but a smooth surface is one of the most important
ways to keep the boundary layer taminar, so put a
smooth finish on your model rockets!)

We found that a good way to make any aerodynamic
test more usable was to put the results into coefficient
form. This allows us to apply the test results to different
size models, different air densities and different speeds.
Equation 5 was used before to convert a drag force to a
coefficient; remember we have to divide the drag by the
density of the air, the ‘"square’’ of the velocity (V x V),
and the cross-sectional area of the body tube. When we
do this arithmetic, we come up with Fig. 27. You’ll note
that the drag coefficient is labeled CDN + CDBT'

This is because the drag force in our imaginary experi-
ment was due to the nose cone and body tube. These
two drag coefficients were part of Eq. 6, the total zero
lift drag coefficient of our model rockets. Our practical
drag analysis is proceding. Figure 27 also includes the
drag coefficients for models of two different L/d, 8 and
16, so we now have the nose cone and body tube drag
coefficients for three different size rockets.

Before we extend our analysis further, we’d better
make a comment about the drag coefficients of Fig. 27,
which decrease as the speed of the rocket bodies
increases. This does not mean that the drag goes down;
that's a mistake many people make. Remember, the
drag force is obtained by multiplying by velocity
squared, so the‘drag is still rising as shown in Fig. 26.

FIG. 28
NOSE CONE AND BODY TUBE DRAG
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Figure 28 has been prepared to illustrate the nose
cone and body tube drag coefficients for more length to
diameter ratios. The range from L/d = 4 to L/d = 20 is
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covered in this type of design chart, with the drag
coefficients plotted for three different rocket velocities.
Curves like these help us in model rocket design by
showing the trends of the drag coefficient as we change
length to diameter ratio, speed, or type of boundary
layer. For example, it is clear from the chart that the
drag coefficient for the turbulent case depends more
strongly upon the length to diameter ratio than do the
laminar coefficients. On the other hand, the chart shows
that the laminar drag coefficients are more sensitive to
velocity changes; this can be noted from the 54%
decrease in drag coefficient for the laminar case con-
trasted to the 25% decrease of drag coefficient for the
turbulent boundary layer. These values are for the
L/d = 12 model as it undergoes a change in speed from
100 to 500 ft/sec.

These curves can be used for all 1"’ models with
3:1 ogive nose cones, but what about other shapes and
model rocket diameters? For other rocket configurations
we would have to run more wind tunnel tests or find a
mathematical way to detemmine the drag coefficients.
Luckily, aerodynamicists have been working on this
problem for many years, so short hand equations are
available for our use. The one equation which we can
use for the nose cone and body tube is

Sw_

8
SBT ®)

1.5
Cpy, + CDgT = 1:02 Cf [1 + (L_/_d)m]

Not surprisingly, the value for CDN + CDBT depends

upon length to diameter ratio, L/d, and upon skin fric-
tion, Ci. The Sy in Eq. (8) stands for the '‘wetted

surface area’’ of the rocket; this is the area of the rocket
‘*scrubbed’’ (or wet) by the boundary layer. You can
think of it as the total area of the nose cone and rocket
that would get wet if the model were dunked in water.
TheSBT in the equation is the cross-sectional area of

the body tube. The skin friction is represented by the
skin friction coefficient, C¢, which depends upon the

rocket speed, air density and air viscosity, as well as
rocket size (in other words, the Reynolds number-- oh,
oh, that term again).

Instead of going into the details of -these calcula-
tions at this time, let’s reserve this work for the appen-
dix. In Appendix A, we have charts to find the Reynolds
number for our rockets and the Cs to be used in Eq. (8)
once we have found the correct Reynolds number. At this
time, let’s continue our drag analysis by examining the
base drag of our models.

BASE DRAG

The first thing to do when we consider base drag is
to find where it comes from. Base drag is due entirely
to low pressure at the rear of the rocket caused by flow
separation. That’s the aerodynamicist’s description, but
let’s look at the rocket in coasting flight in Fig. 29
to ciear up this definition. As the air flowing past the
rocket (represented by the streamlines) reaches the rear,
it tries to make the sharp turn to follow the base contour.
However, the viscosity of the air prevents any sudden
change of flow direction, so the flow separates from the
surface, creating a partial vacuum at the base of the
rocket. This low pressure region at the rear produces the
pressure unbalance that gives rise to base drag.

How do we find the level of this base drag? This is a
very difficult problem even for full-scale rocket design-
ers. We might suspect that the character of the boundary
layer may have something to do with the actual value of



base drag, since viscosity has caused the flow separa-
tion. The golf ball, remember, had a pressure drag that
varied greatly as the boundary layer changed from laminar
to turbulent conditions. A similar behavior for base drag
of rocket shapes has been ohserved by experimenters.
Our base drag coefficient, CDB must therefore depend

upon the flow Reynolds number, because the Reynoids

number determines if the boundary layer will be turbulent
or laminar.

FIG. 29

=

After many experiments, aerodynamicists have been
able to come up with an approximate equation for the
base drag:

0.029

vC (o) (9)
Dy, BT

Note how convenient this expression is; the base drag
coefficient is determined from the sum of the nose cone
and body tube drag coefficients, CDN N CDBT which has

just been found from Eq. (8). The reason we can use this
simple expression is that the value of CDN N CDBT was

dependent upon the skin friction, which in turn varied with

the Reynolds number (as shown in the Appendix) and
with the type of boundary layer, laminar or turbulent.

FIG. 30
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When we plot Eq. (9), we get the curve shown in Fig.
30. We can see that as the value of CDN + CDBT in-

creases the value for CDB decreases. This is consis-
tent behavior; the high values of CDN + CDBT are

associated with high Reynolds numbers and turbulent
boundary layers., We found earlier that turbulent layers
can resist viscous separation to a greater extent than
laminar layers, so the flow at the rear of the rocket can
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turn more toward the flat base, raising the base pressure
to higher levels than obtainable with laminar layers
(although still below the local atmospheric pressure).
The drag coefficients are therefore lower than at values
of CDN+CDBT associated with laminar boundary layers.

We now have three terms of Eq. (6), CDN CDBT and

CDB. The sum of these three drag coefficients gives
the zero lift drag coefficient of rocket bodies; it is in-
structive to examine the drag of these bodies before
going on to discuss fin drag. Even before this, though,
we should emphasize that we are considering coasting
flight. During boost, the rocket exhausts into the base
region, completely altering the flow field at the rear of
the rocket. The level of base drag depends now upon
the exit pressure of the rocket gases and the velocity of
the jet from the rocket. These factors differ with each
rocket design and are difficult to account for in our
drag analysis. About the only statement that can be
made is that if the pressure in the rocket exhaust is the
local atmospheric pressure, the base pressure would be
atmospheric and there would be no pressure unbalance.
For this case, base drag would be zero. An estimate for
the base drag during boost flight, since model rocket
engines operate with near atmospheric exhausts, is that
the base drag coefficient CDB is approximately zero.

This base drag problem during rocket firing is a part of
our drag analysis that could use some good aerodyna-
mic research by a model rocketeer.

ZERD LIFT ROCKET BODY DRAG

To find the drag of the rocket body at zero angle to
the relative wind we simply add the nose cone, rocket
body and base drag. In drag coefficient form this is
done simply by adding Eq. (8) and Eq. (9) to get Eq.
(10):

CDog - Dy * DT + CDg|  (10)

where CDOB is the zero lift drag of the rocket body.

We show the result of this addition in Fig. 31 for the
different length to diameter models moving at 100
ft/sec.

Some very important observations can be made from
this figure. First, for the laminar case, the base drag
coefficient is observed to be more than 50% of the rock-
et body drag. Further, CDOB for the laminar case is

practically constant with length to diameter, varying
from 0.180 to 0.193 as L/d changes from 4 to 20. In
contrast, the turbulent case shows a smaller fraction of
CDOB comes from the base drag contribution and the

total drag coefficient increases in an almost straight
line from the Cpog= 0-185 at L/d =4 to Cbog =

0.40 at L/d = 20.

These observations are quite helpful to us in design-
ing our model rockets. For example, if our model can
maintain a laminar boundary over its entire length, then
the place to look for drag reduction is in the base.
We'll find later that boat-tailing (tapering the rocket at
the aft end) will be an effective method to cut the base
drag. Also, the length of the rocket does not appear to
matter for the laminar boundary layer, as the drag coef-
ficient doesn’t change with length. This is not the case
for the turbulent boundary layer because the drag coef-
ficient is shown to increase with length. When the layer
is completely turbulent, therefore, the shorter models
will have less drag. We have to be careful when we



apply this rule, however, because too much shortening
of a rocket can lead to an unstable model. These com-
ments are illustrations of some of the practical uses of
the drag analysis, as we apply aerodynamic concepts
to improve our model rocket designs.

FIG. 31
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The variation of zero lift body drag coefficient for
three different speeds is shown in Fig.32. The curves
indicate that the drag coefficients for the turbulent
case decrease with speed (that doesn’t mean the drag
decreases, remember), while the laminar layer exhibits
the opposite behavior at the lower L/d values because
of high base drag. Once again, drag coefficients for
the fully laminar and fully turbulent boundary layers
are presented. This procedure is necessary because of
the difficulty in predicting how the boundary fayer will
behave on our models. We know that the boundary layer
will start out as laminar but, at some point along the
rocket surface, it will become turbulent. The exact
point is difficult to determine (a good guess, however,
is the junction of the nose cone and body tube) which
makes the exact drag coefficient difficult to obtain
also.

FIG. 32
ROCKET BODY DRAG COEFFICIENT
AT ZERO ANGLE OF ATTACK

A A
- il - i TR o -
-
mEN “;‘\b I el
3 oy .
NPT e0
R TN 47, kR
m T 7 RN HH
nO ™ il ’:::/,,?:
© = = LTV 500
== t Tttt
V=100 T v-3800TT
1 NSNS
L H T
[ =L Cimny
T CAMINAR =
=++++ TURBULENT 11 |
TS N A L]
0 4 8 12 16 20

L/

15

This does not mean, of course, that all our work has
been in vain. Just as aeronautical engineers do when
faced with similar problems (which they often are) we
have placed some pretty important boundaries on the
drag coefficient. We know, for exampie, that the lowest
possible drag coefficient (for L/d greater than 8) occurs
with the laminar layer; we can strive for this value, but
realize we cannot reach it except at very low speeds
where turbulent flow cannot exist. Similarly, we can be
assured that the body zero lift drag coefficient will be
less than that predicted by the fully turbulent case,
since some portion of the model must have a laminar
layer. Probably the simplest approach, which best
represents the true flow situation, can be obtained by
choosing a drag coefficient about 75% of the distance
between the laminar and turbulent curves. For example,
an L/d = 12 model moving at 300 ft/sec has a CDOB =

0.255 for turbulent flow and CDOB = 0.182 for laminar

flow with a difference of 0.073. Taking 75% of this dif-
ference gives 0.055, which, when added to the_laminar

CDOB yields CDOB = 0.237 as the most realistic value
of the zero lift drag coefficient.

ROCKET BODY DRAG
AT ANGLE OF ATTACK

Up to this point, we have not touched upon rocket
body drag at angle of attack. This is with good reason,
since a theoretical analysis of the flow about rocket
bodies at an angle to the relative wind is very difficult.
Since rockets really do operate at angles of attack, it
certainly is of interest to find the drag penalty we pay
whenever our models get forced from the minimum drag,
or zero angle condition.

Without getting involved in the details of a theory
applicable to our model rockets at small angles of
attack, let’s look directly at the results. The increment
of additional drag caused by angle of attack for three
rocket bodies with 3:1 ogive nose cones is presented in
Fig. 33. The chart allows a rapid calculation of the
drag coefficient at any angle of attack up to 10 for
the three length to diameter ratios of the bodies. Ali
that is required is the addition of the zero lift drag coef-

ficient, Cp,g to the incremental drag coefficient,

ACpq. In equation form this is written as:

CDaB = Cogg™* ACp, (11)

where CDaB is called the total rocket body drag coef-

FIG. 33
BODY DRAG COEFFICIENT INCREMENT WITH
ANGLE OF ATTACK FOR 3:1 OGIVE NOSE BODY
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ficient at angle of attack and CDOB is obtained from

Eq. (10).

A typical solution for both the laminar and turbulent
boundary layers is presented in Fig. 34 for the three
different length to diameter ratio bodies. This chart is
based on earlier solutions for CDOB for the 1°° diameter

models moving at a speed of 300 ft/sec. The symmetric
form of the total rocket drag is clearly illustrated, asis
the occurrence of the minimum drag coefficient at zero
angle of attack. Another point to be seen from the
curves is that at low angles of attack the drag coeffic-
ient changes very little; however, as the rocket angle in-

FIG. 34
BODY DRAG COEFFICIENT VARIATION

WITH ANGLE OF ATTACK AT 300 ft./sec.
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creases towards 10° angle of attack, the drag due to
angle of attack forms a significant part of the total
rocket body drag. Taking the L/d = 12 body for example,
the drag coefficient at 10° is more than 50% above the
zero angle value. Hopefully, our stable model rockets
will not reach such high angles of attack, so that the
drag penalty will not be this severe.

In any case, Figs. 33 and 34 show how angle of
attack can increase the drag of a model rocket. Figure
33, incidentally, can be used for any diameter, 3:1
ogive nosed model rocket at angle of attack; all that
need be calculated is the zero lift drag coefficient,
CDOB either from the charts or from the Appendix.

We are now ready to move on to fin drag.

V. DRAG OF ROCKET FINS
FIN SHAPES AND TERMS

Before we start our discussion of fin drag, we’'d bet-
ter develop a method to describe the many different fin
designs. The amount of each type of fin drag -- pres-
sure, skin friction and induced -- will depend upon the
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shape. We would like to be able to identify the various
types of fins. When we cut a fin from a sheet of balsa,
we trace out a particular ‘‘planform’’. Typical planforms
used for model rockets (and full size birds) are shown in
Fig. 35. These shapes can be described as rectangular,
straight-tapered, swept-tapered, and elliptical.

FIG. 35
FIN DESIGNS
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To aid in a more complete description of the various
planforms we have to introduce additional terminology.
For example, tapered planforms can have many different
shapes so we should think about a term to describe the
various possible taper ratios. We’ll use the symbol A to
represent taper ratio, which we'll define as the ratio
of the tip chord to root chord of a fin.

A= C_T

CR
Figure 36 illustrates these new terms. It is also a good
idea to define a sweep angle, because tapered planforms
can also be swept. If we describe the sweep of the mid
chord point by Ac/2, we will be able to classify the
swept and tapered planforms by specifying A and Ag/2,

This definition has the advantage that the sweep of the
mid chord is zero for the straight taper, although the
leading edge does have a sweep angle as shown in
Figure 36.

Even with taper ratio and sweep angle determined, we
still need another factor to completely specify the con-
figuration of the fin. The term required is called aspect
ratio; it is used to indicate the relationship of the
length to width of the fin. Aspect ratio, A.R., was ori-
ginally used to describe the wings of aircraft so, as
shown in Fig. 37, the total span of the fins and the
total surface area, including the portion covered up by
the rocket body, is used to calculate the value for as-
pect ratio. For rectangular wings, the aspect ratio is
simply the span, b, divided by the chord, c. Therefore,
high aspect ratio fins are long and narrow while low
aspect ratio fins are short and stubby. When fins have
shapes different from the rectangular, the aspect ratio
is calculated from Eq. 12,

_ bxb
A.R. =252

where S is the entire surface area.

(12)




FIG. 36
DEFINITIONS OF TAPER RATIO
AND SWEEP FOR MODEL ROCKET FINS
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Planform shape is not the only factor that determines
fin drag; the cross-sectional shape also contributes to
drag. Three typical model rocket fin cross-sections or
airfoil shapes are shown in Fig. 38. The first shape is
the rectangular section you get if you simply cut the fin
out of the halsa and don’t sand or finish it. The second
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shape has rounded leading and trailing edges; this is
the airfoil we have when we sand the edges lightly.
The third cross-section is a streamlined airfoil, like
that shown earlier in Fig. 6, but much thinner. It has
a rounded nose and sharp trailing edge. As shown in the
figure, the ratio of the thickness to the chord is also
used to aid in our description of the fin. A % sheet

t

fin with a 1 inch chord has a thickness ratio, E’Of

0.0625. If the same sheet were used to cut a fin with a
2" chord, %: 0.03125. These numbers give us an idea

of the thickness ratios our model rocket fins usually
have. Our fins are quite thin; rarely will we have a fin
greater than g: 0.1.
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It appears then, that we must examine two basic
features of rocket fins if we wish to find the fin drag.
Both planform and cross-sectional shape (airfoil) will
contribute to this drag, so let’s examine both of these
factors to see if we can gain some insight into the
types of fins which will give the least drag and which
will therefore give us the best performance.

DRAG OF AIRFOIL SECTIONS

To study airfoil section drag characteristics we will
limit ourselves to fins with rectangular planforms oper-
ated at zero angle to the relative wind. In this fashion,
we will be able to study the effects of the variation of
cross-section on fin drag alone and not encounter drag
variations due to planform shape and angle of attack.
We'll look at these effects in a later section.

