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ABSTRACT OF DISSERTATION

Multigrid Acceleration Techniques and Applications to

the Numerical Solution of Partial Di�erential Equations

Multigrid methods are extremely e�cient for solving linear systems arising from

discretized elliptic partial di�erential equations� For these problems� a few multi�

grid cycles are su�cient to obtain approximate solutions that are at least accurate

to the level of the truncation error� However� di�culties associated with problems

that are non�elliptic� or that have non�elliptic components� such as those described

by the convection�di�usion equations and the incompressible Navier�Stokes equations

with high Reynolds numbers� frequently cause a signi�cant decrease in the e�ciency of

the standard multigrid methods� The convergence degradation gets worse when high�

resolution discretization schemes are employed with the standard multigrid methods to

obtain high accuracy numerical solutions�

The purpose of this study is to develop e�cient multigrid acceleration techniques

to speed up the convergence of the multigrid iteration process and to apply these tech�

niques to obtain high accuracy numerical solutions of the partial di�erential equations

in computational �uid dynamics� It is shown by analysis and numerical computations

that standard multigrid methods can be signi�cantly accelerated and yield highly im�

proved convergence at negligible extra cost� Some acceleration techniques developed

in this research even reduce the cost of the standard multigrid methods� in addition to

providing satisfactory convergence acceleration� Other techniques have been shown to

be essential for some problems to converge� One important feature that distinguishes

these acceleration techniques from existing ones is that they do not require that the

coe�cient matrix be symmetric and positive de�nite and thus have the potential to be

applied to a wider range of practical problems� Another feature of these techniques is

that they can be parallelized�

Of particular importance to this work is the combination of these acceleration

techniques with the high�order �nite di�erence discretization schemes to construct sta�

ble multigrid solvers for obtaining fast and high accuracy numerical solutions of the

convection�di�usion equations and of the incompressible Navier�Stokes equations with

high Reynolds numbers�
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Chapter �

Introduction

This research has been aimed at a better understanding of the di�culties associated

with developing e�cient acceleration techniques for the multigrid solvers for partial

di�erential equations� especially for those equations that are non�elliptic or containing

non�elliptic components�

Standard multigrid methods have been shown to be extremely e�cient for solving

linear systems that result from discretized elliptic partial di�erential equations� e�g��

the Poisson type equations ���� For these problems� a few standard multigrid cycles

without any acceleration scheme are su�cient to obtain solutions with errors that are

well below the truncation errors ���� In recent years the multigrid techniques have been

investigated by more and more researchers� and are employed in a much more general

context and in a great number of �elds� Several books have been published which are

exclusively devoted to the multigrid �	�� ��� ����

However� di�culties which are associated with problems that are non�elliptic� or

have non�elliptic components� such as those described by the convection�di�usion equa�

tions and the steady�state incompressible Navier�Stokes equations with high

Reynolds numbers� frequently cause a signi�cant decrease in the e�ciency of the stan�

dard multigrid methods� This dissertation has been aimed at developing e�cient multi�

grid acceleration techniques to speed up the convergence of the standard multigrid iter�

ation process and to apply these techniques to obtain high accuracy numerical solution

of the partial di�erential equations� It is shown by analysis and numerical computations

that the standard multigrid methods can be signi�cantly accelerated and yield highly

improved convergence at negligible extra cost� Some acceleration techniques developed

in this research even reduce the cost of the standard multigrid methods� in addition

to provide satisfactory convergence acceleration� Other techniques have been shown to

be essential for some problems to converge� One important feature which distinguishes

our acceleration techniques from existing ones is that our acceleration techniques do

not require that the coe�cient matrix be symmetric and positive de�nite and thus have

potential to be applied to a wider range of problems of practical importance� Most ac�

celeration techniques developed in this dissertation aiming at the non�elliptic problems

have also been shown to accelerate multigrid convergence of the elliptic problems�

	



Of particular importance of this research is to combine these acceleration tech�

niques with the high�order �nite di�erence discretization schemes to construct sta�

ble multigrid solvers for obtaining fast and high accuracy numerical solution of the

convection�di�usion equations and of the steady�state incompressible Navier�Stokes

equations with high Reynolds numbers�

We begin this dissertation with a description of basic concepts of the multigrid

methods�

��� Multigrid Methods

Consider a large linear system of equations

Ahuh � fh �	�	�

that arises from discretizing some di�erential or integro�di�erential equations on a

discrete domain �h with meshsize h� The superscript h in Eq� �	�	� may be dropped

when there is no confusion on the discretized space in question�

The multigrid idea is based on the observation that classical iterative methods�

such as the Gauss�Seidel relaxation and successive over�relaxation �SOR�� strongly

damp oscillatory error components but converge slowly for smooth error components�

Hence� classical iterative methods work very well for the �rst few iterations� Inevitably�

however� the convergence slows down and the entire iterative scheme appears to stall

�	��� One e�ective way of removing the smooth error components is to approximate

them on a coarser grid with larger meshsize H �usually H � 
h� but this is not neces�

sary�� on which the smooth errors become more oscillatory and can be removed quickly

by relaxation methods� Solving the residual equations �the equations for the errors�

on the coarse grid directly and interpolating the correction back to the �ne grid give

the two�level method� The two�level method is an important theoretical and debugging

tool in developing the multi�level or multigrid method� However� since the number of

equations to be solved on the coarse grid is proportional to the original number of equa�

tions� the direct solver employed to obtain the coarse grid solution will be relatively

slow and costly� The multigrid method exploits the fact that the subproblem �residual

equations� on the coarse grid has the same structure as the original problem on the

�ne grid� so the basic idea of the two�level method can be applied recursively� i�e��

on the coarse grid� the subproblem �residual equations� is not solved exactly� instead�

oscillatory error components are damped out and the smooth errors are projected to

yet a coarser grid to be solved there� However� the two�level method contains all the

basic ideas of the multigrid method� which in turn can be viewed as recursively us�

ing coarser grid solutions to approximate the direct solver required by the coarse grid

in the two�level method� Hence� the main di�erence between the two�level method

and the multigrid method is the computational e�ciency� not the theoretical issue of

accelerating basic convergence�

For a wide class of di�erent problems� the multigrid method is found to be the






most e�ective method and the cost of the multigrid method is independent of the grid

meshsize ���� ����

Briggs� book �	�� is generally considered excellent as an introduction to basic

multigrid concepts� Advanced multigrid techniques are presented in Brandt�s guide ����

For detailed treatments� we recommend the books of Hackbusch ���� and Wesseling

�����

��� Multigrid Acceleration Techniques

For elliptic problems such as the Poisson type equations it has been believed that there

is no advantage of using any acceleration scheme for the standard multigrid methods�

A few standard multigrid cycles are su�cient to bring the algebraic errors well below

the level of truncation errors ���� However� we have found that carefully designed

acceleration schemes may accelerate the standard multigrid methods �see Chapter 
�

Appendix A and ���� ����� Although this will not arouse any excitement if we just

solve a single Poisson equation� since the savings of the CPU time for a fast Poisson

solver are not a big deal on modern computers� The acceleration becomes attractive

if a fast Poisson solver is called repeatedly for many times as a subroutine in a major

computational project� such as solving the steady�state incompressible Navier�Stokes

equations� the accumulated savings in CPU time can be substantial�

For non�elliptic problems or problems containing non�elliptic components� accel�

eration schemes are generally required to obtain solution within reasonable CPU time�

sometimes are even necessary for convergence� E�cient acceleration schemes must

�rst be cost�e�ective� which means to accelerate the original multigrid iteration with

reasonable �in most cases negligible� extra cost� There exist acceleration schemes that

accelerate the multigrid convergence in some situations� but the cost of the acceleration

is too prohibitive to be attractive for practical applications ���� �
�� Our acceleration

schemes developed in this dissertation are all cost�e�ective� in most cases the accelera�

tion cost is negligible�

The second criterion for an e�cient acceleration scheme is the applicability� An

e�cient acceleration scheme must be applicable to a wide range of problems of practi�

cal importance� Existing acceleration schemes such as the over�correction scheme ��
�

and the steplength optimization technique ���� require that the coe�cient matrix be

symmetric and positive de�nite �SPD�� The SPD requirement severely limits the appli�

cation of these acceleration techniques� Usually the multigrid methods can solve many

SPD problems very e�ciently and this fact renders these acceleration techniques much

less useful in practice� On the other hand� our acceleration schemes developed in this

dissertation research do not require that the coe�cient matrix be SPD and thus are

much more applicable to solving practical problems�

�



��� Applications to Partial Di�erential Equations

The multigrid methods can be used to solve a large group of di�erential equations

e�ciently� In this dissertation� we concentrate our attention on obtaining stable� ef�

�cient and accurate numerical solution of the convection�di�usion equations and the

steady�state incompressible Navier�Stokes equations� especially when the convection is

the dominant phenomenon� These equations are important in modern scienti�c compu�

tation� especially in computational �uid dynamics� But obtaining stable and accurate

numerical solution to these equations is a current research topic that many researchers

are devoting their energy�

One of the non�trivial problems associated with the solution process is to e�ciently

solve the linear system �	�	� results from a discretized partial di�erential equation� For

the convection�di�usion equation with large Reynolds number� the coe�cient matrix of

Eq� �	�	� is nonsymmetric and non�positive de�nite� Many classical iterative methods

become divergent when they are employed to solve Eq� �	�	� if the cell Reynolds number

is greater than a certain constant� Standard conjugate gradient type methods cannot

be applied directly due to the lack of symmetry in the coe�cient matrix� For other

Krylov subspace methods� �nding a suitable preconditioner for the convection�di�usion

equations is not always easy�

Standard multigrid methods become divergent as a result of the divergence of

the smoother� Multigrid methods with higher�order �nite di�erence schemes usually

converge slowly and acceleration schemes are therefore needed to obtain solutions in a

reasonable time�

��� Finite Di�erence Schemes

Standard multigrid methods usually employ smoothers based on the second�order cen�

tral di�erence schemes� These schemes may be e�cient for the Poisson type equations�

For problems like the convection�di�usion equations with large Reynolds numbers� stan�

dard multigrid methods diverge due to the divergence of the smoothers� Although there

exist complicated higher�order upwind di�erence scheme� the popular trend is to use

the �rst�order upwind di�erence scheme for the convective terms and the second�order

central di�erence scheme for the di�usive terms� This modi�cation guarantees con�

vergence� but only gives solution of �rst�order accuracy� Hence� defect�correction or

double discretization techniques are used by many researchers to obtain higher�order

accuracy solution� in which the �rst�order upwind scheme is used for relaxation and

the second�order central di�erence scheme is used for residual computation ��� ���� The

defect�correction multigrid methods may yield second�order accuracy solution for the

convection�di�usion equations with smooth convective coe�cients� According to our

numerical experiments ��	�� for problems with highly oscillatory convective terms even

the central di�erence scheme may not o�er solution of second�order accuracy�

By employing the fourth�order compact �nite di�erence schemes in the multi�

grid� we can design stable multigrid solvers for the convection�di�usion equations with

�



highly oscillatory convective terms and with large Reynolds numbers� There is no need

to use upwind scheme for stability� Furthermore� the fourth�order multigrid methods

o�er solution of fourth�order accuracy� The fourth�order multigrid method can further

be accelerated by the acceleration techniques developed in this dissertation and the

resulting accelerated fourth�order multigrid methods o�er stable� fast and high accu�

racy solution for the convection�di�usion equations and the steady�state incompressible

Navier�Stokes equations with large Reynolds numbers�

��� Main Conclusions

� Standard multigrid methods may be e�ectively accelerated�

� Most acceleration schemes are cheap and cost�e�ective�

� The convergence deterioration of the standard multigrid methods may be caused
by the incorrect scale of the residuals that are projected to the coarse grid� Ac�

celeration may be achieved by correctly scaling the residuals�

� When standard multigrid methods with the central di�erence scheme are unsta�
ble� the multigrid methods with the fourth�order compact �nite di�erence schemes

provide stability and e�ciency�

� Classical relaxation methods can be turned into e�cient smoothers by the accel�
eration schemes�

� High accuracy solution can come with cheap cost�

��	 Summary and Structure of this Dissertation

This dissertation is composed of eight chapters and two appendices� each chapter starts

with its introduction� with the exception of the �rst and the eighth chapters� Notations

are introduced as the need arises and conclusions are given in each chapter separately�

Here are the summary of the major contributions of this dissertation�

� In Chapter 
� we explain the e�ect of the SOR relaxation on standard multigrid
Poisson solver and develop two acceleration schemes for the �ve�point red�black

Gauss�Seidel smoothing in the multigrid method for the Poisson equation� A long�

time mis�understanding in multigrid community concerning the applicability of

the SOR relaxation with the multigrid method for solving the Poisson equation

is resolved�

� In Chapter �� we unify the concept of the multigrid residual scaling techniques and
prove the equivalence of the pre�scaling and post�scaling acceleration techniques�

The equivalence proof clears the way for developing e�cient and general�purpose

pre�scaling acceleration schemes�






� In Chapter �� we systematically introduce the minimal residual smoothing tech�
niques to accelerate the multigrid convergence� Several application schemes are

designed and numerical experiments are used to show the attractive acceleration

rate�

� In Chapter 
� the minimal residual smoothing techniques introduced in Chapter �
are analyzed and theoretical results are given� We show how the minimal residual

smoothing accelerates the standard multigrid method�

� In Chapter �� a fourth�order compact �nite di�erence scheme is combined with
the multigrid techniques to solve the convection�di�usion equations with high

Reynolds numbers� A heuristic residual analysis is used to derive optimal residual

injection factor for the high�order multigrid method�

� In Chapter �� a fourth�order multigrid method is designed for solving the steady�
state incompressible Navier�Stokes equations� Optimal residual scaling techniques

are used to obtain stable� fast and high accuracy numerical solution of the driven

cavity model problem for moderate to large Reynolds numbers�

� Chapter � contains the conclusions of this dissertation and the outlook for future
research directions�

� In Appendix A� we give a practical example of the heuristic residual analysis tech�
nique and derive an optimal residual injection factor for the �ve�point multigrid

Poisson solver�

� Appendix B contains some theoretical results on the stability of the fourth�order
compact scheme and convergence of some iterative methods with this compact

scheme�

�



Chapter �

SOR Multigrid for Poisson

Equation

��� Introduction

In this chapter� we concern ourself with the numerical solution of following two dimen�

sional Poisson equation with Dirichlet boundary conditions� which we call the model

problem�
��u�x	 y� � f�x	 y�	 �x	 y� � �	
u�x	 y� � g�x	 y�	 �x	 y� � 
�	

�
�
�	�

where

� �

�


x�
�


�


y�
�
�
�

is the Laplace operator� For simplicity� � is assumed to be the unit square� but other

domains such as the rectangle are easily generalized� The discretization of Eq� �
�	�

will be the usual accurate �ve�point central di�erence scheme� with a meshsize h and a

truncation error of order h�� The discretization generates a system of linear equations

of the form �	�	�� where Ah is a sparse� symmetric positive de�nite matrix�

An important part of the multigrid algorithms for the solution of discretized two

dimensional Poisson�type problems is relaxation� whose purpose is to smooth the cur�

rent error in the approximation� i�e�� to e�ciently reduce all error Fourier components

that can not be approximated on the coarser grids� For various reasons such as good

smoothing e�ect and obvious parallel potential� the red�black Gauss�Seidel method has

been used extensively as a relaxation in the multigrid methods of many kinds �	���

It is well�known that� when used in an iterative method� a relaxation parameter

may improve the convergence property� Relaxed Gauss�Seidel method is usually called

the SOR �successive over relaxation� method� although under�relaxation is also in�

cluded� Using an optimal relaxation parameter in SOR can accelerate the convergence

dramatically in many cases� but �nding the optimal parameter is not easy for most

practical problems� In multigrid� the main role of relaxation is to smooth the error� not

to reduce it� It has been observed that using relaxation parameters is not cost�e�ective

�



in many situations� particularly when applied to Gauss�Seidel relaxation ��� 
��� For

example� some slight improvement in the smoothing properties of Gauss�Seidel relax�

ation has been shown with slight over�relaxation in the case of the two dimensional

Laplace operator� but the two additional �oating�point operations required rendered

this modi�cation ine�ective �
���

Probably due to the authoritative remarks made in ��� 
�� that SOR is not cost�

e�ective for multigrid for solving Laplace operator� research works in this part of the

multigrid have been relatively inactive� comparing with others� Recently� there has

been some interest in using acceleration schemes or SOR in multigrid �		� ��� ����

In �		�� Brandt and Mikulinsky investigated using recombining multigrid iterants� or

�polynomial multigrid acceleration�� to solve a group of problems with non�simply

connected domains containing small �holes� or �islands�� They used the acceleration

on the coarse grids only� where the �island� cannot be presented directly� therefore it

adds normally only a little work to the usual multigrid cycle� In ����� Yavneh proposed

an over�relaxation for red�black Gauss�Seidel smoothing in multigrid for anisotropic

elliptic partial di�erential operators� He showed that relaxation parameters are quite

useful when the anisotropy is moderate and the same is true for isotropic operators

in higher dimensions� In ����� four smoothing methods were compared for a multigrid

method for the incompressible Navier�Stokes equations in general coordinates� Both

under� and over�relaxation SORs were tested� It was shown that the under�relaxation

parameter changes signi�cantly as the problems change� For some problems� over�

relaxation had to be used instead of under�relaxation� Furthermore� it seems that� in all

the existing research works� relaxation parameters were used only when the convergence

of the usual Gauss�Seidel method is very slow� and that using relaxation parameters

for the model problem �
�	� has been carefully avoided�

In this chapter� we �nd the reasons why the multigrid V�cycle algorithm is not

sensitive to SOR acceleration for Laplace operator in the conventional sense� This is

because the �rst �restriction� half cycle is sensitive to under�relaxation only and the

second �interpolation� half cycle to over�relaxation only� Based on this discovery� we

present two acceleration schemes for the �ve�point red�black Gauss�Seidel smoother for

the multigrid method to solve the model problem� The schemes� embedded in a multi�

grid V�cycle algorithm� have been tested by several numerical experiments and results

in the acceleration of the average convergence rate by as much as �� �see Table 
����

The cost of implementing the algorithm is negligible� which is remarkably contrary to

the remarks made in many monographs ��� 
��� Furthermore� the acceleration schemes

are very simple� one can just add several lines to the existing codes�

We brie�y introduce the multigrid V�cycle algorithm and the red�black Gauss�

Seidel smoothing in Section 
�
� The relaxation analysis is conducted in Section 
���

In Section 
��� we analyze the suitability and cost of accelerating the multigrid V�

cycle algorithm� and design two acceleration algorithms� In Section 
�
� we tested

our schemes against the usual red�black Gauss�Seidel smoother by several numerical

experiments� Some conclusions and remarks are given in Section 
���

�



��� Multigrid and Smoother

����� Multigrid V�cycle

We only give a brief sketch of a typical multigrid V�cycle algorithm� Detailed descrip�

tions of some more general multigrid algorithms can be found in ��� and ����� �	�� is

generally considered as an excellent introduction to multigrid�

Algorithm �
�
� One iteration of a usual multigrid V�cycle for solving the linear

system ������

Program MG�fh	 uh	 h�

if �h � coarsest � then u � �Ah���fh

else

u � relax�f	 u	 h�

r � f �Ahu

!r � Rr � R is a projection operator

v � �

v � MG�!r	 v	 
h�

u � u� Pv � P is an interpolation operator

u � relax�f	 u	 h�

end if

One iteration of a simple multigrid V�cycle consists of smoothing the error using a

relaxation technique� solving an approximation to the smooth error equation on a

coarse grid� interpolating the error correction to the �ne grid� and �nally adding the

error correction into the approximation� An important aspect of the multigrid method

is that the coarse grid solution can be approximated by recursively using the multigrid

idea� That is� on the coarse grid� relaxation is performed to reduce high frequency

errors followed by the projection of a correction equation on yet a coarser grid� and so

on� Thus� the multigrid method requires a series of di�erent �but similar� problems

to be solved on a hierarchy of grids with di�erent meshsizes� A multigrid V�cycle

algorithm is the computational process that goes from the �nest grid down to the

coarsest grid and back from the coarsest up to the �nest� We summarize one iteration

of this procedure in Algorithm 
�
�	� where MG�fh	 uh	 fh� is a recursive procedure

and relax�f	 u	 h� is a relaxation procedure �smoother�� A common variation of the

V�cycle algorithm is to do two correction cycles at each level before returning to the

next higher level� this is the W�cycle algorithm� However� in this chapter� we restrict

our attention to the multigrid V�	�	��cycle algorithm� which performs one relaxation

sweep before projecting the residual to the coarse grid and one after �nishing the

coarse grid correction step� The W�cycle algorithm will be discussed in subsequent

chapters� Interested readers may also consult the listed references for more details on

other multigrid cycles ��� 	�� ��� ����

The well�behaved model problem may require a number of V�cycles to satisfy a

prescribed tolerance� denoted by �� Other problems such as the convection�di�usion

�



equation �
�� ��� �	� �also see Chapters � and �� require many V�cycles �or even diverge��

Therefore� the number of multigrid V�cycles� denoted by MV� required to satisfy a
given � is an important factor of testing the computational e�ciency of an algorithm

in experiments� The average residual reduction factor� or the contraction number� ��

is de�ned as

� �

� jjrnjj�
jjr�jj�

� �

MV

�

which is a more accurate convergence indicator� Here jjr�jj� is the initial discrete
residual in L� norm� jjrnjj� is the �nal discrete residual�

The smoothing factor� de�ned below� is mainly used to predict the performance

of a multigrid algorithm in theory�

����� Five�Point Red�Black Gauss�Seidel Relaxation

For each internal grid point �i	 j� in the discretized �� �	�	� is a system of equations of

the form

ui�j �
	

�

h
ui���j � ui�j�� � ui�j�� � ui���j � h�fi�j

i
�

This means that� in each relaxation sweep� the value on a grid point is updated by

the average of its four immediate neighbor�s values� If we re�arrange the grids in an

alternative red and black order �see Figure 
�	�� the relaxation can be carried out simul�

taneously on red points and black points independently� The red�black Gauss�Seidel

may therefore be considered as two Jacobi relaxations� each carried out on roughly half

of the grid points independently� This idea certainly bene�ts the parallel computers�

but it has been shown that� even on serial computers� when used in multigrid� the

red�black ordering is slightly superior to the natural ordering �
�� p� ����� This idea

�pattern relaxation� can be generalized to multiple colors immediately�

��� Relaxation Analysis

����� Conventional Analysis

Pattern relaxation methods� such as red�black Gauss�Seidel have been studied and

analyzed extensively in the context of multigrid algorithms �
��� It has been shown

that when the operator is essentially isotropic �the coe�cient terms are equal� like the

Laplace operator�� the most cost�e�ective known smoother �at least for low dimension�

is probably the point Gauss�Seidel relaxation in red�black ordering ��
�� To avoid con�

fusing readers by using di�erent notations and formulas with almost identical meanings�

we try to use formulas of ��
� in this subsection and describe the smoothing analysis

here brie�y� To this end� we need to normalize the Laplace operator in �
�	� slightly to

L �
	



� �

	








x�
�
	








y�
	

so that the sum of the coe�cients is a unit�

	�



k � k � k � k

� k � k � k �

k � k � k � k

� k � k � k �

k � k � k � k

� k � k � k �

k � k � k � k

k Red grid point� � Black grid point�

Figure 
�	� A �� � grid points marked in red�black ordering� Boundary points are not
included�

For Gauss�Seidel relaxation of �ve�point operators �in two dimensions� in red�black

ordering� Fourier components are not eigenfunctions� and two�dimensional subspaces

of error Fourier components are invariant ��� ��� 
�� ���� This means that the red�black

relaxation couples each Fourier component exp�ik � �� only with exp�ik � !��� where

� � ���	 ���	 !� � �!��	 !���	

�� 
 �i � �	

and
!�i � �i � sign��i��	 i � 		 
� �
���

Here sign��� is de�ned as �	� �i may take on discrete values only� however� for con�
venience in employing analytic techniques� we assume that �i can take on any value in

���	 �� in the sequel�
An element �i of mode � is called smooth if ���
 
 �i � ��
� Otherwise it is

rough� A Fourier mode � is called a high frequency if at least one of its elements �i is

rough� Otherwise it is a low frequency�

We denote the subspace of high frequency ��s by "high and the subspace of low

frequency ��s by "low� Corresponding to this de�nition� the coarse grid space is split

into an orthogonal sum of "high and "low �
�� p� 	
	��

Fourier modes that are high frequencies on the �ne grid are not �visible� on the

coarse grid� in the sense that they can not be approximated on the immediate coarser

		



grid that is assumed to provide the coarse�grid correction� since they alias with other

components� Hence they need to be smoothed e�ciently by the relaxation on the �ne

grid� Evidently� all pairs ��	 !�� consist of either two high frequencies or one high and

one low frequencies ����� Without loss of generality� we assume that !� is always a high

frequency�

The relaxation operator

R��	 !�� �

�
r����	 !�� r����	 !��

r����	 !�� r����	 !��

�
	

which gives the amplitude of error Fourier components �exp�ik � ��	 exp�ik � !���T after
one full relaxation sweep� when multiplied by their amplitudes before the sweep� It can

be obtained by multiplying the operators of two weighted�Jacobi half�sweeps performed

over the red points �whose index�sums are even� and the black points �whose index�

sums are odd�� A sweep over the red points ampli�es components of red�point errors

by the weighted�Jacobi symbol r�� without a�ecting the black�point errors� and vice

versa� Since red�point and black�point error components can be expressed as sums and

di�erences of the pairs of Fourier components� each half sweep operator can be written

as a two by two matrix �
�� ���

	




�
r���� � 	 r��!��� 	
r����� 	 r��!�� � 	

�
and

	




�
r���� � 	 �r��!�� � 	
�r���� � 	 r��!�� � 	

�

for the red�point and black�point relaxation half�sweeps� respectively� R is given by
their product�

R �
�

�

�
�r���� � ��� � �r������ ����� r����� �r���� � ����� r������ � r�����

�
� �

�r����� � ����� r����� � r����
�
� � �r����� � ��� � �r������ ����� r�����

�
�

��	��

Here� the weighted Jacobi relaxation symbols are given by

r���� � 	� ��	� c�	 r��!�� � 	� ��	 � c�	 �
�
�

where

c �
	



�cos���� � cos�����	 �
���

and � is the relaxation parameter�

In relaxation operators for which the Fourier components are eigenfunctions �such

as the damped Jacobi relaxation for the present problem�� R is a scalar� and the

smoothing factor !� is conventionally de�ned as the largest absolute value of R over the

space of high frequencies� !� must give some information on the asymptotic reduction of

high frequency error components by the relaxation� given other parts of the multigrid

cycle are idealized� This motivation led to the following highly successful extension

to general R� introduced in ��� and �
�� p� �	�� apply R and then annihilate the low

frequencies� while leaving the high frequencies unchanged� by projecting on the space

	




of high frequencies� When R is a two by two matrix� the projection operator P � which

acts as the idealized coarse�grid operator� is given by

P �

�
p��� �

� p�!��

�
	 �
���

where p � � for a low frequency argument and 	 otherwise� �Hence� our high frequency
!� assumption implies p�!�� � 	�� The smoothing factor !�� when a single relaxation sweep

is performed between successive coarse�grid corrections� is conventionally de�ned by

!� � sup
h
max
�

��PR�	 �
���

where � denotes spectral radius� The implication of the supremum is that � is allowed

any value in ���	 ��� This will henceforth be implicitly assumed� and suph will be
omitted for brevity� Let

!�low � max
���low

��PR�	

and

!�high � max
���high

��PR��

Hence

!� � max�!�low	 !�high� �
���

in the conventional sense� The optimal relaxation parameter� !�optimal� is the one that

minimizes !�� yielding !�optimal� It has been established �
�� ��� ��� that !�optimal satis�es

!�optimal � !��	� � 	
�
� �
�	��

����� New Approach

The conventional smoothing analysis does not distinguish the di�erent reduction e�ect

on the low and high frequencies by relaxation �only consider the reduction of high

frequency�� In multigrid� low frequency and high frequency are a�ected di�erently by

restriction and interpolation� Therefore� it makes sense to consider �low and �high

separately� and only regard the conventional !� as a reference� To distinguish �low and