As we have done before, let’s imagine a wind tunne!
test on three rectangular fins, each with a different
cross-sectional shape. We will make these fins out of

,» balsa sheet and cut them with a 2’ chord and a 6"’

span. The three cross-sections will be rectangular,
rounded, and streamlined. When we measure the drag
force on these airfoils we’'ll come up with the curves
shown in Fig. 39 as we increase the wind tunnel speed.
The drag for all three sections increases rapidly with
speed, but the rectangular cross-section certainly has
a lot more drag than the streamlined shape. At 200
ft/sec, for example, the rectanghilar airfoil has a drag
force of 0.22 |bs, while the streamlined airfoil has a
drag force of about 0.036 Ibs. Note that, just by rounding
the leading and trailing edges, we can reduce the drag
of the section sizeably; at 200 ft/sec the drag is re-



duced from the rectangular section by almost 50% down
to 0.124 lbs. The advantage of streamlining your fins
is clearly shown in this figure.

FIG. 39
DRAG OF THREE FIN CROSS-SECTIONS
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FIN DRAG COEFFICIENTS

Of course, if we change the size of the fins the drag
will vary, so it would be more convenient if we would
use fin drag coefficients, rather than drag force. This
is also in keeping with our drag analysis, for we want
to find CDF for Eq. (6) so that we may find the total

rocket drag coefficient. We have to be a little careful
about this fin drag coefficient; we must be certain we
represent the size factor in the drag equation correctly.
Equation (5) for the drag coefficient still applies, of
course, but we must be sure of what reference area
should be used. For rocket bodies, we used the cross-
sectional area Sg to obtain the coefficient. Since we're
talking about fins which are usually quite thin, cross-
section area is not the most convenient area to measure
or to use. Planform area is a much better reference
area; therefore, we will use the planform area, termed
Sg, to find the zero lift drag coefficient of our fins as

as shown in Eq.13.

¥
D
CDOF :—F

(13)
3dVise

When we apply this equation to the results of Fig.
38, we come up with drag coefficients CDBF = 0.0563,

0.0313, and 0.009 for the rectangular, rounded and
streamlined cross-sections respectively. These values

111

apply to the 7 thick fin with a 2"’ chord; this gives a
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thickness to chord ratio(%)of 0.0625. What about other

thicknesses? We can answer this by referring to Fig.
40, which indicates how fin drag coefficients vary with
thickness ratio.

The rectangular sections increase very rapidly with
thickness. This is because the flat front and back sur-
faces give a large pressure drag (similar to the flat
nose cone we considered in Chapter 1V). Rounding the
nose and back edges decreases the pressure drag, but
base drag still forms a large portion of the drag. Stream-
lining by sharpening the trailing edge reduces this base
drag, just as we discussed for the shape shown in Fig.
7. We also note that as the thickness of each section
decreases, the drag coefficients are reduced; the pres-
sure drag is of less importance as the fin gets thinner.
Ultimately, if the thickness were zero, we would have no
pressure drag. Does that mean no fin drag? No, friction
drag still remains, of course. See how our basic aerody-
namic concepts keep coming back to help us understand
model rocket drag?

For streamlined cross-sections, in fact, the drag is
due almost entirely to skin friction. This means that the
drag coefficient of a fin depends on the type of boundary
layer and, again, the Reynolds number. Although the
values of drag coefficient shown in Fig. 40 are good
average values for fin drag coefficients, more precise
results can be obtained, for streamlined fins at least,
by using Eq. (14), below, and the skin friction chart
given in the Appendix.

*
Cpgp = 2Ci{1 + 2L] (14)

FIG. 40
ZERO LIFT DRAG COEFFICIENTS FOR THREE
CROSS-SECTIONS OF VARIOUS THICKNESS RATIO
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In the chart, C¢ is found according to the Reynolds

number. The Reynolds number, in turn, is determined
from the average chord length.

Figure 41 is the result of applying Eq. (14) to stream-
lined fins, 2" thick,
observe the difference in coefficients for the two types
of boundary layers. Once again, it is clear that the
laminar boundary layer will produce the least drag at a
given speed. Remembering that surface finish will help
us keep the boundary layer laminar, the value of smooth-
ing the fins and giving them a good finish is obvious.

for three flight speeds, We can



FIG. 41
ZERO LIFT FIN DRAG COEFFICIENT
FOR STREAMLINED CROSS-SECTIONS OF
SEVERAL THICKNESS RATIOS
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DRAG OF FIN PLANFORMS

At zero angle of attack, the fin cross-sections that
we've just examined have zero lift. For this case we’'ve
found that the particular planform does not contribute to
the drag except through the amount of surface area for
the fin. However, anytime our model rocket gets pushed
to an angle of attack, the fins *‘lift"’ to bring the model
back to zero angle to the relative wind. As discussed
earlier, this Ilifting action induces additional drag.
Since both the planform and angle of attack of the fins

FIG. 42
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determine the lift, these factors will also determine the
level of the '‘induced’’ drag. Let’s see if we can under-
stand where this drag comes from and then find the fin
designs which will give us the least drag.

Figure 42 presents a series of sketches showing the
flow field about the fins of a model rocket. The first
sketch shows how the air flows about a section of a
fin at angle of attack. The high pressure and low pres-
sure regions are indicated by the arrows; this pressure
unbalance produces the lift. The greater the angle of
attack, the larger the lift force generated. At about a
15° angle of attack, the air flow separates from the upper
surface of the fin and the lift force is destroyed (aero-
dynamicists say the fin, or wing, has ‘‘stalled’’). The
second sketch is a view of the rocket fins from the
front, showing how the high and low pressure regions
are distributed along the span of the fin. Air tends to
flow from high pressure zones to low pressure zones,
we know, so we might expect some portion of the air
to try to move around the tip of the fin from the high
pressure undersurface to the low pressure upper surface.

FIG. 43
THE ORIGIN OF INDUCED DRAG

““DOWNWASH'* VELOCITY
ON FIN FROM VORTEX

VORTEX PATTERN
VIEWED FROM FRONT

- Rt

a) FRONT VIEW OF ROCKET SHOWING
DOWNWASH ON FIN CREATED BY TIP VORTEX

oK, ANGLE OF ATTACK

RELATIVE WIND '

WITH NO DOWNWASH

DOWNWASH TILTS LIFT FORCE
BACK CREATING INDUCED DRAG, D;

5

RELATIVE WIND
WITH DOWNWASH

DOWNWASH
VELOCITY

Such motion does actually occur; it's complicated,
though, by the forward motion of the rocket. As the
air tries to curl around the fin tip, the fin moves out of
the way and the swirling air flow pattern shown in
sketch C of Fig. 42 is set up.

VORTEX FLOW

Swirling flow patterns are called vortex flow pat-
terns (pull the plug in your bathtub and you have an

.example of a bathtub vortex which is very similar to



the vortex from the fin tip). The strength of the tip vor-
tex depends upon the spanwise pressure distribution,
but, as this distribution determines the lift, we can
also state that the vortex depends upon the lift. The

greater the lift, the stronger the vortex.

What do we mean by a strong vortex and how does
the vortex cause this extra drag? Two good questions;
we'll use Fig. 43 to explain. In sketch (a) of the figure,
the front view of the rocket, the vortex is shown coming
from the tip. The dotted lines indicate how a vortex
creates an additional flow velocity along the span.
This additional velocity, shown to be '‘downward’’ in
the sketch, changes the relative wind over the fin. As
shown in the second sketch, a cross-sectional view
along the span of the fin, the additional air velocity,
called ‘‘downwash’’, combines with the original wind
direction to form a new relative wind. The effect of this
combination is to cause the lift of the fin to tilt back-
ward, thereby generating a component to the rear, which
is a drag force. The drag caused by this rearward tilt
of the lift is called the ‘‘induced’’ drag; it is a direct
result of the vortex pattern which created the downwash,
which itseif was produced by the pressure distribution
about the fin.

That's all there is to explanation of induced drag.
We see that if the fin were at zero angle of attack there
would be no lift and the pressure on the upper and lower
surfaces of the fin would be the same. There would then
be no flow towards the tip, so no tip vortex would form,
the relative wind would not be changed, and therefore,
we would have no induced drag. Because this pressure
distribution along the span is so important to the genera-
tion of the tip vortex, and because this span-wise
pressure distribution is determined from the shape of the
planiorm, we can begin to understand how fin planforms
can influence the induced drag. Let’'s continue our dis-
cussion by examining typical fin shapes.

- EVALUATING FIN SHAPES

Aerodynamicists have been studying wings for many
years; let’s take advantage of their work by using the
experimental results and theories these investigators
have accumulated on wings. Rocket fins are, after all,
just half wings, so the wing results will apply to our
model fins. At speeds below that of sound, an elliptical
wing planform has been determined to be the most ef-
ficient; that is, the elliptical shape gives the least
induced drag of all comparable size wings. The ellip-
tical wing, therefore, is often used as the standard to
compare the performance of other wings.

C C

Cp. = _LX
Di A ARJey

CL is the wing lift coefficient; it has values from 0 to
1.0 depending upon the angle of attack. We can find
lift of the wing if we use the equation below:

L=CL %dvzswing

For elliptical wings, ey, = 1; for all other wings, ey
is less than one. This means that Cp. will be larger
for all planforms other than the elliptic ones. Equation
15 also illustrates the importance of aspect ratio in
determining the induced drag. The higher the aspect
ratio, the lower the value of CDi all other factors being

(15)

equal. Long narrow fins give lower induced drag than
short stubby pianforms.
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FIG. 44
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Typical values of ey for rectangular and tapered

planforms with zero sweep angle, Ag/o are presented in
Fig. 44 for different values of aspect ratio. Using this
information, we can find the induced drag from Eq. (15)
tor different planforms for constant values of lift coef-
ficient as we vary the aspect ratio. Figure 45 presents
these results for three lift coefficients for rectangular
and elliptical wings. The tapered wings would have an
induced drag that falls between these two limits. From
this figure we can see that the higher aspect ratio wings
have much less induced drag than the low aspect ratios.
For example the elliptical wing at C_ = 0.2, has CDi =

0.007 for an aspect ratio of 2 but only 0.002 for an aspect
ratio of 8. The rectangular wing has CDi = 0.0086 and

0.0025 for the same conditions -- an increase of more
than 20% of induced drag.

FIG. 45
INDUCED DRAG COEFFICIENT FOR
ELLIPTICAL AND RECTANGULAR WINGS
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Swept wings have not been considered as yet. One of
the reasons is that these wings are difficult to analyze.
We know, in general, that wing sweeping in subsonic
flows will lead to greater values of induced drag than
for straight wings. Again you may wonder why so many
full-scale rockets and missiles have swept fins; the
reason is the same as the one given for pointed nose
cones. Full scale rockets fly faster than sound and
therefore generate very strong, drag producing, shock
waves. Wing sweep allows the wing or fin to cut through
the shock wave more easily and does reduce the super-
sonic wave drag. Model rockets, however fly slower than
sound; they generate no shock systems. Therefore, sweep
is not necessary for efficient design.

Another interesting point can also be made from Fig.
45. How do we get a lift coefficient of 0.2? The lift is
caused by an angle of attack of the wing (or fin) due to
a gust or other de-stabilizing influence. This gust, in
turn, puts the rocket body at an angle of attack. This
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means that the amount of lift we can generate for each FIG. 47

degree of angle of attack is also important in our choice PLANFORMS
of planform. Which wing gives the most lift for the least TYPICAL A
angle? Figure 46 provides the answer, this time includ-
ing swept planforms. Once again, the elliptical planform
is the best, followed by the straight rectangular and

then by the swept planforms. Suppose a C| = 0.2 is '¢ b 4“

FIG. 46 r
LIFT COEFFICIENT FOR “ANGLE OF
ATTACK FOR SEVERAL FIN PLANFORMS
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required to correct the flight path of the aircraft. Ac- AR. = b

cording to Fig. 46, an elliptic wing of Ag = 2 will Cr
produce a lift coefficient of 0.054 per degree angle of
attack. That means that the angle that will produce
CL = 0.2 is given by

c
L 0.2 _,4°

a= =
CL per degree 0.054

[
!

If the A.R. were 6, then Ci_per degree is 0.082

.2 o
a= m— 2.4

We could look back to Fig. 34 to see what increment r
increase we would have for this body angle for an L/d
= 2 rocket body. You’'ll note that the increase in Cp

is about 0.013 and 0.007; we can observe that the fin L $=Crxb
planform couples with the body to determine the over- SWEPT A.R. = c—b—
all drag. T
With rectangular planforms the wings are less effici-
ent, so the wing and body must go to a higher angle of
attack to obtain the necessary lift coefficient to recover
from the gust. Let's look at a swept wing with A =g0°:
we find Cp_ per degree is 0.034 and 0.046 for AR = 2
and 6, respectively. This means the angle necessary to
produce C| = 0.2 is 5.8° and 4.3°, for the two aspect J‘ b
ratios, The corresponding increase in body drag coef-
ficient is 0.027 and 0.020, factors of two and three *[ I ___t
above the drag coefficient increase with elliptic wings.
For the rectangular case, with no sweep, you would get Cr Cr
drag increases of 0.015 and 0.008. You might check : *
these values. Again, for all cases, the elliptic planform
not only produces the least induced drag but causes
the Ieas{ incremental increase in body drag. TAPERED
To sum up this discussion of planform drag, wings
(and therefore fins) that have elliptical planforms and
high aspect ratio will produce the least drag due to (CT+CR)D
lift. Tapered and unswept planforms would be the next $= ———
best choice; in fact, a straight taper with A = 0.4 is
just about as good as the elliptical planform. Swept
planforms look pretty, but give more induced drag than
unswept wings.

A.R. = —




A word of caution about aspect ratio: don’t use too
high a value or you’ll have structural problems - aero-
dynamic forces can pull the fins off, As with most
aerodynamic problems, fin design must he a compromise
of aerodynamic efficiency and structural strength.
Figure 47 presents typical fin planforms and gives
equations to find areas and aspect ratios of these shapes.

TOTAL FIN DRAG

At the beginning of this section of fins, we noted
that the drag depended upon the cross-section and
planform. We have been able to find the drag coefficient
for both types of fin drag; the total drag coefficient
is the sum of these two components.

Thus

C* * *
Df = CDog * CD; (16)

where CSF is the total drag coefficient based on fin

*
area CDOF is the zero lift drag coefficient, found from

Fig. 32 or for streamline sections from Eq. (14),
and CDiF is the induced drag coefficient found from

Eq. (15).

We conclude this section on fins by finding the total
drag of four fin designs. As usual, we’ll pick the worst
case and the best case to try to bound the fin drag
coefficient. We will consider unswept planforms; rec-
tangular with rectangular cross-sections and elliptical
with streamline cross-sections. Further, we will consider
two aspect ratios, A.R. =2 and A.R. = 6.

In order that we may apply the results to our model

rockets, we’ll construct the fins of y§’’ sheet balsa with
. FIG. 49
DRAG COEFFICIENT OF ELLIPTICAL AND
RECTANGULAR FINS; VARIATION WITH FIN
LIFT COEFFICIENT
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FIG. 48
§(2 fins) = 3

CR = 0.9, b = 4-2

ELLIPTICAL
AR =6

CTt=071,b=4.23

RECTANGULAR
AR=6

Cr=1.56, b= 2.43

ELLIPTICAL
AR =2

CT-1.22,b=2.44

RECTANGULAR
AR =2

a fin area of 6 square inches. The geometries selected
are shown in Fig. 48. The fin drag coefficients are
shown as a function of tift coefficient in Fig. 49. The
increase in CDF with C_ is much more rapid for both

A.R. = 2 planforms compared to the A.R. = 6 fin shapes.
1 »

Because we’ve kept the thickness of the fin at {g , the
thickness ratio for the A.R. = 6 fin is greater than %—for
A.R. = 2. This causes the zero lift drag coefficient for
the low aspect ratio fins to be below the high aspect
ratio fins. If we had kept the same thickness ratio for
both aspect ratio fins the zero lift drag coefficient would
be the same. The curves do point out the trades that can
be made in fin design.

We can observe from this figure that the low aspect
ratio fins have a more rapid increase in CBF with C|_

than the high aspect ratio fins. We might also note that
the minimum CEF occurs at zero angle of attack as we
would anticipate, but what about the fact that C[*)F at

zero angle for the low A.R. shapes is below the CE)F for
high A.R.? This is a consequence of the way we

1
made our fins: we held the thickness at 16

area at 6 square inches. That way, when we lowered the
A.R., the fin chord increased, then when we divided the
constant thickness by the larger cross-section width the
thickness ratio decreased. Recall that the zero lift drag
coefficient, CDOF of the fins decreased as the fins got

and kept

thinner. In fact, for the streamlined, elliptical fin plan-
forms, the curves show that the low A.R. fin gives lower
total drag until C|_ gets greater than 0.15. For the rec-
tangular fin, the advantage of the low aspect ratio is
even greater--up to Ci_ = 0.35. If we have stable rockets
it may be advantageous to use low aspect ratio fins be-
cause they have smaller thickness ratios.



We have to watch out though; we must find what angle
the fin must go to in order to generate a C_ of 0.15 or
0.35. We'd find that for elliptic fins with AR = 6 the
angle is 2° but with AR = 2, the angle is 3° Thus the
body drag for the low AR wing will increase more. For
rectangular wings the angles are 4.8 and 8.2 respective-
ly. Maybe we don’t want low A.R. after all.

The above illustration makes clear some of the pro-
blems (and fun) of model rocketry (and full scale aero-
nautical engineering). It’s very difficult to make a flat
statement that this particular fin design is the best. It
all depends. It depends on induced drag, lift coefficient
with angle, body drag coefficient change with angle, sur-
face finish....Wow! What we try to do is understand the
basic concepts, get some general guide lines (like
streamline cross-sections shapes are best, keep the sur-
face smooth for laminar boundary layers, and for given
thickness ratio, high AR is best)build the design, fly it,
and find out which fin planform suits a particular task
best.

Fi1G. 50

DRAG OF ELLIPTICAL AND RECTANGULAR FINS:
VARIATION WITH ANGLE OF ATTACK
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VI TOTAL ROCKET DRAG
DRAG AT ZERO LIFT

As we’ve learned earlier, the drag of our model rock-
ets will depend upon their velocity, the air density, and
the size of the rocket. In Chapter 1 we wrote Eq. (1) to
show an exact relationship for drag. We rewrite that
relation now to obtain the zero lift drag in pounds, Do,

for a model rocket with a body cross-sectional area,SgT
in f.2;

2
Do=Cpg L,V seT (A7)
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Correct units are assured by measuring air density p in
slugs

ft.3
lift drag coefficient, CDO’ has no dimensions. We

and model rocket velocity in ft./sec. The zero

need only select the flight conditions, velocity and
altitude since altitude determines air density, decide on
a model size to establish SgT and compute the model
rocket drag from the Cp ..

We can illustrate this procedure before getting into
detailed calculations by rearranging Eq. (17) to a more
simple form:

Do _
Jewia 0.0827 CDO (18)

BT

This relationship assumes a sea level average value for
p ( = 0.00238 slugs/ft.?) and a velocity of 100 ft./sec.
to determine the drag of a model rocket in pounds for
every square inch of body tube cross-sectional area.
Thus a drag coefficient of one yields a drag of 0.0827
Ibs. for every square inch of body tube cross-section.
A formula such as Eq. (18) can be used to construct a
chart like Fig. 51, showing the drag in pounds of a rock-
et per square inch of cross-section area for several
flight speeds.

To use the chart, simply enter with the drag coef-
ficient-- we have yet to find CDO exactly, but let’s say

CDO = 0.5 for a model rocket moving at 300 ft./sec.—-

then a vaiue of _Dg = 0.371 is read from the chart atV =
SB
300 ft./sec. If the rocket has a BT-50 body tube, then

Do =§_§T_ x SgT = 0.371 x .785(0.976)2 = 0.279 Ibs

FIG. 51
ZERO LIFT DRAG OF MODEL ROCKET VS Cp,

FOR DIFFERENT FLIGHT SPEEDS AT SEA LEVEL
AND AT 5000 FEET ALTITUDE

TO OBTAIN DRAG OF MODEL ROCKET IN POUNDS FOR
DIFFERENT BODY TUBES, MULTIPLY CHART VALUE
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In a similar fashion a BT-60 body tube, with a 1.637"’
diameter, has an area of 2.105 square inches. Therefore

Do = 0.371 x 2.105 = 0.768 |Ibs.

The effect of altitude is also shown on the chart. The
dashed line indicated the drag in pounds per sguare inch

when the density is 0.002048 %Lt%

the value of p at 5000 ft on what is termed a ‘'Standard
Day’’. At this altitude, the drag of the BT-50 model
rocket drops to 0.242 |bs, a reduction to 86.1% of the sea
level value. This reduction is exactly that of the density
ratio, since

_P5000 - 0.000048
Psea level 0.00238 = 0.861

All we need to do to correct the drag for any altitude,
then, is to multiply the sea level value of drag by the
density ratio. A chart of '‘Standard Day’’ density at
altitudes up to 20,000 feet is givenin the Appendix for
this purpose.

Incidentally, before passing on to a calculation of
CDO we should take note that Fig. 51 is a universal

chart. It applies to full size rockets, as well as model
rockets. Consider a full-scale rocket with a body diam-
eter of 1.5 feet moving at sea level at 500 ft/sec with
CDO' = 0.4. The drag of this bird at 500 ft/sec is a

little less than 140 pounds. Even more impressive is
the drag acting on a 33 foot diameter Saturn V climbing
through 5,000 feet altitude at 500 ft/sec with CDO = 0.4;

the aerodynamic resistance of this giantis 88,200 pounds!
You might take the time to check these numbers; then
just for fun try to find the aerodynamic resistance of
the family automobile, which has a drag coefficient
near 0.6.

Let's return to our model rocket, now, and attack the
main problem - finding CDO. We have made real progress

in our study so far; recall that in Chapter Ill we used
Eq. (7) to write the CDO in terms of the component

drag coefficients:

CDO = CDN + CDBT + CDB + CDOF + CDint + CDLL
7

We’ve been working in the past two chapters to estimate
the first four of these drag coefficients. All we need to
do now is to find the interference drag coefficient,
CDint’ and the launch lug drag coefficient, CDLL’ to be

able to compute the zero lift drag.
In Chapter V we found the fin drag coefficient, CDF“‘,

which was based on fin area. We'll have to correct
that drag coefficient to be based on the same area as
the other coefficients; that is, the body tube cross-
sectional area. As we examine this correction, we will
also find a method to estimate the interference drag.
First, the correction to the proper area is made by Eq.
(19):
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(19)

CDOF = CDOF 481'

sk
The value for CDOF may be obtained from Eq. 14 or

from Fig. 41 for the particular fin design being used.
Then all that is required is to multiply by the ratio of
fin areas using the reference formulas from Fig. 47.

The equations of Fig. 47 are based on wings; what
about the fact that the body tube covers a portion of the
fins? What do we do if we have three fins, not four? As
shown in Fig. 52, we can subtract the area covered by
the body tube to obtain equations similar to Eq. (20) for
rectangular fins.

Sg =%[b-d] x Number of fins (20)

FiG. 52
CALCULATION OF EXPOSED FIN AREA

Sg = ER [b-d] x No of Fins

*

Remember we are finding the zero lift
drag of the fins, therefore no induced drag is encounter-
ed. Further the drag is

o1 e 12
DoF =Cogr 3PV°SF = CDgg 3PV < SB

Since Jz'pVZ is the same for both equations:

sk
Coof SF = CDgE SBT
or

*
“Dor = ®Dor 3E
BT



However, by a fortunate coincidence, one method
used to estimate fin interference is to neglect the fact
that the air does not flow past the portion of the fin
area covered by the body tube. The increased surface
area will result in a higher drag coefficient, but the
increase has been shown to be about equal to the inter-
ference drag coefficient. In other words we can find
CDint from the equation:

* C
CDjpt = CDoE -Sg—_r-g—x Number of Fins| (21)

We can combine this expression with Egs. (19) and (20)
to come up with a simple relation for both CDOF and

CDint:

_Cboe

mx Number of fins
int SBT

CDOF + Cp, (22)

The area is found for any fin design by the relations
shown in Fig. 47.

It is true that this is an estimate of interference drag.
It certainly is a better method than simply multiplying
the CDO by some correction factor like 1.05 or 1.10 to

guess at the effect of fin interference. Interference prob-
lems are difficult to analyze and improvements to ways
to estimate interference effects are an important area
for model rocketeers to examine.

LAUNCH LUG DRAG

The last component necessary to find CDO from Eq.

(7) is the launch lug drag coefficient. CDLL' We'll

have to do this all with theory, since not too many
aerodynamic tests have been conducted on soda straws
and similar tubes. All we'll be able to do, then, is to
establish the ‘‘order of magnitude’’ of the launch lug
coefficient. The term '‘order of magnitude'’ is used by
engineers when a precise answer cannot be obtained and
it is necessary to know if the drag of a particular com-
ponent will be an important factor. For example, will
CDLL be 1% of the total rocket drag or 50%? If CDLL

is just 1% of the total, then it doesn’t matter if we’re not
too exact, if the CDLL is 50%, then we’'d better refine

our analysis,. since an error in CDLL will certainly have
a big influenc .
ig influence on our CDO

As we've done before, let’s think of the worst pos-
sible case in order to place an upper timit on the drag
coefficient. If the launch lug were a solid disc standing
at right angles to the flow, it would create the separated
flow and high drag conditions shown in Fig. 53, Sketch
(a). The drag coefficient for a disc at right angles to
the flow is 1.2, based on the disc surface area. To be
meaningful to us, we must convert this coefficient to the
drag coefficient of the disc based on the body tube
cross-sectional area that we've been using as a refer-
ence. Thus

_1.25LL
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SBT (23

CDLLmX

when we've added a subscript mx to indicate this is the
maximum expected drag coefficient for the launch lug.
For a launch lug that is 0.17"" diameter (which gives an
area of 0.0227 sq. in.) we may obtain the CDLL by
mx

25

FIG. 53

=D

a) LAUNCH LUG ASSUMED AS FLAT SOLID DISC

A=

b) LAUNCH LUG ASSUMED AS FLAT RING
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¢) LAUNCH LUG WITH LENGTH /

dividing the assumed solid disc area by the appropriate
body tube reference area. Performing this arithmetic, the
upper curve of Fig. 54 is obtained.

Figure 54 clearly shows the

CDLLmX

other hand, with small body tube diameters the launch
lug can be an appreciable fraction of the total rocket
drag. (Looking back at Fig. 33 we find that the drag
coefficient of the nose cone and body tube is less than
0.2 for a 1"’ diameter model.)

Now let’'s see if we can place a lower bound on the
launch lug drag coefficient. In Sketch (b) of Fig. 53 we
note the minimum possible drag would occur if we had
made a ring by cutting an 0.15" diameter hole in the
0.17’" flat disc. The drag would then be made up solely

rapid decrease of
as the body tube diameter increases. On the

FIG. 54
ESTIMATE OF DRAG COEFFICIENT
OF A LAUNCH LUG
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of pressure drag as before, but now the area of the ring
is reduced to 0.00502 sq. in. Thus the minimum drag
coefficient of the launch lug is given by Eq. (23) but
with §_ | = 0.00502 instead of S| | = 0.0228 as in the

solid disc case. A curve of this minimum launch lug
drag is also shown in Fig. 54.

We can now say that the l»'nch lug drag coefficient
lies somewhere between the two boundaries outiined on
the figure. For a 1’ diameter body tube, then, a CDLL

must be more than 0.008 and less than 0.035. That’s
pretty good information, but can we improve upon it?
Yes, since launch lugs are cylindrical, not discs, they
will also have skin friction drag as shown in Sketch
(c) of Fig. 53. We can make an estimate of this friction
contribution and add it to the pressure drag for an im-
proved value of CDLL'

We'll assume a 1"’ long lug. The surface area is made
up of the sum of the inner and outer surfaces:

SLLW = Surface Area = ndoutl+ ndin[: a(.17) (1) +

#(.15) (1) = 1.005 sq. in.

For simplicity, we'll assume that the skin friction
coefficient is constant over the range of speeds en-
countered by the launch lug, and we’ll let the value of
C¢ = 0.0045. Therefore, we can find a value for CDLL

from Eq. (24):

1.2 S + 0.0045 S|__|__W

C =
DL (24)

SBT

Results from Eq. (24) are presented in Fig. 54, along
with another curve for a 2'° long lug, included to in-
dicate the effect of launch lug length upon the drag.

Figure 54, then, summarizes our theoretical treatment
of launch. lug drag. Perhaps you are concerned about a
few fine points in this aerodynamic analysis -- for
example, what about the fact that the launch lug is
glued to a body tube which has a boundary layer grow-
ing on it? or the assumption that the friction drag is
constant? or the influence of lug misalignment? These
features certainly could alter the drag coefficient of the
lug, but haven't we done what we set out to do? We
were looking for an "‘order of magnitude’" for CDLL and

we have established reasonable bounds for its value.
In the process, we’'ve exercised our understanding of
aerodynamic drag to determine the drag of a soda straw,
(How many professional aerodynamicists have ever done
that?) We'll leave the refinements to this lug drag
analysis to others; besides whenever good experimental
data becomes available, we’ll be ready to employ that
too.

COMBINING DRAG COEFFICIENTS

Let’s now examine the procedure to find the zero
lift drag coefficient of a typical model rocket. A sport
rocket, 1" in diameter, with four streamlined fins of
AR = 2 is shown in Fig. 55. We'll assume a flight speed
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of 100 ft/sec and find all the component drag coeffi-
cients for Eq. (7). To obtain the lower limit on the
possible drag coefficient, we’'ll assume the boundary
layer is laminar everywhere.

The first two coefficients are found from Fig. 28,
which indicates

C =
DN + CDBT 0.079
The base drag coefficient is then found from Fig. 30
to be CDB = 0.104, For fins with a thickness to chord
ratio L = 0.0397, we find CBOF - 0.010 from the Fig. 41.

Now we’ll use Eq. 22 to determine the interference
effect and CDOF simultaneously:

Area

28T

3.15 x 1.575
=.010 x—2 <785 X 4

x No. of Fins

*
CDor +CD|NT= CDoF

- 0.1262*

With a launch lug drag coefficient for the two inch long
lug bounded by the minimum value CDLL = 0.02 and

the maximum value of CDLL= 0.035, let’s be conservative

and try to account for any misalignments by picking a
value of Cp | = 0.035. Making these substitutions into

Eq. (7):
CDO = CDN + CDBT + CDB + CDOR + CDINT + CDLL

= 0.079 4+ 0.104 + 0.1262 + 0.030
Cpy, = 0.3392

FIG. 55

*
We could, of course, find the interference

drag separately, using Eq. 21; this would give

d
. of fins = 0.0402,
ZSBTX No. of fins

This indicates the fin drag coefficient would be CDOF=

*
°DynT= CDoF

0.088. If we were examining the drag contribution of
each component this would be an important piece of in-
formation. However, if we are concerned only with total
drag coefficient CDO’ then Eq. 22 is the easiest to use,

since it gives two coefficients with a singie calculation.



Finally! We’'ve just completed a calculation for the
zero lift drag coefficient of a typical model rocket.
This is what we've been trying to do since we started
working on drag analysis. We have, of course, assumed
a fully laminar boundary layer so this is the lowest
possible drag coefficient and therefore the coefficient
that we strive for.

What's the highest zero lift drag coefficient? This
would be obtained if the boundary layer flow were every-
where turbulent. By repeating the procedure followed
above, but using the turbulent value in all the charts
we arrive at the following values:

CDN + CDBT = 0,229

Cpg = 0.061

Cpp = 0.166

Cpyp = 0-0517
Cp,_, = 0.080

Thus, a fully turbulent boundary layer will cause the
drag coefficient to increase almost 60% above the lam-
inar value -- that’s certainly an important piece of
information which we can use to improve rocket
performance.

Other important information can be learned from all
the data we now have available. Let's point out these
features of drag in the next section.

ANALYSIS OF DRAG AT ZERO LIFT

When we started our drag discussions we wanted to
be able to identify the drag of each rocket component.
In that way, we would be able to take corrective action
to reduce the resistance of any high drag component we
discovered. That’s why we’'ve been so careful in our
analysis to always define the drag coefficient of the
fins, the body tube, the base, etc. We now have the
opportunity to examine in detail the contributions of
three basic components to the drag of the entire rocket.

The best way to do this is to consider an example.
Since we’ve already started an analysis of the model
shown in Fig. 55, let's continue with this model at a
flight speed of 100 ft/sec. To make the information
easier to visualize, we’'ll make use of bar charts to
represent the contribution of each model rocket com-
ponent. Figure 56 presents bar charts in two forms: the
top set of bars gives the drag of each rocket component
in coefficient form; the bottom set of bars gives the
percentage contribution of each set.

Each of the five bars represents a different set of
assumptions or techniques used to analyze our model
rocket. For example, the first bar gives drag coefficients
for the fully laminar boundary layer case examined in the
last section. Directly below, the bottom bar shows the
percentage of the total coefficient drag that the body,
the base, the fins, the interference and the launch lug
contribute to the zero lift value for CDO = 0.339. The

five bars, then, represent drag analyses based on the
following five assumptions:

(i) a laminar boundary layer exists on all surfaces

(ii) a turbulent boundary layer exists on the body but
the fins have a laminar layer

(iii) a turbulent boundary layer exists on all surfaces

(iv) a laminar boundary layer exists on the body, with
unstreamlined, rectangular cross-section fins

(v) a turbulent boundary layer exists on the body, with
unstreamlined, rectangular cross-section fins

Conditions (i and iii) have been worked out earlier,
conditions (ii), (iv), and (v) are calculated in a similar
manner.

FIG. 56
DISTRIBUTION OF DRAG COMPONENTS FOR
L/d =12 ROCKET WITH A.R. = 2 FINS AT 100 ft./sec.
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The bottom bar for condition (i), the all laminar
case, indicates the rocket body contributes about 24%
of the total drag, the base adds almost 30% and the fins
about 25% the remainder is due to launch lug and inter-
ference. Pretty interesting isn't it? Each part contributes
about the same amount of drag for the all laminar case.
This bar chart shows how important base drag is. Maybe
we should try to cut that part of the drag down if we
can. In the next chapter we’ll take up drag reduction
methods, so this type of information is particularly
valuable.