�high from the conventional context� we call them the reduction factors of low and high

frequencies respectively� Since these reduction factors are obviously a function of �� we

will make this relation clear in the following sections of this chapter�

For � � "low� p��� vanishes as noted� leaving

�low��� � max
���low

jr��j� �
�		�

Now� � � "low implies by �
��� that c can take on any value between � �when all

components of � equal �
� �� and 	 �when all components of � equal zero�� Hence �
����

�
�
� and �
�		� yield after rearrangement

�low��� �
	



max
c�
����

j��c�	 � c�� 
��	 � c� � 
j� �
�	
�

	�



In order to �nd the maximum of the right�hand side of �
�	
� over c in the relevant

range� we must check the end�points� c � � and c � 	� and the point at which the

derivative with respect to c vanishes� Setting c � � yields j� � 	j� This implies that

� 
 � 
 
� �
�	��

Setting c � 	 yields ��� 	��� which is smaller than j�� 	j in this range of �� Equating
the derivative with respect to c to zero yields after rearrangement

�low��� �
	

�
j�� � �� � �j �
�	��

at

c �

� �


�
�

This c is in ��	 	� so long as



�
� � � 
� �
�	
�

We do not want to make the assumption to restrict � � �		 
� as Yavneh did and
reached an over�relaxation scheme for anisotropic operators in ����� Instead� we try to

�nd an �low that minimizes the low frequency errors� From �
�	�� and �
�	��� we have

the following inequality

�low��� �
	

�
j�� � �� � �j 
 	

�
� �low�	�� �
�	��

Solving inequality in the center of �
�	�� gives us a favorable range of �

p
�� 
 
 � 
 		 �
�	��

which reduces the low frequency errors better than � � 	� Combining �
�	��� �
�	
�

and �
�	�� gives the relevant range of � favoring the reduction of low frequency errors




�
� �low 
 	� �
�	��

Hence� we have the following proposition�

Proposition �
�
� Under�relaxation with � � ��� 	 	� accelerates the reduction of low

frequency errors�

In the range of �
�	��� we �nd that

�low � 
�
p

� 	� 	 ���
��
�	

minimizes �low� giving �lowoptimal � �� ideally� This suggests that� without the presence

of high frequency errors� one step coarse grid correction could remove all low frequency

errors�

For � � "high� P is the identity matrix� so PR � R� whose eigenvalues are given

by ����

�high��� ��� �
	




�
r�� � r�� 


q
�r�� � r���� � �r��r��

�
� �
�	��

	�



Substitution from �
��� and �
�
� yields

r�� � r�� � ��c� � 
�� � 	�	
r�� � r�� � �c�
� ��	

�r��r�� � c��
�c� � 	��

It follows that

�high��� ��� �
	




�
��c� � 
�� � 	�
 �c

q
��c� � ��� � 	�

�
� �
�
��

Furthermore� � � "high implies that at least one of ��s components is high frequency

�by de�nition�� but also that at least one of its components is low frequency� otherwise
!� would be a low frequency� by �
���� in contradiction to our assumption� Hence� by

�
���� the relevant range of c in �
�
�� is given by

jcj � 	


�

This bound is achieved when all of ��s components vanish� except that corresponds

to � � ���
� Note in �
�
�� that �high� �c� � �high� ��c�� so it su�ces to consider
nonnegative values of c� and this will be assumed henceforth for convenience�

We then de�ne D��c� � ��c� � ��� � 	�� We �nd that if D� 
 �� �high��� are

complex� and j�high� j � j�high� j � j��	j� independent of c� This is also hold for D� � ��

Moreover� ��c� � 
�� � 	� � �� if D��c� � �� Hence� only the ��� sign in front of the
square root in �
�
�� �corresponding to �high� � needs to be considered when seeking the

root that is larger in absolute value ����� Thus we only consider �high��� � �high� ����

Moreover� in this case the corresponding root is evidently a monotonically increasing

function of c ���� p� 	���� so c reaches its upper bound 	�
� We then de�ne

�high��� �
	

�

�
�� � ��� � 	� � �

q
�� � 	��� � 	�

�
� �
�
	�

As in the case of �low���� we �nd that �high�	� � 	��� which agrees with �
�	���

Furthermore� by solving the inequality �high��� 
 �high�	� for � in the relevant range

��	 
�� we have an interval which favors the reduction of high frequency errors

	 
 � 




�
� �
�

�

Proposition �
�
� Over�relaxation with � � �		 �
� accelerates the reduction of high

frequency errors�

Taking the derivative with respect to � in �
�
	�� we �nd a critical point

�high � ��
 �
p
�� 	 	���	����	

at which �high��� reaches its minimum

�highoptimal � �� �
p
� 	 ����	�����
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Figure 
�
� The graphs of �high��� and �low����

This choice of � minimizes the high frequency errors solely�

For a better understanding the behaviors of �high��� and �low���� we plot their

graphs against � � ��	 
� �see Figure 
�
��
It is clear from the above analysis and from Figure 
�
 that we are in a dilemma to

choose an optimal relaxation parameter� Under�relaxation reduces the low frequencies�

but excites the high frequencies� On the other hand� over�relaxation smoothes the high

frequencies� but ampli�es the low frequencies� There may exist two solutions� One is to

use two di�erent parameters� which will be referred to as two�way acceleration� Another

is to accelerate one half cycle only� which will be referred to as one�way acceleration�

This analysis shows the reason why the early applications of SOR in multigrid

for Laplace operator could not yield satisfactory results� They failed to distinguish

low and high frequencies� but treated them equally by using SOR as in the usual

iterative methods on �xed grids� Thus any parameter may accelerate one half cycle�

but deteriorates another half� yields virtually no acceleration� Moreover� the above

	�



analysis also implies that relaxation parameter should be used after the low and high

frequencies are distinguished� In other words� SOR should be avoided on the �nest grid

of the �rst half cycle� i�e�� before the application of restriction operator�

��� Analysis and Design of Algorithms

����� Suitability Analysis

We have removed the �rst �nest grid from our candidate list for applying SOR� What

about other grids#

From Figure 
�
� we note that the choice of a good parameter will be a compromise

between minimization of high and low frequency errors� From � � 	 to � � �low�

�low��� decreases monotonically while �high��� increases monotonically� This suggests

that the employment of an under�relaxation parameter bene�ts mainly the reduction

of low frequency errors� This analysis basically agrees with conclusions of St$uben

and Trottenberg �
�� p� 	
�� that �the reduction of low frequencies is improved by a

parameter� the reduction of high frequencies �and by that the smoothing factor� usually

becomes even worse�� We point out that St$uben and Trottenberg�s smoothing factor

is the conventional one !�� which considers high frequencies only�

From Figure 
�
� we �nd �low��� and �high��� are smooth for � � ��low	 �high��
By carefully choosing a parameter� we may be able to reduce the low frequencies and

restrict the high frequencies� or to smooth the high frequencies and control the low

frequencies� at the same time� From Figure 
�
� it is obvious that �� � ��low	 	� and
�� � �		 �high��

Hence� a parameter may not be used on the �nest level of the �rst half V�cycle�

where the main e�ort is to smooth the high frequency errors� The employment of a

parameter might reduce the e�ect of smoothing� and the computational cost of doing

some work on the �nest grid is always expensive� On the other hand� a parameter may

not be used on the very coarse levels� On those levels� the magnitudes of the residuals

are already small and an acceleration helps little� Therefore� an under�relaxation pa�

rameter should be used on the levels where the the major low frequencies are removed

and the high frequencies are hidden� These are the second and the third �nest levels of

the �rst �restriction� half cycle� as the restriction operator hides high frequencies� An

over�relaxation parameter should be used on the levels where the major high frequencies

emerge� These are the �rst and the second �nest levels of the second �interpolation�

half cycle� as the interpolation operator excites the high frequencies �	�� p� ����

����� Cost Estimate

The main computational cost of a multigrid V�cycle is on the �nest level� It is usual to

measure the computational cost in terms of the work unit� de�ned to be the computa�

tional cost of a relaxation sweep on the �nest level� The work on each level is roughly

proportional to the number of unknowns� The work units for a V�cycle algorithm is

	�



about 
����� �
�� p� ����� The inter�grid transferring adds additional 	
� �� to this
amount for a total of ������ work units� One relaxation on the second level of a half

cycle costs about ��

 work units�

The computation of the discrete error in L� norm requires about three �oating�

point operations� The �ve�point Gauss�Seidel has �ve �oating�point operations� a pa�

rameter adds two more� if the parameter is stored and the code is modi�ed properly�

Hence one�way acceleration on the second �nest level costs ����

 more work units

than the usual Gauss�Seidel� This is about 	�� of a V�cycle� One�way acceleration

on the �nest level is about ��
 of a V�cycle� Two�way acceleration on the same level

doubles the cost� For acceleration on the second �nest level� the cost is negligible for

most practical applications�

On parallel machines� the acceleration involve only local operations and no com�

munication with other processors is needed� The relative cost of the acceleration is

even lower�

����� Design of Algorithms

Based on our foregoing analyses� we propose two acceleration schemes� The one�way ac�

celeration scheme is to embed an under�relaxation procedure� with a parameter �� 
 	�

in the �ve�point red�black Gauss�Seidel� on the second �nest level of the �rst �restric�

tion� half V�cycles� The two�way acceleration scheme� based on the one�way accelera�

tion scheme� is to embed another over�relaxation procedure� with a parameter �� � 	�

on the second �nest level of the second �interpolation� half V�cycles�

The two�way acceleration multigrid V�cycle algorithm is given by Algorithm 
���	�

The one�way acceleration multigrid V�cycle algorithm can be viewed as choosing �� � 	

in the two�way acceleration algorithm� The usual �unaccelerated� multigrid V�cycle can

be viewed as choosing �� � �� � 	�

Algorithm �
�
� One iteration of a modi�ed multigrid V�cycle algorithm with two�

way acceleration for solving the linear system ������

Program MG�fh	 uh	 h�

if �h � coarsest � then u � A��
h
fh

else

!u � relax�f	 u	 h�

if �h � second �nest and �rst half cycle� then

u � ��!u� �	� ���u � one�way acceleration

else

u � !u � no acceleration

end if

r � f �Au

!r � Rr � R is a projection operator

v � �

v � MG�!r	 v	 
h�

	�



u � u� Pv � P is an interpolation operator

!u � relax�f	 u	 h�

if �h � second �nest and second half cycle� then

u � ��!u� �	� ���u � two�way acceleration

else

u � !u � no acceleration

end if

end if

A two parameter SOR method was �rst investigated by Golub and de Pillis� they used

singular value decomposition �SVD� to improve SOR for the case that the coe�cient

matrix is symmetric �

�� The determination of the optimal parameters ��� �� for

their mixed strategy is still an open question� Their results have been generalized

by Moussavi� who also considered a special nonsymmetric case ����� More recently�

Prager considered using two parameter iterative method to solve algebraic systems of

domain decomposition type ��
�� In multigrid� St$uben and Trottenberg mentioned that

di�erent parameters may be used for di�erent Jacobi ��relaxation steps� when more

than one such relaxation steps are employed �
�� p� �	�� Since Jacobi ��relaxation is not

e�cient comparing with red�black relaxations� their remark was primarily intended for

the completion of their discussions� We are not aware of any practical attempt to use

two parameter SOR in multigrid in the form of what we proposed here for accelerating

the reduction of the high and the low frequency errors separately�

Our simple single relaxation sweep analysis in Section 
���
 only gives a rough

prediction of the range �upper and lower bounds� of the relaxation parameters� More

sophisticated analytic method may be employed to obtain more accurate estimate of

the optimal parameters� However� for a particular operator� the optimal parameters are

�xed �independent of meshsize but dependent on a particular level� and therefore may

be found by numerical methods� For our model problem �
�	�� we �nd that �� � ���

and �� � 	��� are optimal choices for our one�way and two�way acceleration schemes

respectively� Although they may not be the best for every problem �any numerical

method tolerates some variations�� our numerical experiments show that they are in

a small neighborhood of the best parameters and yield best results for MV and very
near�best for � for all of our test problems�

��� Numerical Experiments

We �rst de�ne some notations� In addition to h� �� MV� �� �� and �� de�ned above�
we de�ne N � 	�h and �N �	�� is the number of unknowns on the �nest grid� We also
de�ne SMV and S� as the reduction rates inMV and � respectively� for a particular

acceleration scheme� with respect to the unaccelerated red�black Gauss�Seidel multigrid�

We experiment our algorithm by several test problems� For simplicity� the do�

main is the unit square for all tests� The de�nition of f�x	 y� and g�x	 y� are referred

to the model problem �
�	� in the Section 
�	� here g�x	 y� is also the exact solution�

	�



The original multigrid V�cycle Fortran �� control routine� which uses a half�injection

operator and a bi�linear interpolation operator� was provided by Scott Fulton at Clark�

son University� The �ve�point red�black Gauss�Seidel with or without acceleration is

used as the smoother wherever applicable� Unless otherwise indicated explicitly� all

experiments are done on a SUN SPARCstation using double precision� All tests use

the initial guess u�x	 y� � � except on the boundary it takes the prescribed values of

g�x	 y�� Di�erent meshsizes are employed� The program set an upper bound of 
� as

the maximum number of V�cycles allowed� Therefore the cases that MVs equal 
	
should be considered as equivalent to very slow convergence or divergence�

Test Problem �
�
��
f�x	 y� � �x��	� x���
 � 	
y��� y��	� y���
� 	
x���
g�x	 y� � x�y��	� x���	� y���

Test Problem �
�
� �
f�x	 y� � ��x� � y�� exp�xy��

g�x	 y� � exp�xy��

Test Problem �
�
� �
f�x	 y� � 

 cos��x� �y��

g�x	 y� � cos��x� �y��

To show the overall behavior ofMV and � as functions of �� and ��� we experiment Test
Problems 
�
�	 to 
�
�� by using our one�way acceleration algorithm for all �� � ��	 
�
��xing �� � 	�� We also test the case in which a parameter is placed in the second

�interpolation� half cycles for all �� � ��	 
� ��xing �� � 	�� We compute� for all

di�erent �� � ��	 
� and �� � ��	 
�� MV �multigrid V�cycle or iteration number�
needed to achieve the prescribed tolerance � � 	��� and � �contraction number�� For

all three problems� we use N � 	
�� The acceleration or SOR algorithms are embedded

on di�erent levels �from the �rst to the third �nest� of the multigrid V�cycles�

Figures 
�� to 
�
 show the change ofMV and �� as functions of �� or ��� for Test
Problems 
�
�	 to 
�
��� For each �gure� �a� showsMV against �� �with �� � 	�� �b�
shows � against �� �with �� � 	�� �c� showsMV against �� �with �� � 	�� �d� shows �
against �� �with �� � 	�� All tests show that under�relaxation in the �rst �restriction�

half cycles with �� in some range achieves better convergence than no acceleration�

while over�relaxation in the �rst �restriction� half cycles deteriorates the convergence

�see sub�gures �a� and �b� in each �gure�� The �gures also show that the acceleration

on the second �nest level is better than on the �rst �nest level of the �rst �restriction�

half cycle� which support our analysis made in Section 
�� that acceleration is more

e�cient after restriction hides high frequency errors� Similarly� over�relaxation in the

second �interpolation� half cycles with �� in some range accelerates the convergence�

while under�relaxation usually makes it worse� We also note that acceleration on the

�rst �nest level achieves slightly better results than on the second �nest level of the
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Table 
�	� Comparison of the multigrid V�	�	��cycle number for Test Problem 
�
�	�

second half �interpolation� cycle� This also supports our analysis that acceleration is

more e�cient on the second �interpolation� half cycle after interpolation excites the

high frequency errors�

Next� we testMV and � for the two�way acceleration scheme by �xing w� � ���

and letting w� change in ��	 
�� Test Problem 	 is not sensitive to this scheme �see

Tables 
�	 and 
�
 below�� so we only record the results for Test Problems 
�
�
 and


�
��� We use N � 	
�� � � 	��� and �� as the maximum V�cycle number allowed�

Figure 
�� shows the tested results� For Test Problem 
� �a� shows MV against ���
�b� shows � against ��� for Test Problem 
�
��� �c� shows MV against ��� �d� shows
� against ��� It is clear from Figure 
�� that the two�way acceleration accelerates the

convergence� Sub�gures �a� and �b� of Figure 
�� show that one additional V�cycle is

reduced by employing interpolation acceleration after restriction acceleration�

We further compare the one� and two�way acceleration algorithms with the un�

accelerated red�black Gauss�Seidel in multigrid� for all three test problems� for various

N � with a �xed � � 	���� Tables 
�	 to 
�� detail the comparisons� We note that� in

all test problems� the employment of our chosen parameters helps reduce the multigrid

V�	�	��cycles by one to three� which amounts to as much as 	� reduction in iteration�

The reduction of contraction number is even more signi�cant� up to �� � These data

clearly demonstrate that the use of suitable parameters does pay for the cost� We also

show that the acceleration parameters are independent of the discretization parameter

N �

It is interesting to note that the acceleration schemes do not have much e�ect on

Test Problem 
�
�	� especially the two�way acceleration which yields no improvement

over the one�way acceleration� This may be due to the fact that the solution of Test

Problem 
�
�	 is a polynomial� which has been approximated very well by the unac�

celerated algorithm� ItsMVs are smaller than those of Test Problems 
�
�
 and 
�
���
This suggests that our acceleration schemes be more e�ective when the convergence of

the usual multigrid V�	�	��cycle algorithm is slow� This fact is also demonstrated by

the decrease of the meshsize which increases the number of multigrid V�	�	��cycles due

to the fact that the magnitude of the residual norm increases as the meshsize decreases�

The acceleration rate increases as the number of iteration increases�
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��	 Conclusions and Remarks

We have proposed a new approach to the relaxation analysis for the �ve�point red�black

Gauss�Seidel smoothing in multigrid method for two dimensional Poisson equations�

We have shown that under�relaxation is e�ective for the restriction half cycle and

over�relaxation for the interpolation half cycle� Two acceleration schemes based on

the these observations have been designed� recorded as much as �� acceleration in

the convergence rate and 	� reduction in iteration �MV�� The additional cost of
implementing the acceleration schemes is negligible� The result corrects a long�time

misunderstanding in multigrid that relaxation parameter for Gauss�Seidel method used

as a smoother in multigrid for Laplace operator does not pay� Although the �� 

acceleration in convergence rate still may not be substantial enough to attract practical

use� It o�ers a new way of searching for better SOR �both under� and over�relaxation�

smoothers in multigrid�

It may be possible that even better algorithms may come up for our model problem

as the result of this research� Analytical optimal �but may not be the best for all

problems in practice� parameters may be obtained by some analytic means and may

further accelerate the convergence a little bit for speci�c problems� As we stated above�

the best parameters should lie in a small neighborhood of what we suggested� and the

best parameters should achieve the same results so long as the reduction of MV is
concerned�

Although the analysis in Section 
�� is based on the �ve�point operators� the idea

of using di�erent treatments for the high and the low frequencies is independent of any

particular operators and relaxation methods� It is in fact an intrinsic property of general

multigrid method� Therefore� we expect that similar one� or two�way acceleration

algorithms can be developed for other isotropic and anisotropic elliptic operators� For

the cases with slow convergence� our idea will provide a good means for acceleration�
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Chapter �

Multigrid Residual Scaling

Techniques

��� Introduction

In Appendix A� we developed a heuristic residual analysis to obtain an optimal resid�

ual injection parameter for the �ve�point RBGS multigrid method �also see ������ The

resulting multigrid method with the optimal residual injection operator achieves conver�

gence rate even better than the two�way acceleration scheme introduced in ����� Both

methods give near�optimal performance as claimed in Appendix A and in ����� The op�

timal residual injection multigrid method results in about �� reduction in CPU time

with respect to the standard multigrid method with full�weighting �see Appendix A

and ���� for numerical results��

The technique used in Appendix A and in ���� belongs to a more general cate�

gory of multigrid acceleration techniques which we will refer to as the residual scaling

techniques� Residual scaling techniques are concerned with the techniques that op�

timize the scale of the residuals which are projected to the coarse grid to form the

coarse�grid�correction subproblem� Residual scaling techniques have been used by sev�

eral investigators to accelerate the convergence of the standard multigrid methods in a

variety of applications ��� �
� �
� ��� �
� ���� They have been given di�erent names by

di�erent authors in di�erent contexts� It was termed as the �over�weighted residual�

technique by Brandt and Yavneh ��� and was used to accelerate the convergence of the

multigrid method for solving the convection�di�usion equations with high Reynolds

numbers� M%ika and Van&ek ��
� �
� called it the �over�correction� technique and em�

ployed it in developing an algebraic multigrid method� Reusken ���� named it the

�steplength optimization� technique and used it to accelerate the convergence of both

linear and nonlinear multigrid methods� We called it an �under�injection� residual

transfer operator ����� In this chapter� we will prove that� under certain conditions� all

of these techniques are mathematically equivalent� and we therefore give them a uni�ed

terminology as the residual scaling techniques�

The minimal residual smoothing techniques proposed by us in Chapter � and ����
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may also be considered as an �indirect� residual scaling techniques�

This chapter is organized as follows� In Section ��
 the residual scaling techniques

are discussed and analyzed with respect to the two�level method� We prove the equiva�

lence of two special examples of the residual scaling techniques and generalize the results

to prove the mathematical equivalence of the pre�scaling acceleration techniques and

the post�scaling acceleration techniques� Conclusions and some remarks are given in

Section ����

Practical applications of the residual scaling techniques and some numerical ex�

periments are discussed in Chapters � and �� Appendix A and �����

��� Analysis of Residual Scaling Techniques

The rate of convergence of the standard multigrid algorithm is strongly dependent on

the properties of the vector which is the correction of the error obtained on the coarse

grid� This correction usually approximates the error of the solution very well in the

sense of its �progress�� but not in the sense of its �size� ��
�� Hence� standard multigrid

algorithm may be accelerated when we multiply the correction vector by a suitable

scalar factor� Several acceleration schemes based on this idea have been designed and

employed in a number of applications ��
� �
� ��� �
��

Let AH be the coarse grid operator on �H � AH must be nonsingular� but its exact

nature is not important in our current discussion� It may be an �H version of Ah or it

may be constructed by using the Galerkin technique �	���

Let ��	 ��h and ��	 ��H denote the usual inner products on �h and �H � respectively�
We also denote j � jh � ��	 �����h and j � jH � ��	 �����H the associated Euclidean norms�

De�nition �
�
� The energetic inner product with respect to a symmetric and positive

de�nite matrix Z on �h is de�ned as

h�	 �iZ � �Z�	 ��h� ���	�

Furthermore	 we de�ne the corresponding energy norm with respect to Z as

k � kZ � h�	 �i���Z � ���
�

The energetic inner product and the corresponding energy norm on �H may be de�ned

similarly�

Remark �
�
� If Z � I �the identity matrix�	 then k � kI reduces to the Euclidean

norm�

Let there be a regular splitting of Ah and let M and N be nonsingular square

matrices on �h satisfying the consistency condition

M �NAh � I	 �����

where I is the identity matrix on �h�
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De�nition �
�
� The smoothing iterative method is de�ned as of the form

S�vh� �Mvh �Nfh	 �����

where vh � �h� For any integer � � 		 we recursively de�ne

S��vh� � S�S����vh��� ���
�

For notational convenience	 we denote

S��vh� � I�vh� � vh	

where I��� is the identity operator�

M is sometimes called the iteration matrix of the smoothing iterative method

������

De�nition �
�
� Let � � � be any integer and Q�x� be a polynomial of degree � � 	
Q��x� � x��� � x��� � � � �� x� 		

we de�ne the matrix polynomial of degree � � 	 with respect to the iteration matrix M

as

Q��M� �M��� �M��� � � � ��M � I� �����

Lemma �
�
� For any integer � � �	 the following identity is valid

Q����M� �MQ��M� � I� �����

Proof� The proof is trivial� �

Remark �
�

 The consistency condition �
�
� implies

S�uh� � uh	 �����

where uh � �h is the exact solution of the linear system ����� �on the �ne grid�	 i�e�

uh � Ah��fh�

Lemma �
�
� For any integer � � � and any approximate solution vh � �h	 we have

the following identity

S��vh� �M�vh �Q��M�Nfh� �����

Proof� We prove Lemma ��
�� by induction on the integer ��

The identity ����� obviously holds for � � 	 with Q�M� � I by De�nition ��
���

Suppose the Lemma is true for ��

From De�nition ��
�� and Lemma ��
�
� we have

S����vh� � S�S��vh�� by ���
�

� S�M�vh �Q��M�Nfh� by induction assumption

� M �M�vh �Q��M�Nfh� �Nfh by �����

� M���vh � �MQ��M� � I�Nfh

� M���vh �Q����M�Nfh by Lemma ��
�
�

This completes the proof of Lemma ��
��� �
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De�nition �
�
� Given an approximate solution vh � �h	 we de�ne the error as

eh � eh�vh� � uh � vh� ���	��

De�nition �
�
� Given an approximate solution vh � �h	 we de�ne the residual as

rh � fh �Ahvh� ���		�

Remark �
�
�� It is clear that eh � �h and rh � �h� We also have the following

error �residual� equation

Aheh � rh� ���	
�

Eq� ���	
� is the basis for the coarse grid equation�

Components of the error which are not e�ectively removable by smoothing� i�e�

Meh 	 eh

will be called smooth components� We try to represent these smooth components in

�H using the interpolation operator P � The error eh � �h can be represented in �H if
there exists some eH � �H such that

eh � PeH � ���	��

Eq� ���	�� means that the error eh lies entirely in the range of the interpolation oper�

ator P � This requirement is usually not satis�ed in reality� otherwise solving the �H

error �residual� equation exactly and doing coarse�grid�correction would give the exact

solution �	���

����� Standard Two�Level Method

One iteration of the standard two�level method is as follows�

Algorithm �
�
�� One Iteration of the Standard Two�level Algorithm�

Step �� Given an initial guess vh� �

Step �� Pre�smoothing vh� � S���vh� ��

Step 
� Compute rh � fh �Ahvh� �

Step 
� Restrict rH � Rrh�

Step �� Solve eH � AH��rH �

Step �� Correct vh� � vh� � PeH �

Step �� Post�smoothing vh� � S���vh� ��

Lemma �
�
�� If the correction step in Algorithm 
�
��� is

vh� � vh� � PeH 	 ���	��

then the following equality holds

S���vh� � � S���vh� � �M��PeH � ���	
�
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Proof
 From Lemma ��
�� and the de�nition of the smoothing operator ����� we have

S���vh� � � M��vh� �Q���M�Nfh by �����

� M���vh� � PeH� �Q���M�Nfh by ���	��

� M��vh� �M��PeH �Q���M�Nfh

� S���vh� � �M��PeH by ������

This proves Lemma ��
�	
� �

Corollary �
�
�� For Algorithm 
�
���	 the following equality holds for any integer

�� � �

vh� � S���vh� � �M��PeH � ���	��

Lemma �
�
�� Let vh� � �h be an approximate solution to uh and �� � � be an integer	

then

M��eh�vh� � � eh�S���vh� ��� ���	��

Proof
 From De�nition ��
�� and Remark ��
��� we have

M��eh�vh� � � M���uh � vh� � by ���	��

� M��uh �Q���M�Nfh �M��vh� �Q���M�Nfh

� S���uh�� S���vh� � by �����

� uh � S���vh� � by �����

� eh�S���vh� �� by ���	���

This proves Lemma ��
�	�� �

From De�nition ��
�� and Corollary ��
�	�� we have the following lemma immedi�

ately�

Lemma �
�
�� For any integer �� � �	 the following identity is valid

eh�vh� � � eh�S���vh� ���M��PeH � ���	��

From Lemma ��
�	� and Lemma ��
�	
� we have the following lemma�

Lemma �
�
�
 For any integer �� � �	 the following identity is valid

eh�vh� � �M�� �eh�vh� �� PeH �� ���	��

The quality of the coarse�grid�correction of Algorithm ��
�		 may be measured by the

ratio of the errors in some norm before and after the coarse�grid�correction�

De�nition �
�
�� Let Z be a symmetric and positive de�nite matrix	 we de�ne the

convergence rate � as�

� �
keh�vh� �kZ
keh�vh� �kZ

	 ���
��

where k � kZ is the energy norm with respect to Z�
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����� Over�Correction Technique