What happens if we allow the body boundary layer to
become turbulent? From the charts we note that the
total drag coefficient increases to 0.446. This is more
than a 30% increase over the previous value, all due to
the extra drag of the body tube. As shown by the bottom
bar, more than one half of the drag now comes from the



body tube. That’s a dramatic way of showing how im-
portant it is to keep the boundary layer laminar for
low drag.

If the boundary layer on the fins becomes turbulent,
we get a further increase in drag. We've already shown
CDO = 0,538 for this condition (iii). The contribution of

the fins to the total rises to near 28% from the 19%
value of case (ii). Note that the total percentage due to
the turbulent body has dropped to 43%. Of course, the
body drag coefficient is still the same (as shown in the
upper bar graph), but the total drag coefficient, CDO’

has become larger than the CDO of condition (ii).

STREAMLINING EFFECTS

Another really interesting point is an illustration of
the effect of streamlining the fins. Young model rock-
eteers often wonder if it’s worth taking the time to sand
the fins to a proper airfoil shape; conditions (iv) and (v)
show how much the drag is increased by leaving the
front and rear edges of the fin flat. Because the pres-
sure drag goes up so much, CDO = 0.674, even with a

laminar boundary layer on the rocket body. Compare
this to CDO = 0.339 when the fins are streamlined as in

case (i). The rectangular fins account for 45% of the
total drag - almost half the rocket drag is due to the
fins! Finally, when the rocket body boundary layer is
assumed to be turbulent, the drag coefficient increases
to 0.781, so that the fin drag percentage drops under
40% while the body tube percentage increases to 29%
of the total.

To sum up this part of our drag study, we see that
the drag -coefficients of the same basic model can vary
from CDO = 0.339 all the way up to CDO = 0.781, That’'s

quite a range of coefficients; how do we decide what
the value is for our rocket?

Once we streamline the fins we know that the value
will be somewhere between the fully laminar and fully
turbulent case, so we may set these bounds. We can
strive for the lowest value -- the all laminar case -- but
a good reasonable drag coefficient will probably be
greater. Without getting into some pretty complicated
aerodynamics which will require prediction of boundary
layer transition points, let’s say the drag of a stream-
lined fin rocket can be represented by case
(ii), a turbulent boundary layer on the body but a lam-
inar layer on the fins.

We must also remember that this drag coefficient is
for zero lift (or zero angle to the wind) and for a con-
stant velocity of 100 ft/sec. Since our analysis can
examine both of these points, let's consider next the
effect of velocity on the distribution of drag coefficients
and then the effect of angle of attack.

INFLUENCE OF VELOCITY

Most model rockets have three fins so, before con-
sidering the effect of velocity upon our rocket drag,
let’s make a slight modification to the typical model
rocket that we’ve been analyzing by changing it to a
three-finned model. We’ll keep the same aspect ratio
as before, with AR = 2, but increase the size of each
fin a little to 2 square inches. We'll use the symbol
SgF to represent the area of a single fin. The three
fins, therefore will total six square inches; we require
about this much area to keep our model rocket stable.
With a smaller area than previously used (total area,
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SE = 6.75 sq. in. for the four finned rocket) we would

expect the fin drag to be reduced. Don't forget that the
interference drag will also be cut, since only three fins
will be causing flow distrubances.

At a rocket velocity of 100 ft/sec, we have already
determined the drag of the nose cone and body tube,
base and launch lug; only the fin and interference drag
must be re-evaluated for the three fin model. The first
task in the re-examination is to determine CDEF which,

as shown in Fig. 41, depends upon the thickness ratio,

é. Because we've altered the surface area of each fin,
SSF’ the thickness ratio of our % thick fins will be
changed from the previous value. Referring back to Fig.
52, it is possible to perform a little algebraic manipula-
tion to determine what the chord, Cg, of the rectangular

fin shoutd be. In terms of the geometric properties of
our fing which we know, Sgg, and AR, and the body
tube diameter, d, the chord Cy turns out to be

1[d \/d 0
°R =3Z|aR * (AR) ¥

If you’ve had algebra and the quadratic formula, you
might have some fun checking out this equation. Don’t
worry if you haven’t; all we need do is substitute the
numerical values into Eq. 25 to find the chord for our
particular model rocket. When we do this we obtain

AR (25)

BSSFJ

11 1 8x2
Cr =?[3+ (—2-)2 +—2 ]:

The thickness ratio for our fins becomes

1-00028 .07

According to Fig. 41, this thickness ratio results in

1.687 inches

CBOF = 0.0096 when the boundary layer is laminar and

the velocity is 100 ft/sec. The fin and interference drag
coefficient is determined from this value by Eq. 19
and Eq. 21:

SE_ _ 0.0096 x
0

* 6
Cbof = CDoF Sgt 7g5 = 00734

CRr d

2R S x3 -
SgT 2 *

0.006 xJ-88L

%
CoinT = CDof

L x 3 - 0.0309
Looking back to the four-finned case, we find CDOF =
0.086 and CDINT = 0.0402. By using three fins, then,we

cut the sum of the fin and interference drag coefficients
by 20%. Adding the contributions of the rest of the model
rocket, the total zero lift drag coefficient becomes
CDO = 0.3173. Compared to the four-finned value ob-

tained earlier, CDO = 0.3393, the zero lift drag at 100

ft/sec has been reduced about 7%.

To continue our examination of velocity effects we
must repeat the calculations at other rocket flight
speeds. This repetition is not difficult because we've
been very careful to plot velocity on all our design
charts. If you look at Fig. 32, you'll find the sum of



the drag coefficients of the nose cone, body tube, and
base -- termed CDOB -- for both laminar and turbulent

boundary layers plotted against rocket body length to

diameter ratio for three specific speeds: V = 100, 300,

and 500 ft/sec. Al we have to do is select a rocket

length to diameter ratio (we've been using £ _ 12,
d

remember) and read off the value of CDOB fer the

desired flight speed and boundary layer condition.
Then we can use Fig. 41, as we've just illustrated, to

find CE‘,OF which in turn determines the fin and inter-

ference drag coefficients. Adding these components
along with the launch lug drag coefficient gives the
zero lift drag coefficient, CDO.

Applying this procedure to the typical model rocket
we've been using as an example, we obtain the drag
coefficient distributions shown in Fig. 57. Once again,
in order to place limits on the model rocket drag (and
for simplicity), we’ve considered pure laminar flow to
establish the lowest possible drag and entirely turbulent
flow to find the maximum drag coefficient. With curves
like these it’s easy to see the large effects of base
drag for the laminar case, and how much the turbulent
boundary layer increases the drag on the fins and body
tube.

FIG. 57
DISTRIBUTION OF DRAG COEFFICIENTS
VS FLIGHT VELOCITY
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BOUNDARY LAYER

Perhaps now is the time to consider the boundary
layer on our model rockets; we might be able to improve
our drag predictions, this way. In Chapter Il we learned
that boundary layers always start off smoothly with the

laminar velocity profile existing over a surface, then
after the air flows along the surface for a while the
boundary layer ‘‘transitions’’ to the turbulent case. We
found the proper index to describe the behavior of the
boundary layer was not simply the speed of the air
over the surface, or the length of the surface, but a
multiplication of velocity and length combined with the
density and viscosity of the air. This combination was
termed the Reynolds number, and defined by Egq. 4.

A general rule which helps us determine what type of
boundary layer exists on a surface - that is, a body
tube or fin - is that laminar flow will always exist where
RN is less than 100,000 and turbulent flow will always
exist when RN is greater than 1,000,000. The ques-
tion is, thus, what Reynolds numbers do we have on our
model rockets? For our model rocket with a one foot
long body tube, flying at 100 ft/sec at sea level, RN =
610,000; at 300 ft/sec, RN = 1,830,000, and at 500
ft/sec, RN = 3,050,000. Therefore, at the lowest speeds,
certainly below 50 ft/sec, laminar flow will exist, but
as the speed increases, a turbulent boundary layer will
cover the body tube.

It’s important to note that the boundary layer does
not become turbulent everywhere at one time; in fact, a
little laminar boundary layer exists on all surfaces,
even at very high Reynolds number. The turbulent layer
begins at the rear of the tube and gradually spreads
forward as speed increases. For our particular size
model flying at 300 ft/sec, more than half of the model
will have turbulent flow - with a good estimate being the
region from the nose cone body tube junction to the
rear. The exact proportion of laminar and turbulent flow
depends upon surface finish and nose shape and so is
quite difficult to pin down precisely. There is little
doubt, however, that at the 500 ft/sec speed, just about
all the surface will be turbulent.

What about the fin boundary layer? The fins project
into the air stream in a manner that the air flows over
them, but for a lot shorter distance than the body tube.
We should use the fin chord, (1.687 inches) to find the
appropriate Reynolds number for the fins. When we do
this for the three flight velocities of 100, 300 and 500
ft/sec, the corresponding Reynolds numbers are RN =
86,000, 258,000 and 430,000. Based on our transition
criteria, then, the fin boundary layer will certainly be
laminar at 100 ft/sec and most probably be laminar at
300 ft/sec. In fact, there is a good chance to have a
laminar fin boundary layer at 500 ft/sec if the fin is
polished and has a streamlined shape.

We can summarize this brief discussion of model
rocket boundary layers with a few comments. At low
speeds, say less than 100 ft/sec, the fully laminar
curves of Fig. 57 should be used. At higher speeds, on
the order of 300 ft/sec, portions of the body tube bound-
ary layer will become turbulent, increasing the drag
above the value predicted by the laminar curves. The
drag will not be as great as that shown by the fully
turbulent curves, since the fins and the front portion
of body tube will remain laminar. At the highest speeds,
that is, 500 ft/sec and above, the fully turbulent curves
should be used.

The above observations suggest a simple modifica-
tion to our drag prediction technique. Let us use fully
turbulent flow for the body tube, but assume fully lam-
inar flow for the fins. It is a simple matter to go back
through our analyses and make these changes; when we
do we obtain the curves of Fig. 58. The zero lift drag
coefficient decreases from 0.424 at 100 ft/sec to 0.346
at 300 ft/sec and to 0.319 at 500 ft/sec. These values
should be reasonable coefficients in the flight range of
our model rockets; that is, between 100 and 400 ft/sec.



FIG. 58
DISTRIBUTION OF DRAG COEFFICIENTS
VS FLIGHT VELOCITY
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DRAG VALUES

Before leaving this section on the influence of veloc-
ity, we have a few more points to make. We should look
at the actual drag values in pounds or grams for our
rocket for two reasons; to emphasize that although the
drag coefficient decreases with velocity, the actual
drag increases, and to find what level of drag is at-
tained by a model rocket. All the difficult work has
been done, so let us tabulate the values of CDO and

Drag for the three basic methods used to predict drag -
fully laminar, fully turbulent, and the preferred method
of turbulent body tube but laminar fins,

A more graphic display of this drag data is shown in
Fig. 59. The rapid increase in drag that occurs as the
rocket speed increases is clear. The dotted and dashed
lines represent the fully turbulent and fully laminar
boundary layer conditions to illustrate the maximum and
minimum levels of drag for our typical model. The solid
line represents the best prediction we can make about
"the drag, without going into a lengthy and complex
analysis of the transition between laminar and turbulent
flow.

This figure also points out the very small values of
drag at low rocket flight speeds. Even at a velocity of
200 ft /'sec the drag has reached no more than 0.115 Ibs.
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But is this small drag unimportant? Compare the drag to
the weight of the typical model---probably about 0.1
pounds. (1.6 ounces or 28.3 grams). Both the weight and
drag are about equal. Therefore, at this speed, drag is
as important as weight; we all recognize how excessive
weight causes our rocket performance to decrease. As
rocket flight speeds go up the drag becomes many times
the weight and an even more important factor. Con-
versely, as flight speed goes down, drag becomes a
fraction of the weight and of lesser importance. That
means the big, lumbering model rockets do not have to
be as aerodynamically ‘‘clean’’ and streamlined as the
high performance birds.

FIG. 59
DRAG OF MODEL ROCKET VS VELOCITY
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TERMINAL VELOCITY

Ever wonder how fast a model rocket will come down
if the nose cone doesn’t separate from the body tube?
That information is contained in Fig. 59 also. After
peak altitude, gravity pulls the model back to earth and

Drag Summary for Typical Model Rocket

CDO
Analysis 100 300 500 V =
Fully Laminar 317 .284 .267
Fully Turbulent .500 .421 .396
Turbulent Body, .424 .346 319

Laminar Fins

Drag in Ibs. Drag in Gms
100 300 500 vV = 100 300 500
.021 .166  .433 9.3 75.2 196
.032 .246  .642 14,7 111.2 291
.028 .208  .517 12.5 94.4 234



a recovery device, parachute or streamer, is usually
deployed to lower the rocket safely to the ground. But
suppose the recovery device does not deploy, or worse
yet, the nose cone remains attached to the body tube
and the rocket remains streamlined? The model will
accelerate rapidly to high speed; as it does so, the
aerodynamic resistance will increase, as shown in
Fig. 59. This air resistance, drag, is now acting to
nold the model back--to prevent if from going faster.
#hen the aerodynamic drag builds up to equal the weight
of the rocket, the gravitional pull is exactly balanced
oy the air resistance and the rocket can no longer pick
Jp speed. It must fall at a constant, maximum or ‘‘ter-
~inal'’, velocity.

Suppose our typical mode!, weighing 0.1 ibs., falls
~ithout a recovery device. When the terminal velocity
s reached the drag will equal the weight, 0.1 Ibs. By
-eading across the vertical scale of Fig. 59 at a drag
of 0.1 ibs. to the dotted curve, then looking down to
the velocity onthe horizontali scale, the terminal velocity
of 185 ft/sec is found. As you remember,the dotted curve
represented the highest drag case. If we move turther
across to the dashed line representing laminar flow and
the lowest drag, we find the terminal velocity is 225
ft/sec. It is obvious that low drag bodies will fall
faster than high drag bodies of equivalent weight. In
fact, the parachute and streamer are really devices to
create high drag to produce a low terminal velocity.

The values quoted for terminal velocity were taken
from Fig. 59, which was constructed from the drag
coefficients of a typical model rocket. To be more
general, since all bodies falling through the air will
have a maximum velocity, we need a mathematical
relation. All we need do is equate the weight of the
body to the drag and then solve for the terminal velocity,
VT, as shown below:

»
W=D = CDO?pVT S
2w (26)
VT = _
Cbor SB

Equation (26) is a general statement relating the terminal
velocity to the weight, W, of the body, its area, Sg, and

the zero lift drag coefficient, CDO' If we know numerical

values for these three items and the air density, p, it is
a simple matter to calculate the terminal velocity. *

It's interesting to note that the effect of decreasing
air density is to raise the terminal velocity. The ter-
minal velocity of a body is higher at altitude, therefore,
than at sea level. In other words, a sky-diver leaving an
airplane at a great height will slow down as he nears
the ground! We can even tell how much, now that we
have Eq. 25. A 5’9"’ sky-diver weighing 165 pounds has

a drag coefficient of Cp = 1.3 and a projected area of
7 ft2 when he falls in a horizontal position. His terminal
velocity at sea level, where e = 0.00238 slug/ft3, will
be 124 ft/sec, but at 20,000 feet, where p = 0.00127,
slug/ft3 his terminal velocity is 170 ft/sec. If the sky-
diver falls feet-first, his area is decreased to 1 ft2 so
VT goes way upto 327 ft/sec. When his 28 foot diameter
parachute opens, the drag coefficient becomes 1.2; you
might check to find his descent rate as he lands (it's
13.7 ft/sec).

Let’s now move on to the last segment of this long
chapter on model rocket drag and examine, briefly, the
effects of angle of attack upon rocket drag.

INFLUENCE OF ANGLE OF ATTACK

Although the complete calculation of the drag of a
model rocket at angle of attack can be quite complicated,
a good portion of the work has been accomplished in
the preceeding sections. Figure 34, for example, shows
the drag coefficient for both laminar and turbulent
boundary fayers on typical model rocket bodies at angles
of attack up to 10° (positive or negative). Further,
Fig. 50 has indicated how the drag coefficient of a fin
can change with angle of attack. Let's examine the
drag variation with angle of attack for one specific
case - say when the rocket flight velocity is 300 ft/sec.
We’ll assume that the boundary layer on the body tube is
turbulent and that on the fins the boundary layer is
laminar; we’ll also consider the launch lug drag coef-
ficient to be constant with angle of attack.

Under these conditions, the results shown in Fig. 34

‘are directly applicable. The fin drag variation must be

worked out again, because none of the fin configurations
shown in Fig. 50 is applicable to the model we've
been considering - that is, a rectangular fin planform
with a streamline cross-section. That’s all right, though;
in Chapter V we drew up design charts to allow a rapid
computation of the fin drag coefficient at angle of
attack. Now we’ll be able to review their use.