The convergence rate � of the standard two�level method may be accelerated by choos�

ing a scalar � such that the scale of the correction is optimized� i�e�� in Algorithm ��
�		�

we replace the correction Step 
 by

vh� � vh� � �PeH ���
	�

and � is chosen so that the convergence rate � in ���
�� is minimized�

Remark �
�
�� Since vh� and �� are supposed to be given and uh is �xed �the unknown

exact solution�	 minimizing � is equivalent to minimizing keh�vh� �kZ in �
�
���

Lemma �
�
�� The minimization problems �
�
�� and �
�
�� is equivalent to the fol�

lowing minimization problem

kM�� �eh�vh� �� �PeH �kZ � min
�	�R

kM�� �eh�vh� �� !�PeH �kZ 	 ���

�

where R is the set of all real numbers�

Proof� Since

M�� ��PeH � � �M��PeH �

The proof follows from Lemma ��
�	� with PeH being replaced by �PeH and Re�

mark ��
�	�� �

Lemma �
�
�� If Z is symmetric and positive de�nite	 the minimization problem

�
�

� is solved by

� �
hM��eh�vh� �	M

��PeHiZ
kM��PeHk�Z

for M��PeH �� �� ���
��

If M��PeH � �	 an arbitrary � ful�lls the minimization condition �
�

��

Proof� If M��PeH � �� the minimization condition ���

� is obviously satis�ed with

an arbitrary ��

Let M��PeH �� � and let

f�!�� � kM�� �eh�vh� �� !�PeH �k�Z � ���
��

From De�nition ��
�	 we have

f�!�� � hM�� �eh�vh� �� !�PeH �	M�� �eh�vh� �� !�PeH �iZ
� !��hM��PeH 	M��PeHiZ � 
!�hM��eh�vh� �	M

��PeHiZ
�hM��eh�vh� �	M

��eh�vh� �iZ � ���

�

f�!�� is minimized if and only if !� satisfy the equation

df�!��

d!�
� �� ���
��

��



From ���

� and ���
��� together with the assumption that M��PeH �� �� we obtain
the unique minimizer

� �
hM��eh�vh� �	M

��PeHiZ
hM��PeH 	M��PeHiZ

�
hM��eh�vh� �	M

��PeHiZ
kM��PeHk�Z

� ���
��

We prove Lemma ��
�
� by virtue of De�nition ��
�	 ���
�� �

Remark �
�
�� M��PeH � � implies that no coarse�grid�correction is needed�

Although the minimization condition ���

� is solved by Lemma ��
�
�� the scaling

parameter � can not be computed from formula ���
�� for an arbitrary matrix Z� it

may be computed in a special case when Z is chosen to be Ah and Ah is symmetric

and positive de�nite� The last condition puts a severe limitation on the application of

this kind of acceleration technique to practical problems�

Lemma �
�
�� Suppose that Z � Ah and Ah is symmetric and positive de�nite	 for

any integer �� � �	 let

!eh � M��PeH 	 ���
��

!vh� � S���vh� �� ���
��

The optimal over�correction factor � may be computed from

� �
�fh �Ah!vh� 	 !e

h�h
�A!eh	 !eh�h

�
�fh �Ah!vh� 	 !e

h�h
k!ehk�

Ah

� ������

Proof� We want to show

hM��eh�vh� �	M
��PeHiAh � �fh �Ah!vh� 	 !e

h�h� ����	�

By De�nitions ��
�	� ��
�� and Lemma ��
�	� we have

hM��eh�vh� �	M
��PeHiAh � �Ah�M��eh�vh� ��	M

��PeH�h by ���	�

� �Ah�eh�S���vh� ���	M
��PeH�h by ���	��

� �Ah�eh�!vh� ��	 !e
h�h by ���
��	 ���
��

� �fh �Ah!vh� 	 !e
h�h

by ���		� and ���	
�� �

Note that all the quantities in equations ���
�� and ���
�� are computable and the

optimal over�correction parameter � can therefore be computed from formula �������

The modi�ed two�level method with the over�correction technique is as follows�

Algorithm �
�
�� One Iteration of the Two�level Algorithm with Over�Correction�

��



Step �� Given an initial guess vh� �

Step �� Pre�smoothing vh� � S���vh� ��

Step 
� Compute rh � fh �Ahvh� �

Step 
� Restrict rH � Rrh�

Step �� Solve eH � AH��rH �

Step �� Smoothing !eh �M��PeH �

Step �� If !eh � � then !vh� � vh� 	 else

Step �� Smoothing !vh� � S���vh� ��

Step �� Compute � � �fh �Ah!vh� 	 !e
h�h�k!ehk�Ah �

Step �� Correct !vh� � !v
h
� � �!eh�

Remark �
�
�� If we put � � 		 Algorithm 
�
�

 is mathematically equivalent to

Algorithm 
�
���	 although Algorithm 
�
�

 is computationally much more expansive�

Lemma 
�
��� guarantees that the convergence rate of Algorithm 
�
�

 is at least as

good as the convergence rate of Algorithm 
�
����

Acceleration techniques like Algorithm ��
�
� compute the scaling parameter �

after the process of the coarse�grid�correction and were termed as post�optimization by

Reusken ���� for this reason� Algorithm ��
�
� is the so�called over�correction accelera�

tion scheme due to M%ika and Van&ek ��
� �
�� These techniques optimize the computed

correction and may accelerate the convergence substantially if the original computed

correction is not in an appropriate scale� albeit at a heavy computational cost� In addi�

tion to the cost of the standard two�level method �Algorithm ��
�		�� Algorithm ��
�
�

requires at least the following additional cost� two inner product computations� one

residual computation� one vector�matrix multiplication� one vector�vector addition and

one scalar�vector multiplication� Usually� a large number of pre�smoothing sweeps are

needed for the e�ect of the over�correction to be signi�cant� In Van&ek�s test problem

for solving an anisotropic Poisson equation ��
�� he used � pre�smoothing and 
 post�

smoothing sweeps �see ��
��� The cost is high and the algorithm is not computationally

e�cient for accelerating the standard multigrid method� Furthermore� the validity of

the algorithm depends on the symmetry and positive de�niteness of the coe�cient ma�

trix Ah� In many applications of practical interests� such as the convection�di�usion

equation with large convection coe�cients� the coe�cient matrix Ah is nonsymmetric

and non�positive de�nite and Algorithm ��
�
� can not be applied�

Reusken�s approach ���� ��� is similar to the over�correction Algorithm ��
�
�� but

he considered the problem in a di�erent point of view and viewed the correction step

as an optimization process to search for the steplength parameter � along the direction

de�ned by the correction vector PeH � In Reusken�s numerical test for solving a Poisson

equation� it was found that the convergence rate of a V�cycle algorithm accelerated by

the steplength optimization �over�correction� is somewhat equivalent to a standard

W�cycle algorithm�

Bounds for the convergence rates of the two�level methods with and without the

over�correction acceleration have been obtained by M%ika and Van&ek ��
� �
�� More

quantitative bounds were obtained by Reusken �����

�




����� Weighted Residual Technique

Let us consider a di�erent approach to optimize the coarse�grid�correction process�

We may modify the residual vector rh by multiplying it with a scalar � before it is

projected to the coarse grid to form the coarse grid subproblem� Hence� if the original

multigrid coarse�grid�correction is not optimal in �scale�� we may choose the weighting

parameter � so that the �scale� of the coarse�grid�correction is optimized� We refer to

this technique as the weighted residual technique�

The following lemma states the relation between the scale of the residuals and the

solution of the error �residual� equation�

Lemma �
�
�� Suppose that AH is nonsingular and � is a scalar� If eH is the solution

of the linear system AHeH � rH and 'rH � �rH 	 then 'eH � �eH is the solution of the

scaled linear system AH'eH � 'rH �

Proof� The proof is trivial� �

The following theorem follows immediately from Lemma ��
�

�

Theorem �
�
�
 In the standard two�level method	 the scale of the correction vector

is linearly dependent on the scale of the residual vector� The quality of the correction

vector may therefore be improved by properly modifying the scale of the residual vector�

Suppose that we have some way to �nd � to satisfy some conditions so that the

residuals are better �scaled� in some sense� then we can modify the standard multigrid

Algorithm ��
�		 as follows

Algorithm �
�
�� One Iteration of the Two�level Algorithm with Weighted Residual

Step �� Given an initial guess vh� �

Step �� Pre�smoothing vh� � S���vh� ��

Step 
� Compute rh � fh �Ahvh� �

Step 
� Restrict 'rH � �Rrh�

Step �� Solve 'eH � A�h��'rH �

Step �� Correct vh� � vh� � P 'eH �

Step �� Post�smoothing vh� � S���vh� ��

Weighted residual techniques in di�erent forms have been used by Brandt and Yavneh

���� and Zhang ���� ��� to accelerate the multigrid convergence in di�erent situations�

As Brandt and Yavneh ��� remarked that� when solving the convection�di�usion

equations with high�Reynolds number� the error is dominated by smooth components�

Hence� instead of increasing the number of pre�smoothing sweeps on the �ne grid� they

concentrated their e�orts on improving the coarse�grid�correction because in many

cases� the coarse grid solution fails to approximate that of the �ne grid� They devel�

oped an over�weighted residual algorithm to accelerate the convergence of the red�black

Distributive Gauss�Seidel relaxation method to solve the convection�di�usion equations

and the Navier�Stokes equations� For example� the two�level convergence factor of the

��



convection�di�usion equation �with vanishing di�usion coe�cients� employing the �rst�

order discretization improves from ��
 to ���� with a residual scaling factor � � ����

Since the residual scaling factor � � 	� they called their technique the over�weighted

residual technique�

In Appendix A and ����� we used a heuristic residual analysis� based on the analysis

of the geometry of the grid points and the relaxation pattern� to derive a residual scaling

factor � � ������ to inject the residuals from the �ne grid to the coarse grid for the

�ve�point RBGS relaxation� Since � 
 ��
 ���
 is the standard half�injection factor��

we called the technique the under�injection residual transfer technique� The numerical

experiments conducted in ���� showed that the weighted residual injection operator

converges faster and is more computationally cost�e�ective �with about �� reduction

in CPU time� than the standard multigrid method �Algorithm ��
�		��

In the applications of the weighted residual techniques mentioned above� there is

no requirement that the coe�cient matrix Ah be symmetric and positive de�nite�

We will use a rather di�erent form of the weighted residual technique named the

minimal residual smoothing technique in Chapter � �and in ����� to smooth the residuals

before they are projected to the coarse grid� The new residuals are obtained as an

optimal linear combination of the current and the previous residuals� The optimality

is satis�ed when the new residuals in Euclidean norm are minimized�

From the above examples� it is clear that the residual weighting factor � is di�erent

in di�erent situation with di�erent relaxation method� However� we note that� if �

can be pre�determined by some kind of residual analysis� there is no additional cost

for the weighted residual algorithm �Algorithm ��
�
�� over the standard algorithm

�Algorithm ��
�		�� This is the primary incentive for us to investigate the weighted

residual technique because it is computationally e�cient�

Remark �
�
�� We point out that	 in Algorithm 
�
�
�	 if the residuals need to be

scaled before they are projected to the coarse grid	 then we may choose a suitable scaling

factor so that it scales the residuals result from the injection operator instead of from

the averaging �full�weighting� operator� If we use the injection operator	 we save about

��� of the residual projection cost�

Next� we will prove the main theorem of this chapter which states that� under certain

conditions� Algorithm ��
�
� and Algorithm ��
�
� are mathematically equivalent�

Theorem �
�
�� Suppose that Ah is symmetric and positive de�nite	 then the two�

level method with over�correction acceleration and the two�level method with weighted

residual acceleration have the same convergence rate if and only if the over�correction

parameter � in Algorithm 
�
�

 equals the residual weighting parameter � in Algo�

rithm 
�
�
��

Proof
 Given any initial value vh� � suppose that we choose the residual weighting

parameter � � � in Algorithm ��
�
�� the solution of the coarse�grid�correction reads

'eH � AH���Rrh� ����
�

��



The approximate value after the coarse�grid�correction is

vh� � vh� � P 'eH � vh� � �PAH��Rrh� ������

By the de�nition of the smoothing operator ����� and Lemma ���� after the post�

smoothing� the approximate solution of the two�level method with weighted residual

is

vh� � S���vh� �

� S���vh� � �M���PAH��Rrh

� S���vh� � � �M��PAH��Rrh

� !vh� � �!eh

� !vh� �

Since the approximate solution from Algorithm ��
�
� is the same as that from Algo�

rithm ��
�
�� we conclude that these two algorithms are mathematically equivalent and

have the same convergence rate�

On the other hand� if Algorithm ��
�
� and Algorithm ��
�
� have the same con�

vergence rate� then

vh� � !v
h
� � ������

We have

vh� � S���vh� �

� S���vh� � PAH���Rrh�

� S���vh� � � �M��PAH��Rrh� ����
�

And

!vh� � !vh� � �!eh

� S���vh� � � �M��PAH��Rrh� ������

It follows from ������� ����
� and ������ that � � �� �

Because of Theorem ��
�
�� we can search for alternative methods to estimate

the over�correction parameter �� Hereinafter we refer to parameters � and � as the

residual scaling parameter �� Theorem ��
�
� states that it is the scale of the residuals

that really matters the convergence of the two�level method� If we can develop some

methods to estimate the appropriate magnitude of the residual scaling parameter and if

these methods do not rely on the symmetry and the positive de�niteness assumption of

the coe�cient matrix� Algorithm ��
�
� is suitable for a larger area of applications and

is computationally more e�cient than Algorithm ��
�
�� Fortunately these alternative

techniques do exist and we will discuss some of them in Chapters � to � and Appendix A�

De�nition �
�
�� We de�ne the acceleration techniques that scale the residual before

it is projected to the coarse grid as the pre�scaling acceleration techniques�

��



De�nition �
�
�� We de�ne the acceleration techniques that scale the computed cor�

rection after it is interpolated back to the �ne grid as the post�scaling acceleration tech�

niques�

From Theorems ��
�
� and ��
�
�� we have the following corollary�

Corollary �
�
�� In a two�level method	 the pre�scaling acceleration techniques and

the post�scaling acceleration techniques are mathematically equivalent if and only if their

scaling factors are equal�

In parallel implementation� the injection operator is clearly advantageous because in�

jection is a local process and requires no communication with neighboring processors�

The full�weighting operator �or any other weighting scheme� requires communication

with eight neighboring grid points which may be stored in di�erent processors�

��� Conclusions and Remarks

We have developed and uni�ed the ideas of residual scaling techniques and proved the

equivalence of two residual scaling techniques and the mathematical equivalence of pre�

scaling and post�scaling acceleration techniques� These theoretical results clear the way

for developing e�cient pre�scaling acceleration techniques for practical applications� In

Chapter � and Appendix A� we will introduce the concept of heuristic residual analysis

technique and use that technique to derive optimal residual scaling factors for partic�

ular applications� The optimal residual injection operators with the optimal residual

scaling factors will be used in standard multigrid method as well as high�order multigrid

method� We will show that the resulting multigrid methods achieve convergence rate

faster than the multigrid methods with the full�weighting and half�injection operators

in the sense of computational cost�e�ectiveness for solving the Poisson equations� For

some convection�di�usion equations� the residual injection is one way to retain con�

vergence� when the full�weighting operator diverges for highly convection�dominated

problems�

��



Chapter �

Minimal Residual Smoothing in

Multigrid

��� Introduction

In this chapter� we investigate the feasibility and the e�ciency of employing some

minimal residual smoothing techniques to accelerate the convergence of the multigrid

method �MG�� For reasons which will become clear later� the acceleration scheme dis�

cussed in this chapter is applied on the �nest level only� Hence� our discussion will be

focused on the two�level method �Algorithm ��
�		�� because it contains all the basic

ideas of the multigrid method and because the multigrid method can be viewed as using

recursively de�ned two�level method to solve the coarse grid subproblem�

Suppose that a sequence fukg is generated by some iterative method with the
associated residual sequence frkg� Since it is generally not possible to measure the
convergence of the error directly� the quality of the iteration is usually judged by the

behavior of the residual norm sequence fkrkkg� where k � k is some norm� e�g�� the
Euclidean norm� Usually� it is desirable that fkrkkg converges �smoothly� to zero� In
many classical iterative methods� residuals are not e�ectively utilized in the iteration

process� they are usually used to measure the convergence only�

Let us take a detour to review another category of iterative methods which utilize

residual techniques extensively�

In the widely used generalized minimal residual �GMRES� method �
��� each uk
is characterized by

kf �Aukk� � min
u�u��Kk�r��A�

kf �Auk�	

where k � k� is the Euclidean norm and the Krylov subspace Kk�r�	 A� is de�ned by

Kk�r�	 A� � spanfr�	 Ar�	 � � � 	 Ak��r�g�

For GMRES� fkrkk�g converges to zero optimally among all Krylov subspace methods�
for which uk � u��Kk�r�	 A�� Other comparable methods� such as biconjugate gradient

�BCG� �	�� ���� and conjugate gradient squared �CGS� �
��� have certain advantages

��



over GMRES� but often exhibit very irregular residual�norm behavior ����� This irreg�

ular residual�norm behavior has provided an incentive for the development of methods

that have similar advantages but produce better behaved residual norms� such as the

biconjugate gradient stabilized �Bi�CGSTAB� methods ��
� ��� and methods based on

the quasi�minimal residual �QMR� approach �	�� 	
� 	�� 
���

Another approach to generating well�behaved residual norms has been proposed

by Sch$onauer �
�� and investigated extensively by Weiss ����� In this approach� an

auxiliary sequence fvkg is generated from fukg by a relation

v� � u�	

vk � �	� �k�vk�� � �kuk	 k � 		 
	 � � � 	 ���	�

in which each �k is chosen to minimize kf �A��	� ��vk�� � �uk�kZ over � � R� i�e�

�k � �hsk��	 rk � sk��iZ
krk � sk��k�Z

	 ���
�

where sk�� � f �Avk��� Here h�	 �iZ is the energetic inner product given by ���	� and
k�kZ is the energy norm given by ���
� with respect to a symmetric and positive de�nite
matrix Z �De�nition ��
�	�� The resulting residuals sk obviously have non�increasing

energy norms� i�e�� kskkZ � ksk��kZ and kskkZ � krkkZ for each k�

Remark �
�
� The energy norm used in the de�nition of MRS is for theoretical com�

pleteness� In practical computations	 the Euclidean norm �corresponding to Z � I� is

usually used�

In the context of the Krylov subspace methods� Weiss ���� explored and analyzed the

residual smoothing technique of the form ���	� extensively� which was referred to by

Zhou and Walker ���� as the minimal residual smoothing �MRS� technique� Weiss

showed that applying MRS to an orthogonal residual method results in a minimal

residual method� Zhou and Walker extended MRS to a quasi�minimal residual smooth�

ing �QMRS� technique applicable to any iterative method ��
� ���� They also showed

that QMRS can be used to derive a QMS�type method from any given method� In their

numerical experiments� it was found that MRS residual norms were often� although not

always� slightly smaller than the QMRS residual norms and� in some cases� tended to

remain a little more stable in the �nal iterations� They have some preference for MRS

over QMRS for general use� In this dissertation� we choose MRS to smooth the residu�

als generated by the multigrid method �MG�� In our numerical experiments using MRS

and QMRS to smooth and to accelerate the MG sequence� the MRS sequence is better

behaved than the QMRS sequence when both are used as smoothing techniques� How�

ever� when both are used as acceleration techniques� MRS is far better than QMRS�

The later is actually ine�cient in our experiments when it is used as an acceleration

method for MG� Hence� discussion of applying QMRS to the multigrid method will not

be pursued here�

�	



More general forms of residual smoothing techniques are considered by Brezinski

and Redivo�Zaglia �	
�� But we will limit our attention to MRS of the form ���	� in

this dissertation�

Most existing research has been focused on employing MRS techniques as smooth�

ing methods to smooth the residuals generated by the Krylov subspace methods� Al�

though some numerical experiments are reported to show that sequence generated by

classical iterative methods such Jacobi and Gauss�Seidel methods can also be smoothed

�	
�� we are not aware of discussion on the practical implementation of employing MRS

techniques to accelerate the classical iterative methods� The major reason is probably

that residuals are not necessarily calculated in the classical iterative methods� and the

employment of MRS techniques requires residual computation� This may render the

cost of implementing MRS techniques prohibitive in the classical iterative methods�

However� in the two�level �multigrid� method� residuals are computed automati�

cally and used to form the subproblem on the coarse level� This advantage certainly

reduces the cost of implementing MRS techniques� Furthermore� since the subproblem

on the coarse�grid is a residual equation and the smoothness of the residuals are es�

sential for the solution of the coarse�grid subproblem to approximate that of the �ne

grid problem so that a good coarse�grid�correction may be provided to the �ne grid ����

This gives the primary incentive to use MRS techniques to smooth the residuals before

they are projected to the coarse grid and the reason that this approach will accelerate

the convergence of the original two�level �multigrid� iterative process�

In this chapter� we emphasize the practical implementation of employing MRS in

the two�level �multigrid� method to accelerate the convergence of the original method�

Rigorous analysis is postponed in Chapter 
�

In Section ��
� We brie�y elaborate on MRS techniques and design algorithms

to employ MRS as smoothing techniques in the two�level iteration process� In Sec�

tion ���� we develop MRS acceleration scheme and algorithms that feed the sequence

with �smoothed� residuals generated by MRS back to the two�level and multigrid it�

eration processes� Numerical tests are employed in Section ��� to show the remarkable

acceleration rate and negligible cost of the MRS acceleration scheme used in the two�

level and multigrid methods� Conclusions are included in Section ��
� Suggestions on

future research are given in Section ����

��� Minimal Residual Smoothing

����� MRS Techniques

Assume that we have some iterative method which generates a sequence of iterates

fukg with the corresponding residual sequence frkg� we formulate the MRS technique
of �
�� and ���� as follows�

Algorithm �
�
� Minimal residual smoothing �MRS� ���	 ���

Initialize s� � r� and v� � u��

�




For k � 		 
	 � � � 	 do�

Compute uk and rk�

Compute �k � �hsk��	 rk � sk��iZ�krk � sk��k�Z �
Set sk � sk�� � �k�rk � sk����

and vk � vk�� � �k�uk � vk����

����� Two�Level Method and MRS

Algorithm ��
�	 may be applied to any step of the standard two�level method �Al�

gorithm ��
�		� where there is an update of current values to generate one or more

sequences of iterates with smoothed residuals� However� application of MRS requires

the values of the residuals which are not generally computed at each step of TLM�

Normally� the computation of the residuals is equivalent to one relaxation on that grid

level and should be avoided whenever possible� Thus� we would like to use MRS to

smooth the residuals calculated in TLM before they are weighted and projected to the

coarse grid� Algorithm ��
�
 is a procedure that incorporates MRS in TLM to generate

a sequence with �smoothed� residuals�

Algorithm �
�
� Two�level method and MRS

Given uh� and rh� � fh �Ahuh� 	 set v� � uh� and s� � rh� �

For k � �	 		 
	 � � � 	 do�

Relax �� times on Ahuhk � fh with the given initial guess uhk�

Compute rhk � fh �Ahuhk�

Compute �k�� � �hsk	 rhk � skiZ�krhk � skk�Z �
Set sk�� � sk � �k���r

h
k � sk��

and vk�� � vk � �k���u
h
k � vk��

Restrict rHk � Rrhk �

Solve eHk � �A
H���rHk �

Correct uhk�� � uhk � PeHk �

Relax �� times on Ahuhk�� � fh with the initial guess uhk���

Algorithm ��
�
 generates a TLM sequence fuhkg with the associated residual sequence
frhkg and an MRS sequence fvkg with the smoothed residual sequence fskg� Note that
vk and sk are generated before u

h
k and r

h
k for k � 	� We have kskkZ � krhk��kZ for all

k � 	� Furthermore� in most classical iterative methods used as relaxation schemes in
TLM� rh� is not usually calculated� One exception is that when the initial guess is taken

as zero� i�e�� uh� � �� then r
h
� � fh� In general� we may not want to compute the initial

residuals just for MRS� Algorithm ��
�� is a slight modi�cation of Algorithm ��
�
� only

v� and s� are generated after the �rst round of smoothing sweeps on the �ne grid�

Algorithm �
�
� Two�level method and MRS

Given any initial guess uh� �

For k � �	 		 
	 � � � 	 do�

��



Relax �� times on Ahuhk � fh with the given initial guess uhk�

Compute rhk � fh �Ahuhk�

If k � �	 then

Set v� � uh� and s� � rh� �

Else

Compute �k � �hsk��	 rhk � sk��iZ�krhk � sk��k���
Set sk � sk�� � �k�r

h
k � sk����

and vk � vk�� � �k�u
h
k � vk����

End if�

Restrict rHk � Rrhk �

Solve eHk � �A
H���rHk �

Correct uhk�� � uhk � PeHk �

Relax �� times on Ahuhk�� � fh with the initial guess uhk���

Algorithm ��
�� generates an auxiliary sequence fvkg with the associated residual se�
quence fskg which satis�es kskkZ � krkkZ for all k� The new residual norm sequence
fkskkZg is better behaved than the original residual norm sequence fkrkkZg� We ac�
tually have ����

kskkZ � minfkr�kZ 	 kr�kZ 	 � � � 	 krkkZg�
This implies that if fkrkkZg is not monotonically decreasing� fkskkZg does� since
kskkZ � ksk��kZ for all k�

In our following discussions and numerical experiments� we use Algorithm ��
��

to generate MRS sequence�

��� MRS Acceleration Schemes

����� Two�Level Method with MRS Acceleration

The sequence fvkg generated by Algorithm ��
�� is guaranteed to have non�increasing
residual norms fkrkkZg� Most existing research works employ MRS techniques as a
means to stabilize the residual sequence generated by some iterative method �usually

some Krylov subspace methods�� These approaches utilize the smoothing property of

the MRS techniques and have been reported by many investigators ��
� ��� ��� ����

However� as Zhou and Walker remarked in ����� having a smoothly decreasing or mono�

tonically decreasing residual norm may be of real importance or just a nicety� dependent

on the particular application� Employment of MRS techniques as a means of acceler�

ation has not been pursued extensively outside the context of the Krylov subspace

methods� On the other hand� using MRS techniques to accelerate classical iterative

methods still faces the cost of residual computation� which may render potential MRS

acceleration scheme very expensive� If MRS techniques are applied to the sequences

generated by classical iterative methods such as Jacobi or Gauss�Seidel methods� unless

the original sequence diverges or behaves very irregularly� there is a serious question

about the cost of generating such a new sequence against doing one more iteration

��



using the original iterative method� Because the cost of generating the new sequence

normally is larger than the computation of the original iteration due to the residual

computation� It would be better if we could feed the new sequence� which has a better

behaved residual norms� back to the original iteration� to accelerate the convergence

of the original iteration� In return� the accelerated original sequence will help MRS

generate a better new sequence with even more �smoothed� residuals� However� this is

not always possible� For instance� if the original sequence is generated by some Krylov

subspace method� as the cases usually discussed in MRS context� this approach would

destroy some properties of the original sequence� e�g�� mutual orthogonality� which is

essential for the original sequence to converge� In particular� Sch$onauer originally devel�

oped MRS to smooth the sequence generated by the conjugate gradient�type methods

and explicitly mentioned that fskg is computed without feedback to the original se�
quence �
�� p� 
�	�� Only in a later chapter� when he discussed the development of the