The fin drag coefficient, as expressed |n Eq. 16, is
the sum of the zero lift drag coefficient, CDOF and the

induced drag coefficient, CD i .Equation 15 expresses
CD in terms of the lift coefficient; i
* CL X C|_

Oy p=——— = (15)
! 7 AR ew

For our present purpose, a more convenient form of the
induced drag coefficient is obtained by replacing the
lift coefficient by the product of the lift coefficient per
degree of angle of attack multiplied by the angle of
attack. Making this change to EQ. 15, we arrive at
the following equation:

CL
= 12 2
ok [ degree] X a (27)
DiF =~ AR ow

* Equation (28) can be used to find descent

rate of a model rocket being lowered by a parachute as
well as the terminai velocity of a streamlined modei
rocket. Model rocket parachutes have CDO values

between 1.0 and 1.2; using this value for our 0.1 pound
model equipped with a 16'' diameter parachute we may
find the descent rate (terminal velocity) at sea level
to be:

2x0.41
VT =
1 x 0.00238 x 1.394 = 60.2 = 7.8 ft/sec

where Sg = .785 (d2) = .785 x 162 = 201 in2 = 1.394 ft2
(remember to convert square inches to square feetl).



When we were studying the effects of planform on the
CL
degree
various wing shapes and aspect ratios in Fig. 46. For a

ability of a wing to produce lift, we plotted for

. _ - ives Sl _
rectangular planform with AR=2, Fig. 46 gives Jegree

0.046. During that same study, we indicated the effect
of planform on the wing efficiency factor, ey, in Fig. 44.
From this figure, we find that the AR = 2 rectangular
wing has an e, = 0.75. Using these numerical values
in Eq. (27), the induced drag coefticient becomes

- (.046)2 x a2
i St 2 -4
Cop=7x 2 x 075 - M99 02 x 10
The total fin drag coefficient is now obtained by
adding the zero lift drag coefficient for the fin. For a

*
thickness ratio of 0.037, Fig. 41 shows CDOF =

0.0056 when V = 300 ft/sec. The fin drag coefficient,
based on the body tube cross-section area, ST, may
be written finally, as below.

SF
- 2 41
Cpp = [0.0056 + 4.49 a2 x 10 4] SaT

To find the total drag coefficient at each angle of
attack, all we need do is to add CDaB from Fig. 34,

CDF from the relation above, CDINT from Eq. 20 and‘

CDLL' Performing this addition, we obtain the dis-

tribution of the drag coefficient shown in Fig. 60 for
angies of attack between + 10°and - 10°

Figure 60 points out why we've spent so much effort
to find the zero lift drag coefficient, CDO The lowest

possible drag coefficient occurs when the model rocket
is at zero angle of attack; all other angles create higher
drag coefficients. It is clear from Fig. 60 that the in-
crease in Cp is due mainly to the induced drag caused

by the fin trying to return the rocket to zero angle. At
zero angle, for example, the fin and fin interference
account for less than 20% of total drag coefficient;
however, at a 5° angle of attack, these two factors con-
tribute more than 33% of the total. When X reaches 10°,
fin and interference make up more than 50% of the total
value of the coefficient, Cp = 0.78. Note that at this
high angle, the drag coefficient has increased by a
factor of 2 above the zero angle case. This is the reason
that stable rockets attain greater altitudes than margin-
ally stable birds--they fly closer to the zero lift, minimum
drag coefficient case. Similarly, the same model fiying
under no-wind conditions will achieve higher altitudes
than when flying under windy conditions--the wind
causes an angle of attack that increases the drag (as
well as causing the rocket to weathercock).

Figure 60 also summarizes our theoretical discussion
on model rocket drag. We've completed our goal set out
in Chapter Ill- to examine each drag producing component
of a model rocket and to estimate its contribution to the
total rocket drag. To be complete, our study of model
rocket drag must take a further step and use this theo-
retical information to guide us in practical ways to
reduce model rocket drag. We've made note of some of
these methods in the past chapters--for example we know
that using higher aspect ratio fins on the typical model
of Fig. 60 would lower the fin induced drag and cut the
drag at angle of attack. Let’'s use the next chapter to
examine these drag reduction technigues.
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FiG. 60
EFFECT OF ANGLE OF ATTACK ON DRAG
DISTRIBUTION FOR L/d = 12 ROCKET WITH
A.R. = 2 FINS AT 300 ft./sec.
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Vil. DRAG REDUCTION

TECHNIQUES
WORKMANSHIP

Up to this point, we've learned that model rocket
drag is felt in three forms: through an unbalance of
pressure, through friction of the air over the model sur-
face and as a penalty for producing the lift required to
make our rockets stable. Our drag reduction procedure
could quite naturally be to review these forms of drag
and try to minimize each type of drag for a particular
model. However, we have already spent considerable
effort identifying the amount of drag caused by the
different components of the rocket -- in fact, we've
already found good nose cone shapes and preferred fin
designs in Chapters IV and V -- so we don’t have to
repeat these observations now. Instead, we can con-
centrate on other drag reducing features. For example,
we’ve determined that the base of the rocket contributes
a good portion of the total rocket drag. |s there any way
to lower this base drag? Similarly, are there any steps
we can take to reduce the interference drag? And what
about construction features like fin misalignment and
lack of any finish -- how important are these items?
These are some very practical questions, /f we can find
answers to them we’ll have real help in our task of
designing low drag model rockets.

Those last two questions above could be put into a
broad category called model construction, or better yet,
workmanship. Good workmanship is so important for low
drag models that we will consider it first. It is no exag-



FIG. 61
FIN WORKMANSHIP
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geration to state that a good looking bird will be a good
performing model. But how do you judge the workmanship
on a model? That's not difficuit; there are certain clues
which tell how good a builder a model rocketeer is.

Pick up any model rocket. Look first at the fins. Are
the edges cut clean or are they ragged looking? Sight
along the fin from the tip to the root - is there an airfoil
sanded into the fin? If there is, the leading edge should
be rounded and the trailing edge nice and sharp as in
Figure 61. We've already shown that “‘airfoiling’’ the
fins makes a considerable difference in fin drag, but
don’t forget that by sanding the fins you can reduce the
weight of the fins by 50% -- and weight is also important
in rocket performance.

Next, look down the front of the rocket. Are the fins
aligned accurately? As shown in Figure 62, the fins
should be spaced about the body tube in even increments
(that is, exactly 120° apart for 3 finned models): when
viewed from the side, the fins must also be lined up
with the body tube centerline. Any misalignment will
cause the model to spin during boost, decreasing the
potential maximum altitude. The spiral ascent is caused
by the air flowing past the misaligned fin at an angle,
producing fin “‘lift’’ (even though the rocket body is at
zero angle of attack as shown in Figure 63). The off set
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lift from this fin, in turn, causes the model to roll about
the body axis on its way up. We learned that any time
lift is generated,

drag flight, therefore, is obtained when all the fins are
lined up and the model ascends with no rotation. Make
sure any model youbuildhas perfectly aligned fins -- that
shows good workmanshipand gives maximum performance.

FIG. 62
FIN MISALIGNMENT
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The junction between the nose cone and body tube
provides another clue to the quality of construction.
The junction should be matched exactly as illustrated
in Figure 64. To test the model under examination, run
your finger aiong the model from the nose toward the
fins. You’'ll hardly be able to feel the junction if a
good match has been made. But, if you feel a step up or
step down, you'll know the workmanship can be im-
proved. When the nose cone is too small, the step up at
the body tube increases the pressure drag, forces the
boundary layer to become turbulent and can cause flow
separation if the step is too large. When the nose cone
is too large, the step down at the body tube separates
the flow, destroying the desired smooth airflow. In
addition, the larger nose cone will have an extra amount
of surface area, and hence, skin friction drag. It should
be clear that the minimum drag occurs when the junction
is perfectly matched, Once again good workmanship
pays off,
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FiG. 63
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Even little assembly details like launch lug attach-
ment affect model performance. Check lug alignment by
sighting down the front of the model and viewing from
the side; the launch lug must be aligned with the body
tube centerline and fastened near the model rocket

center of gravity. If not attached properly, the model’s
performance will suffer in two ways. First, as shown in
the right sketch of Figure 65, the model can leave the
launch rail at an angle of attack. In the last chapter, we
noted that any model at an angle of attack will have
higher drag than a model at zero angle. Second, even
after the model has straightened out -- as a stable rocket
will do -- the misaligned launch lug can cause the
smooth airflow on the rocket body to separate in the
manner shown in the left sketch of Figure 65. Flow

separation, as always, will cause excessive drag.
Details such as launch lug alignment must not be
neglected in any drag reduction effort.

When you look at a model rocket, your first impression
of the work that has gone into the bird comes from the
kind of finish on the model. If there are no painted sur-
faces, or a heavy, sloppy paint job, you can bet the
builder didn’t care too much about workmanship. On the
other hand, a neatly painted model shows the modeler
took pride in his work, making the model more attractive,
easier to track, and a better performer. Although the
surface finish is the last of the keys to judging work-
manship that we will consider in this section, surface
finish is by no means the least important. Quite the
contrary, the surface finish has a very strong role in the
drag reduction procedure.

FIG. 65
PENALTIES FOR LAUNCH LUG MISALIGNMENT
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The surface finish affects the drag of our model
rockets in two ways -- first, it determines the point
where the boundary layer makes the transistion to
turbulent flow and, second, finish determines the actual
level of the drag due to the turbulent layer.

At the nose of the model, the boundary layer is
always laminar. As the flow develops rearward, the
tendency to move toward the turbulent layer increases.
By keeping a smooth surface, the actual transistion can
be delayed considerably for the flight conditions en-
countered by our model rockets. With a glass-smooth
surface, it is possible to maintain most of the flow
laminar, thereby approaching the theoretical lower limit
for the all-laminar CDO that we set in the previous



chapter. If the surface of the model is unpainted and
rough, an early transistion to the turbulent layer will
be guaranteed, and the high drag associated with this
type of flow will exist on the model.

The surface finish also affects the level of this
turbulent drag. All the calculations we made in the
previous chapters were for smooth models in turbulent
flow. We anticipated that all good modelers would take
care to finish their rockets smoothly. However, if the
model surface is rough, say it has little lumps and
other roughness of wood grain which average 0.002
inches high, the drag coefficient will be 25% above the
turbulent value for the smooth surface. Figure 66 illus-
trates these points on surface finish vividly. The figure
shows that, for our typical model, the drag can be
reduced by 25%, simply by finish alone! This increment
would occur at 300 ft./sec. -- at higher speeds the drag
increase above the smooth surface is even greater, and
at lower speeds, less.

FliG. 66
EFFECT OF SURFACE FINISH
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Clearly, the surface of a model should be as smooth
as practical. A coat or two of wood filler on the nose
cone andfins, then a coat ortwo of colored paint followed
by a waxing with a lot of rubbing will provide the kind
of surface that will give low drag performance with a
minimum weight penalty.

Attention to these concepts during construction
-- smooth nose cone, body tube junction, launch lug
alignment, airfoiled and aligned fins, neat, lightweight
finish -- are evidence of quality workmanship. The
flight characteristics of any model rocket will be im-
proved by employing care as you build the model. Just
try it and see.

BOAT-TAILING

Now that we have emphasized the importance of
workmanship and surface finish for low drag model
rockets, let's return to one of the first questions we
asked in this chapter. What can we do about the base
drag of our rockets? When we discussed the contributions
of the various rocket components to total drag, we
learned that the blunt rocket base could account for as
much as 30% of the drag of the model. With that much
drag, the base region is a good target in any drag
“‘clean-up’’ (as engineers calldrag reduction techniques).
Of course, we have to accept a certain amount of base
drag--our rockets must have a blunt base, usually 0.7
inches in diameter, since that’s the diameter of most
of our model rocket engines. In fact, if the rocket we
are designing has a BT-20 body tube, there may not be
too much we can do about base drag. However, for any
other body tube diameter--a parachute duration bird
that uses a BT-50 body tube to allow a large parachute
to be carried, or a BT-60 body tube used to loft some
payload--we have the opportunity to make a significant
reduction in base drag.

Base drag can be reduced by ‘‘boat-tailing’ the rear
of the rocket. As shown in Fig. 67, a ‘‘boat-tail’’ is
simply a reduction of the diameter of the rocket from
the size of the body tube to the engine diameter., Twao
common boat-tail shapes are shown in the figure; these
are termed ogive and conical. The ogive boat-tail is a
little more efficient, but the conical boat-tail is usually
used because it is much easier to build. Fig. 67 illus-
trates other terms that help to describe boat-tails; these
are: the ratio of base diameter to maximum body diameter,
'dé)‘; the length of the boat-tail, xpt; and the boat-tail

angle for conical boat-tails 6.

FIG. 67
TWO BOAT-TAIL DESIGNS
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The flow patterns about three rocket bodies with
different base designs are shown in Fig. 68. The flat-
based first design has a large wake; the second sharp
boat-tail design has a wake that differs a little from the
first, but the third rocket body with the shallow boat-
tail has a considerably different flow pattern. The air
flows smoothly along the gentle boat-tail, reducing the
size of the wake.

FIG. 68
AIR FLOW PATTERNS
ABOUT THREE BASE DESIGNS

BLUNT BASE SHARP BOAT-

TAIL (9 =20°)

GENTLE BOAT-
TAIL (9 = 5°)

Remember that one of the first things we learned in
our drag study was that the size of the wake was directly
related to the pressure drag acting on any shape. What
we are really doing when we reduce the size of the wake
by a boat-tail is lowering the pressure drag of our model
rockets.

The second rocket with the 20° boat-tail angle is
shown to make a special point that the boat-tail angle,
¢ , must be gentle for the boat-tail to be effective.
Any time @ is greater than 5° the air flow will have
difficulty following the boat-tail contour. Because of
the viscosity of the air, sudden changes of direction
cannot be made by the air flow and the flow separates
from the rocket surface. When the flow separates, the
size of the wake is increased and the boat-tail loses
its drag reducing ability. You might look back to Fig. 8
of Chapter | where two egg-loft designs were shown that
exhibited similar flow behavior at the transition section.
For low drag designs, flow separation must be prevented
on boat-tails and on transition sections by using gentle
curves and shallow angles.
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When we boat-tail a model we lower base drag because
of three different, beneficial, aerodynamic effects, as
illustrated in Fig. 69. First, the actual base area is
reduced so that the low base pressure acts on a smaller
surface; second, the base pressure with the boat-tail is
higher than the base pressure without the boat-tail; and
third, the pressure on the boat-tail surface has a com-
ponent that acts like a thrust to oppose the rocket drag.*

FI1G. 69
HOW A BOAT-TAIL REDUCES PRESSURE DRAG
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*  This last effect is familiar to you, Just think what

happens when you squeeze an orange seed between your
thumb and first finger. The pressure exerted by your
fingers on the sloped sides of the orange seed shoots
the seed forward. That's just what happens on the boat-

tail surface except, of course, the air pressure isn't
as great as the pressure of your fingers so the thrust
isn’t large enough to propel the rocket. It is enough,
though, to cause a significant reduction in the base
drag as shown above.



Now that we understand how the boat-tail helps, the
next step is to find how much the drag can be reduced by
using boat-tails on our models. An illustration of the
percentage reduction of the base drag that is possible
is shown in Fig, 70. The horizontal axis indicates the
ratio of the base diameter divided by the maximum body
diameter of the rocket, dy. That means when there is no

boat-tail, %b-= 1, and when we boat-tail all the way to a
point (that is, we have no blunt base) gb. = 0. Between

these limits, the percentage of the no boat-tail base
drag is shown in the vertical axis, running from 100%

when we have no boat-tail (:—b= 1) down to 0% when we

d
have a complete boat-tail (a—t—’ = 0). An important feature

of this figure is that even at moderate boat-tail values

of dp, we obtain sizeable reductions in the base drag.
d

For example, simply by boat-tailing from a BT-50 to a

BT-20 we can cut the base drag to 43% of the no boat-

tail value. That's a worthwhile decrease! You can check

this result by noting

d, _ 0.736 inch (for BT-20)

2 = = 0.753
d 0.796 inch (for BT-50)

then looking up from this value on the horizontal axis
of Fig. 70 to the curve.

FIG. 70
EFFECT OF BOAT-TAIL ON BASE DRAG
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For convenience, a special table for boat-tailing
has been made up. The table below gives the base drag
reduction when boat-tailing a model from several standard
body tubes sizestothe BT-20 and BT-50 tubes commonly
used to hold model rocket engines. Included in this table
is the minimum length of the boat-tail, Xp¢, This dimen-

sion is given to make sure any boat-tail you construct
is gentle enough to be effective. The point about the
shallow angle for proper boat-tails cannot be stressed
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too much. In fact, the shallow angles and the Xpt.values

shown in the table can be used for transition pieces for
egg-lofters and other payload models as well to avoid
flow separation. That means to reduce the base drag to 9%
value shown in the table for the boat-tail (or transition
section) made by going from a BT-60 to a BT-20 body
tube, for example, the boat-tail length must be at least
5.15 inches long.