PRES
� method� which is a pseudo�residual method� he restarted the original iteration

from the smoothed sequence after 
� iterations �
��� He also claimed that a restart

from the smoothed sequence pays�

However� in TLM� the situation is di�erent� Since the new iterate is not solely

resulted from the old values by the relaxation scheme �it involves the correction from the

coarse grid�� there is no speci�c property that the original sequence must obey� Thus

we may expect that a feedback of the new sequence generated by MRS will accelerate

the convergence of the original iteration� A further advantage of the two�level methods

is that the residuals of the original sequence are calculated even there is no MRS

involved� This advantage� if exploited properly� reduces the cost of implementing MRS

acceleration schemes signi�cantly�

As we noted before� there are many places in a two�level method where we may

insert the MRS procedure� But we would like to do it in a cheapest way� i�e�� to use

existing information as much as possible and to minimize computation of quantities

which are only useful in MRS� This leads us to insert MRS procedure just after the

residuals on the �nest grid being computed and before they are projected to the coarse

level grid� At each major iteration� we replace the original TLM iterate uhk and its

residual iterate rhk by the MRS iterate vk and the associated residual iterate sk� We then

project the residual sk to the coarse�level grid to form a coarse�level grid subproblem�

�Note that we must replace both the TLM iterate uhk and its residual r
h
k at the same

time� otherwise the coarse�grid subproblem would provide a wrong correction to the �ne

grid�� In this way� we give the coarse grid smoothed residuals which are essential for the

coarse grid to provide a good coarse�grid�correction to the �ne grid ���� Therefore� we

expect that the acceleration rate is favorable� The following Algorithm ����	 is parallel

to Algorithm ��
��� without unnecessarily computing the initial residuals before the

MRS acceleration scheme is applied�

Algorithm �
�
� Two�level method with MRS feedback

Given any initial guess uh� �

For k � �	 		 
	 � � � 	 do�

�




Relax �� times on Ahuhk � fh with the given initial guess uhk�

Compute rhk � fh �Ahuhk�

If k � �	 then

Set v� � uh� and s� � rh� �

Else

Compute �k � �hsk��	 rhk � sk��iZ�krhk � sk��k�Z �
Set sk � sk�� � �k�r

h
k � sk����

and vk � vk�� � �k�u
h
k � vk����

Set uhk � vk and rhk � sk�

End if�

Restrict rHk � Rrhk �

Solve eHk � �A
H���rHk �

Correct uhk�� � uhk � PeHk �

Relax �� times on Ahuhk�� � fh with the initial guess uhk���

We refer to the acceleration scheme of replacing the TLM �MG� sequence and its resid�

ual sequence by the MRS sequence and its residual sequence as the MRS acceleration

scheme or MRS feedback � The role of the MRS acceleration scheme in the two�level

�multigrid� method is to accelerate the convergence of the coarse�grid�correction by

reducing the norm of the residuals �smoothing the residuals�� Since high frequency

components of the errors have already been e�ectively removed by the pre�smoothing

sweeps� the MRS acceleration scheme primarily reduces the norm of the residuals as�

sociated with the low frequency components of the errors�

On the other hand� we may think the MRS acceleration scheme in a di�erent way�

MRS may be used repeatedly to smooth the high frequency errors after the initial iterate

is generated by a particular relaxation scheme� This will be cheaper than using more

pre�smoothing sweeps� especially when Ah is complicated� since the MRS acceleration

scheme is independent of the original operator Ah�

����� Multigrid with MRS Acceleration

We have developed algorithms to accelerate the convergence of the two�level method

and by the heuristic arguments given above we predict that the acceleration e�ect will

be favorable� One question left in Section ��	 is that why we are only interested in

using the MRS acceleration scheme on the �nest level grid� In a multigrid method�

one may think that the MRS acceleration scheme developed above may be used on

the coarse level grids as well as on the �nest grid� This is indeed possible if we are

solely interested in generating a smoothed sequence� Because MRS will generate a new

sequence with much smoother residuals regardless of the quality and the nature of the

original sequence� However� generating such a �well�behaved� sequence is meaningless

in the multigrid method� It will not be used to accelerate the convergence of the original

sequence� This new sequence can not be feeded back into the original iteration process in

the way we discussed above for the �nest level �an exception is discussed in Section �����

Because in each major MG iteration� di�erent residuals are projected to the coarse level

��



and thus the subproblem on the coarse level is di�erent� The iterates �the coarse�grid�

correction� generated by a particular coarse�grid iteration have no direct connection�

they are used to correct the �ne grid solution at each iteration and have no usefulness

after the coarse�grid�correction process�

Hence� this explains why we only use the MRS acceleration scheme on the �nest

level� The multigrid method �MG� may be considered as a two�level method but solving

the coarse�grid subproblem by recursively employing coarser grids to obtain coarse�grid�

corrections�

Algorithm ����
 is the formal multigrid method with the MRS acceleration scheme�

which is parallel to Algorithm ����	 of the two�level method�

Algorithm �
�
� Multigrid method with MRS acceleration scheme

uh � MG�uh	 fh�

Given any initial guess uh� �

For k � �	 		 
	 � � � 	 do�

If �h � the coarsest grid	 then

Solve uhk � �A
h���fh�

Else

Relax �� times on Ahuhk � fh with the given initial guess uhk�

Compute rhk � fh �Ahuhk�

If �h � the �nest grid	 then

If k � �	 then

Set v� � uh� and s� � rh� �

Else

Set �k � �hsk��	 rhk � sk��iZ�krhk � sk��k�Z �
Set sk � sk�� � �k�r

h
k � sk����

and vk � vk�� � �k�u
h
k � vk����

Set uhk � vk and rhk � sk�

End if�

End if�

Restrict r�hk � Rrhk �

Set f�h � r�hk �

Set u�hk � ��

Do u�hk � MG�u�hk 	 f�h� � times�

Correct uhk�� � uhk � Pu�hk �

Relax �� times on Ahuhk�� � fh with the initial guess uhk���

End if�

The parameter � in Algorithm ����
 is set to control the number of times of the cycle

to visit the coarse grid before it returns to the �ne grid� In practice� only � � 	

and � � 
 are usually used� This corresponds to the so�called V�cycle and W�cycle

schemes respectively �see ��� ��� for more details on de�nition of various multigrid

cycling schemes��

��



��� Numerical Examples

Numerical examples are set to test the convection�di�usion equation with the Dirichlet

boundary condition ���	� on a unite square ��	 	� � ��	 	��
Speci�cally� we take p�x	 y� � Mx and q�x	 y� � �My� M is a positive constant

to be chosen� The boundary conditions are given so that the exact solution is u�x	 y� �

xy�	� x��	 � y� exp�x� y��

The high�order compact �nite di�erence scheme discussed in Chapter � is used

to discretize equation ���	� which results in a linear system with a compact nine�point

formula� The reason for choosing this high�order discretization formula is that it is

stable for allM so that we do not worry about the magnitude of M which might cause

divergence if a lower�order� e�g�� �ve�point formula� were employed�

The coe�cient matrix Ah on all levels is not stored� but computed in the process

of iterations� For the numerical experiments of the two�level method� the �ne grid

mesh�size is 	��� and the coarse grid mesh�size is 	��
� For the multigrid method� the

coarsest grid contains only one unknown �with mesh�size 	�
�� For all computation�

we apply one pre�smoothing and one post�smoothing sweeps ��� � �� � 	�� The

discrete grid space is naturally �lexicographically� ordered and the point Gauss�Seidel

relaxation is used as the smoothing method� The residual projection operator R is the

full�weighting scheme and the interpolation operator P is the bi�linear interpolation

�see ������ As stated in Remark ��	�	� unless otherwise indicated explicitly� the norm

used in the numerical experiments is the Euclidean norm�

The computations are done on a Cray��� vector machine at the Pittsburgh Su�

percomputing Center using Cray Fortran �� in single precision �equivalent to double

precision on serial machines such as SUN workstations��

����� Two�Level Method with MRS Acceleration

In this subsection� we test Algorithms ��
�� and ����	� i�e�� the two�level method with

and without MRS feedback �acceleration�� In the two�level method� the coarse�grid

subproblem is not solved exactly� Instead� �ve relaxation sweeps are carried out on the

coarse grid�

We have four sequences generated by� TLM without MRS� MRS without feedback�

TLM with MRS feedback �acceleration� and MRS with feedback�

First� we choose M 
 � and Eq� ���	� reduces to the Poisson equation� The

convergence histories of the residual norm sequences are depicted in Figure ��	� Since

TLM is not a very e�cient Poisson solver� it takes more than ��� iterations to converge

to the limit of residual reduction� In this dissertation� the limit of residual reduction

�LRR� is de�ned to be the limit of reducing residual norm by an algorithm on a given

computer using �nite�precision computation� The sequence generated by MRS alone

converges faster than the sequence generated by TLM alone �without feedback�� This

shows the smoothing property of the MRS technique� When TLM is combined with

MRS with feedback �acceleration�� both sequences converge very fast and almost reduce

��



the iterations by half to reach LRR� This demonstrates the acceleration property of the

MRS technique�

Next� we take M � 	
�� the cell Reynolds number �Re� on the �nest grid is

	� In this case� the two�level method is more e�cient �the spectral radius of Ah is

smaller when Re � 	
� than when Re � ��� The convergence histories of the residual

norm sequences are graphed in Figure ��
� The sequence generated by MRS without

feedback converges faster than the sequence generated by TLM without feedback from

MRS� This again proves that the minimal residual smoothing property of the MRS al�

gorithm� The convergence histories of sequences generated by TLM with MRS feedback

and MRS with feedback are overlapped� because they actually accelerate each other�

However� since the original sequence �generated by TLM without feedback� converges

quite satisfactorily� the acceleration by the MRS feedback is not as much as it did for

the Poisson equation �see Figures ��	�� Hence� when the original sequence converges

fast� the bene�t of the MRS acceleration is somewhat less� We emphasize that the

MRS acceleration scheme is still e�cient�

A convection�dominated case is studied next� We take M � 	�
� � 	��� The
cell Reynolds number on the �nest grid is 	���� The initial residual norm is increased

signi�cantly� It is well�known that the magnitude of the cell Reynolds number a�ects

the convergence of the numerical methods inversely� The convergence histories of the

residual norm sequences are depicted in Figure ���� It takes TLM without MRS feed�

back about 

�� iterations to reach LRR� The sequence generated by MRS converges

faster� but is restricted by the TLM sequence� i�e�� these two sequences are bounded

together by MRS�

Again� TLM with MRS feedback �acceleration� and MRS with feedback accelerate

mutually and their convergence histories are virtually the same� Both are remarkably

better than TLM and MRS sequences without feedback� The numbers of the iterations

are halved� This again supports the claim made earlier that TLM with MRS feedback

�acceleration� works very well when the original sequence converges slowly�

One might doubt the e�ciency of the MRS acceleration scheme� because it may

be viewed as one sequence with double iterates� It will not be advantageous if the

double iterates generated at the same cost and reduce the iterations by half� The

matter of fact here is that the sequence generated by MRS is very cheap� comparing

with that generated by TLM� Because MRS does not involve the coe�cient matrix

whose realization is very expensive for the variable coe�cient equations� Therefore�

the cost of the MRS acceleration scheme is minimal� if not negligible� More about the

cost of the MRS acceleration scheme are discussed in subsection ������

����� Multigrid with MRS Acceleration

In this subsection� we experiment with the multigrid method and the MRS acceleration

scheme� In Algorithm ����
� � is chosen to be 	� which is a V�cycle scheme� Also� we

use a true V�cycle algorithm� Speci�cally� with h � 	��� on the �nest level� there are �

levels and the coarsest level just contains one unknown� One relaxation sweep is carried

��



out on the coarsest grid� We mention explicitly that the MRS acceleration scheme is

only applied on the �nest level�

Again� we �rst consider the Poisson equation with M � �� It is well�known

that the true multigrid method �MG� is one of the most e�cient Poisson solver� The

convergence histories of the residual norm sequences are depicted in Figure ���� The

sequence generated by the standard MG reaches LRR in about 	
 iterations� The

sequence generated by MRS without feedback converges slightly faster� On the other

hand� the sequences generated by MG with MRS acceleration and MRS with feedback

mutually accelerate the convergence and reach LRR in fewer iterations� This means

that MRS acceleration scheme is e�cient even when the original method converges fast�

such as the true multigrid method� although the acceleration rate is somewhat low�

We again consider the case when M � 	
�� the convergence histories of the

residual norm sequences are contained in Figure ��
� Again� the true multigrid method

is very e�cient in this case� The sequence generated by MRS converges slightly faster

than the sequence generated by MG without feedback� The sequence generated by MG

with MRS acceleration converges faster than the sequences generated by MG and MRS

separately� The same is true for the sequence generated by MRS with feedback� By

comparing Figure ��
 with Figure ���� we note that the acceleration rate is increased�

Next� we consider the multigrid method for problem with large Reynolds number�

here M � 	�
� � 	��� The convergence histories are depicted in Figure ���� Since the
convergence of the true MG is slow for the convection�di�usion equations with large

Reynolds number� Figure ��� is similar to Figure ��
� except that the acceleration rate

is more attractive� MG with MRS feedback is a powerful method to accelerate the true

MG in this case� with almost one�half reduction in the number of the iterations�

Our conclusion from these test examples is that MRS acceleration scheme ac�

celerates the convergence of the multigrid method regardless of the convergence of

the original method� The MRS acceleration rate is more attractive when the original

method converges slowly�

����� Computational Cost and Computed Accuracy

In this subsection� we test the computational cost of the MRS acceleration scheme� We

also consider the two�level and multigrid methods separately� The computations are

terminated when the residuals in L� norm on the �nest level are reduced by 	�
��� We

record the iteration numbers� the CPU time in seconds and the computed accuracy in

L� norm�

Table ��	 contains data for comparison of iterations and computed accuracy for

the two�level methods with or without MRS acceleration scheme �feedback�� Table ��


is the same comparison of CPU time in seconds�

From Table ��	� we again note that TLM with MRS feedback accelerates the con�

vergence of the original TLM considerably� especially when the original TLM converges

slowly �M � � and M � 	�
� � 	���� The rates of reduction are very attractive� In
the case of slow convergence� the rates of reduction are more than �� � Furthermore�
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M TLM without MRS TLM with MRS Rate of Reduction

� 
���� 	
�
� �
��� 

	
� 	��� 	��� ���� 

	
���� 	

��� ����� ����� 

Table ��
� Comparison of CPU time in seconds for two�level methods�

comparing the rates of reduction in CPU time in Table ��
 with those in iteration in

Table ��	� we �nd that the cost of the MRS acceleration is truly negligible� less than 	 

of the TLM cost� This means that the MRS acceleration scheme is a very cost�e�ective

acceleration scheme for TLM� Even when M � 	
�� the acceleration is not very much�

but it comes with negligible cost�

The computed accuracy is the same with or without the MRS acceleration scheme

�see Table ��	�� this means that the MRS acceleration scheme maintains the computed

accuracy of the original TLM method�

Next� we consider the multigrid method with MRS feedback acceleration scheme�

Parallel to Tables ��	 and ��
� the data from the numerical experiments are given in

Tables ��� and ����

Table ��� gives the similar results as Table ��	� The rates of reduction are very

attractive in all cases� The average rate of reduction is even better than that for the

two�level method� The acceleration cost is negligible� The acceleration scheme does

not change the computed accuracy of the original multigrid method�

We note that in Table ���� when M � �� the rate of reduction in CPU time is

MG without MRS MG with MRS

M Iteration Error Iteration Error Rate of Reduction
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Table ���� Comparison of CPU time in seconds in multigrid methods�

slightly larger than that in iteration in Table ���� This is possibly caused by the nature

of the vector computer and the timing function� Since many users use the computer

at the same time and the overhead may be large with respect to the actual computing

time in this case�

From these tests� it is clear that MRS acceleration scheme is an e�cient tech�

nique for accelerating the convergence of the multigrid method� When the linear sys�

tem results from discretized partial di�erential equations with variable coe�cients� the

complexity of the coe�cient matrix renders the cost of implementing MRS acceleration

scheme negligible�

��� Conclusions

We have shown that the minimal residual smoothing �MRS� is an e�ective way of gen�

erating sequence with �smoothed� residual norms in both two�level method �TLM� and

multigrid method �MG�� We explored acceleration property of the MRS techniques and

constructed algorithms that e�ectively employ MRS acceleration scheme to accelerate

the convergence of both TLM and MG� Hence� MRS techniques are not only e�ective

smoothing techniques to stabilize the residuals of the original sequence� but also cost�

e�ective acceleration techniques to accelerate the convergence of the original sequence�

The MRS acceleration scheme developed in this chapter is independent of the origi�

nal operator Ah and of the relaxation method employed� Our numerical experiments

demonstrated that the acceleration rate is remarkable and the cost of the accelera�

tion scheme is negligible� We also showed that the bene�t of the MRS acceleration is

large when the original TLM or MG converge slowly� But the acceleration is achieved

regardless of the convergence of the original method�

��	 Suggestions on Future Research

For those sequences which converge very slowly� such as those generated by the TLM

or MG in solving the convection�di�usion equations with variable coe�cients and high�

Reynolds numbers� there may be a reason to use MRS techniques to accelerate the

original multigrid method more than once� One way of doing this is to smooth the

residual sequence repeatedly� Another way is to smooth the sequence when it �nishes

the coarse�grid�correction cycle� The second way requires additional computation of







residuals� However� if the MRS acceleration scheme is more e�cient than the relaxation

sweep to remove the high frequency errors� this approach is viable as a substitute for

the ine�cient relaxation schemes�

The more general minimal residual smoothing techniques discussed by Brezinski

and Redivo�Zaglia �	
� may be employed to accelerate the convergence of the multigrid

method� Also� there is an approach of de�ning the new sequence by minimizing the

residual norm in a di�erent sense� e�g�� in the energy norm with respect to Ah� if Ah

is symmetric and positive de�nite� The energy norm involves the coe�cient matrix Ah

and therefore may cost more when Ah is complicated�

In Section ����
� we mentioned that the MRS techniques are applicable only to the

�nest level� On the coarse levels� each iteration solves a di�erent subproblem projected

from the �ne level and thus no continuous MRS acceleration like that for the �ne level

makes sense on the coarse levels� However� MRS techniques may still be used to smooth

the residuals generated on the coarse level before and after they are projected to an even

coarser level� We may expect that this approach will give a better residual sequence

to the coarser level� In this way� only a short MRS sequence is generated in each MG

iteration�
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Chapter �

Analysis of Multigrid�MRS

��� Introduction

In this chapter� we analyze multigrid�MRS and try to show how this technique works�

We also discuss some limitations of this acceleration technique and ideas of overcoming

these limitations�

This chapter is organized as follows� In Section 
�
 we prove that the MRS proce�

dure is a semi�iterative method with respect to the two�level method �TLM� and that

TLM�MRS is a polynomial acceleration of �rst order� We explain why TLM�MRS does

not work very well for the Poisson equation� The error and residual iteration matrices

for the MRS accelerated coarse�grid�correction operator and for the two�level operator

are obtained in Section 
��� In Section 
�� we prove some technical lemmas� In Sec�

tion 
�
 we give preliminary analysis on TLM�MRS� In Section 
�� we formulate some

reasonable assumptions and give bounds for residual reduction rates of TLM�MRS�

Conclusions and some remarks are included in Section 
���

��� MRS as a Semi
Iterative Method

De�nition �
�
� Let Q be an operator �matrix� on �h	 we de�ne the operator norm

of Q with respect to a symmetric	 positive de�nite matrix Z as

kQkZ � sup
��	v��h

kQvkZ
kvkZ 	 �
�	�

where v �� � is any non�zero vector on �h�

We will analyze TLM�MRS of Algorithm ����	� multigrid�MRS can be analyzed

similarly� In Algorithm ����	 the residual equation on the coarse grid is assumed to be

solved exactly by a direct solver�

Theorem �
�
� The MRS technique in Algorithm ��
�� is a semi�iterative method with

respect to the standard two�level �multigrid� method� The TLM�MRS Algorithm ��
��

�and multigrid�MRS� is a polynomial acceleration of the �rst order�

��



Proof� Let

fu�	 u�	 u�	 � � � 	 uk	 � � �g �
�
�

be the sequence generated by the two�level iteration process after the pre�smoothing

sweeps� Let

fv�	 v�	 v�	 � � � 	 vk	 � � �g
be the sequence generated by the MRS scheme from the TLM sequence �
�
�� Hence�

at the kth iteration� we have

vk � vk�� � �k�uk � vk���

by the de�nition of the MRS acceleration �see Algorithm ����	��

We de�ne a new sequence fzkg by
z�k � uk
z�k�� � vk

�
k � �	 		 � � � �

It is obvious that the sequence fzkg is formed as
fu�	 v�	 u�	 v�	 u�	 v�	 � � � 	 uk	 vk	 � � �g�

It is easy to see that the sequence fzkg is actually the iterates of Algorithm ����	� each
new iterate zk is generated by the procedure

zk � zk�� � �k�!zk � zk��� �
���

with

zk�� � vk and !zk � uk�

Iteration procedure �
��� is called by Varga ��	� the semi�iterative method with respect

to the basic two�level iterative method� The combined TLM�MRS is therefore the so�

called polynomial acceleration of the �rst order due to Hageman and Young ���� p� ����

�

If the relaxation used in TLM�MRS is the Gauss�Seidel� iteration procedure �
���

is reminiscent of an SOR acceleration step� The only di�erence is that zk�� is not

the value of the previous Gauss�Seidel iteration� it is instead the value of the previous

TLM�MRS iteration�

If TLM�MRS �or multigrid�MRS� using Gauss�Seidel is considered as TLM using

SOR�type relaxation� we can expect that TLM�MRS �or multigrid�MRS� will not be

e�cient in solving the Poisson equation when the grid space is ordered in a red�black

fashion and the discretization is the �ve�point second�order central di�erence scheme�

Remark �
�
� By Propositions 
�
�� and 
�
�
 in Chapter 
	 if the Poisson equation is

discretized by the standard �ve�point second�order central di�erence scheme and the red�

black SOR relaxation is used in multigrid method	 two di�erent relaxation parameters

are necessary to achieve e�cient acceleration� An under�relaxation parameter ��� 
 	�

should be used in the projection half cycle and an over�relaxation ��� � 	� should be

used in the interpolation half cycle�

�	



It has long been observed that the SOR acceleration is not e�ective to accelerate

the nine�point Gauss�Seidel multigrid method �
��� Remark 
�
�� may explain the

numerical results that we observed in Chapter � that the e�ciency of MRS acceleration

scheme is reduced when it is used to accelerate the nine�point Poisson solver�

Brandt and Mikulinsky �		� considered some combining multigrid iterates to ac�

celerate the convergence of problems with �small island�� But they did not allow a

continuous iterates to be formed like we did for the MRS sequence in Chapter � �and in

������ What they formed there is some short sequence and the feature of the MRS tech�

nique was not fully exploited� They also suggested to apply their acceleration scheme

only once on the coarse grid to reduce the cost of the acceleration�

��� Convergence Analysis

����� MRS with Coarse�Grid�Correction Operator

Let us �rst assume that there is no smoothing� i�e�� �� � �� � �� in order to analyze

the e�ect of the MRS acceleration on the coarse�grid�correction operator� The coarse�

grid�correction operator with respect to residual is given by ���� p� ���

C � I �AP �AH���R� �
���

For the standard two�level method �TLM�� suppose that at the kth iteration� the resid�

ual is rk� then after the kth coarse�grid�correction the residual changes to

rk�� � Crk� �
�
�

If TLM is accelerated by MRS �Algorithm ����	�� the residual after the kth MRS

accelerated iteration reads

sk � �	� �k�sk�� � �krk	 �
���

where �k is given by Algorithm ����	�

Hence� after the kth coarse�grid�correction� the new residual is

rk�� � Csk � �	� �k�Csk�� � �kCrk� �
���

Since we have replaced the TLM residual rk�� by the MRS residual sk�� at the �k�	�th
iteration� we have

rk � Csk�� �
���

by virtue of �
�
� with k being replaced by k � 	�
Substituting �
��� into �
���� we have the residual after the kth MRS accelerated

coarse�grid�correction

rk�� � �	� �k�rk � �kCrk

� ��	� �k�I � �kC�rk

� �I � �kAP �A
H���R�rk �
���

�




by using �
��� and �
����

Therefore� the error after the kth MRS accelerated coarse�grid�correction is

ek�� � A���I � �kAP �A
H���R�rk� �
�	��

Theorem �
�
� At the kth TLM�MRS iteration without smoothing	 the error iteration

matrix is given by

Ek � I � �kP �A
H���RA �
�		�

and the residual iteration matrix by

Tk � I � �kAP �A
H���R �
�	
�

with �k given by Algorithm ��
���

Proof
 The residual iteration matrix �
�	
� is obtained directly by �
����

At the kth iteration� the residual rk and the corresponding error ek satisfy the

following error �residual� equation �see Remark ��
�	� and equation ���	
��

Aek � rk� �
�	��

Substituting �
�	�� into �
�	��� we obtain �
�		� as the error iteration matrix of Algo�

rithm ����	 at the kth iteration without smoothing sweep� �

Comparing the MRS accelerated coarse�grid�correction residual operator �
�	
�

with the standard coarse�grid�correction residual operator �
���� we have the following

corollary�

Corollary �
�
� The acceleration rate of the MRS acceleration scheme with the coarse�

grid�correction operator at the kth iteration is given by

�k �
kI � �kP �A

H���RAkZ
kI � P �AH���RAkZ �
�	��

with �k being the MRS parameter given by Algorithm ��
��� The norm k � kZ is the

operator norm de�ned in ������

Although the acceleration rate is theoretically given by �
�	��� computing �k by �
�	��

for each k is still a much involved task� Direct computation of residuals from the

MRS accelerated coarse�grid�correction residual operator and the standard coarse�grid�

correction residual operator at the kth iteration as an estimate of �k may be more

economic�

The MRS acceleration scheme may be heuristically viewed as scaling the operator

P �AH���RA by MRS parameter �k so that �k is smaller than 	 �hopefully�� Note here

that �
�	�� does not guarantee that �k 
 	�

From �
�	�� it seems that the optimal scaling factor � for accelerating the conver�

gence is the one that ful�lls the following minimization problem

kI � �P �AH���RAkZ � min
�
�R

�
sup

��	v��h

k�I � !�P �AH���RA�vkZ
kvkZ

�
	 �
�	
�

��



where R is the set of all real numbers� However� solving minimization problem �
�	
�

is by no means realistic� In ���� �
�� Reusken and Van&ek discussed the so�called over�

correction technique that solves a minimization problem similar to �
�	
� to optimize

the computed correction �after the coarse�grid�correction procedure� with the assump�

tion that Z � A �symmetric and positive de�nite� and the number of post�smoothing

sweeps is non�zero� As we remarked earlier� the requirement that A be symmetric and

positive de�nite severely limits the application of the over�correction technique�

����� MRS with Two�Level Operator

Now we consider the case that the number of smoothing sweeps is not zero� i�e�� ����� �

��

Let the coe�cient matrix A be split as M and N satisfying the consistency con�

dition ����� and the smoothing iterative method S be de�ned by De�nition ��
�� as in

������

De�nition �
�
� Denote the residual iteration matrix of the smoothing iterative method

�
��� by �see ���	 p� ����
(M � AMA�� � I �AN�

For any integer � � 		 we recursively de�ne

(M� � (M (M����

Lemma �
�
� For any integer � � �	 the following identities are valid�

(M� � AM�A��	 �
�	��

A�� (M�A � M� 	 �
�	��

A�� (M� � M�A��	 �
�	��

(M�A � AM� � �
�	��

Proof
 �
�	�� is proved by induction on �� �
�	�� follows immediately from �
�	�� and

De�nition 
����� �
�	�� and �
�	�� are special cases of �
�	��� �

The two�level residual iteration operator with �� pre�smoothing and �� post�

smoothing sweeps is given by ���� p� ���

(C � (M��C (M�� 	 �
�
��

where C is the coarse�grid�correction residual operator �
����

The residual after the kth TLM�MRS iteration is

rk�� � (Csk

� (M��C (M�� ��	� �k�sk�� � �krk�

� �	� �k� (M
��C (M��sk�� � �k (M

��C (M��rk� �
�
	�

��



By the de�nitions of the MRS acceleration and of the standard TLM residual iteration

operator �
�
��� we have

rk � (Csk��� �
�

�

Substituting �
�

� into �
�
	�� after the kth TLM�MRS iteration� we obtain the new

residual

rk�� � ��	 � �k�I � �k (M
��C (M�� �rk

� f�	 � �k�I � �k (M
�� �I �AP �AH���R� (M��grk� �
�
��

Theorem �
�
� At the kth TLM�MRS iteration	 the error iteration matrix is given by

(Ek � I � �k�I �M����� �M��P �AH���RAM�� � �
�
��

and the residual iteration matrix by

(Tk � �	� �k�I � �k (C �
�

�

� I � �k�I �AM�����A�� �AM��P �AH���RAM�� �� �
�
��

Proof
 The residual iteration matrices �
�

� and �
�
�� are obtained directly from

�
�
�� and Lemma 
�����

The proof of �
�
�� follows from �
�	��� �
�
�� and Lemma 
�����

(Ek � �	� �k�I � �kA
�� (M�� �I �AP �AH���R� (M��A

� �	� �k�I � �kM
��A���I �AP �AH���R�AM��

� I � �k�I �M����� �M��P �AH���RAM�� ��

This �nishes the proof of Theorem 
���
� �

��� Some Technical Lemmas and Notations

De�nition �
�
� Let B be a set	 the cardinality of B is de�ned as

card�B� � the number of elements contained in B�

De�nition �
�
� For each integer k � 		 let Pk denote a set of 
k ordered set pairsn
fMk

� 	 N
k
� g	 fMk

� 	 N
k
� g	 � � � 	 fMk

i 	 N
k
i g	 � � � 	 fMk

�k 	 N
k
�kg
o

with the element pair Mk
i and Nk

i de�ned as

Mk
i � fmi � mi are natural numbers	 	 � mi � kg

and

Nk
i � fni � ni are natural numbers	 	 � ni � kg

such that the following two conditions are satis�ed�

card�Mk
i � � card�N

k
i � � k �
�
��

and

card�Mk
i �Nk

i � � k� �
�
��

�




Remark �
�
� For each integer k � 		 the elements of Mk
i are necessarily di�erent

from the elements of Nk
i for each 	 � i � 
k	 i�e�

Mk
i �Nk

i � � �the empty set�

due to conditions ���
�� and ���
��� The union of Mk
i and Nk

i contains all natural

numbers less than and equal to k�

Remark �
�
� For any integer k � 		 if the equality

card�Mk
i � � k

holds for some 	 � i � 
k	 then
Nk
i � �

and vice versa�

Remark �
�
� For any integers k � 	 and 	 � i � 
k	
fMk

i 	 N
k
i g �� fNk

i 	M
k
i g	

because each element of Pk is an ordered set pair�

Remark �
�

 For each integer k � 		 the elements of Pk are formed by dividing all

natural numbers from 	 to k into two sets� Pk contains all possible divisions�

Lemma �
�
� For any integer k � 		 the set Pk�� may be formed from the set Pk by

the union of two auxiliary sets�

P�
k�� �

n
f !Mk��

� 	 Nk
� g	 f !Mk��

� 	 Nk
� g	 � � � 	 f !Mk��

i 	 Nk
i g	 � � � 	 f !Mk��

�k
	 Nk

�kg
o

and

P�
k�� �

n
fMk

� 	 !N
k��
� g	 fMk

� 	 !N
k��
� g	 � � � 	 fMk

i 	 !N
k��
i g	 � � � 	 fMk

�k 	
!Nk��
�k

g
o
	

where for each 	 � i � 
k
!Mk��
i � Mk

i � fk � 	g	
!Nk��
i � Nk

i � fk � 	g�
Proof
 By Remark 
���
� each element of Pk is ordered and it follows that

P�
k�� � P�

k�� � �� �
�
��

Hence�

card�P�
k�� �P�

k��� � card�P
�
k��� � card�P

�
k��� � 


k �
k � 
k�� � card�Pk���� �
����

It is clear that each element of P�
k�� and P

�
k�� is formed by dividing the natural numbers

from 	 to �k � 	� into two sets� It follows from Remark 
����� �
�
�� and �
���� that

Pk�� � P�
k�� � P�

k���

�

��



De�nition �
�
� For any integer k � 	 and a set of k elements

fx�	 x�	 � � � 	 xj 	 � � � 	 xkg	 �
��	�

let Mk
i be an index set containing at most k indices of set ���
��	 for example	 for some

	 � l � k

Mk
i � fmi� 	mi� 	 � � � 	milg	

where

	 � mis � k	 for s � 		 
	 � � � 	 l�

We de�ne the product of all elements of set ���
�� whose indices are contained in set

Mk
i by the symbol Y

m�Mk
i

xm � xmi�
xmi�

� � � xmil��
xmil

�

If Mk
i � �	 we de�ne Y

m��

xm � 	�

Lemma �
�
� For any integer k � 		 let

fx�	 x�	 � � � 	 xj 	 � � � 	 xkg	
fy�	 y�	 � � � 	 yj	 � � � 	 ykg

be two sets	 each contains k elements	 then the following identity holds�

kY
j	�

�xj � yj� �
�kX
i	�

	
B
 Y
m�Mk

i

xm

�
CA
	
B
 Y
n�Nk

i

yn

�
CA 	 �
��
�

where for each 	 � i � 
k
fMk

i 	 N
k
i g � Pk�

Proof
 We prove Lemma 
���� by induction on k�

The lemma is true for k � 	� since

x� � y� �

	

 Y
m�f�g

xm

�
A
	

Y
n��

yn

�
A�

	

Y
m��

xm

�
A
	

 Y
n�f�g

yn

�
A

�
�X

i	�

	
B
 Y
m�M�

i

xm

�
CA
	
B
 Y
n�N�

i

yn

�
CA 	

and

fM�
i 	 N

�
i g � P�	 for i � 		 
�

��



Let the lemma be true for k� then

k��Y
j��

�xj � yj� � �xk�� � yk���

kY
j��

�xj � yj�

� �xk�� � yk���

�

 �

kX
i��

	

 Y
m�Mk

i

xm

�
A
	

 Y
n�Nk

i

yn

�
A
�
�

� xk��

�

 �

kX
i��

	

 Y
m�Mk

i

xm

�
A
	

 Y
n�Nk

i

yn

�
A
�
�� yk��

�

 �

kX
i��

	

 Y
m�Mk

i

xm

�
A
	

 Y
n�Nk

i

yn

�
A
�
�

�

�
kX

i��

�


	

 Y
m�Mk

i

xm

�
Axk��

�
�
	

 Y
n�Nk

i

yn

�
A�

�
kX

i��

	

 Y
m�Mk

i

xm

�
A
�


	

 Y
n�Nk

i

yn

�
A yk��

�
�

�

�
kX

i��

	

 Y
m�Mk

i
�fk��g

xm

�
A
	

 Y
n�Nk

i

yn

�
A�

�
kX

i��

	

 Y
m�Mk

i

xm

�
A
	

 Y
n�Nk

i
�fk��g

yn

�
A

�

�
kX

i��

	

 Y
m� �M

k��

i

xm

�
A
	

 Y
n�Nk

i

yn

�
A�

�
kX

i��

	

 Y
m�Mk

i

xm

�
A
	

 Y
n� �N

k��

i

yn

�
A

�

�
k��X
i��

	

 Y
m�Mk��

i

xm

�
A
	

 Y
n�Nk��

i

yn

�
A �

The last equality is valid due to Lemma 
����� since

f !Mk��
i 	 Nk

i g � P�
k��

fMk
i 	
!Nk��
i g � P�

k��

�
	 for each 	 � i � 
k	

we have

fMk��
i 	 Nk��

i g � Pk��	 for each 	 � i � 
k���
This �nishes the proof of Lemma 
����� �

��� Preliminary Results

The following assumption is motivated by the work of Brandt and Mikulinsky �		��

Assumption �
�
� Let (C be the residual iteration matrix of the two�level method given

by ���
��� Let any initial residual r� be decomposed into one possibly slow component

r
�s�
� and a remainder r

�f�
� made up of fast components	 i�e�

r� � r
�s�
� � r

�f�
� 	

where
(Cr

�s�
� � �sr

�s�
�

and

k (Cr�f�� kZ � �fkr�f�� kZ �

��



�s and �f measure the convergence of the slow and fast components	 respectively� We

also assume that the following condition holds

� 
 �f � ��
� j�sj � 	� �
����

Remark �
�
� The residual after the kth two�level cycle is �see �����

rk�� � (Ck���r
�s�
� � r

�f�
� � � �k��s r

�s�
� � r

�f�
k��	

where

kr�f�kZ � �k��f kr�f�� kZ � �
����

Now� we prove the main lemma of this section�

Lemma �
�
� Let the initial residual r� satisfy all conditions of Assumption �����	

then after the kth TLM�MRS iteration	 the slow and fast components of the residual

(rk��satisfy�

(r
�s�
k�� �

�

 kY
j	�

�	� �j � �j�s�

�
� �sr

�s�
� 	 �
��
�

k(r�f�k��kZ �
�

 kY
j	�

�j	� �j j� j�j j�f �
�
� �fkr�f�� kZ � �
����

Proof
 Let (Tj 	 j � �	 		 
	 � � � 	 be the residual iteration matrices of the TLM�MRS
algorithm given by Theorem 
���
 �see �
�

� and �
�
���� We �rst note that (T� � (C

because �� � 	 by the de�nition of Algorithm ����	�

The proof of Lemma 
�
�� follows from Remark 
�
�
 and Lemma 
���� with

xj � �	� �j�I

yj � �j (C

�
	 for each 	 � j � k�

(rk�� �
kY

j	�

(Tkr�

�

	

 kY
j	�

(Tk

�
A (T�r�

�
kY

j	�

h
�	� �j�I � �j (C

i
(Cr�

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I
Y

n�Nk
i

��n (C�

�
�� (Cr�

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA (Ccard�Nk

i � (Cr�

�
��

��



�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA (Ccard�Nk

i
����r

�s�
� � r

�f�
� �

�
��

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA
�
�
card�Nk

i
���

s r
�s�
� � r

�f�

card�Nk
i
���

����

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA
�
�
card�Nk

i ���
s r

�s�
�

����

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA
�
r
�f�

card�Nk
i
���

����
� (r

�s�
k�� � (r

�f�
k���

Hence�

(r
�s�
k�� �

�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�I

	
B
 Y
n�Nk

i

�n

�
CA��card�Nk

i ���
s r

�s�
�

����

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�

	
B
 Y
n�Nk

i

�n

�
CA��card�Nk

i �
s �sr

�s�
�

����

�
�kX
i	�

�
�
 Y
m�Mk

i

�	� �m�

	
B
 Y
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The last equality follows from Lemma 
���� with

xj � 	� �j
yj � �j�s

�
	 for each 	 � j � k�

This proves equality �
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The last equality follows from Lemma 
���� with

xj � j	� �jj
yj � j�j j�f

�
	 for each 	 � j � k�

This proves inequality �
���� and we �nish the proof of Lemma ��
�	
� �

Corollary �
�
� After the kth TLM�MRS iteration	 the residual norm satis�es

k(rk��kZ � k
kY

j	�

(Tjr�kZ

� j"k��s�j kr�s�� kZ �"k��f � kr�f�� kZ 	 �
����

where

"k��s� �

�

 kY
j	�

�	� �j � �j�s�

�
� �s �
����

and

"k��f � �

�

 kY
j	�

�j	� �j j� j�j j�f �
�
� �f � �
����

j"k��s�j and "k��f � measure the reduction rates of the slow and fast components of

the residual with TLM�MRS� respectively� j"k��s�j���k��� and "k��f �
���k��� are the

average reduction factors of the slow and fast residual components for the �rst �k � 	�

TLM�MRS iterations�

��	 Bounds of Residual Reduction Rates

Acceleration is achieved by speeding up the convergence of the slow component� this

leads to the following assumption�

Assumption �


� Let there exist some � 
 '�s 
 	 such that '�s 
 j�sj and

j	� �k � �k�sj � '�s	 for all k � 	� �
����

�	



'�s is an upper bound of the residual reduction rate of TLM�MRS�

Lemma �


� If Assumption ����� holds	 then the MRS parameter �k satis�es�

�k � 	� '�s
	� �s

� (� �
��	�

or

�k � 	 � '�s
	� �s

� !�	 �
��
�

for each k � 	�
Proof� Inequalities �
��	� and �
��
� are the solutions of inequality �
����� �

Lemma �


� Let Assumptions ����� and ����� hold	 then

j"k��s�j � j�sj'�ks �
����

holds for any k � 	�
Proof� Inequality �
���� follows from �
���� and �
����� �

Lemma �


� Let Assumptions ����� and ����� and the inequality

�	 � �s 
 �	�
 �
����

hold� We de�ne

�f ��s	 '�s	 �f �k
def
� j	� �kj� j�kj�f � �
��
�

If
�f � �s


� �s � �f
� '�s �
����

holds	 then

�f ��s	 '�s	 �f �k � '�s�
Proof� By assumption �
���� and Lemma 
���
 �
��
�� we have

� 
 j�kj � !� � 	 � '�s
	� �s


 	 �
����

because '�s 
 j�sj leads to '�s 
 ��s�
It follows from �
��
�� �
���� and �
���� that� for each k � 	�

�f ��s	 '�s	 �f �k � 	� !� � !��f
�

�f � �s � �	� �f �'�s
	� �s

� �f � �s

� �s � �f

� '�s�

This proves Lemma 
����� �

�




Lemma �


� Under the conditions of Lemma �����	 the following bounds hold�

	






�f � �s

� �s � �f



�



�

Proof� The lower bound is obtained as �f � � and �s � �	�
� the upper bound is
obtained when �f � 	�
 and �s � �	� �

Remark �



 Lemmas ����� and ����� imply that under the conditions of Lemma �����	

MRS may not provide any acceleration if the residual reduction rate of the underlying

TLM is smaller than 	�
� In other words	 TLM�MRS may not be better than TLM if

the latter converges very fast�

Lemma �


� Under the conditions of Lemma �����	 we have

"k��f � � �f '�
k
s � �
����

Proof� The proof follows from �
���� and Lemma 
����� �

Theorem �


� Under the conditions of Lemma �����	 at the kth TLM�MRS iteration

the residual satis�es

krk��kZ � � '�ks

with

'�ks � �	 as k ��	

where

� � j�sj kr�s�� kZ � �f kr�f�� kZ
is a constant independent of k�

Proof� By Corollary 
�
��� Lemma 
���� and Lemma 
����� we have at the kth TLM�

MRS iteration�

krk��kZ � j�sj '�ks kr�s�� kZ � �f '�
k
s kr�f�� kZ

� �j�sj kr�s�� kZ � �f kr�f�� kZ� '�ks
� �'�ks

� �	 as k � ��

This proves Theorem 
����� �

Lemma �


� Let Assumptions ����� and ����� and the inequality

	�
 
 �s � 	

hold	 then

'�s � �f � �s

 � �f � �s

� �
����

��



Proof� By Lemma 
���
 �
��	�� we have

�k � (� � 	� '�s
	� �s

� 	

because '�s 
 �s�

If bound �
���� fails� we have

�f ��s	 '�s	 �f �k � '� � 	 � '��f
�

�f � �s � �	 � �f �'�s
	� �s

� �f � �s

 � �f � �s

� '�s	

which is impossible because the reduction rate of the fast components should be smaller

than the reduction rate of the slow component� Hence bound �
���� must hold� �

Unlike Lemma 
����� Lemma 
���� does not state that MRS will provide any

acceleration� It only sets an lower bound for the possible residual reduction rate�

Lemma �


�� Under the conditions of Lemma �����	 the following bounds hold�

	

�



�f � �s

 � �f � �s

� 	�

Proof� The lower bound is obtained when �f � � and �s � 	�
� the upper bound is

obtained when �s � 	� independent of �f � �

��� Conclusions and Remarks

We have proved that the minimal residual smoothing �MRS� technique is a semi�

iterative method with respect to the original two�level or multigrid method� and that

the TLM�MRS or multigrid�MRS method is a polynomial acceleration of the �rst or�

der� We also give the error and residual iteration matrices of the MRS accelerated

coarse�grid�operator and TLM�MRS� Under our assumptions� we obtained quantita�

tive lower and upper bounds for the TLM�MRS residual reduction rates which support

our numerical results in Chapter �� We gave heuristic arguments that TLM�MRS and

multigrid�MRS may not be e�cient to solve di�usion�dominated �Poisson�type� prob�

lems�

We note that many analytical results can be generalized to multigrid�MRS straight�

forwardly by using the recursive idea� Some results� e�g�� Theorem 
�
�
� can be gener�

alized to any underlying method accelerated by MRS acceleration scheme�

��



Chapter �

High Accuracy Solution of the

Convection�Di�usion Equation

	�� Introduction

Numerical simulation of the convection�di�usion equations plays a very important role

in modern large scale scienti�c computation� especially in computational �uid dynam�

ics� The general convection�di�usion equation is of the form

uxx � uyy � p�x	 y�ux � q�x	 y�uy � f�x	 y�	 �x	 y� � �	
u�x	 y� � g�x	 y�	 �x	 y� � 
��

�
���	�

where p�x	 y� and q�x	 y� are continuously di�erentiable functions of x and y� � is a

convex domain and 
� is the boundary of ��

This equation often appears in the description of transport phenomena� especially

in those described by the incompressible Navier�Stokes equations� The magnitudes of

p�x	 y� and q�x	 y� determine the ratio of the convection to di�usion� In many problems

of practical interest the convective terms dominate the di�usion� Many numerical

simulations of ���	� become increasingly di�cult �converge slowly or even diverge� as

the ratio of convection to di�usion increases�

For convenience� we de�ne the cell Reynolds number as

Re � max� sup
�x�y���

jp�x	 y�j	 sup
�x�y���

jq�x	 y�j� h�
	

where h is the uniform grid spacing� For Re � 	� we say that Eq� ���	� is di�usion�
dominated� Otherwise it is convection�dominated�

When Eq� ���	� is discretized using central di�erences� the resulting scheme is

a �ve�point formula �FPF� with a truncation error of order h�� In the case of the
FPF scheme� iterative methods for solving the resulting system of linear equations

do not converge when the convective terms dominate and Re is greater than a certain

constant�

Some attempts have been made to solve the convection�di�usion equation with

iterative methods based on FPF � Recently� Brandt and Yavneh ��� used FPF with

�




added dissipation terms to solve ���	� with high Reynolds numbers� They proposed

an over�weighted residual technique to accelerate the multigrid convergence for high�

Reynolds number �ows� de Zeeuw and van Asselt ����� de Zeeuw ��
� developed a

black�box multigrid solver with some matrix�dependent prolongations and restrictions�

A multigrid method based on the Schur complement of the coe�cient matrix and the

matrix�dependent prolongation operator was recently proposed by Reusken ���� ����

Elman and Golub �	�� proposed methods that consist of applying one step of cyclic

reduction resulting in a reduced system of half the order of the original discrete problem�

Golub and Tuminaro �
�� suggested a multigrid solution in conjunction with one step

of cyclic reduction to solve the convection�di�usion equation�

Gupta et al� �

� 
�� proposed a fourth�order compact nine�point �nite di�erence

scheme �NPF� for Eq� ���	� which was shown to be both accurate and cost�e�ective�
It is also stable with the classical iterative methods �e�g�� Gauss�Seidel� SOR� for large

values of p�x	 y� and q�x	 y�� The current work in this chapter is to merge the multigrid

technique with the NPF scheme to develop a general convection�di�usion equation

solver�

In Section ��
� we present the nine�point compact �nite di�erence discretization

scheme for ���	�� A heuristic residual analysis is presented in Section ��� to obtain

an optimal residual injection operator for di�usion�dominated problems� The NPF
multigrid solver for the convection�di�usion equation is designed in Section ���� In

Section ��
� numerical experiments are employed to show the stability and the e�ec�

tiveness of the NPF multigrid solver� Some conclusions and remarks are included in
Section ����

	�� Finite Di�erence Scheme

The approximate value of a function u�x	 y� at a mesh point �x	 y� is denoted by u�� The

approximate values at its eight immediate neighboring points are denoted by ui	 i �

		 
	 � � � 	 �	 with the following computational stencil�

	
B


u� u� u�
u� u� u�
u� u
 u�

�
CA ���
�

The discretized values of pi	 qi and fi	 i � �	 		 � � � 	 �	 have their obvious meanings� The

compact �nite di�erence formula for the mesh point �x	 y� involves the nearest eight

neighboring mesh points with the mesh spacing h �see �
�� for details��

�X
j	�

�juj �
h�



��f� � f� � f� � f� � f
� �

h�

�
�p��f� � f�� � q��f� � f
��� �����

The coe�cients �i	 i � �	 		 � � � 	 �	 are

�� � � �
h

�
��p� � �p� � p� � p� � p
� �

h�

�
��p�� � p��p� � p�� � q��p� � p
��	

��



�� � � �
h

�
��q� � �q� � q
 � q� � q�� �

h�

�
��q�� � p��q� � q�� � q��q� � q
��	

�� � �� h

�
��p� � p� � �p� � p� � p
� �

h�

�
��p�� � p��p� � p��� q��p� � p
��	

�
 � �� h

�
��q� � q� � �q
 � q� � q�� �

h�

�
��q�� � p��q� � q��� q��q� � q
��	

�� � 	 �
h



�p� � q�� �

h

�
�q� � q� � p� � p
� �

h�

�
p�q�	

�� � 	� h



�p� � q��� h

�
�q� � q� � p� � p
�� h�

�
p�q�	

�� � 	� h



�p� � q�� �

h

�
�q� � q� � p� � p
� �

h�

�
p�q�	

�� � 	 �
h



�p� � q��� h

�
�q� � q� � p� � p
�� h�

�
p�q�	

�� � ��
� � h��p�� � q��� � h�p� � p�� � h�q� � q
��� �����

The results of the numerical experiments in �
�� show that this scheme converges for

any values of p�x	 y� and q�x	 y� when classical iterative methods such as SOR are used�

Some limited stability results for this scheme with constant coe�cients are discussed

in Appendix B and �����

When Re 
 �� Eq� ���	� reduces to the Poisson equation� and Eq� ����� reduces
to the well�known Mehrstellen formula �
��� Multigrid applications of the Mehrstellen

formula have been investigated by Scha�er �
	� 

�� Recently� we �
�� made some

comparisons between the nine�point and �ve�point multigrid Poisson solvers on serial

and vector machines and showed that NPF is more cost�e�ective than FPF �
In ����� we investigated the multigrid solution of Eq� ���	� when p�x	 y� and q�x	 y�

are constants and observed the cost�e�ectiveness of employing a residual injection oper�

ator for convection�dominated problems� We found that the NPF multigrid converges
for any value of Re� while the FPF multigrid becomes divergent when Re � 	�

	���� Multigrid Implementation

The discretized grid space is usually naturally �lexicographically� ordered� We may

rearrange the grids in an alternative red and black order in a checkerboard fashion�

The relaxation �smoothing� can be carried out simultaneously on red points and black

points �independently for FPF � but not independently for NPF�� This idea is cer�
tainly bene�cial on the parallel computers� But it has been shown that� even on serial

computers� the red�black ordering is superior to the natural ordering for both FPF
and NPF multigrid algorithms for solving the Poisson equation �
��� The Gauss�Seidel
relaxation with the red�black ordering is referred to as the RBGS relaxation �smooth�

ing��

The bi�linear interpolation will be used in all our algorithms to interpolate the

coarse grid correction to the �ne grid� The full�weighting restriction or the injection

operators �de�ned below� will be used to transfer the residuals from the �ne grid to

the coarse grid�

��



In the context of the multigrid method� the right�hand side as it appears in �����

is only evaluated once on the �nest grid when the initialization of data �boundary

conditions� is performed� We may de�ne F at each reference point by

F� �
h�



��f� � f� � f� � f� � f
� �

h�

�
�p��f� � f�� � q��f� � f
���

Now ����� becomes
�X

i	�

�iui � F��

The computation of F� for grid points close to the boundary requires the values of

f�x	 y� on the boundary� We assume that f�x	 y� is extended naturally on to 
��

To utilize the computer�s memory more e�ciently� practical multigrid solvers usu�

ally use a single long array to store the discretized values of u and f �here F � for all

grid levels� On the coarse grids� the locations of u and f are used to store coarse grid

correction and residual respectively�

It is also economical to pre�compute the values of p�x	 y� and q�x	 y� on each grid

points� We use another long array to store these values at each grid point and at each

grid level� This is similar to the long array used above to store values of the approximate

solution u�x	 y� and the right�hand side f�x	 y�� The same pointers may be used for all

of the arrays�

From now on� we refer to the algorithms using the multigrid W�	�	��cycle �see

Section ���� and the NPF smoother as NPF �MG� those use the FPF smoothers are
referred to as FPF�MG�

	�� Residual Transfer Analysis

The methods to carry out residual transfer �projection� typically fall into two categories�

One is the direct injection of the �ne grid residuals to the corresponding coarse grid

points weighted by a constant factor� In practice� the factor 	�
 is used for FPF�MG
when RBGS is used as the smoother �see Appendix A�� If the lexicographic Gauss�

Seidel is used as the smoother� the factor 	 is used to inject the residuals and is called

the full�injection operator�

For NPF�MG� the grid space is not completely de�coupled by the RBGS smooth�
ing and the half�injection is not accurate� On the other hand� the full�injection may

result in divergence for many di�usion�dominated problems�

Another category of projection operators is to weight the residuals at all �ne grid

points and to project a weighted quantity to the coarse grid� The full�weighting scheme

is to weight the residual at the nearest nine points by formula �A�	��

For the full�weighting� we evaluate the residuals at all �ne grid points and weight

them to the corresponding coarse grid points� On the other hand� the injection operator

needs only the residuals corresponding to the coarse grid points� There is no cost for

weighting the neighboring residuals� The cost of evaluating residuals on a grid space is

��



equivalent to one full relaxation on that grid� Hence� computational cost of using the

injection operator is less than a quarter of the cost of using the full�weighting operator�

For NPF�MG� the employment of the injection operator may result in 

 savings in
CPU time if the convergence of NPF�MG does not deteriorate�

Our numerical experiments with the constant coe�cients in ���� show that the

injection with a factor 	�
 or 	 is more cost�e�ective than the full�weighting for NPF�
MG when Re is greater than 	� More interesting is the fact that the convergence is

not very sensitive to the injection factor� However� when Re 
 	 �di�usion�dominated��

the half�injection deteriorates the convergence considerably and the full�injection causes

divergence for some problems�

	���� Di
usion�Dominated Residual Injection

Our goal in this section is to �nd a residual injection scaling factor that will improve the

convergence of the di�usion�dominated problems �Re � 	�� To this end� we investigate
the full�weighting scheme �A�	��

The heuristic residual analysis is similar to that we use in Appendix A to derive

an optimal residual injection scaling factor for the standard �ve�point Poisson solver�

In �A�	�� the weight assigned to each point is determined by the involvement of

that point in the number of coarse grid point computation� For example� ri���j�� is

weighted into the calculation of four coarse grid points at �i�
	 j�
�	 �i�
	 j�
�	�	 �i�
�

		 j�
� and �i�
 � 		 j�
 � 	�� The weights in �A�	� correctly re�ect these correlations�

But they do not re�ect the geometric correlation of ri�j and ri���j��� and the red�black

relaxation pattern�

To �nd the optimal injection operator is to �nd the optimal scaling factor � to

represent !ri���j�� in terms of ri�j� as accurately as possible� i�e�

!ri���j�� � �ri�j� ���
�

It is very di�cult to give a precise representation of the residuals on each grid space�

However� with some assumptions� a reasonable estimate may be obtained� We assume

that the solution is not highly oscillating and the high frequency error components are

removed before the residuals are injected to the coarse grid� �If the smoothing condition

is not satis�ed� several relaxation sweeps may be needed to smooth the high frequency

error components before the residuals are projected to the coarse grid ���� �
��� Hence�

the residual at each grid point is not supposed to di�er by a large magnitude from those

at its nearest eight neighboring points� We assume that the residuals are locally equal

for each of the nine points involved in a particular NPF relaxation step�
A half Jacobi sweep is carried out on the red points �rst without updating the

black points� Except for those points close to the boundaries� a red point is updated

by two previously updated �new� red points� two un�updated �old� red points and four

un�updated �old� black points �see Figure A�	�� The update of a red point uses new

values at only two points and the residual at that point is supposed to be large �relative

to those at the neighboring black points�� A subsequent half Jacobi sweep on the black