TABLE FOR BOAT-TAIL DESIGN
FOR BT-20 BASE DIAMETER

From Body dp % No Boat-Tail Minimum
Tube d Base Drag Length Xpt
BT-50 0.753 43 1.38
BT-55 0.556 17 3.37
BT-60 0.450 9 5.15
BT-70 0.332 4 8.49

FOR BT-50 BASE DIAMETER

From Body dy % No Boat-Tail Minimum
Tube da Base Drag Length Xpt
BT-55 0.737 40 2.00
BT-60 0.597 21 3.80
BT-70 0.441 9 7.10

for other body combinations use Xp; =11.43 d-dp
2

The table and Fig. 70 are based upon aerodynamic
experiments with Dboat-tails. These investigations
indicate that the drag of the base decreases as the cube
of the base to body tube diameter. In words we can write:

BASE DRAG WITH BOAT-TAIL = BASE DRAG WITHOUT
BOAT-TAIL x HH 3

This information can be used to modify the base drag
equation we used earlier [ Eq (9) ] for the unboat-taiied
model, to obtain a precise and useable equation for the
base drag coefficient of the boat-tailed rocket, CDBbt

0.029 d
C = b3

It’s now possible to go back through our drag analysis
and incorporate this new expression to find how the
total rocket drag is reduced by the boat-tail. We simply
replace CDB with CDB from Eq (28). As an example,

bt
we can replace Fig. 32, the zero lift drag coefficient of
unboat-tailed rocket bodies as a function of length to
diameter ratio, with Fig. 71, which shows CDOB for

boat-tailed rocket bodies. It's clear from this figure that
we geta goodreduction in CDOB with a moderate amount

of boat-tailing--say dy, = 0.7. Another feature is that the

laminar boundary layer case is affected more by boat-
tailing than the turbulent case. That’s because the base
drag makes up a greater portion of the total rocket body
drag for the laminar case and the base drag is the factor
on which we’re working.
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Further calculations of the boat-tail effect are left
to the reader, We'll close this section with the observa-
tion that boat-tailing has proved to be a very effective
and simple technique for base drag reduction for both
full scale missiles and model rockets. Anytime the
required body diameter of a model is greater than the
engine diameter, boat-tailing should be employed for
top performance.

INTERFERENCE DRAG

The last item in our discussion of drag reduction is
interference drag. As we noted in Chapter Ill, this drag
is the result of the air passing over the body tube in-
teracting in an unfavorable manner with the air flowing
over the fins. The interference between these two air
flows causes additional drag that makes the resistance
of the body and fins, when joined together, greater than
the drag of the two parts taken separately. We called
this drag increment ‘‘interference drag’’ and used the
symbol, CDint’ to represent this drag in coefficient form.

We learned earlier that this interference drag can account
for as much as 10% of the total rocket drag. While this
is not as large a contribution as the base drag, inter-
ference drag must, nevertheless, be considered for any
refinements to a high performance model.

Having developed some physical feeling for the cause
of interference drag, we can try to reduce its value.
Recall that in Chapter VI we used Eq. 21 to find the
level of Cpjpt. One of the terms in that equation was

the number of fins, since that number determines the
number of junctions causing interference. Clearly, we
must minimize the number of fins to reduce the inter-
ference. What's the minimum number? One fin can’t be
used, neither can two fins; we need at least three fins
if we are to obtain the stable non-rolling flight pattern
of an efficient ascent. Certainly four, or even more fins,
could be used to perform the same task, but these would
provide more junctions for increased interference. Four

e

fins, for example, have 33% more iri't*e'rffqnenfds dtag than
three fins, even whenthe total fin area remains the same.
It’s best, therefore, to use three fins for minimum inter-
ference on high performance models.

Now, is there any other technique we can employ to
reduce the interference even more? Yes, we can prevent
the air from flowing in the corners of the body tube-fin
junctions, an area where the interference between the
air flowing along the body and the air flowing past the
fins is greatest. All we need do is fill in the corners of
the fin-body junctions. This technique is shown on the
low interference, three-finned model sketched in Fig. 72.
For contrast, a four-finned, high interference drag model
is aiso shown in the figure, The filled in corners, called
fillets, work by smoothly bringing the two separate air
flows together and then gently guiding the merged flows
past the junctions.

FIG. 72
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Fillets can be made quite easily by running a bead
of white glue along the fin-body junction as indicated in
Fig. 73. Wipe out the excess glue with the tip of your
finger to get the desired smooth contour. Another fillet-
ing technique employs a paste made by adding talcum
powder to the paint to be used on the model. When this
paste is applied to the joint and ailowed to dry it can
be sanded smooth and painted, making a professional
looking low drag fillet.

The actual reduction of interference drag accomplished
by such filleting techniques is difficult to assess. It is
indeed possible, using fillets on streamlined fins, to
reduce the interference drag to a negligible fraction of
the value predicted by Eq. 21. However, there is a lack
of precise information on interference drag--a lack in-
cidentally, that also exists with full scale rockets--that
prevents us from placing a numerical value on the
reduction of interference drag possible by filleting.
Such an evaluation of interference is another of those
experimental projects that model rocketeers may wish
to undertake to provide useful information for other
model rocket designers. We’ll just have to make sure
that any modgl that we want to attain the ultimate in
performance Hhas proper fillets.



FIG. 73
BUILDING UP A FILLET
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FIVE RULES FOR DRAG REDUCTION

As a summary of the main ideas we've picked up in
this chapter, let's list five basic rules to be used to
reduce the drag of a model rocket. The first four rules
can be applied to any model rocket you build: the last
rule on boat-tailing may require a model modification.

Rule 1: USE GOOD WORKMANSHIP

From the beginning of model construction,
take time to sand all parts for a good fit:
match the nose cone - body tube junction
carefully, round the leading edge and sharpen
the trailing edge of the fins. This initial
work is a great step toward the reduction
of the pressure drag of the rocket.

ALIGN FINS AND LAUNCH LUGS
PROPERLY

Correct fin alignment will keep the model
from rolling during the ascent; this will
eliminate unnecessary induced drag caused
by the fins twisting through the air at angle
of attack. Misalignment of the launch lug
can cause flow separation on the body tube
and excessive pressure drag.

PUT A SMOOTH FINISH ON THE MODEL
Besides giving a high quality appearance
to the model, the smooth finish delays
transition of the flow to the high drag
turbulent boundary layer condition. Even
when the flow is turbulent, a slick surface
will have less drag than a rough surface;
so to reduce skin friction drag get the
model rocket finish mirror-smooth.

FILLET THE FINS

Reduce the interference drag by filling in
the fin-body tube junction to guide the air
smoothly past the fins.

BOAT-TAIL WHENEVER POSSIBLE
Anytime the body tube diameter is greater
than the engine diameter because of some
special design feature, boat-tail the model.
The base drag, which contributes an
appreciable fraction of the total drag will
be cut drastically by the boat-tail.

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Take any model you build, apply these basic rules,
and watch the improved performance. The best proof of
a theory or a concept is a test that you make for your-
self, so test these rules in practice. In the next chapter
we’ll apply these drag reduction ideas to an Alpha and
measure the difference in performance.
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VIIl.
PUTTING IT ALL TOGETHER

SUMMARY

We’ve completed our study of model rocket drag. We
certainly have come a long way since we wondered
“*what drag is’’. We now know that the resistance to our
model’s flight, which we call ‘‘aerodynamic drag’’, is
caused both by a pressure unbalance and by the friction
of the air sliding rapidly over the model’s surfaces.
We've broken our model rockets into components and
examined the drag of each; in this way we have found
effective nose cone shapes and low drag fin designs.
We’ve looked at the drag due to angle of attack, drag
due to surface finish and drag due to the blunt base.
Finally, we’ve set down practical rules to be followed
to reduce the drag of our mode! rockets.

In addition to this, we’ve been able to describe the
drag of our rockets in a completely theoretical manner.
We can now predict the drag coefficient, and therefore
the magnitude of the drag, just from the size and shape
of the various rocket parts. That’s one of the tasks we
set out to do. Just like full-scale rocket designers we
can sit down, sketch out a rocket configuration and,
after using the charts and procedures presented in this
report, determine the drag coefficient. To be sure, our
analysis has regions which can be improved - we have
had trouble estimating launch lug drag and the effects
of interference - but we have put upper and lower bounds
on the drag of these factors. Our analysis is ready to
use improved techniques when this information becomes
available; in the meantime we are assured that our
predicted values of drag coefficient are in the right
“*ballpark’’.

Or are we? Have we any check to be certain that
our theory is correct? Only that it has been developed
from long experience - and some rocketeers may chal-
lenge that fact. It seems that we have one last task to
do before we can close this report and begin building
low drag, high performance birds. We must check the
theory. The best way would be to test the model in a
wind tunnel and compare the experimental values of
drag with the theory. But few of us have access to a
high speed wind tunnel with the sensitive instrumenta-
tion necessary to perform the tests. An alternative
approach is to conduct flight tests and infer the aero-
dynamic drag from the altitude reached by the models.
Flight tests are more difficult than wind tunnel tests
because factors like the wind, rocket thrust variation,
tracking inaccuracies (and lost tracks) enter into the
experiment to cloud the data. However, flight testing is
certainly the real proof-of-the-pudding, and with care it
is possible to obtain reasonable experimental results.
Just such a careful flight program, aimed at testing the
concepts and analysis developed in this report, has
been flown* it is reported below.

FLIGHT TEST PROGRAM
PROGRAM OUTLINE

The flight tests were conducted to evaluate the
aerodynamic drag of a series of model rockets. The
experimental technique employed in the program was
quite simple: A series of models was constructed,

*The author is greatly indebted to the members of the
Columbus Society for the Advancement of Rocketry, of
the National Association of Rocketry, an experienced
group of model rocketeers in the Columbus, Ohio area
that built, launched and tracked the model rockets used
in this test program.



weighted to identical weights, launched with engines of
the same type, and tracked to altitude. Once this altitude
data was in hand, it was processed in two ways. First,
just by comparing the altitudes, the lowest drag models
(which reached the highest altitudes) could beidentified.
Second by doing a little data analysis, using altitude
charts from TR-10, the effective drag coefficient for
each model could be obtained and compared with the
predicted drag coefficient.

MODELS

Twelve model rockets were used in the test program.
These were basically Astron Alpha models but built in
five different categories. Three models were constructed
as though a beginner put them together. No paint or
sanding was used during fabrication and the fins were
ieft rough-cut with no airfoil. Three models were built
as a more experienced builder would do, with a moderate
amount of sanding and a light coat of paint, but with
the fins left in a rectangular cross section. Three more

models were built as though by experts, with a fine
finish, fillets and good streamline airfoil fins. These
nine models in the three classes -- called A, B, and C
respectively -- form the basis of the test program. They
were built to show how the drag reduction rules, good
workmanship, smooth finish and airfoiled fins, could im-
prove the altitude performance of the same model design.

Supplementing these three categories were two more
special purpose classes of Alphas. One model, termed a
“*D’’ model, was built with one fin leading edge canted
1/16°’. This was to cause the model to spin during the
ascent to determine the loss of altitude due to spin.
Another two Alphas were redesigned using all the drag
reduction concepts suggested in this report, including
boat-tailing and high aspect ratio, unswept fins. These
two models were called Up-Rated Alphas and were to be
the ultimate test of the drag reduction concepts under
evaluation. A photograph of the models is shown in
Fig. 74; the table below summarizes pertinent facts
about the models.

Models Used in Test Program

Construction Fin Cross-
Class No. Built Technique Finish Section Purpose
A 3 Beginning None Rectangular Highest Drag Model
Modeler
B 3 Intermediate Good Rectangular Show Improvement
Modeler With Finish
C 3 Expert Modeler Excellent Streamline Show Improvement
With Airfoiled Fins
D 1 Expert Modeler Excellent Streamiine Show Loss Due To
but Canted Fin Misalignment
Up Rated 2 Expert Modeler Excellent Streamline Show Improvement

With Boat-Tail
and New Fins



TEST PROCEDURE

The procedures followed during the test program
were tailored to minimize the pitfalls of flight test work.
For example, although flights with *'B’’ engines would
amphasize the aerodynamic effects, the tests were
conducted with A8-5 engines. These engines were used
10 reduce the trajectory dispersion due to the wind and
10 ease the tracking problem. Even more important, the
engines were specially selected from a single production
-un at the Estes plant; in this way the engines used
had less than + 2% variation in total impulse from the
2.5 Newton-second mean value.

To maintain the data quality, the models were
weighed on a precision balance prior to launch. The
heaviest bird was a Type B model, scaling 21 grams.
The weights of all the other models were brought up to
this value by trimming the streamer size so that all the
birds came in at 21 grams, + 0.1 gram. This procedure
did require some pretty long crepe paper streamers in
the unpainted models - these models were the lightest,
averaging about 17.5 grams without the streamer.

All the flights were conducted on the same day, to
minimize any flight variations that could be introduced
oy the atmospheric conditions. The altitude tracking
was performed by members of the CSAR using two
optical theodolites on a 1000 foot base line. The two
glevation and two azimuth angles were used to compute
two altitudes in the accepted manner; a track was
accepted as valid only if the two altitudes were within
10% of the averaged value of the two heights. Each
tracking station was equipped with a stop watch to
record thetime the rocket took to reach the peak altitude.
This data was to be used to find the average flight
speed of the model rocket, using the simple rate
equation:

average speed = peak altitude in feet

time to peak altitude in seconds

In an effort to average out individual variations in
the flight data, all models were flown three times. Lost
tracks that fell outside the 10% of average altitude
reduced the number of accurate altitudes for each class
of Alphas; however, at least six good tracks were
obtained for the models of A, B, and C type, while the
single D model had two closed tracks and the Up-Rated
Alphas had three closed tracks (one of the Up-Rated
birds was damaged after the first flight and was taken
out of service). These several flights do offer some
statistical basis for the averaging process as is shown
by the flight results.

RESULTS

A table summarizing the flight test results is pre-
sented below. The maximum and minimum altitude
attained by each type Alpha is listed, then the average
altitude reached is given. The second to the last column
presents the percentage increase above the lowest per-
forming model, the Type A Alpha. The last column gives
the average airspeed of the class.
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For a visual presentation of this tabulated data, Fig.
75 has been prepared. From the table and this graph, it
is clear that the drag reduction techniques do, indeed,
work. Simply by taking a little care during assembly and
sanding the models before painting, the altitude of the
Alpha was increased by 36 ft. or 11%. Then by sanding
an airfoil into the fins, the altitude jumped another 28 ft.
or 20% above the Type A Alpha. Therefore, simply by
taking the time and effort to build a professionai-looking
model we were able to lower the rocket drag and achieve
a 20% increase in performance.

FIG. 75
ALTITUDE PERFORMANCE
OF THE ALPHA MODELS
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You might note that the average speed of the Alpha
increased from 82 ft/sec to 97 ft/sec to 101 ft/sec as
the model construction technique varied from that of the
beginner to expert. Incidentally, the top speed of the
rocket must be twice the average speed, according to

the definition of average speed, that is:
Top Speed + Minimum Speed
2

ALTITUDE ATTACHED

C  UP-RATED

Average Speed =
since the minimum speed at the peak altitude is exactly
zero. This means the top speed of the rockets varies
from about 160 ft/sec to 200 ft/sec, an interesting
piece of information about our rockets.

Other information is also available to us from the
test program. Spinning the model by canting the fin
resulted in a 27 ft. loss in altitude. Misalignment of a
single fin in an otherwise carefully buitt mode! can,
evidently, cause a 7% decrease in performance. Maybe
27 ft. doesn’t sound like too much, but that’s only
because we were using A engines. With B or larger
engines, this decrease in performance would be much
greater. Of course, eventhe 27 feet can be the difference
between a winning performance and a modest fiight.

FLIGHT TEST RESULTS
Astron Alphas flown with A8-5 engines

Model
Class Max. Alt. (ft) Min, Alt. (ft)
A 341 295
B 371 337
C 403 369
D 368 345
Up-Rated 450 443

% Above Ave. Speed
Ave, Alt. (ft) VA (ft/sec)
319 0 82
335 11 a7
383 20 101
356 11 97
446 40 112



~ The redesigned Alphas performed quite well, exceed-
ing the expert built, basic Alphas by an average altitude
of 63 feet. Further, the top speed of the Up-Rated Alpha
was increased to near 225 ft/sec. This 40% increase
above the beginner type Alpha demonstrates the validity
of the basic design rules we stated in the last chapter.

Certainly, the concepts for drag reduction have been
proven by these flight tests; i« now remains for us to
test the analysis to determine how closely the experi-
mental drag coefficient matches the predicted value.

ALPHA DRAG ANALYSIS

Once more, let’s run through an analysis of the zero
lift drag of a model rocket. This will be the last time
we’ll perform this task, so let’s set down seven easy
steps for this drag analysis. It is true that we’ve dis-
cussed many factors in our drag study, and it's really
possible to believe the problem is more complicated than
it really is. Let’s 'try to simplify the job.