��



points updates each black point by four new red points� two new black points and two

old black points� Hence� the residual at each black point is presumably smaller than

those at the nearest neighboring red points�

If we assume that� after one RBGS sweep on the entire grid� the residuals at all

the black points are zero� i�e�

ri���j � ri���j � ri�j�� � ri�j�� � �	 �����

and residuals at all red points are equal �not zero� otherwise we would have reached

convergence and have no need to transfer the residuals��

ri���j�� � ri���j�� � ri���j�� � ri���j�� � ri�j� �����

Substituting ���
�� ����� and ����� into �A�	�� we obtain � � 	�
� which is the half�

injection� Since this � results from the assumption that the residuals at the black

points are zero� this should be the lower bound of �� We denote �lower � 	�
�

In practice� the residuals at the black points may not be zero� Since updating

a black point uses three times as much new information as updating a red point� we

assume that after one red�black full sweep on the entire grid� the residual ri�j at any

particular red point �i	 j� is three times as large as the residuals at its four immediate

neighboring black points �i	 j � 	�	 �i	 j � 	�	 �i � 		 j�	 �i � 		 j�� i�e�

ri���j � ri���j � ri�j�� � ri�j�� �
	

�
ri�j� �����

We also assume that the four neighboring red points �i�		 j�	�	 �i�		 j�	�	 �i�		 j�	�
and �i�		 j �	� have the residuals of the same magnitude as ri�j� But their geometric

positions are
p

 unit away from the reference point �i	 j� and their in�uence on the

weighting scheme should be scaled by
p

� i�e�

ri���j�� � ri���j�� � ri���j�� � ri���j�� �
	p


ri�j �����

Substituting ���
�� ����� and ����� into �A�	�� we have

� �
	� � �

p




�
	 ��
���� ���	��

This would be the upper bound of the residual injection factor� we denote it by �upper�

The optimal factor �optimal lies between �upper and �lower� There exists � � ��	 	�
such that

�optimal � ��upper � �	� ���lower� ���		�

In absence of further information to justify any better weighting scheme� we take � �

	�
� ���		� yields

�optimal �
�upper � �lower



�


 � �

p



��
	 ��
����

Our numerical experiments on several test problems show that this choice of � for the

residual injection operator indeed gives better performance than both the full�weighting

and the half�injection operators� However� a slight variation of �optimal may give even

better results for particular test problems�

��



	���� Convection�Dominated Residual Injection

When the cell Reynolds number Re increases� the smooth components of the errors

dominate ���� This is characterized by the relation �	��

k (rh k��k eh k�	 ���	
�

where (rh and eh are the normalized residuals and errors on the �ne grid� respectively

�see �	�� for de�nition of the normalized residuals�� This relation states that the norms

of the smooth components of the errors are much larger than the norm of the normal�

ized residuals� Increasing relaxation on the �ne grid reduces the magnitude of the high

frequency errors� but does not reduce magnitude of the low frequency errors� On the

other hand� due to the inconsistency between the �ne and coarse grid approximations�

the residual equation on the coarse grid converges to a solution which is not the error

correction required by the �ne grid� When this wrong coarse grid correction is inter�

polated back to the �ne grid and is added to the �ne grid solution� the latter tends to

diverge�

Therefore� the residuals on the �ne grid must be scaled before they are projected

to the coarse grid� To modify the full�weighting operator so that it may re�ect the

�ne grid residuals more closely� Brandt and Yavneh ��� proposed to over�weight the

residuals to accelerate the FPF based multigrid methods with added dissipation terms
for recirculating �ows with high Reynolds number� Their idea is to improve the coarse

grid correction to the error in the �ne grid approximation by multiplying the residuals

that are transferred to the coarse grid by some constant � between one and two� For

example� the two�level convergence factor of the advection�di�usion equation �with

vanishing coe�cients� employing the �rst�order discretization improves from ��
 to

���� with � � ����

The residual injection operator may re�ect some behavior of the �ne grid residuals�

If the residuals need to be scaled before they are injected to the coarse grid� we can

scale the residual injection factor so that we keep the cost of transferring residuals low

by using injection instead of full�weighting�

Moreover� when p�x	 y� and q�x	 y� are oscillatory rapidly in �� the direction of

the convection is complicated� In particular� when � contains stagnation points� where

the convection coe�cient vanishes and the velocity is zero� the convection changes

direction around the stagnation points and equation ���	� represents a recirculating

�ow� The full�weighting operator usually mis�represents the closed characteristics of

the �ow around the stagnation points� By projecting residuals with mis�represented

characteristics to the coarse�grid� the coarse�grid sub�problem fails to approximate that

of the �ne�grid at all and causes divergence on the �ne�grid for high Reynolds number

recirculating �ows� On the other hand� the injection may maintain the characteristics�

These properties have been clearly simulated by our numerical examples presented in

Section ��
�

Of course� the best residual injection factor will generally change from that we

obtained above for the di�usion�dominated problem� Since the smooth components of

�	



the errors increase as Re increases to in�nity� the scaling factor � may be increased to

re�ect this fact� Although there is no absolute guarantee that any single factor will

work for all practical problems� we �nd that� for most problems� the residual injection

factor is indeed an increasing function of Re� and it approaches a constant when Re

tends to in�nity� This constant may be problem�dependent� but it is usually around

	� i�e�� for high Reynolds number problems� the scaled residual injection for RBGS

relaxation tends to the full injection�

	�� Design of NPF
MG Solver

We design our NPF�MG solver as follows�

	� Start from the �ne grid with some initial guess and perform �� RBGS NPF
relaxation sweeps�


� Calculate the residuals corresponding to the coarse grid points� multiply the

residuals by a scaling factor � and inject the residuals to the coarse grid�

�� Perform � multigrid cycles on this grid�

�� Interpolate the coarse grid correction to the �ne grid by bi�linear interpola�

tion�


� Perform �� RBGS NPF relaxation sweeps on the �ne grid�

If � � 	� the multigrid cycle is called the V�cycle� If � � 
� it is the W�cycle� For

convection�dominated problems� it has been shown by Brandt and Yavneh ��� that the

W�cycle algorithm is usually better than the V�cycle algorithm� �� and �� are the

numbers of pre�smoothing and post�smoothing sweeps�

For all Re� choosing � � ��
�
� with residual injection guarantees convergence�

We note that the scaling parameter � can be �ne tuned to accelerate the convergence�

Nevertheless� in all our numerical experiments followed� we take � � ��
�
� for all the

Reynolds number Re and no divergence has been found�

The multigrid cycle usually goes down to the coarsest grid with only one unknown�

On the coarse grids� the e�ective cell Reynolds number is large and the relaxation be�

comes more di�cult� For high Reynolds number problems� it is sometimes advantageous

to stop the multigrid process at some coarse grid level before reaching the coarsest grid�

	�� Numerical Experiments

Numerical results for three test problems are obtained using the NPF �MG solver�
The test problems given here are solved using a uniform mesh�size h on a square

domain � � ����
	 ��
� � ����
	 ��
��
The boundary values of the solution are assumed to be known� The number of the

multigrid W�	�	� cycles �MW�� the discrete error in L� norm �Error�� and the CPU

time in seconds� are reported� All computations are done on an SGI �Silicon Graphic

�




Indy� workstation using FORTRAN �� programming language in double precision� The

computation is terminated when the initial residual �in L� norm� on the �nest grid is

reduced by a factor of 	����

For the NPF�MG solver� standard coarsening technique �the mesh�size of the
coarse grid doubles that of the �ne grid� is used and the coarsest grid contains only one

unknown �nine points in total including boundary points�� The only exception is the

coarse�grid restriction option� where we stop coarsening when h � 	�	� �in this case�

there are 


 unknowns on the coarsest grid��

For the �rst test problem� NPF�MG is �rst applied for di�erent values of Re
with �xed mesh�size h � 	�	
� to test the convergence of NPF �MG as a function of
the Reynolds number� Then we vary the mesh�size h to test the �th order accuracy

promised by NPF�MG� The second test problem is used to further test the Reynolds
number e�ect� For the third test problem� Re is �xed and we vary the mesh�size to test

the accuracy and the cost�e�ectiveness of the injection operator�

	���� Test Problem 	����

Consider the boundary value problem ���	� with

Test Problem 

�
����
��

p�x	 y� � Px	

q�x	 y� � �Py	
u�x	 y� � xy�	� x��	 � y� exp�x� y��

This problem was used by Gupta et al� �
�� to test the high order formula ����� with

classical iterative methods �SOR� using h � 	��
 and it was shown that NPF with

SOR is convergent for any P � while the central di�erence scheme �CDS� is divergent

with P � 	���� A similar problem was used by Shapira et al� �

� to test their

automatic multigrid method �with a �ve�point stencil FPF� for h � 	���� When

P � 	
�� both the standard multigrid method and the automatic multigrid method

converge� However� when P � ���� both methods diverge with the RBGS smoothing�

Note that the presence of a stagnation point at ��	 ���

Tables ��	 to ��� contain test results for �xed mesh�size h � 	�	
�� Compu�

tations are reported with full�weighting� residual�injection and coarse�grid restriction

techniques� We note that NPF �MG with the full�weighting residual projection opera�
tor provides accurate solutions for the values of P ranging from � to 	
��� However the

iterations diverge when Re is large� Many multigrid solvers based on FPF diverge even
when Re is less than 	 on the �nest grid �see an example in �

�� and the re�nement of

mesh�size on the �nest grid does not bring convergence� This suggests that the reason

for divergence is on the coarse grid� For example� when P � 	
��� Re � 
��
�� on the

�nest grid with h � 	�	
�� Re � 	���
 on the coarsest grid with h � 	�
�

One remedy to this divergence is to restrict the mesh�size of the coarsest grid and

to avoid the worst Reynolds number� We were able to obtain convergent solution for

values of P ranging from � to 	
���� However� this approach reduces the number of

��
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Table ��	� Test Problem ��
�	 with h � 	�	
�� Comparison of iteration �the W�	�	��

cycle� number for NPF�MG with options�
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Table ��
� Test Problem ��
�	 with h � 	�	
�� Comparison of CPU time in seconds

for NPF�MG with options�
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Table ���� Test Problem ��
�	 with h � 	�	
�� Comparison of maximum errors for

NPF�MG with options�

multigrid levels and reduces the multigrid e�ciency for the di�usion�dominated prob�

lems where P is small� Coarse�grid restriction computations take many more multigrid

cycles than full�weighting computations when P is small� For very large P such as

P � ������ Re is large even on the �nest grid and NPF�MG diverges with this option�
This indicates that more coarse grids may need to be removed to ensure convergence�

On the other hand� NPF �MG with the residual�injection operator converged for
all values of P ranging from � to ������ It is also more cost�e�ective than both the

full�weighting operator and the coarse�grid restriction option�

The residual�injection operator guarantees the convergence at a lower computa�

tional cost� In ����� we noticed that the injection operator �with a factor of 	�
 or 	� is

more cost�e�ective than the full�weighting operator when the cell Reynolds number Re

is greater than 	 though it is not as good as the full�weighting operator when Re � 	�
However� with the optimal residual injection factor developed here� we are able to gain

cost�e�ectiveness even for the di�usion�dominated cases�

For the convection�dominated cases� the computed accuracy is the same for dif�

ferent residual transferring operators and coarse�grid restriction option�

Next� we test the convergence and the improvement in the computed accuracy as

the mesh�size is re�ned� For NPF �MG with full�weighting operator� the results are
given in Tables ��� and ��
� It can be observed that� in most cases� when the mesh�size

is halved� the maximum error is decreased by a factor of 	�� This is the performance

of �th order convergence� On the other hand� Table ��� shows that the convergence of

�
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Table ���� Test Problem ��
�	� Iteration �W�	�	��cycle� numbers of NPF �MG with
full�weighting and di�erent meshsizes�
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Table ��
� Test Problem ��
�	� Maximum errors of NPF�MG with full�weighting and
di�erent meshsizes�

NPF�MG is h�independent for di�usion�dominated problems� but is a�ected by the
meshsize when Re is large�

Tables ��� and ��� contain data for the test for convergence and computed accuracy

when NPF�MG is used with the residual�injection operator� The �th order accuracy is
still maintained� The interesting information given by Table ��� is that the convergence

of NPF�MG with residual injection is less a�ected by the magnitude of Re than that
with full�weighting�

	���� Test Problem 	����

In Test Problem ��
�	� the coe�cients p�x	 y� and q�x	 y� were linear functions� Next�

we consider the nonlinear coe�cient problem

Test Problem 

�
����
��

p�x	 y� � P exp�x� y�	

q�x	 y� � �P exp��x� y�	

u�x	 y� � xy�	� x��	 � y� exp�x� y��
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Table ���� Test Problem ��
�	� Iteration �W�	�	��cycle� numbers of NPF �MG with
residual injection operator and di�erent meshsizes�
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Table ���� Test Problem ��
�	� Maximum errors of NPF�MG with residual injection
operator and di�erent meshsizes�
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Table ���� Test Problem ��
�
 with h � 	�	
�� Iteration �W�	�	��cycle� numbers of

NPF�MG with options�
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Table ���� Test Problem ��
�
 with h � 	�	
�� The CPU time in seconds for NPF�MG
with options�
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Table ��	�� Test Problem ��
�
 with h � 	�	
�� Maximum errors of NPF�MG with
options�

Information contained in Tables ��� to ��	� supports the remarks made on the Test

Problem ��
�	� Once again� the convergence and the accuracy worsen with increasing

Re� The NPF�MG solver with the injection�operator is more cost�e�ective than that
with both the full�weighting operator and the coarse�grid restriction option�

It may be noticed that the convergence of NPF �MG with the injection�operator
is quite slow for large values of P � such as P � ������ This is because we use the

residual injection factor � � ��
�
� for all Re� Faster convergence may be obtained by

using di�erent � for di�erent Re� Although the issue of optimal values of � is still not

fully resolved� we will give some test results in Section ��
�� to show that much faster

convergence is obtained with large ��

We observed in our numerical computations that the convergence of NPF �MG for
large Re is fairly rapid for the �rst few cycles� Since the computed accuracy deteriorates

for large Re� there may be no need to insist on reducing the initial residual by 	���

to reach the �nal solution� In practical applications� we may be satis�ed with lower

accuracy for high Reynolds number problems� Here we emphasize that the stability of

NPF�MG guarantees convergence for all Re� Again� test results for very large Re are
given in Section ��
���

Again� we note that there is no di�erence in the accuracy of the computed solutions

for di�erent residual transferring operators and coarse�grid restriction option when the

problem is convection�dominated�
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Table ��		� Test Problem ��
��� NPF�MG with the full�weighting and the residual�
injection operators are tested on di�erent mesh�sizes� The W�	�	��cycle number �MW��

the CPU time in seconds and the computed accuracy �Error� are reported�

	���� Test Problem 	����

The previous two test problems were primarily designed to test the robustness of NPF�
MG with respect to the cell Reynolds numbers� especially for large Reynolds numbers�

Test Problem ��
�� is designed to test the accuracy of the solution computed using

NPF�MG with the full�weighting and the residual injection operators� Since this prob�
lem has a Reynolds number Re 
 	 on all grids� the coarse�grid restriction technique

is not e�cient as also demonstrated in Test Problems ��
�	 and ��
�
� In this case the

convection�di�usion equation ���	� is de�ned by

Test Problem 

�
� ���
��

p�x	 y� � sin�
x�	

q�x	 y� � � cos�
y�	
u�x	 y� � x� � y��

Test Problem ��
�� is computed for di�erent values of the mesh�size h� The multigrid

W�	�	��cycle number� the CPU time in seconds and the computed accuracy are listed

in Table ��		�

The data in Table ��		 indicate clearly that NPF �MG is a fourth�order algorithm�
NPF�MG with the full�weighting residual projection operator maintains this rate of
convergence for all mesh�sizes tested� NPF�MG with the residual injection operator
maintains this property except for the very �ne mesh�size �N � 

��� This does not
severely restrict the applications of the residual injection operator since the high�order

method is able to solve problems on relatively coarse discretizations� but provides much

higher accuracy than the other methods�

Probably more important is the fact that NPF�MG is more cost�e�ective with
the residual injection operator than with the full�weighting operator for all mesh�sizes�
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Table ��	
� Number of NPF �MG W�	�	��cycles for Test Problems ��
�	 and ��
�
 with
two scaling factors � � ��
�
� and � � 	� P � 	��� and computations were terminated

after residual norm is reduced by 	���

The residual injection operator reduces the residual transferring cost signi�cantly� but

no serious deterioration in convergence is observed�

	���� Tests for Very Large Reynolds Numbers

The convergence of test Problems ��
�	 and ��
�
 may seem pessimistic for large values

of P � say P � ������ This is due to the fact that we use the same scaling factor �

for the injection operator in all test conditions� As we discussed in Section ����
� for

convection�dominated problems� it may be advantageous to use a larger scaling factor�

Moreover� there is no reason why we should not terminate the computations before the

residual norm is reduced by a factor of 	���� since we know that the achievable accuracy

is a�ected inversely by the magnitude of P �

We experimented Test Problems ��
�	 and ��
�
 again for very large values of P

and terminated the computations when the residual norm was reduced by a factor of

	��� For each problem� we test two di�erent scaling factors � � ��
�
� and � � 	 to

assess the e�ect of the injection scaling factor on the convergence� For a particular

problem and with a particular mesh�size h� we �nd that the convergence is no longer

a�ected by the magnitude of P when P � 	��� Table ��	
 contains the convergence
histories of Test Problems ��
�	 and ��
�
 with � � ��
�
� or � � 	 and P � 	����

Table ��	
 shows that the magnitude of the scaling factor � makes a substantial

impact on the rate of convergence of NPF�MG� A large � accelerates the convergence
of the high�Reynolds number problems �but causes divergence for di�usion�dominated

problems�� The rate of acceleration is more attractive when h is smaller�

Table ��	
 clearly indicates a very satisfactory convergence rate for large Reynolds

number problems when we choose the scaling factor � � 	� Although the data are

presented for P � 	���� similar results would be obtained for all P � 	�� �see ��
��� Note
that for Test Problem ��
�	� we have h�independent convergence� Since the convergence

�	



rate of NPF�MG with residual injection is Re�independent for large Re� we have a very
favorable convergence property of both h� and Re�independence� The results for Test

Problem ��
�	 are slightly in�uenced by h� but we are sure that this less than perfect

results could be �xed by using slightly di�erent residual scaling factor ��

	�	 Conclusions and Remarks

A nine�point compact discretization formula is used in conjunction with the multigrid

technique to develop a high�order multigrid solver �NPF �MG� to solve the general
convection�di�usion equation with variable coe�cients� A residual injection operator

with a suitably chosen scaling factor is introduced to accelerate the convergence and

to increase the cost�e�ectiveness of our NPF �MG solver� Several test problems have
been solved to demonstrate the e�ciency and computed accuracy of our solver� From

the numerical experiments� it is clear that NPF �MG gives good results� The imple�
mentation of NPF�MG is simple since it employs same NPF discretization scheme for
all grids� The beauty of NPF�MG is that it requires neither preconditioner nor added
dissipation terms for high�Reynolds problems� The computed accuracy of NPF�MG
is usually much better than FPF �MG �see ������

We have found that the full�weighting operator may cause divergence for some

high�Reynolds number problems and the residual�injection operator may be used to

regain the convergence� We have demonstrated that a larger scaling factor may be

bene�cial for the convergence of large Reynolds number problems�

The convergence of the convection�dominated problems may further be improved

by using more powerful relaxation schemes such as the alternating line Gauss�Seidel or

by introducing the minimal residual smoothing acceleration techniques� see Chapter �

and ���� �	��
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Chapter �

High Accuracy Solution of the

Navier�Stokes Equations

��� Introduction

The Navier�Stokes equations that represent the conservation of mass� momentum�

and energy are used to model �uid dynamics phenomena describing two� and three�

dimensional �ows of an incompressible viscous �uid� These equations are highly non�

linear and are very di�cult to solve� especially when the approximate solutions are

required to have a high accuracy� Sometimes the nonlinear Navier�Stokes equations are

linearized in di�erent forms� One linearization approach is to consider a Navier�Stokes

equation in a stream�function and vorticity formulation� which results in a Poisson equa�

tion coupled with a convection�di�usion equation� Hence� a problem closely related to

the numerical solution of the Navier�Stokes equations is that of obtaining highly ac�

curate solution of the convection�di�usion equation� especially when convection is the

dominating phenomena�

The general convection�di�usion equation satisfying Dirichlet boundary conditions

is of the form ���	� and some high accuracy multigrid solution has been obtained in

Chapter ��

Suppose that Eq� ���	� is discretized by some �nite di�erence scheme and results

in a linear system of the form �	�	�� The linear system �	�	� is usually of very large

dimension� For such large systems� direct methods usually can not handle and iterative

methods become attractive for their low storage requirements as long as convergence is

guaranteed� The performance of classical iterative methods such as Jacobi and SOR is

sensitive to the number of equations to be solved� the type of boundary conditions and

other factors� Furthermore� the matrix Ah in �	�	� is nonsymmetric and not positive

de�nite if the magnitudes of the convection coe�cients are large� and this property

adds further di�culty for the classic iterative methods�

Since classical iterative methods for solving the system of linear equations resulting

from the central di�erence �CDS� do not converge when the convective terms dominate

and the cell Reynolds number �Re� is greater than a certain constant� the upwind

��



di�erence approximation has been used for many years despite it is only �rst�order

accurate� Hence� in this research area� the so�called high�order methods were usually

of second order accuracy� To distinguish our following scheme from the traditional

high�order methods� we refer to our scheme explicitly as the fourth�order method�

Recently� there has been some interest in developing fourth�order compact schemes

for solving Eq� ���	� and the incompressible Navier�Stokes equations with large Reynolds

numbers� see �	�� 
�� 
�� ��� �	�� These schemes are somewhat similar and the numeri�

cal results reported by these investigators have no substantial di�erence� There are at

least three advantages shared by these schemes�

	�� Unconditional stability� Although the coe�cient matrices are no longer diago�

nally dominant for large Reynolds numbers� the schemes have been shown numerically

stable for any Reynolds numbers ��	��


�� High accuracy� It has been shown that these schemes do produce numerical

solution of fourth�order accuracy�

��� Easy boundary treatment� Since the computational stencil involves only the

nearest nine grid points� the schemes are of compact type and no special formula is

needed for computing grid points near the boundaries�

However� until recently� the computational advantages of these fourth�order com�

pact schemes have not been fully investigated� For example� it is not known if these

schemes can be used to solve the incompressible Navier�Stokes equations of very large

Reynolds numbers because of the limitations of the available computer power and the

di�culty with the traditional SOR�type iterative methods� Only in a recent paper ��	��

one of these schemes were able to solve the lid�driven cavity problem with Re � �
��

and it was claimed in ��	� that their scheme does not converge for Re � ���� with SOR
iteration�

To fully investigate the properties of the the compact schemes� non�traditional

iterative methods are necessary for large Re� One promising technique is the multi�

grid method which has been successfully used with the �rst and second discretization

schemes for solving problems in the computational �uid dynamics �including the driven

cavity problem� �see� e�g�� ��� �� 
	� ��� ����� A preliminary investigation on combination

of the fourth�order compact scheme of the type which we will discuss in this chapter

with the multigrid techniques was made by Altas and Burrage recently �
�� but their

multigrid method was only shown to converge for small Re �� 	��� where the behavior
of the problems is relatively nice�

Our aim in this chapter is to investigate the possibility of combining multigrid

technique with the fourth�order compact schemes to solve the steady�state incompress�

ible Navier�Stokes equations for large Re� This follows the work of Chapter �� where

we used the fourth�order compact scheme to develop an e�cient multigrid method for

the convection�di�usion equations with variable coe�cients and the resulting multigrid

solver was shown to yield high accuracy solution� and convergent for very large values

of p�x	 y� and q�x	 y��

In this chapter� we present the discretization schemes for the stream�function and

vorticity formulation of the incompressible Navier�Stokes equations in Section ��
� In

��



Section ��� we discuss issues related to the multigrid algorithms� The NPF multigrid
solvers for the convection�di�usion �and the Poisson� equations and for the incompress�

ible Navier�Stokes equations are formally designed in Section ���� In Section ��
� we

solve the driven cavity model problem and compare our numerical results with those

obtained by other investigators and by other methods� Concluding remarks are given

in Section ����

��� Fourth
Order Finite Di�erence Schemes

The nine�point fourth�order compact discretization scheme for the convection�di�usion

equations ���	� is given in Chapter � ������ Similar fourth�order compact schemes were

reported in �	�� ��� �	�� There have been no convincing evidence that any of these

schemes is better than others�

When Re 
 �� Eq� ���	� reduces to the Poisson equation� and Eq� ����� reduces
to the well�known �simpler� Mehrstellen formula �
���

��U��U��U��U
� �U��U��U��U�� 
�U� �
	



h���f�� f�� f�� f�� f
�� ���	�

Multigrid applications of the Mehrstellen formula have been investigated by Scha�er

�

�� Gupta� Kouatchou and Zhang �
���

For small Reynolds numbers �Re � 	���� Altas and Burrage �
� used ����� as the

defect�correction procedure in a multigrid approach to solve the steady incompressible

Navier�Stokes equations� In their approach� Eq� ����� was only used to evaluate the

residuals on the �nest grid� Their numerical results showed that the target accuracy of

the Poisson equation is of fourth�order� but it was not clear e if the computed accuracy

of the convection�di�usion equation �Re �� �� �and the Navier�Stokes equation� is of
fourth�order with the defect correction techniques�

The Navier�Stokes equations representing the two�dimensional steady �ow of an

incompressible viscous �uid are given in stream�function and vorticity formulation as

follows �
	� 
�� ����

����x�y�
�x� � ����x�y�

�y� � �*�x	 y�	 ���
�

����x�y�
�x� � ����x�y�

�y� �Re
h
u�x	 y����x�y��x � v�x	 y����x�y��y

i
� �	 �����

u�x	 y� � ���x�y�
�y 	 v�x	 y� � ����x�y�

�x � �����

Here + is the stream�function� * the vorticity� u and v are the velocities in y and x

directions respectively� Re is the non�dimensional Reynolds number�

The stream�function ���
� is a Poisson equation and the fourth�order approxima�

tion is given by the Mehrstellen formula ���	� and by putting U � + and f � �*� The
vorticity equation ����� is a special case of the convection�di�usion equation ���	� and

the fourth�order approximation in this case may be obtained by putting u � *� f � �

and p�x	 y� � �Reu�x	 y�� q�x	 y� � �Rev�x	 y� in Eq� ������

�




The velocities u� v at a grid point �x	 y� are calculated from the discrete approx�

imation of Eq� ������ It has been shown �
�� that it is bene�cial for both convergence

and accuracy to use the fourth�order approximations for the velocities� In particular�

Gupta �
�� derived some high accuracy compact approximations for the gradients of the

solution of the Poisson equations� As the stream�function equation ���
� is a Poisson

equation in +� high accuracy approximations for the gradient +x and +y can be ob�

tained from �
��� and the corresponding fourth�order compact approximations for the

velocities are given as �also see �
����

u� � �+� �+
���h � �+� �+� �+� �+���	
h � h�*� � *
��	
	
v� � �+� �+����h � �+� �+� �+� �+���	
h � h�*� � *���	
�

�
���
�

��� Multigrid Method

The multigrid method with the fourth�order nine�point compact schemes for the

convection�di�usion equation have been discussed in Chapter � and in �
��� The

smoother which we will use for solving the stream�function �Poisson� equation ���
�

is the red�black Gauss�Seidel relaxation method without an acceleration parameter�

For solving the vorticity �convection�di�usion� equation ����� we use the red�black

Gauss�Seidel relaxation method with an acceleration parameter �i �which is the SOR

method�� In both cases� the smoothers will be referred to as the RBGS smoother�

The bi�linear interpolation will be used in all our algorithms to interpolate the

coarse grid correction to the �ne grid� Speci�cally� The values at the common mesh

points will be directly transferred� while the values at the new grid points will be

obtained by averaging either two or four nearest mesh points� The residual restriction

operator will be a scaled injection operator� The residuals on the �ne grid points which

are common to the coarse grids are calculated and multiplied by a scaling factor �� The

properly scaled residuals are then injected to the coarse grid to form the coarse grid

subproblem� The scaling factor for the Poisson equation and for the convection�di�usion

equation with small Re �say� the cell Reynolds number is smaller than 
� is chosen to

be ��
�
�� that for the convection�di�usion equation with large Re is chosen to be 	�

The advantages of using residual injection and the reason of choosing these residual

scaling factors are discussed in Chapter �� For solving the Poisson equation and the

convection�di�usion equation when the di�usion terms dominate� although the current

combination of the restriction and interpolation operators does not satisfy the rule given

by Brandt and Hackbusch ���� governing the orders of the grid transfer operators and

the order of the di�erential equation� we have shown in Chapter � �and ��	�� that the

resulting multigrid solvers are more cost�e�ective than the standard multigrid method

using the full�weighting scheme as the residual transfer operators� For the convection�

di�usion equations with stagnation point and large Reynolds numbers we have shown

in Chapter � �and ��	�� that the injection operator is necessary for convergence� In this

case� the orders of the transfer operators satisfy the Brandt and Hackbusch rule because

the convection�di�usion equation approximates a �rst�order di�erential equation when

��



the convection is very strong�

For solving nonlinear equations� it is advisable to use full approximation scheme

�FAS�� However� since we linearized our Navier�Stokes equation by using the stream�

function equation and the vorticity equation� we use the linear multigrid method �the

correction cycle as described in Chapter �� to solve the two linear equations� Since FAS

and the correction cycle are mathematically equivalent for solving linear equations and

FAS is computationally more expensive� our implementation poses no di�culty and is

more cost�e�ective�

In the context of linear multigrid the residual equations are solved on the coarse

grids� the right�hand side as it appears in Eq� ���	� is only evaluated once on the �nest

grid when the initialization of data �boundary conditions� is performed� With f being

replaced by * we may de�ne F� by

F� � �h
�



��*� �*� �*� �*� �*
�� �����

Now Eq� ���	� �with U being replaced by +� becomes

��+� �+� �+� �+
� � +� �+� �+� �+� � 
�+� � F�� �����

There is an option of pre�computing all values of the coe�cient matrix Ah for the

vorticity equation ������ but this requires four and a half times more storage space than

usually required for storing the coe�cients of the nine�point multigrid solver� There is

a trade�o� between the storage and the computational e�ciency� If the problem can be

solved in a few multigrid cycles to the required accuracy� as it is the case in our current

application� computing the coe�cient matrix Ah in the iteration process may be more

cost�e�ective�

We close this section with reference to some existing implementations of multigrid

method to obtain accurate solution of Eq� ���	� �or equivalently the system �	�	�� and

the Navier�Stokes equation ���
� , ������ Since the central di�erence scheme results in

a matrix Ah which is not diagonally dominant for large Re� classical iterative methods

such as the damped Jacobi and SOR methods diverge when they are employed to solve

the resulting linear system �	�	�� Although the traditional upwind discretization is

convergent for any Re� it is only of �rst�order accuracy� �Higher order upwind schemes

are usually complicated and not easy to implement�� Hence� e�orts have been made

by many investigators to combine these two schemes to guarantee convergence and

accuracy at the same time� In the context of multigrid method� the popular trends seem

to use the defect�correction techniques of various kinds on the �nest grid� The main

idea behind the defect�correction techniques is to use the upwind scheme for relaxation

�stability� and the central di�erence scheme for residual evaluation �accuracy� ��� ����

It was demonstrated by those and other investigators that if the basic discretization is

of �rst�order and the target discretization is of second�order� then the resulting solution

is of second�order�

Several defect�correction techniques have been developed and used with some suc�

cess by many authors to obtain stable second�order accuracy solutions of the convection�

di�usion equations and of the Navier�Stokes equations ��� �� ���� However� since most

��



reported methods were published with numerical results on convergence rate only� it is

not clear if all these methods achieved the second�order accuracy in practice� On the

other hand� we have demonstrated in Chapter � that NPF with multigrid techniques
does produce solution of fourth�order accuracy�

Since Gupta et al� �
�� have shown that NPF is stable for all Re and is of

fourth�order accuracy� it is not necessary to use any defect�correction technique for the

sake of combining stability and accuracy� We also showed in �
�� that� to compute the

solution of the Poisson equation to a given accuracy� the NPF multigrid is much more
e�cient than the FPF multigrid� Hence� in our implementation� we use NPF for both
relaxation and residual evaluation� this will guarantee �theoretically� that our solution

is of fourth�order accuracy�

Hereinafter we refer to the algorithms using the multigrid cycling techniques and

the NPF smoother as NPF�MG� those use FPF �CDS� smoothers are referred to as
FPF�MG�

��� Design of NPF
MG Solver

A pseudo code of the NPF�MG ��cycle algorithm is as follows�

Algorithm �
�
� NPF�MG ��cycle algorithm�

uh � NPF�MG�uh	 fh�

Given any initial guess uh� �

For k � �	 		 
	 � � � 	 do�

If �h � the coarsest grid	 then

Solve uhk � �A
h���fh�

Else

Relax �� times on Ahuhk � fh with the given initial guess uhk�

Compute rhk � fh �Ahuhk corresponding to the coarse grid�

Set f�h � �r�hk �

Set u�hk � ��

Do u�hk � NPF�MG�u�hk 	 f�h� � times�

Correct uhk�� � uhk � Pu�hk �

Relax �� times on Ahuhk�� � fh with the initial guess uhk���

End if�

For the stream�function equation ���
�� a V�	�	��cycle algorithm is su�cient to

obtain accurate solution with acceptable convergence and is more cost�e�ective than a

W�	�	��cycle algorithm� As stated above the smoother for the stream�function is the

RBGS without a parameter� For the vorticity equation ������ we use a W�	�	��cycle

algorithm� The smoother is the RBGS with a damping parameter �i � ��	 	��
The Navier�Stokes equation ���
� , ����� may be solved by nested inner�outer

iteration procedure �see �
��� with di�erent multigrid cycling algorithms being applied

��



to the stream�function equation ���
� and the vorticity equation ������ While it is

somewhat advantageous to solve Eqs� ���
� , ����� simultaneously to maintain the

physical coupling between them �
	� ���� the relaxation methods �such as the coupled

strongly implicitly �CSI� procedure �
	� and incomplete LU decomposition ����� used to

accomplish this coupling are usually very expensive comparing with the point Gauss�

Seidel relaxation� We are not sure which of these relaxation schemes is the best for

the fourth�order compact scheme with the multigrid and decide to leave this problem

as future research direction� Our primary concern of this chapter is to show that the

fourth�order compact scheme with multigrid can accelerate the usual SOR iteration

signi�cantly and to show the computed results for large Reynolds numbers previously

claimed impossible for SOR method�

��� Application to Model Problem

The steady �ow of an incompressible viscous �uid in a square cavity � � ��	 	� �
��	 	� has been used for a long time as the model problem by many investigators to

test their new numerical schemes and solution methods �
� 
	� 
�� ��� ���� although

there are singularities at two of its corners� Highly accurate benchmark solutions are

available in the literature� In particular� Ghia et al� �
	� used the multigrid technique

and grid points of 

� � 

� to compute numerical solutions for 	�� � Re � 	�����
Their solutions have been considered to be accurate because of the small grid spacing

employed�

The �ow is induced by the sliding motion of the top wall �y � 	� from right to left

and is described by the Navier�Stokes equation ���
�,������ The boundary conditions

are those of no slip� on the stationary walls u � � and v � �� on the sliding wall u � �	
and v � � �see Figure ��	��

In order to solve the driven cavity problem� we replace the Navier�Stokes equa�

tion ���
�,����� by the �nite di�erence approximations given in Eqs� ����� and ���	�

respectively� The velocities� de�ned in Eq� ������ are calculated by using the fourth�

order approximations ���
�� The unit square is covered by a grid of uniform mesh�size

h �� 	��N � 	��� The discrete approximations ������ ���	� are written at each of the
�N � 
�� interior grid points� Zero values are prescribed for + on the boundary� The
usual approximations for vorticity * on the boundary are the Jensen formulas �see

�
�� ����� which have a local truncation error of second order� Fourth�order approxi�

mations could also be de�ned for obtaining boundary values of *� In particular� some

fourth�order approximations analogous to the Jensen formulas were obtained by Altas

and Burrage �
��

x � � � *� � ���h�*� � h�*� � 
+� � 
+
 � 
�+����h
��

x � 	 � *� � ���h�*� � h�*� � 
+� � 
+
 � 
�+����h
��

y � � � *
 � ���h�*� � h�*� � 
+� � 
+� � 
�+����h
��

y � 	 � *� � �
�h � �h�*� � h�*
 � 
+� � 
+� � 
�+����h
��

������
�����

�����

An inner�outer iteration procedure is employed to obtain numerical solutions �see �
����
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Figure ��	� Driven cavity problem�

At each outer iteration� the linear system from the discrete stream�function equation

���
� is solved by a multigrid V�	�	��cycle algorithm with the RBGS smoother �us�

ing ����� without a damping factor�� We then compute the velocities by using the

fourth�order formulas ���
�� and evaluate the boundary conditions by using the fourth�

order formulas ������ After that� we solve the discrete vorticity equation ����� using

a multigrid W�cycle algorithm using RBGS smoother ����� with a relaxation parame�

ter �i � ��	 	�� The outer iteration process for the stream�function equation and the
vorticity equation are also damped after each iteration using di�erent damping factors

�s � ��	 
� and �v � ��	 
� to give the new iterates�
At each inner iteration of the stream�function equation� one or two multigrid

V�	�	��cycles are applied� at each inner iteration of the vorticity equation� one multigrid

W�	�	��cycle is applied� Since the stream�function equation converges very fast and

the nine�point Mehrstellen formula ����� is cheaper than the nine�point formula for the

convection�di�usion equation ������ the major cost of each iteration step is in solving

the vorticity equation� We have found that� at each outer iteration step� there is no

need to solve each inner iteration to a higher accuracy� One or two multigrid cycles are

enough and cost�e�ective�

The inner�outer iteration process for our multigrid solver may be described as

following�

� Set initial guess as � for all values except the boundary values of the known
velocities�

� For k � �	 		 
	 � � � 	 do

	��



� Step 	� Compute the right�hand side of the stream�function using ������

� Step 
� Solve approximately the stream�function equation ���
� by performing
one or two NPF�MG V�	�	��cycles using ������

� Step �� Compute the di�erence between the current and the previous values of
the stream�function�

� Step �� Damp the values of stream�function using a damping parameter �s �
��	 
��

� Step �� Compute the vorticity boundary values by using the fourth�order bound�
ary approximations ������

� Step �� Solve approximately the vorticity equation ����� by performing one NPF�
MG W�	�	��cycle and by using a relaxation parameter �i � ��	 	� and using the
fourth�order approximations ������

� Step �� Compute the di�erence between the current and the previous approximate
values of the vorticity�

� Step �� Damp the approximate values of the vorticity by using a parameter
�v � ��	 
��

� Step 	�� Check the convergence� if both di�erences of the current and previous
approximate values of the stream�function and vorticity computed from Steps �

and � are less than a prescribed tolerance� then stop� otherwise go to Step 	 and

begin next outer iteration�

Unlike the multigrid algorithms designed by other investigators �
� 
	� who had to

restrict the meshsize of the coarsest grid in order to insure convergence� our multigrid

cycles are complete� i�e�� the coarsest grid contains only one unknown� We solved the

driven cavity problem ���
� to ����� for 	�� � Re � 	����� For each Re� we give the
values and location coordinates of the maximum of the stream�function �strength of

the main vortex� and the corresponding vorticity values� The problem with the same

Re was solved several times using di�erent discretization mesh�sizes on the �nest grid

to investigate what is the coarsest mesh�size producing acceptable solution for a given

Re� The iterations were terminated when the maximum di�erence between successive

approximations of both + and * were smaller than 	��� for Re � 
��� and 	��
 for
�
�� 
 Re � 	�	 ���� Since each subsequent inner iteration uses the solution of the
previous iteration as the starting values� we did not use nested multigrid iterations

�the full multigrid method� for each inner iteration� The computations were carried

out on an SGI �Silicon Graphics Indy� workstation using the Fortran �� programming

language in double precision�
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Table ��	� Values and locations of the primary vortex for Re � 	�� using di�erent

discretizations�

����� Comparison with Benchmark Solution

Unless otherwise indicated explicitly� we compare our results with those obtained by

Ghia et al� �
	� as the benchmark solutions� Our problem was set up slightly di�erent

from that of Ghia et al� �
	� and the u velocity at the top wall �y � 	� is di�erent due

to the fact that the �ow in our problem is induced by the sliding motion of the top

wall from right to left �it was induced from left to right in the model problem solved

by Ghia et al� in �
	��� The computed values at a grid point �x	 y� listed in our tables

should be compared with those at the point �	� x	 y� in tables of �
	��

We �rst solve the model problem for Re � 	�� with N � 	�	 ��	 �
	 	
� and

compare our results with those of Ghia et al� with N � 	
�� The numerical values are

given in Tables ��	 and ��
� It can be seen that� if a 
 departure from the benchmark

solution is acceptable as the engineering accuracy� our method withN � 	� can produce

acceptable results� while Ghia et al� used much �ner discretization� Note that when

the mesh is re�ned� the accuracy of our solution is increased rapidly�

When Re increases to 	���� The results in Tables ��� and ��� show that �ner

mesh is needed to produce accurate solution� However� we can see that with only a

quarter of the number of equations used by Ghia et al�� our method produced high

accuracy solutions� With the same mesh�size� the solution given by our method� which

we believe� is actually more accurate than that of Ghia et al�

When Re � 
���� Gupta reported slow convergence when the compact scheme
was used with the SOR iteration �
��� It is shown in Tables ��
 and ��� that our

multigrid accelerated SOR method can compute very accurate solution for Re � �
��

with N � 	
��

With Re � 
���� Ghia et al� used N � 

� to compute accurate solution� we

found �see Tables ��� and ���� that our fourth�order multigrid method can compute

solution to comparable accuracy using N � 	
��

For Re � �
��� with N � 	
�� Tables ��� and ��	� show our method was still

able to yield solution accurate enough �the error is less than 
 � to compare with

benchmark solution of Ghia et al� �
	� using N � 

��

For Re � 	����� no numerical result has been reported with the fourth�order

compact scheme� �The largest Re reported was �
�� in ��	��� We have been able to

have our NPF�MG converge with Re � 	����� Tables ��		 and ��	
 show that the
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Table ��	
� Errors in values of the primary vortex for Re � 	���� using di�erent

discretizations� comparing with Ghia et al��s solution�

Re �s �v �i Iteration
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Table ��	�� Convergence with di�erent Re� N � �� and the damping parameters� Only

one multigrid cycle was used for each inner iteration�

solution with N � 	
� and N � 

� computed from our method di�er signi�cantly

from Ghia et al��s solution� However� we did obtain converged solutions in both cases�

Since there is no exact solution available for the driven cavity problem and published

results for high Reynolds numbers are still open to discussion� we are not sure which

of these solutions is more accurate�

In Table ��	�� we list the number of outer iterations of our multigrid solver and the

damping factors used for solving the cavity problem for h � 	��� with some Re�s tested

in �
�� �	� �using h � 	����� These results compare well with those listed in �
�� �	�

using the SOR method� Since we only use one multigrid V�	�	�� and W�	�	��cycles in

each inner iteration the cost of each inner iterations is about � to � SOR iterations on

the �nest grid� Had we used more multigrid cycles in each inner iteration the number

of the outer iterations would be smaller� but the CPU timings could be larger and the

algorithm might be less cost�e�ective�

����� Comparison of High Accuracy Solutions

In the last subsection� the errors for the vorticity values are usually larger than the

errors of the stream�function values for large Re� as indicated by data in Tables ��
 and

��� for Re � �
�� and in Tables ��� and ��� for Re � 
���� This was caused by the error

of the benchmark solution for large Re� As indicated in ����� a higher order of accuracy

in space is necessary for the �time�dependent� high Reynolds number simulations�

In Table ��	�� we give some recently available higher order results for Re � �
��

and compare them with our scheme with N � 	
� and N � 

��

It can be seen from Table ��	� that Ghia et al��s solution has some di�erence from

the high�order� high�accuracy solutions recently available in the literature� especially
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Authors +max *

Current ��	
�	
��� 	�������	�

Current ��	
	�
��
 	��
�����


Li� Tang - Fornberg ��	� ��	
�

� 	���
��

Nishida - Satofuka ���� ��	
		
� 	��
���

Ghia� Ghia - Shin �
	� ��	
���� 	������

Table ��	�� Comparison of recent high accuracy results for Re � �
���

Authors Discretization Accuracy Order

Current 	
�� 	
� �th�order

Current 

�� 

� �th�order

Li� Tang - Fornberg ��	� 	
�� 	
� �th�order

Nishida - Satofuka ���� 	
�� 	
� �th�order

Ghia� Ghia - Shin �
	� 	
�� 	
� 
nd�order

Table ��	
� Comparison of recent high accuracy solution methods for Re � �
���

the vorticity value which is shown to have a relative di�erence of 	��� with respect to

our very accurate solution computed by using the �th�order algorithm and N � 

��

In contrast� our solution with N � 	
� has only a relative di�erence of ��
� with

respect to our very accurate solution� but has a relative error of ���	 with respect to

Ghia et al��s solution� This comparison again supports the claim made by Nishida and

Satofuka ���� that higher�order algorithm is necessary �at least bene�cial� for the high

Reynolds number computation�

����� Solution Contours

The streamlines and the vorticity contours for Re � �
��	 
���	 �
��	 	���� for N � 	
�

are presented by Figures ��
 to ��
� These �gures compare well with well�known �gures

obtained by Ghia et al� �
	�� taking into account the di�erence in de�nition� Note that

although our +max value for Re � 	���� di�ers from the benchmark solution by more

than 	� � the streamline and vorticity curves are qualitatively correct�

��	 Concluding Remarks

Fourth�order compact discretization formulas have been used in conjunction with the

multigrid technique to develop a high accuracy multigrid solver �NPF �MG� for the
steady�state incompressible Navier�Stokes equations� A driven cavity model problem

with small to large Reynolds numbers has been solved by using our method� The

	��



computed solutions compare well with the benchmark solutions obtained by other in�

vestigators using �ner discretizations�

	��
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Chapter 	

Conclusions and Outlook

We have developed uni�ed approach to the multigrid acceleration techniques and de�

signed a class of e�cient multigrid acceleration schemes� From our analysis and numer�

ical experiments� it is clear that these acceleration schemes are useful and cost�e�ective

in accelerating standard multigrid method� especially when the standard multigrid

method converges slowly� Convergence of the standard multigrid method deteriorates

when it is coupled with higher order �nite di�erence schemes for solving the convection�

di�usion equations with large Reynolds numbers� In addition to e�ciency� the acceler�

ation schemes presented in this dissertation are easy to implement�

We have designed some fourth�order multigrid methods for the convection�di�usion

equations and the incompressible Navier�Stokes equations with large Reynolds numbers�

The fourth�order multigrid methods have been shown to be stable� converge fast and

produce high accuracy numerical solution�

��� Accomplishments of Chapter �

� We developed e�cient ways to analyze and design acceleration schemes for the
isotropic operators� We proposed the idea that acceleration should be considered

for smoothing both the low and high frequency components of the errors� We

explained the reason why traditional SOR method is not cost�e�ective comparing

with Gauss�Seidel relaxation in multigrid� The analysis that we employed in

Chapter 
 unveils that di�erent acceleration should be used for di�erent part of

the multigrid cycle �pre�smoothing and post�smoothing sweeps�� The estimates

of the under�relaxation parameter for the pre�smoothing sweep and the over�

relaxation parameter for the post�smoothing have been veri�ed by the numerical

experiments�

� Perhaps the most important result of Chapter 
 is that it corrects a long�standing
misunderstanding in multigrid community that standard multigrid with SOR

for solving the Poisson equation does not pay� This research result clears the

way for searching for e�ective acceleration schemes for the Poisson equation and

		




other isotropic operators �or slightly anisotropic operators�� Some more generally

applicable acceleration schemes have been developed in Chapter � and ��

� Although using two parameters to accelerate iterative methods have been investi�
gated by several researchers including Golub and de Phill �

�� the issue of how to

estimate these parameters has not been fully resolved� The idea that we proposed

in Chapter 
 is the �rst time �at least in the multigrid context� that an analytical

means is used to accurately estimate the optimal relaxation parameters�

� In all� Chapter 
 provides a new way of thinking and opens a new direction for
searching for e�cient acceleration schemes in multigrid�

��� Accomplishments of Chapter �

� There have been various acceleration schemes proposed to accelerate the multi�
grid methods in di�erent situations� Some of them are theoretically justi�ed�

Typical examples are the so�called steplength optimization of Reusken and the

over�correction scheme of Van&ek and Mika ��
� �
�� The cost of these acceleration

schemes is prohibitively high and the validity of these schemes are based on the

assumption that the coe�cient matrix is symmetric and positive de�nite� The

symmetry and positive de�niteness of the coe�cient matrix are usually violated

in many interesting applications� such as the linear system arising from discretiz�

ing the convection�di�usion equations with large convection coe�cients� Hence�

these acceleration schemes are of limited usefulness�

� Another class of acceleration schemes is to modify the residuals before they are
projected to the coarse grid� Typical examples in this group are the over�weighted

residual technique of Brandt and Yavneh ���� and the the scaled residual injec�

tion operators of Zhang ���� �	�� These techniques are primarily based on some

heuristic residual analysis and do not have a very rigorous theoretical justi�ca�

tion� However� the cost of these acceleration schemes are usually zero or negligible�

There is no assumption on the coe�cient matrix� These acceleration techniques

are potentially useful in practical applications�

� The essential results of Chapter � are the uni�cation of all the coarse�grid ac�
celeration schemes� including the two categories mentioned above� We proposed

the concept of residual scaling techniques to include all these techniques� because

they all essentially modify the scale of the residual equation� We have proved

the equivalence of the pre�scaling ��� ��� ��� �	� and post�scaling ��
� ��� �
�

techniques� The proof is essentially saying that all these �and possibly others�

coarse�grid acceleration schemes are mathematically equivalent�

� Because of the equivalence that we proved and the residual scaling concept that
we proposed in Chapter �� we can research for alternative methods to estimate

the residual scaling parameters and to avoid the assumption of the symmetry
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and positive de�niteness of the coe�cient matrix� The e�ciency and the cost�

e�ectiveness of the pre� and post�scaling techniques are uni�ed�

� We also set a foundation for developing practical methods to estimate the resid�
ual scaling parameters� The method is the so�called heuristic residual analysis

method which is based on the geometry of the grid points and the particular re�

laxation pattern employed� The heuristic residual analysis method is successfully

used to estimate the residual scaling parameters for a standard multigrid Poisson

solver in Appendix A and a high�order multigrid method for solving the Poisson

equation and the convection�di�usion equations with small convection coe�cients

in Chapter ��

� The research results obtained in Chapter � are of both theoretical and practi�
cal importance� Theory is initially proposed� rigorously proved and numerically

veri�ed in later chapters�

��� Accomplishments of Chapter �

� Chapter � introduces the minimal residual smoothing techniques into the multi�
grid context� The minimal residual smoothing techniques have been primarily

used in the conjugate gradient type methods� but rarely elsewhere� Chapter

� develops several algorithms that may utilize the minimal residual smoothing

technique in multigrid� Since this is a new application area� we gave several al�

gorithms so that interested readers may �nd a suitable one for their particular

applications� But we gave our preferred version of the algorithm and the reasons

of our preference�

� The minimal residual smoothing technique may be considered as an �indirect�
residual scaling technique� In particular� the minimal residual smoothing tech�

nique we used in the multigrid algorithm is a pre�scaling technique� which may

compare with the post�scaling techniques of Reusken� Van&ek and Mika� Unlike

other pre�scaling techniques� the minimal residual scaling has some theoretical

basis for optimization �the norm of the residual�� The e�ect of the minimal

residual smoothing is supposed to compare well with the steplength optimiza�

tion technique of Reusken and the over�correction techniques of Van&ek and Mika�

The most important observation we would like to point out is that the minimal

residual smoothing technique does not require that the coe�cient matrix be sym�

metric and positive de�nite� In fact� it is independent of the coe�cient matrix

and of the particular relaxation method employed� This implies that the minimal

residual smoothing technique may be used in a wide range of applications�

��� Accomplishments of Chapter �

� Although heuristic justi�cation may be given� there has been no rigorous theoret�
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ical convergence theory for applying the minimal residual smoothing techniques

in multigrid� These techniques have been used in the Krylov subspace meth�

ods for many years without theoretical justi�cation� Only in recent years� there

have been e�orts to justify these techniques� But their results are based on the

Krylov subspace methods which are essentially based on the residual orthogonal�

ity assumption and therefore are not suitable for general analysis� such as in the

multigrid methods�

� In analyzing the minimal residual smoothing technique accelerated multigrid
method� we have focused on how to explain the acceleration e�ect� We do not

want to impose limitation on the coe�cient matrix because our original intention

was to design an acceleration scheme that is independent of the coe�cient matrix�

So we imposed some conditions on the decomposition of the initial residual� It

seems that our assumptions were well suitable for the analysis purpose�

� The analysis and theorems proved in Chapter 
 are very important in explaining
how minimal residual smoothing technique accelerates and stabilizes the multigrid

convergence� Some of the theoretical results are applicable to analyzing other

iterative methods accelerated by the minimal residual smoothing techniques� Our

results are obtained without the assumption of the orthogonality of the residuals�

��� Accomplishments of Chapter 	

� Fourth�order compact �nite di�erence discretization methods are used with the
multigrid techniques to solve the convection�di�usion equations with large

Reynolds numbers� The methods are e�cient� accurate and stable�

� Residual injection operator is used and the optimal residual scaling parameter
is obtained through the heuristic residual analysis technique for the di�usion�

dominated problems�

� We have found that for solving the convection�dominated problems with stagna�
tion point and large Reynolds numbers� the residual injection is more robust than

the full�weighting�

��	 Accomplishments of Chapter �

� Fourth�order compact �nite di�erence discretization methods are used with the
multigrid techniques to solve the steady�state incompressible Navier�Stokes equa�

tions� We have shown that the fourth�order multigrid do give high accuracy

numerical solution for the model test problem of driven�cavity with relatively

coarse grid�

� Fourth�order velocity and boundary approximations are used in conjunction with
the fourth�order relaxation method�

		




� This is the �rst time that genuine fourth�order compact �nite di�erence schemes
are seriously considered with the multigrid techniques �without defect correction

techniques� to solve the incompressible Navier�Stokes equations� Our results are

very encouraging and comparing well with benchmark solutions�

��� Future Research Outlook

We think the e�ciency of the multigrid method is in the correct scale of the residual

that is projected to the coarse grid to form the coarse grid subproblem� If the residual

is not in the correct scale� the multigrid method will not be in an optimal shape and

the convergence will be seriously deteriorated� The acceleration schemes developed in

this dissertation are essentially to modify the residual to the correct scale� This idea is

compatible with the uni�ed concept of the residual scaling technique�

The minimal residual smoothing technique can scale the residual dynamically and

applicable to almost any problems� Other pre�scaling and post�scaling techniques use

�xed scaling parameters and thus are very cheap in implementation� but the optimal

scaling parameter is usually problem�dependent�

There exists a link between the successive over relaxation parameter � and the

residual scaling factor �� In fact� if a typical SOR step is represented as

uk � uk�� � ��!uk � uk���	

then we have

rk � rk�� � ��!rk � rk����

Hence the change of � a�ects �� but not vice versa� Also� the interval in which we may

vary � seems much larger than the interval contains the useful �� In our numerical

experiments� we observed that if the scale of the residual is optimized� there is no

need to use any relaxation parameter� On the other hand� these two parameters can

be adjusted with respect to each other� Hence� it seems that there is no need to use

relaxation parameter so long as the relaxation method does not diverge� We can adjust

the residual scaling factor to achieve the same e�ciency with lower cost� There may

be a quantitative relation between these two parameters�

Our numerical experiments also suggested that the minimal residual smoothing

technique be more e�cient than the steplength length optimization or over�correction

techniques� This seems contradicting to the conventional wisdom because the over�

correction technique optimizes correction scale at each step while the minimal residual

smoothing minimizes residual norm before the coarse�grid�correction step� However�

the superiority of the minimal residual smoothing technique may be explained as it

uses information from the previous step and we may expect that the e�ect is better

than a single step optimization� Detailed comparison are given in Zhang ��
��
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Appendix A

An Optimal Residual Projection

Operator

A�� Introduction

Individual multigrid operators� including relaxation �smoother�� projection �restriction�

and interpolation �prolongation� operators� should be optimally combined to achieve

true multigrid e�ciency� There exist some options for each operator� some of them are

much more expensive than others� In practical applications� sacri�ce in convergence

sometimes is made to favor the computational cost�e�ectiveness� If the discretization

is the �ve�point 
nd�order central di�erence scheme and the grid space is ordered in

a red�black fashion �see Figure A�	�� the �ve�point red�black Gauss�Seidel �RBGS� re�

laxation� together with half�injection and bi�linear interpolation� is probably the most

cost�e�ective two dimensional Poisson solver in existence� This combination is consid�

ered almost perfect� For example� Yavneh�s recent work on multigrid acceleration is

only applicable to the anisotropic operators �in two dimensional cases� ��
� ����

Nevertheless� we have made some progress in designing SOR�type acceleration

schemes to accelerate the convergence of the RBGS smoothing in multigrid for the two

dimensional isotropic operators �see Chapter 
 and ������ Our work in Chapter 
 indi�

cates that acceleration parameters may be used to accelerate RBGS in multigrid with

negligible cost� The results corrected a long�time misunderstanding in multigrid that

such an acceleration would not pay for the cost �see� e�g�� �
�� ����� Our research work

demonstrates that projection and interpolation processes should be treated �acceler�

ated� separately� possibly by using di�erent parameters� The results of Chapter 
 are

indeed near�optimal in the sense of computational cost�e�ectiveness� as we shall claim

here�

Other acceleration schemes which are restricted to the positive de�nite coe�cient

matrices are proposed by Reusken ���� and Van&ek ��
�� These post�optimization ac�

celeration schemes optimize the computed correction and the acceleration rates are

optimal in the sense of per cycle convergence� In practice� however� these schemes

are too costly �and restricted� to be e�cient� A similar pre�optimization acceleration
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scheme �i�e�� the minimal residual smoothing� which is applicable to any coe�cient

matrices and which is cheaper than the post�optimization schemes has been proposed

in Chapter � and analyzed in Chapter 
� Most of these existing acceleration schemes

have aimed at accelerating the convergence rate only� However� in this appendix� we in�

troduce a di�erent acceleration scheme derived from a novel heuristic residual analysis

technique which is based on the geometry of the grid points and a particular relaxation

pattern� The philosophy of developing residual injection operator is to achieve optimal

computational e�ciency as well as optimal convergence�

From a theoretical point of view� employment of residual injection has some dis�

advantages� as noted by St$uben and Trottenberg� The spectral and energy norms of

the corresponding local two�grid operators are not bounded �
�� p� 	
��� In practice�

convergence may deteriorate as the meshsize tends to zero� Hence� full�weighting is

regarded as more robust� For RBGS� the injection operator has its special attraction�

Since the residuals at the black points are zero� the injection operator is equivalent to

the �ve�point half�weighting �optimal�weighting� operator �see �
����

In this appendix� we optimize the residual injection operator by choosing an op�

timal residual injection factor �residual scaling parameter�� The optimal injection op�

erator maintains the low cost of half�injection� but provides convergence faster than

full�weighting� The numerical results obtained by using this scaled residual injection

operator are slightly better in average than the results obtained by using the two�way

acceleration scheme introduced in Chapter 
� but not overwhelmingly� One advan�

tage of the current approach is that it incurs virtually no extra cost� The two�way

acceleration scheme in Chapter 
 requires about � additional cost for each V�cycle�

We restrict our attention to the two dimensional Poisson equation discretized

by the �ve�point 
nd�order central di�erence scheme� �A similar residual injection

operator for a high�order multigrid is considered in Chapter ��� The RBGS relaxation

and bi�linear interpolation are employed� We only optimize the projection operator�

A�� A Heuristic Residual Analysis

The RBGS relaxation is probably the most e�cient smoother in multigrid for Poisson�

like equations �
�� p� �
�� The bi�linear interpolation is customarily employed for a V�

cycle algorithm� In practice� the half�injection projection operator is used in connection

with RBGS� The residuals are directly injected �transferred� to the corresponding coarse

grid points weighted by 	�
� The factor of 	�
 is motivated by the fact that the residuals

are zero at black points on the �ne grid� hence the other residuals should be multiplied

by 	�
 to represent the correct average ��� p� 
	���

The multigrid method solves the residual equations on the coarse grids� Since the

half�injection operator does not take this di�erence into account and the linear system

is not solved accurately on the �nest grid� the residuals injected from the �nest grid to

the coarse grid using half�injection is not accurate�

To �nd the optimal residual injection operator with the optimal scaling parameter�

		�
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Figure A�	� A red�black ordered nine�point stencil for full�weighting scheme�

we consider the full�weighting scheme �see Figure A�	��

!ri���j�� �
	

	�
��ri�j � 
�ri���j � ri���j � ri�j�� � ri�j���

��ri���j�� � ri���j�� � ri���j�� � ri���j����� �A�	�

Here ri�j is the residual on the �nest grid at the point �i	 j�� i and j are even numbers

�the center point in Figure A�	�� ��i	 j� is a red point�� !ri���j�� is the quantity to be

transferred to the corresponding coarse grid point �i�
	 j�
�� The weight assigned to the

residual at each grid point is determined by the involvement of that point in the number

of coarse grid point residual computations� For example� ri���j�� is weighted into the

residual calculation of four coarse grid points at �i�
	 j�
�	 �i�
	 j�
 � 	�	 �i�
 � 		 j�
�

and �i�
�		 j�
�	�� respectively� The weights in formula �A�	� correctly re�ect these

algebraic relations� But they do not re�ect the geometric relations of the reference

point �i	 j� and its immediate four neighboring red points involved in the computation

of formula �A�	��

To take their relative geometric positions into consideration� we use the following

simple heuristic residual analysis� Since RBGS is used� the residuals at the black points

are zero as noted above� i�e�

ri���j � ri���j � ri�j�� � ri�j�� � �� �A�
�

Formula �A�	� is reduced to

!ri���j�� �
	

	�
��ri�j � �ri���j�� � ri���j�� � ri���j�� � ri���j���� � �A���

We look for an optimal scaling factor � such that �ri�j approximates !ri���i�� as accu�

rately as possible� After substituting !ri���j�� � �ri�j into equation �A��� we have

ri�j �
	

���� � 	� �ri���j�� � ri���j�� � ri���j�� � ri���j��� � �A���

According to the multigrid philosophy the residuals should be su�ciently smoothed

by relaxation before they are projected to the coarse grid� we may assume that the

residual at the the grid point �i	 j� is locally equal to the residuals of its immediate four

		�



neighboring red points involved in the weighting scheme �A�	� �or equivalently �A�����

then

ri���j�� � ri���j�� � ri���j�� � ri���j�� � ri�j� �A�
�

If ri�j � �� any scaling parameter � is optimal with respect to the current reference

point �i	 j�� We can neglect this point and choose another red point as the reference

point� If the residuals at all red points are zero� we have reached convergence� Without

loss of generality� we assume that ri�j �� ��
If we neglect the relative geometric positions of the red points in formula �A���

and substitute equation �A�
� into equation �A���� we obtain the idealized half�injection

factor � � 	�
� which would be an upper bound of the injection factor� so we denote

�upper � 	�
�

However� the real positions of these red points are rotated by �
� from the positions

of the nearest �black� grid points� Their distance from the reference center point �i	 j�

is increased from 	 to
p

� Therefore� their weights in formula �A��� should be scaled

by a factor of 	�
p

� Hence� we set

ri���j�� � ri���j�� � ri���j�� � ri���j�� �
	p


ri�j� �A���

Substituting �A��� into �A��� and cancel ri�j��� ��� we have

� �

 �

p



�
	 ���
���

This gives the lower bound of the factor �� we denote �lower � ���
���

The optimal scaling factor �optimal lies between �upper and �lower� There exists

some � � ��	 	� such that

�optimal �
��lower � �	� ���upper



�
� � �

p

� 
��
�

� �A���

In absence of further information to justify any preferred choice of �� we take � � 	�


and equation �A��� yields

�optimal �
� �

p



	�
	 �������

Since �optimal is smaller than the traditional half�injection factor� we refer to the residual

injection operator with this scaling factor as under�injection�

The scaling factor �optimal is used for injecting the residuals from the �nest grid to

the coarse grid� Subsequent residual injection from coarse grid to coarser grid� however�

uses � � ��
�

A�� Computational Cost Analysis

For full�weighting� we must compute the residuals at all �ne grid points and weight

the residuals �according to formula �A�	�� at the red points which correspond to some
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N under�injection full�weighting half�injection two�way accel�
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 � 		 	
 	�

Table A�	� Comparison of the number of V�	�	��cycles for Test Problem 
�
�	�

coarse grid points� On the other hand� residual injection needs only to compute the

�ne grid residuals at the red points which correspond to some coarse grid points� The

computation of residuals on a given grid is roughly equivalent to one full relaxation on

that grid� Hence� the cost of residual injection is about a quarter of the cost of full�

weighting� If we take into consideration the cost of the weighting scheme �A�	�� the cost

of residual injection is about one��fth of the cost of full�weighting� If a V�	�	��cycle

algorithm is employed and both full�weighting and residual injection have the same

convergence rate� using residual injection may save up to �� computer�s time�

A�� Numerical Experiments

Our numerical experiments are conducted with the model Poisson equation �
�	� and

the Test Problems 
�
�	� 
�
�
 and 
�
�� in Chapter 
�

The Poisson equation is discretized by the usual �ve�point 
nd�order central dif�

ference scheme� The RBGS relaxation� bi�linear interpolation and full�weighting or

injection of some kind are employed in the multigrid V�	�	��cycle algorithm� All ex�

periments are done on a SUN SPARCstation 	� using Fortran �� in double precision�

Initial guess is u�x	 y� � �� �N � 	�� is the number of points on the �nest grid and

the coarsest grid contains � points �one unknown�� The program terminates when the

residual on the �nest grid in L� norm is less than 	�
��� �Note that this stopping criteria

is the absolute reduction in residual norm� not the relative reduction in residual norm��

For di�erent N � we solve the three test problems of Chapter 
 using multigrid

method with di�erent residual projection operators� i�e�� under�injection� full�weighting

and half�injection� We also test the two�way acceleration scheme introduced in �����

The numbers of V�	�	��cycles �convergence rate� are tabulated in Tables A�	 to A���

From Tables A�	 to A��� we note that in all cases� under�injection achieves conver�

gence rate better than full�weighting and half�injection� For Test Problem 
�
�	� under�

injection is better than the two�way acceleration scheme� For Test Problem 
�
��� their

convergence rates are similar� For Test Problem 
�
�
� with N � 	
�	 
	
� the two�way

acceleration achieves better convergence�

These numerical tests show that under�injection and the two�way acceleration
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� Comparison of the number of V�	�	��cycles for Test Problem 
�
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Table A��� Comparison of the number of V�	�	��cycles for Test Problem 
�
���

scheme are e�ective ways of accelerating the convergence of standard multigrid method�

Under�injection is more attractive because it incurs virtually no additional cost over

half�injection� The two�way acceleration scheme incurs about � extra cost per V�cycle�

although this additional cost is negligible�

The acceleration rates in convergence achieved by the under�injection operator

are in the range of 	� , 
� with respect to the full�weighting operator� However� the

comparison of convergence rate in Tables A�	 to A�� does not take into consideration

the fact that the cost of the residual injection operators is only about a quarter to one�

�fth of the cost of the full�weighting operator �see discussion in Section A���� Table A��

gives the CPU time in seconds for the under�injection� full�weighting and half�injection

operators� The e�ciency rate in the �fth column of Table A�� represents the reduction

rate in CPU time for the under�injection operator with respect to the full�weighting

operator� We note that the e�ciency rates are almost �� � This is more than what we

estimated in Section A�� because under�injection achieves faster convergence� These

e�ciency rates are very attractive�

One may tend to combine the two�way �SOR�type� acceleration scheme of Chap�

ter 
 with the under�injection operator� However� since we have optimized the residual

injection operator� we expect that the SOR acceleration will have little e�ect on the

projection process� We have done some numerical experiments which showed that this

is true and �� � 	 �no acceleration� is indeed optimal for the projection process� On
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Table A��� Comparison of CPU time in seconds for Test Problem 
�
�	�

the other hand� interpolation process may be accelerated� The optimal parameter is

about �� � 	�	� for acceleration on the second �nest level of the interpolation process

for Test Problems 
�
�
 and 
�
��� Unfortunately� this acceleration option deteriorates

the convergence rate of Test Problem 
�
�	� Since there is an extra 
 cost for this

acceleration� The average cost�e�ectiveness is not as competitive as the optimal resid�

ual injection without additional SOR acceleration� This implies that both two original

schemes are near�optimal in the sense of computational cost�e�ectiveness�

A�� Conclusions and Remarks

We have obtained a near�optimal under�injection factor through a novel heuristic resid�

ual analysis� The under�injection operator has been tested to show near�optimal con�

vergence rate in the sense of computational cost�e�ectiveness� In fact� these test results

have been posted in the electronic multigrid newsletter ���� for open discussion� The

reduction rates in CPU time resulted from using the under�injection operator are al�

most �� with respect to the full�weighting operator� Although the overall CPU cost

for solving a Poisson equation using multigrid method with any residual projection op�

erator discussed above is trivial on modern computers� if a Poisson solver is repeatedly

called as a subroutine in solving a complicated problem� such as the incompressible

Navier�Stokes equation� using the under�injection operator is obviously advantageous�

In addition� there is no coding complexity for the under�injection operator�

The main idea of the heuristic residual analysis technique is to consider the ge�

ometric locations of the grid points and the relaxation pattern� This technique may

be extended to derive optimal residual injection operator for other multigrid applica�

tions� not necessarily limited to the Poisson equation� It has been shown in Chapter �

and in ��	� that using a residual injection operator is necessary for convergence when

a high�order multigrid method is used to solve the convection�di�usion equations� A

heuristic residual analysis technique similar to that used in this paper has been em�

ployed to develop some optimal residual injection operator for the high�order multigrid

�see Chapter � and ��	���
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Appendix B

On Convergence of Iterative

Methods for a Fourth�Order

Discretization Scheme

B�� Introduction

We consider the two�dimensional constant coe�cient convection�di�usion equation

uxx � uyy � pux � quy � �f�x	 y�	 �x	 y� � �	
u�x	 y� � g�x	 y�	 �x	 y� � 
�	

�B�	�

where � is a smooth convex domain in R��

Recently� there has been growing interest in developing fourth�order �nite di�er�

ence schemes for the convection�di�usion equation �and the Navier�Stokes equations�

which give high accuracy approximations� see �	�� 

� 
�� �	� 
�� and the references

therein� In particular� Gupta et al� �

� proposed a fourth�order compact �nite di�er�

ence scheme for solving �B�	� and showed numerically that the scheme is both highly

accurate and computationally e�cient� Classical iterative methods with this scheme

have been shown numerically to converge for all values of p and q �

�� In �
��� this

compact scheme was extended to solve the convection�di�usion equation with variable

coe�cients� The new scheme has also been shown numerically to have a truncation

error of order h
 and good numerical stability for large values of p�x	 y� and q�x	 y��

However� we are not aware of any analytical result to prove that any of the clas�

sical iterative methods converge with these fourth�order compact schemes� A rigorous

justi�cation is always desirable in spite of the fact that numerical experiments have

been successfully conducted�

In this appendix� we give some conditional convergence results for some classical

iterative methods using the fourth�order compact scheme developed by Gupta et al�

�

� 
��� Although our results are limited� they are a �rst step towards the convergence

analysis of such iterative methods for the fourth�order approximation schemes�
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B�� Fourth
Order Compact Scheme

The nine�point compact fourth�order discretization scheme results in a linear system

�	�	� �for details� see �

��� where A � �ai�j�n��n� is a square matrix� which is usually

nonsymmetric and non�positive de�nite� Each equation of �	�	� is of the form�

�X
i	�

�iui �
h�



��f
 � f� � f� � f� � �f�� � ��f� � f�� � ��f� � f
��	 �B�
�

where the coe�cients �i	 i � �	 � � � 	 �� are described by the computational stencil�	
B


�� �� ��
�� �� ��
�� �
 ��

�
CA �

	
B

��	� ���	 � �� �
�	 � ��� � 
 ��	 � ���	 � ��

�
�	� ��� � 
 
� � ��� � ��� �
�	 � ��� � 

��	� ���	� �� �
�	 � ��� � 
 ��	 � ���	 � ��

�
CA �

�B���

Here � � ph�
 and � � qh�
 are referred to as the cell Reynolds numbers �	��� When

maxfj�j	 j�jg � 	� we say that the linear system �	�	� �and the discretized boundary
value problem �B�	�� is di�usion�dominated� otherwise it is convection�dominated� The

numerical experiments conducted in �

� showed that classical iterative methods with

this scheme converge for any values of p and q� We also showed numerically in ���� that

the multigrid method with this scheme converges for all values of p and q even when

they are functions of x and y�

B�� Convergence for Di�usion
Dominated Case

Lemma B
�
� The coe�cients of the nine�point stencil �B�
� satisfy

�i � �
	 i � 		 
	 �	 �	 �B���

for all values of � and ��

Proof� Direct veri�cation� �

Lemma B
�
� The coe�cients of the nine�point stencil �B�
� satisfy ���� � � and

���� � � if one of the following conditions hold�

j�j 
 		 j�j 
 		 �B�
�

or

j�j � 		 j�j � 	� �B���

Proof� ���� � � if

�	� ����	� ��� � �� �B���

It is easy to see that �B��� holds if either �B�
� holds or �B��� holds�

The conditions for ���� � � can be veri�ed similarly� �

Lemma B
�
� The matrix A is irreducible�

	





Proof� It is readily veri�ed that the directed graph of A is strongly connected� �

Lemma B
�
� The matrix A is irreducibly diagonally dominant if j�j � 	 and j�j � 	�

Proof� A is diagonally dominant if

jai�ij �
n�X

j	��j �	i

jai�jj	 for i � 		 � � � 	 n�� �B���

�B�
� and �B��� imply

j��j �
�X

j	�

j�j j� �B���

Substituting �B��� in �B��� after simpli�cation� we have

�j	 � �j� j	� �j��j	 � �j� j	� �j� � �� �B�	��

Since �j	 � �j � j	 � �j� � 
 if j�j � 	� and �j	 � �j � j	 � �j� � 
 if j�j � 	� it follows
that �B�	�� holds if j�j � 	 and j�j � 	 both hold�

A is irreducible by Lemma B����� Since the strict inequality in �B��� holds for at

least the �rst row of A for j�j � 	 and j�j � 	� A is irreducibly diagonally dominant
�see pp� 
� of Varga ��	��� �

From Lemmas B���� and B����� we have the following theorem�

Theorem B
�
� The point Jacobi and the point Gauss�Seidel methods associated with

A for j�j � 	 and j�j � 	 are convergent for any initial guess�

Proof� A is irreducibly diagonally dominant by Lemma B����� The result follows from

Theorem ���� pp� �� of Varga ��	�� �

B�� Symmetrization of Coe
cient Matrix

Theorem B���
 establishes the convergence property of the point Jacobi and point

Gauss�Seidel methods with the fourth�order compact scheme when the problem is

di�usion�dominated� To analytically show the convergence of classical iterative meth�

ods with this scheme for larger cell Reynolds number� following Elman and Golub �	���

we �rst show that� under certain circumstances� A is symmetrizable by a real diagonal

similarity transformation�

Theorem B
�
� The coe�cient matrix A can be symmetrized with a real diagonal

similarity transformation if and only if one of the following conditions hold�

� � � � �	 �B�		�

or

j�j � j�j �
p

� �B�	
�

	
�



Proof� The unknowns can be ordered so that the matrix A has the block tridiagonal

form

A � tri�Aj�j��	 Aj�j	 Aj�j���	

where Aj�j�� � tri���	 �
	 ���	 Aj�j � tri���	 ��	 ���	 Aj�j�� � tri���	 ��	 ����

We look for a matrix Q � diag�Q�	 Q�	 � � � 	 Qn�� where Qj is a real diagonal matrix

of the same order as Aj�j� such that Q
��AQ is symmetric� Let

Qj � diag�q
�j�
� 	 q

�j�
� 	 � � � 	 q�j�n �	 j � 		 
	 � � � 	 n�

We �rst consider the diagonal block� Q��j Aj�jQj is symmetric if and only if

q
�j�
i

q
�j�
i��

�� �
q
�j�
i��

q
�j�
i

��	 	 � i � n� 		 	 � j � n	 �B�	��

where q
�j�
� may be arbitrary� Thus� the diagonal blocks can be symmetrized provided

q
�j�
i�� �

r
��
��

q
�j�
i 	 �B�	��

and this recurrence is well de�ned if and only if ����� is positive� which is true by

Lemma B���	� The �equal� quantities �B�	�� are the �i	 i � 	� and �i � 		 i� entries of
the jth diagonal block of the symmetrized matrix�

For the o�diagonal blocks� we require

Q��j Aj�j��Qj�� � �Q
��
j��Aj���jQj�

T � �B�	
�

Relation �B�	
� holds if and only the following three scalar relations hold�

q
�j���
i

q
�j�
i

�
 �
q
�j�
i

q
�j���
i

��	 or q
�j�
i �

r
�

��

q
�j���
i � �B�	��

q
�j���
i��

q
�j�
i

�� �
q
�j�
i

q
�j���
i��

��	 or q
�j�
i �

r
��
��

q
�j���
i�� � �B�	��

q
�j���
i

q
�j�
i��

�� �
q
�j�
i��

q
�j���
i

��	 or q
�j�
i�� �

r
��
��

q
�j���
i � �B�	��

�B�	�� is well de�ned if and only if ���
 � � which is true for any � and � by

Lemma B���	� �B�	�� is well de�ned if and only if ���� � �� which is true if ei�

ther j�j 
 	 and j�j 
 	 both hold� or j�j � 	 and j�j � 	 both hold by Lemma B���
�
The same conditions are required for �B�	�� being well de�ned�

However� Q��AQ is symmetric if and only if conditions �B�	��� �B�	��� �B�	�� and

�B�	�� hold simultaneously�

From �B�	�� and �B�	��� we have

q
�j�
i�� �

r
���

����

q
�j���
i 	 �B�	��

	
�



which is well de�ned since �������
 � � by Lemma B���	�

Substituting �B�	�� into �B�	�� and equating the coe�cients of q
�j���
i � we have

������ � ���
�� � �� �B�
��

Substituting �B�	�� into �B�	��� we obtain

q
�j�
i�� �

r
����
����

q
�j���
i�� � �B�
	�

Substituting �B�	�� with the subscript i being replaced by i � 	 into �B�
	� and

comparing the coe�cients of q
�j���
i�� � we have

���
�� � ������ � �� �B�

�

Substituting the coe�cient values of �B��� into �B�
	� and �B�

�� after simpli��

cation� we have the system of two equations which must hold simultaneously

�� � ����
�� � 
�� � 
�� � ����� � �	

��� � ���
�� � 
�� � 
�� � ����� � ��
�B�
��

The solutions to system �B�
�� are

� � � � �	

j�j � j�j � 		

j�j � j�j � p

�

Since we must also have ���� � � and ���� � � for �B�	�� and �B�	�� being well

de�ned� solution j�j � j�j � 	 is excluded by Lemma B���
� �

Remark B
�
� If �B���� holds	 �B��� reduces to the Poisson equation and the matrix

A is symmetric and positive de�nite by itself� The interesting case is when j�j � j�j �p

	 equation �B��� is convection�dominated and the linear system ����� is nonsymmet�

ric and non�diagonally dominant�

The following corollaries can be veri�ed directly�

Corollary B
�
� If � � � � 
p
	 the coe�cient matrix A with the following compu�

tational stencil 	
B


	 ���

p
� ��p

 	��
���
�p
� �� ���

p
�
��p
� 	�� ���
�p
� 	

�
CA

is symmetrizable by the real diagonal similarity transformation Q � diag�Q�	 Q�	 � � � 	 Qn�	

where

Q� � diag�		
p

� 		 �

p

� 	��	 � � � 	 �

p

� 	�n���	

Qj � �
p

� 	�Qj��	 j � 
	 �	 � � � 	 n�

The symmetrized coe�cient matrix (A has the computational stencil	
B


	 ��p
 �	
��p
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�
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Corollary B
�
� If � �
p

	 � � �p
 or � � �p
	 � � p
	 the coe�cient matrix A

with the following computational stencil

	
B

��p
� 	�� ���
�p
� 	

���
�p
� �� ���

p
�
	 ���

p
� ��p

 	��

�
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is symmetrizable by the real diagonal similarity transformation Q � diag�Q�	 Q�	 � � � 	 Qn�	

where

Q� � diag�		
p

� 		 �

p

� 	��	 �

p

� 	��	 � � � 	 �

p

� 	�n���	

Qj � �
p


 	�Qj��	 j � 
	 �	 � � � 	 n�

The symmetrized coe�cient matrix (A has the computational stencil

	
B


�	 ��p
 	

��p
 �� ��p

	 ��p
 �	

�
CA

Remark B
�
� Although the original coe�cient matrix A is not diagonally dominant

when j�j � j�j � p
	 the symmetrized coe�cient matrix (A is strictly diagonally domi�

nant�

B���� A Bound for Line Jacobi Method

Let A be split by the line Jacobi iteration� i�e�

A � D � C	 �B�
��

where D is the diagonal block and �C contains the upper and lower diagonal parts of
A� Suppose that A can be symmetrized by a real diagonal similarity transformation Q

and the symmetrized matrix is (A � Q��AQ� Corresponding to the line Jacobi splitting

�B�
��� (A is split as
(A � (D � (C� �B�

�

We now derive a bound for the spectral radius of the iteration matrix M � D��C

based on the line Jacobi splitting of the coe�cient matrix A� in the case where A is

symmetrizable� i�e�� when j�j � j�j � p
� Note that

M � Q (D�� (CQ��	

i�e�� M is similar to (M � (D�� (C and they have the same eigenvalues� Hence� we can

restrict our attention to (M � The analysis is based on the result

�� (D�� (C� � k (D�� (Ck� � k (D��k�k (Ck� � �� (C�

�min� (D�
	 �B�
��

	
�



where the equality follows from the symmetry of (D and (C� �� (C� is the spectral radius

of (C and �min� (D� is the smallest eigenvalue in absolute value of (D� For j�j � j�j �
p

�

(D is symmetric positive de�nite and can be factored symmetrically as (D � LLT � Hence

LT (D�� (CL�T � L�� (CL�T �

That is� (M � and therefore M � are similar to a symmetric matrix� and their eigenvalues

are real� The M �matrix (D has block diagonal form diag� !D	 � � � 	 !D�� where each !D �

tri���p
	 ��	��p
�� Hence� �min� (D� � �min� !D��

By Lemma 
 of Elman and Golub �	��� the eigenvalues of the tridiagonal matrix
!D of order n are f�j � ��� � 


p

 cos j�h�	 j � 		 
	 � � � 	 ng� Hence�

�min� (D� � �min� !D� � ���� 

p

 cos �h�� �B�
��

The spectral radius of (C is bounded by Gerschgorin�s theorem ��	��

�� (C� � ��	 � 

p

�� �B�
��

Hence� from �B�
��� �B�
�� and �B�
�� we have the following theorem�

Theorem B
�

 If j�j � j�j � p

	 the spectral radius of the line Jacobi iteration

matrix for the linear system ����� is bounded by

��M� � 	 � 

p



�� 
p
 cos �h
� 	� � 
�

p



��
	 ����
�	 as h� ��

B�� Conclusions

We proved that the point Jacobi and point Gauss�Seidel methods converge for solving

the linear system resulted from a fourth�order �nite di�erence discretization of the

convection�di�usion equation when the equation is di�usion�dominated� We also proved

that the line Jacobi method converges when the coe�cient matrix is symmetrizable�

	��
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