Whenever a drag analysis is to be made, the first
item is to get the configuration of the model and list
the important geometric properties. These are d, dp,

I, SgT, for the body, Ci, Cr, SF and t for the
C

fins, and §_|_ and SLL,, for the launch lug. Next,

decide on the flight condition (this is usually just the
velocity, V), and the type of boundary layer on the
body and fins. Then just follow these seven simple
steps:

Step 1 Find CDN + Cogr
Use Fig. 28 for a model with a 3:1 ogive
nose cone, use Eq. 8 for other nose cone
designs. The value of CDN + Cpgt
depends wupon 1/d, V and the type of
boundary layer.
Step 2 Find CDB
Use result of Step 1 and dp/d
0.029 d
Chg - == (D)3  Eq.(28)
Con, + CDurr O
DN *+ DT
Step 3 Find CDOF
Use Fig. 40 if fins have rectangular
section, or Fig. 41 if fins have tstreamline
airfoil. CDOF depends upon T V, and
type of boundary layer.
Step 4 Find CDOF
Use result of Step 3 and the fin and body
tube areas
* S
CDOF = CDoE SeT Eq. (19)
Step 5 Find Cpjnt
Use result of Step 3, root chord Cy and
the number of fins
* CRr d .
Cpint = CDAE 5 & X no. of fins
n OF SgT 2 Eq. (21)
Step 6 Find CDLL
1.2 S + 0.0045 S|_|_W
CDLL = Eq. (24)

ST
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Add the basic component drag coefficients.
Step 7 CDOB = Cpy + CDgT + CDR + CDgE +
CDjnt + COL
To demonstrate how rapidly this analysis may be
used, consider the basic Alpha configuration in Fig. 76,

From the figure, assemble the basic geometric parameters
of the Alpha:

Body: Fin: Launch Lug

d = 0.976 in. CR = 2.25 in. SLL = .005 in?
dy = 0.976 in. CT = 1.50 in. SLL,, - 1.5 in?
| =10.5 in. SE = 8.21 in2 V
ST = 0.746 in2 t 0098 ..

3:1 ogive nose cone Cg 2.25

FIG. 76
DESIGN OF THE ASTRON ALPHA
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Now, based on the flight test program which indicated
that the average velocity was about 100 ft/sec, choose
V = 100 ft/sec as the flight condition to be examined.
As we noted earlier, select turbulent boundary layer
conditions for the body and laminar for the fins. Follow-
‘ng the seven steps for Type B Alpha we obtain:

St -
ep CDN + Cpg = 0.205
Using Fig. 28 with dL= 105 at V = 100
ft/sec for the turbulent boundary layer
case.
Step 2 c 0.029 3
2 - —_—
P D \/'—" (d_g) = 0.064
Dy + CDgT
. *
Step 3 CpoE = 0.035
Using Fig. 40 and the %ﬁ = 0.041 for rec-
tangular cross-section fins.
N ; SF
Step 4 C = CPne —F - 0.035 x8:21__ 0.386
Dor = *PoF 57 0.746
From Step 3 and the fin and body tube
areas.
Step 5 CDint = CDofp = X=X no. of fins
SBT
= 0.035 x2:25 x 0.976 x 3 = 0.154
0.746 2
Step 6 CD|_|_ _ 1.2 SLL + 0.0045 S|_|_W
' SBT
c 1.2 x0.005 + 0.0045 x 1.5 0,017
DL~ 0.746
Step 7 CDO: Cby + CDgT + CDB + CDgE +

CDi nt " CDLL

CDO: 0.205 + 0.064 + 0.386 + 0.154 +

0.017 = 0.826

This completes the zero lift drag coefficient analysis
for the Type B Alpha with CDO - 0.826. We did not

consider the Type A Alpha first because there is no
direct way to account for poor workmanship in our
theory, We do have one observation that is useful,
however: We noted in Chapter VIl that roughness can
can cause drag to increase by about 25 percent. Since
the Type A and Type B Alphas are identical in con-
figuration except for the rough workmanship, we can try
to estimate the effects of this beginner's quality work-
manship for the Type A model by increasing the drag
coefficient of the Type B Alpha by 25 percent. This
gives CDO = 1.03 for the Type A Alpha. For the Type

C Alpha, we must repeat the seven steps in the drag
analysis. We can expect a difference in CDO because
the streamlined fins will lower both CDOF and CDint.
Similarly, the Up-Rated Alpha has a completely different
geometry, as shown in the design drawings of Fig. 77;
the drag distribution will be altered accordingly. The
theoretical distribution of drag and the zero lift coef-
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FIG. 77
DESIGN OF THE UP-RATED ALPHA
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ficient of all the Alphas are presented in the following
table.

When comparing the tabulated results for the Type B
and Type C model Alphas, we encounter once again the
benefits of streamlining the fins. Not only does the fin
drag coefficient drop to CDOF - 0.116 from CDOF =

0.386, but the interference drag is reduced from CDint
= 0.154 to CDint = 0.046. This double benefit lowers the
zero lift drag coefficient to CDO = 0.448, a significant

reduction of 45 percent of the Type B value. Remember
that this is theory, still, and we must check with our
flight experiments before we accept these numbers.

How does the analysis of the Up-Rated Alpha compare
with the Type C Alpha? Base drag is greatly reduced by
the boat-tail as expected, but this reduction in pressure
drag was partially offset by the increased length of the
rocket body. This is just another example of the com-
promises that must be faced by a designer of a flying
machine--to reduce the base drag, we boat-tailed the
Alpha, but the boat-tail lengthened the body, increasing
the skin friction drag. The rocket body drag including
base drag for the Up-Rated Alpha was still lower than
the Type C version, and besides, the added length was
necessary to provide sufficient rocket stability with
the new unswept fins used on the Up-Rated model. The
fin area for the Up-Rated Alpha was reduced to 75 per-
cent of the standard Alpha fin area, so the zero lift fin
drag was decreased proportionately. Fin thickness for
the two versions was just about the same; 1/18'’ sheet
balsa was used for the Up-Rated Alpha instead of the
3/32"" sheet used for the Type C model. The net result



ALPHA DRAG ANALYSIS

Drag Coefficient

Component Symbol
Nose Cone & Body Tube CDN"CDBT
Base Cog
Fins CDOF
Interference CDint
Launch Lug Cp LL
Total Zero Lift CDO

*Roughness factor applied as suggested in Chapter VII:

of the drag reduction procedures is that the Up-Rated
Alpha, with CDO - 0.392, has 11 percent less drag at

zero lift than the Type C Alpha. And, at any angle of
attack this drag advantage of the Up-Rated Alpha will
be increased because its unswept, high aspect ratio fins
generate less induced drag than the unswept low aspect
ratio fins of the standard Alpha.

FLIGHT TEST DRAG COEFFICIENTS

Let’'s reexamine the flight test data to see what
additional information we can gather about the drag of
our Alphas. Rockets reach a particular altitude because
of an interplay between the rocket thrust,launch weignt,

A B C Up-Rated
0.205 0.205 0.205 0.233
0.064 0.064 0.064 0.026
0.386 0.386 0.116 0.086
0.154 0.154 0.046 0.030
0.017 0.017 0.017 0.017
1.03* 0.826 0.448 0.392

Cpg for Type A = 1.25 times Cpg for Type B Alpha.

and aerodynamic resistance. If we can understand pre-
cisely how these four factors of altitude, thrust, weight,
and drag are related, we will be able to do more than
predict altitude performance. We could, for example,
turn the prediction problem around--instead of asking
what altitude results from a given combination of thrust,
weight, and drag, we could ask what air resistance must
have been encountered for a given combination of thrust,
weight, and achieved altitude. This air resistance leads,
in turn, to the effective drag coefficient, the very factor
we have been trying to predict in this report.

The physical law that governs the vertical ascent of
a model rocket is called Newton’'s Second Law of
Motion.* Although the law is not difficult to understand,

* Newton’s Second Law of Motion states

that the force required to accelerate a body depends
upon its mass. This simple statement, written below in
word equation form is the foundation of the field of
Dynamics.

Force = Mass x Acceleration
To demonstrate its importance, let’s find the accelera-

tion of a model rocket from the launch pad. Rearranging
the Second Law in the form

Net Force Acting on Rocket
Mass of Rocket

Acceleration =

we must make appropriate substitutions for a numerical
answer. First, though, we must defind the net force
acting on a rocket. During vertical ascent this must be

Net Force - Thrust of Rocket - Weight - Drag

since both the weight and aerodynamic force act verti-
cally downward as the rocket thrusts vertically upward.
Assuming an A8 engine is used, thrust will average 8
Newtons or 1.8 Ibs; the weight of the rocket is 1.36
ounces or 0.085 Ibs. Recall that the mass of the rocket
would be the weight divided by the acceleration of
gravity--mass = 0.085/32.2 ft/sec = 0.0264 slugs. With
these values, initial acceleration becomes

1.8-0.085-0

Acceleration = = 650 ft/sec?

0.00264

Drag was assumed to be zero in this case, because at
the instant of ignition the velocity is zero so there is
no aerodynamic drag. As soon as the model starts to

move, though, the drag will increase, reducing the net
force and causing the acceleration to decrease. But
then as the rocket consumes fuel its weight and mass
will go down and that would cause the acceleration to
increase. Not only that, but the thrust isn’t really
constant, but varies from instant to instant. No wonder
we need a computer to keep track of all these changes
in order to predict the actual model motion !

We’ll close this footnote with the observation that
three of the four factors of the altitude performance
problem have been pointed out--thrust, weight and drag.
Altitude comes from the acceleration, which is the
change in velocity per unit time. Velocity is, in turn,
the change in altitude with time. Therefore, by finding
the acceleration, we can eventually determine the
altitude. As an example, consider a special case that
has zero drag. Then, by neglecting the small change in
weight, we would have a constant acceleration during
the rocket burn. At burnout, in 0.32 seconds for the A8
engine, the velocity has reached

Velocity = Acceleration x Time
= 650 x 0.32 = 208 ft/sec

The average speed during boost, since we started from
zero, is 104 ft/sec; the altitude at burnout for the no-
drag ease becomes

Altitude

Ave. Speed x Time

=104 x 0.32 = 33.3 ft.

Remember that these calculations could be made easily
because we had assumed there was no drag. Drag would
lower the burnout speed and altitude.

After burnout, the model will decelerate (the net
force is negative in Newton's Second Law) until zero
velocity at the peak altitude, then fall back to earth.



some advanced mathematics are required to manipulate
this law to get practical altitude results. Luckily, we
need not concern ourselves with these math details.
In Estes Technical Report 10, **Model Rocket Altitude
Prediction Charts’’, these complications have been
removed and through extensive use of a computer the
complex mathematical solutions have been reduced to a
series of graphs. A chart is made up for each engine,
and with knowledge of the launch weight, body cross-
section area, and drag coefficient, the predicted altitude
for a vertical, no-wind ascent can be obtained directly
from the chart. Results from this Technical Report
provide the special relations, in graphical form, that we
need to obtain drag coefficients from our flight tests.

Using the information that is graphed in TR-10, one
chart can be prepared that will give us the altitude
performance of any model rocket built of a particular
body tube size and powered by a specific engine. For
the BT-50 body tube size and the A8 engines used in
the Alpha flight test program, this special chart takes
the form shown in Fig. 78. This single chart illustrates
the influence of drag coefficient, launch weight and air
density upon the height attained by a model rocket.
Early in our drag study we learned that the air resistance
depended upon the air density: therefore, the air density
at the launch site must be considered in our altitude
predictions.

In normal use of this chart, the launch weight is
known, the drag coefficient estimated (or calculated
from this report) and the air density found from the
curve in the Appendix or computed from the barometric
pressure and temperature at the launch site. For example,
consider a sea level launch of a model weighing 1.36
ounces with a Cp = 0.6. If the pressure and temperature
are ‘‘Standard Day’’ conditions Patm = 29.92''Hg and
T = 59°F, then

L _ 7.35 x 29.92 _
PsL 460 + 59
then Cp£— = 0.6 x 1= 0.6
PSL

1.00

Locating the value 0.6 on the horizontal axis and moving
up to the 1.36 ounce launch weight, then reading across
to the altitude scale on the left, we find that the pre-
dicted performance of this bird is 390 feet. It's worth
noting that if the launch weight had been 2.0 ounces,
the altitude would be down to 241 feet. That's quite
an altitude loss from the 0.64 ounce weight increase, so
keep your models light. Suppose the launch site was
located at an altitude other than sea level, where the
barometer reading was 24,96’ Hg and the temperature
was 41°F?

First find
= 1735 x2488 ___ 0861
PsL 460 + 41 .
then CpX- = 0.6 x 0.861 = 0.518

PsL

with this value, Fig. 76 indicates the rocket would get
to 412 feet. This model got 22 feet higher because the
air density was less. Low air density comes with high
elevations or with high air temperature, so those rocket-
eers flying from fields with these conditions have a
clear advantage over the cold climate, sea-level flyers.

Well, although it's nice to see precisely how much
weight, drag coefficient and air density change the
predicted altitude of a model rocket, that’s not the main
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purpose of Fig. 78 in this section. The reason the
figure was constructed was to provide a means of con-
verting our flight test results to drag coefficient form.
All we need do is to work backward through the chart.
Take a measured altitude, like the 355 foot height
attained by the Type B Alpha for example, and move to
the right from the vertical axis to the launch weight and

read down to find CD;; = 0.75. Then the effective
SL

drag coefficient for this flight was

0.75
Cp

plpgL

FIG. 78
PREDICTED ALTITUDE FOR Ags POWERED
MODELS WITH BT-50 BODY TUBES

)

vl

00 N
500 N

400
400

> Z
- M4¢~
= == I % 1]
w TN ]
e 7T q
X/ o
F4 =z
300 -
2
- -
] =
2 o
0z
JUI\_(H wT 1]
200 }
!
- f mE
THEORY, TR-10
P in “‘Hh,
Lo araski2m T
SL 460 - T°F
100
|
0 I
0 0.2 0.4 0.6 0.8 1.0

During the flight test program, the weather station
reported the temperature as 73°F and the barometric
pressure as 29.45''Hg. Note that this barometer reading
is the actual pressure at the field and is not corrected
to the sea level value. Therefore

o _ 29.45 _
= 17.35 xm_

PsL

0.96

This density ratio means that the effective drag coef-
ficient for the Type B Alphas was
0.75

Cp==—=-=
D 0.96 0.781

Now, what was the predicted value for the Type B
Alpha ? Cp = 0.826. Very good ! The difference between

the coefficient obtained by flight test and by theory
was less than 6 percent. Such results make any aero-
dynamicist glow--or make him suspicious because the
results sound too good. Let's check the other flight
test drag coefficients in a similiar manner. These
resuits are presented in the table below and compared
with the theoretical CDO obtained from the drag analysis

of the last section.



ZERO LIFT DRAG COEFFICIENT
FLIGHT TEST AND THEORY

Ave Alt Cp CD  yDeviation from
Model (ft) Flight Theory Flight Test
Test

A 319 0.975 1.03 6

B 355 0.781 0.826 6

C 383 0.650 0.448 -31

Up-
Rated 446 0.421 0.391 -7

D 356 0.771 No

Solution

DRAG COEFFICIENT COMPARISON

For the Type A and B Alphas, the agreement between
the drag coefficients obtained from theory and experiment
was excellent--differences less than 6 percent were
recorded. Considering that we used only the geometry
of the Alpha in our seven step drag analysis, the theory
performed quite well. A question does arise, however,
as to why the theoretical drag value, which is based on
a zero angle of attack flight, was greater than the
flight test drag coefficient. We would anticipate the
opposite to be true. After all, during the ascent, the
rocket would most likely encounter some disturbance
causing an angle of attack and a corresponding increase
in Ch. It is probable that we computed the drag of one
of our model rocket components too high, with the
rectangular fins most suspect. Perfect agreement would
be obtained between the two drag coefficients if this
fin drag coefficient was lowered less than 10 percent.
This 10-percent decrease in CDOF is quite possible--

just look back to Fig. 40. Rounding the fin |leading and
trailing edges can drop CDOF by 40 percent. Although

every effort was made to avoid this during fin construc-
tion, a very slightly rounded corner could have resulted
from the light sanding, and this would reduce the flight
test drag coefficient.

Another feature that should not be overlooked in the
flight test results is the drag penalty caused by the
beginner-type model construction. Flight test shows
that the drag coefficient increased 24.8 percent. That
surely verifies the estimate we made of a 25 percent
variation due to model workmanship! This 25 percent
rule should be passed on to beginners; it’ll show them
good workmanship pays off.

Unhappily, the Type C Alphas do not exhibit the
same agreement between the theoretical and the flight
test Cp values that the Types A and B Alphas do. The
31 percent difference in the two drag coefficients is
puzzling. When we examine the two Up-Rated Alpha
drag coefficients, calculated and measured in the same
manner, we again find excellent agreement (7 percent)
between the analytic and flight test coefficients. What,
then, caused the discrepancy in the data of the Type C
Alpha?

We might look over the flight test program for clues
to the apparent poor altitude performance of the Type C
models. The three Type C Alphas were launched in a
random sequence interspersed with A, B and Up-Rated
Alpha launches. This randomizing procedure was used
to average out the effects of wind and the trackers’

performance. The records show that two tracks were
Inst on one of the C Alphas and two of the other altitude
tracks used were near the 10 percent limit. One point
that could cause a lower than normal altitude would be
a premature ejection of the streamer. The five second
delay times were used to reduce this possibility and
indeed, almost all of the flights went ‘‘over the top’’ of
the trajectory before streamer deployment. A few ejec-
tions did occur, however, during ascent of the high
performance birds. Unfortunately, the flights that ex-
perienced early ejection were not noted on the records.
So, premature ejection might have caused the altitude
deficit, but we cannot prove this.

It is entirely possible, or course, that the altitude
achieved by the Type C Alpha was the correct value
and the discrepancy is caused by a theoretical analysis
that just predicts too low a drag coefficient. Interference
drag is always difficult to evaluate; maybe the inter-
ference drag for the swept streamline fins is higher than
the theoretical estimate. Possibly, the fin cross-sections
were not made to the perfect streamline shape which
would cause the actual fin drag coefficient to be greater
than predicted. Or the surface might not have been
perfectly smooth, causing extra drag. There is always
this problem of constructing the model exactly as the
the mathematical representation. That's why we built
three models of each type--to get an average represen-
tation.

Now, when we consider the excellent comparisons
of the flight test and theoretical drag coefficients for
the Type A, B, and Up-Rated Alphas, and when we
recognize the difficulties of any flight test program (as
well as the limitations of any theory) which could
explain the poor agreement for the Type C Alphas, we
must conclude that the evidence does support the theo-
retical drag analysis used. To be sure, the theory is not
perfect; very few theories are. But applying the seven
step drag analysis to our models will yield a zero-lift
drag coefficient that is within 10 percent of the actual
value. That’s not a bad accomplishment !

Our confidence in the theory is increased when we
examine Fig. 79. The predicted drag coefficients and
the measured altitudes for our four Alpha models are
compared with the theoretical altitudes predicted with
TR-10 for a 1.36 ounce launch weight. Once again the
good agreement between the theoretical and actual
performance of the Type A, B, and Up-Rated Alphas is
shown. And, once again, the disconcerting disagreement
of a Type C Alpha is pointed out. The 31 percent drag
coefficient discrepancy causes a fifty foot altitude
difference; we’ll just have to accept this difference.
Hopefully, some rocketeer will conduct flight tests on
the Type C Alpha (that’s the only kind we are supposed
to build--professional looking) and help resolve our
dilemma. We're anxious to learn if the altitude achieved
by our particular Type C Alphas was lower than the
height that should have been attained or if the predicted
drag coefficient was just too low.

One last comment on the flight test coefficients: The
spinning of the Type D Alpha created a drag coefficient
of Cp = 0.771. There is no theoretical solution worked

out for this bird; that would require a prediction or
measurement of the rate of roll to allow a calculation of
the angle of attack of the fins and the corresponding
induced drag. That calculation, as is often said, is
beyond the scope of this report. It’s possible to observe
the effect of the spin on the altitude, however, by com-
paring with the non-rolling Type C Alpha. Canting the
one fin increased the flight test drag coefficient by
almost 19 percent. That’s quite a penalty. In fact, the
induced drag is about equivalent to the drag caused by
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rectangular fins instead of streamlined. The Type B
Alphas, you might note, have a Cp = 0.781. This drag

increase with roll is just another verification of our
drag reduction concepts--keep the fins aligned to pre-
vent roll for the lowest drag performance.

THE LAST WORD

The title of this last chapter was ‘‘Putting It All
Together’’, That's what we’ve done. We can now design
a model rocket based on low drag concepts, and calculate
the drag coefficient from the model geometry using the
analysis of this report. We can then take this drag
coefficient and the model rocket weight, employ TR-10
to predict the rocket performance and finally fly the
bird to test the predictions, exactly like the aerospace
designers and engineers. That’s what model rocketry
is--aerospace engineering in miniature !

APPENDIX 1

As the drag analysis was developed in this report,
this skin friction coefficient, Cf, was brought up and

used several times (Eq 8 and Eq 13 for example), but
never discussed at any length. That procedure was
followed to emphasize the main topic of model rocket
drag and to avoid becoming bogged down in too much
detail. Using selected values for C;, we were able to
draw curves for the rocket body and fin drag which did,
indeed show magnitude of the drag coefficients of the
various model rockets, but only for a specific class of
rockets--those models that used a three-to-one ogive
nose cone and traveled at speeds of 100, 300, and 500
ft/sec under standard atmosphere conditions. That was
fine, and very instructive; however some model rocket-
eers may wish to use a two-to-one ogive nose cone or
calculate the drag at 150 ft/sec and at some non-standard
atmospheric conditions. What then? Well, in order to
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proceed with an analysis, we'd have to have the basic
information--the data upon which the analysis was built.
The data is provided in this Appendix by design charts.

The exact manner in which the skin friction coeffici-
ent C; varies with Reynolds number is shown in Fig. A-1
for both the laminar and the turbulent boundary layer
cases. The Reynolds number, in turn, can be found from
Fig. A-2 when the air temperature and the altitude is
known., Another important bit of data is presented in
Fig. A-38. This figure gives the ratio of wetted surface
area to body tube cross-section area, Sy /SgT, for

conical and ogive nose cones of various length to
diameter ratios. Finally, Fig. A-4 is included to allow
calculation of the rocket drag at altitudes up to 20,000
feet by showing the density variation with altitudeon a
on a ‘‘standard day’’.

To illustrate the procedure to be used with these
charts, let's find the drag of a model that looks different
from any we’ve examined so far. We'll consider a model
built from a BT-20 body tube and a two-to-one ogive
nose cone and with triangular fins of streamline cross-
section. Then we’ll look at a non-standard flight condi-
tion, say an air temperature of 80°F and a field elevation
of 2000 ft with the model moving at a flight speed
of 150 ft/sec. The model is sketched below along with

the geometric data.
:—]
/ T
1.5
1
\

0.736

|\ i ’ i -
0.00 1.47
14.00
g: 0.736 Ct=0 Si L = 0.005 sq. in.
b :13‘2?’6 Cr=2.0 SLLW =2.00sq. in.
= . S - ‘.
SBT - 0.415sq.in. | 4.5 $q.in.
— = 0.0625
c
Our seven step drag analysis starts with Eq. 8:
Coy + CDgr =1.02Cf [ 14+ 15 | Sw
(L)%~ ST (8)

To use this equation we must find a value for Cs and
S

S_VEVZ'I"W(a can obtain Csi from Fig. A-1 if we know the
Reynolds number. We find the Reynolds number from Fig.
A-2. Moving vertically up the 80°F line in Fig. A-2 to
the 2000 ft field altitude we read 5410 on the vertical
scale. This number is the Reynolds number of a one
foot long model rocket body moving at V = 1 ft/sec. To
correct the Reynolds number for our case, we multiply
by the length of our new model (in feet) and we multiply
again by the flight velocity of our model:

14

RN = 5410 x GX 150 = 945,000.

Using this Reynolds number in Fig A-1, we find Cf =
0.0045 for the turbulent boundary layer case.

Now, in order to find Sy we first observe that the
SBT

rocket body is made up of two basic shapes, an ogive

nose cone and a cylindrical body tube. The wetted

surface to cross-section area ratio for each of these
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FIG. A-1
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basic shapes is shown in Fig. A-3, To use the figure
we need to know the length to diameter ratios, Ly, of

d
nose cone and LBT, of the body tube. We obtain these
d
from the sketch.
v 147, LeT 12.53 7.0
d  0.736 9 o073 '

.736

The total value of Sy, is the sum of the two components;
SBT

therefore adding the two values of the area ratio obtained

from Fig. A-3 we arrive at

S S
S :[SS—W } . [_SW ] - 5.4168=73.4
BT BT N BT IgT
S
You might note that the figure gives [%I’] only up to
LgT = 5. BT
d

<That's because of the size of the chart. This is no
handicap, though, since we see from the chart that the
area ratio is exactly four times the length to diameter
ratio.* All we have to do for the body tube, therefore, is
use the equation:

[Sw ]
ST
B BT

With this information, we can evaluate Eq. 8 for our
new mode! rocket body:

_4LBT
d

1.
CDN +Chgt = 1.02 Cy¢ [ 1+ (L/d)3/2 ]S—

ST

1.

~ 1.02 x 0.0045 [1 i —53 ] 73.4
(19) 7

CDN + Cpg = 0343

The somewhat high figure for this drag coefficient (the
Alphas had CDN + CDBT = 0.205) is due to the high

length to diameter of the rocket body. This does not
mean that the drag is greater, as we shall see later
when we use the smaller body tube diameter in our
drag force calculation.

FIG. A-2
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FIND RN FOR 14 INCH LONG MODEL ROC-
KET MOVING AT A SPEED OF 150 FT/
SEC WHEN T - 80°F AT 2000 FT ALTI-
TUDE THEN

RN = 5410 X 1_‘2‘ X 150 = 945,000

EXAMPLE:

*We can prove this statement from geometrical considera-
tions

Sw  Area of cylinder

mdlBT 4LlBT
SgT  Area of circle

7 d2 d
4




The second step of our analysis is to find the base
drag coefficient:
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The third step is to find the fin drag coefficient
CD*(‘)F. For this value we use Fig. A-1 again, once we

determine the correct Reynolds number. We’ll use the
average fin chord of one inch to calculate the effective
Reynolds number on the fin. For our 80°F day with the
2000 foot altitude, we again find a value of 5410 from
Fig. A-2. Correcting this for the one-inch chord and the
150 ft/sec flight velocity, we obtain the Reynolds
numbers for the fin

RN = 5410 x 1 x 150 = 67,600
12

A smooth streamlined fin at this Reynolds number would
have a laminar boundary fayer. Looking up this Reynolds
number to the laminar line in Fig. A-1 we read C¢ -
0.00515. The fin drag coefficient is found from Eq. 14:

* t
CDOF:2Cf[1+25-]
=2x0,00515 [ 1 +2 (0.0625) ]

CDgp = 0-0116

It is necessary to reference the drag coefficient to
the body cross-section area. Step four, then, is the
application of Eqg.19
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* SF
“Dor = ®DoF 5=
- 0.0116 X ‘B’i%
Cogp = 0.123

Step five is the evaluation of the interference drag
coefficient from Eq 21

* CR .
CDint - CDOF S—BT%X No. of fins

=0.0116 x2___x0.736 x 3
0.425 2

CDi nt = 0.060

The launch lug drag coefficient is the sixth step. Usinga
1 1/2 inch lug in Eq. 24 we find

1.2 SLL + 0.045 SLLW

C =
DL ST
1.2+ 0.005 + 0.0045 x 1.5
0.425
CDLL = 0.028

This is a little higher than the earlier CDLL but again

that’s because we are using a smaller body tube as the
reference area, ST = 0.425 for the BT-20, instead of

SBT = 0.746 for the BT-50 body tube of the Alphas.

Summing all these components in the seventh and
last step, we find the zero lift drag coefficient, CDO

Cbg = Coy *+ CoOgT + CDg + CDGF + CDjny + COLL

= 0.343 + 0.049 + 0.123 + 0.060 + 0.028
CDO = 0.603

This drag coefficient is significantly higher than the
CDO we calculated for either the Type C or Up-Rated

Alpha. Before we jump to any conclusions, though, we’d
better check the drag force on the new bird. We can use
Eqg. 17, modified slightly to allow us to find the effect
of the 2000 foot altitude:

P
Do=Cbg 172 p V2 8BT = Cpg /s (0.002378)p—SLV2 SBT

where we’ll use Fig. A-4 to find the density ratio p at
2000 feet. Inserting the appropriate values for the new
bird:

0.603 x 1/2 x 0.002378 x 0.942 x (150) 2 x 01.235

Do

!

Do = 0.0453 Ibs = 0.725 ounces

We compare this drag with the drag of the Up-Rated
Alpha flying at the same conditions. The Alpha’s
CDq = 0.364 forthe 150 ft/sec flight velocity, down from

CDO = 0.392 we found at V = 100 ft/sec on a standard
day. Using this value and the correct SgT (remember to



divide the 0.746 square inch value by 144 to convert to
area in square feet):

0.746
144

)
Do = 0.364 XX 0.002378 x .942 X (150)2 x

Do = 0.0475 Ibs = 0,760 ourras

Although CDO was greater for the BT-20 rocket, the

smaller body tube cross-sectionarea more than made up
for this drag coefficient increment; the actual drag force
was about 5% below the drag force of the Up-Rated
Alpha. That means that if both birds weighed the same,
the new bird would go higher. But then you couldn’t
pack as big a parachute in the BT-20 tube so this bird
would descend faster. Hmm. We're back to the com-
promises again and all we can say is that it's the
designer’s choice -- and that’s the fun of model rocketry.

FIG. A-4

DENSITY RATIO VERIATION WITH ALTITUDE
FOR STANDARD DAY CONDITIONS
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One last comment about Fig. A-4--besides giving
needed information for calculating drag as in Eq. 17, it
lets you have a little fun figuring the altitude effects
on your model rocket performance. Launching the Up-
Rated Alpha from Pike's Peak in Colorado would give
you a great performance. At the 14,110 foot altitude

£ _ 0.6402.
PsL
Then
Cog * - 0.392 x 0.642 = 0.252
PsL

When we look that value up in Fig. 768, we find the
predicted altitude is over 510 ft. compared to a sea level
launch which just clears 450 ft. Looks like Pike’s Peak
would be a good place to set some altitude records!
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APPENDIX 1l
SUGGESTED READING LIST

Model rocketeers who want to continue their studies
of Drag and of Aerodynamics will find the books listed
below quite helpful.

SHAPE AND FLOW by Ascher H. Shapiro, a Science
Study Series Paperback (S21) published by Doubleday
and Co. of Garden City, New York for $0.95, is an excel-
lent text for all model rocketeers. The book reviews the
fundamental ideas of concerning drag; i.e. air viscosity,
Reynolds number, flow separation and laminar and turbu-
lent boundary layers, in a stimulating and fresh approach
to fluid dynamics.

AERODYNAMICS by Theodore Von Karman is another
paperback put out by McGraw-Hill Book Company of
New York for $2.45. Von Karman, the foremost aero-
dynamicist of the past half century writes a history of
Aerodynamics, then goes beyond the basic concepts to
include discussions of supersonic and hypersonic aero-
dynamics. The true genius of Von Karman is his ability
to write of this complex field in a manner that all model
rocketeers can understand.

AERODYNAMICS OF THE AIRPLANE by Clark B
Millikan, published by John Wiley and Sons, is an inter-
mediate level text for advancing model rocketeers. The
book contains well organized information on the gener-
ation of lift and drag an on the performance of aircraft
flying at subsonic speeds. Although published first
in 1941, the data is still valid, and the book is a-
vailable in many libraries.

AIRPLANE AERODYNAMICS by D.O. Dommasch,
S. S. Sherby, and T. F. Connolly, published by Pitman
Publishing Corporation of New York is a text for ad-
vanced rocketeers. It contains current information of
supersonic as well as subsonic, aerodynamics and
chapters on rockets and trajectories. The text is a-
vailable in college bookstores and engineering libraries.

AEROSPACE VEHICLE DESIGN by K. D. Wood,
published by Johnson Publishing Company of Boulder,
Colorado. This is a design manual that contains practi-
cal charts and graphs of lift and drag of aerodynamic
shapes, that can be used by model rocketeers to extend
their design talents. Available in many college libraries.

FLUID DYNAMIC DRAG by Dr. Ing. S. F. Hoerner
is published only by the author from 148 Busteed Drive,
Midland, New Jersey. This is a classic collection of
information on drag. Drag data ranging from flags to
falling bodies, and from buildings to bullets are con-
tained in this comprehensive book. Technical libraries
have copies of the manual.
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APPENDIX 1l
LIST OF SYMBOLS

Area of an aerodynamic shape in square feet

Drag coefficient of an aerodynamic shape,
defined by Eq. (5)

Base drag coefficient defined by Eq. (9)

Drag coefficient of basic rocket parts, defined
in Eq. (6)

Drag coefficient of fins
Drag coefficient of nose cone

Drag coefficient of complete rocket at zero
angle of attack, defined by Eq. (7)

Drag coefficient of fins due to induced drag,
defined in Eq. (14)

Drag coefficient of the rocket body at zero
angle of attack, defined in Eq. (10)

Drag coefficient of the fins at zero angle of
attack

Drag coefficient of the fins at zero angle of
attack, based on fin surface area, SF

Drag coefficient of complete rocket at angle of
attack

Drag coefficient of rocket body at angle of
attack

Drag coefficient due to fin and body
interference, defined by Eq. (20)

Drag coefficient of the launchlug, defined in
Eq. (23)

Skin friction coefficient due to boundary layer
found from Fig. A-1 and used in Eq. (8)

Lift coefficient generated by fins
Drag force in pounds, defined in Eq. (1)

Length of rocket

Length of nose cone

BT

AR

RN

SS

Length of body tube
Mass of any body, measured in slugs

Radius of a body
Surface area in square feet
Surface area of all fins

Wetted surface area of the entire rocket; Fig.
A-3 has values for ogive and conical noses as
well as cylinders.

Cross-sectional area of the body tube, this is
the usual reference area for rocket drag
coefficient calculations.

Surface area of a single fin

Rocket velocity in ft/sec

Terminal velocity, calculated with Eq. (25)
Weight of a body in pounds

Aspect ratio of fins, defined in Eq. (11)
Reynolds number, used in Fig. A-1 to find the
Cf_ Defined in Eq. (4)

Shearing stress, defined in Eq. (3), measured
in pounds per sq. ft.

Span of the fins of the rocket

Diameter of the rocket

Diameter of the base of the rocket
Acceleration of a falling body due to

gravitational force; equal to 32.2 ft/sec2 on
Earth at sea level.

Thickness ratio of the fin; thickness divided by
chord

Angle of attack of the fin or rocket body,that is
the angle between the fin and the oncoming air
stream.

Density of the air

Density of air at sea fevel on a '‘standard day’’
SL = 0.002378 slugs/ft3

Sweep angle of the fin
Boat-tail angle

Fin taper ratio, the ratio of the tip chord to the
root chord

Viscosity of the air





