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ABSTRACT OF DISSERTATION

Multigrid Acceleration Techniques and Applications to

the Numerical Solution of Partial Differential Equations

Multigrid methods are extremely efficient for solving linear systems arising from
discretized elliptic partial differential equations. For these problems, a few multi-
grid cycles are sufficient to obtain approximate solutions that are at least accurate
to the level of the truncation error. However, difficulties associated with problems
that are non-elliptic, or that have non-elliptic components, such as those described
by the convection-diffusion equations and the incompressible Navier-Stokes equations
with high Reynolds numbers, frequently cause a significant decrease in the efficiency of
the standard multigrid methods. The convergence degradation gets worse when high-
resolution discretization schemes are employed with the standard multigrid methods to
obtain high accuracy numerical solutions.

The purpose of this study is to develop efficient multigrid acceleration techniques
to speed up the convergence of the multigrid iteration process and to apply these tech-
niques to obtain high accuracy numerical solutions of the partial differential equations
in computational fluid dynamics. It is shown by analysis and numerical computations
that standard multigrid methods can be significantly accelerated and yield highly im-
proved convergence at negligible extra cost. Some acceleration techniques developed
in this research even reduce the cost of the standard multigrid methods, in addition to
providing satisfactory convergence acceleration. Other techniques have been shown to
be essential for some problems to converge. One important feature that distinguishes
these acceleration techniques from existing ones is that they do not require that the
coefficient matrix be symmetric and positive definite and thus have the potential to be
applied to a wider range of practical problems. Another feature of these techniques is
that they can be parallelized.

Of particular importance to this work is the combination of these acceleration
techniques with the high-order finite difference discretization schemes to construct sta-
ble multigrid solvers for obtaining fast and high accuracy numerical solutions of the
convection-diffusion equations and of the incompressible Navier-Stokes equations with
high Reynolds numbers.
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Chapter 1

Introduction

This research has been aimed at a better understanding of the difficulties associated
with developing efficient acceleration techniques for the multigrid solvers for partial
differential equations, especially for those equations that are non-elliptic or containing
non-elliptic components.

Standard multigrid methods have been shown to be extremely efficient for solving
linear systems that result from discretized elliptic partial differential equations, e.g.,
the Poisson type equations [6]. For these problems, a few standard multigrid cycles
without any acceleration scheme are sufficient to obtain solutions with errors that are
well below the truncation errors [7]. In recent years the multigrid techniques have been
investigated by more and more researchers, and are employed in a much more general
context and in a great number of fields. Several books have been published which are
exclusively devoted to the multigrid [13, 34, 69].

However, difficulties which are associated with problems that are non-elliptic, or
have non-elliptic components, such as those described by the convection-diffusion equa-
tions and the steady-state incompressible Navier-Stokes equations with high
Reynolds numbers, frequently cause a significant decrease in the efficiency of the stan-
dard multigrid methods. This dissertation has been aimed at developing efficient multi-
grid acceleration techniques to speed up the convergence of the standard multigrid iter-
ation process and to apply these techniques to obtain high accuracy numerical solution
of the partial differential equations. It is shown by analysis and numerical computations
that the standard multigrid methods can be significantly accelerated and yield highly
improved convergence at negligible extra cost. Some acceleration techniques developed
in this research even reduce the cost of the standard multigrid methods, in addition
to provide satisfactory convergence acceleration. Other techniques have been shown to
be essential for some problems to converge. One important feature which distinguishes
our acceleration techniques from existing ones is that our acceleration techniques do
not require that the coefficient matrix be symmetric and positive definite and thus have
potential to be applied to a wider range of problems of practical importance. Most ac-
celeration techniques developed in this dissertation aiming at the non-elliptic problems
have also been shown to accelerate multigrid convergence of the elliptic problems.



Of particular importance of this research is to combine these acceleration tech-
niques with the high-order finite difference discretization schemes to construct sta-
ble multigrid solvers for obtaining fast and high accuracy numerical solution of the
convection-diffusion equations and of the steady-state incompressible Navier-Stokes
equations with high Reynolds numbers.

We begin this dissertation with a description of basic concepts of the multigrid
methods.

1.1 Multigrid Methods

Consider a large linear system of equations
Alyh = gt (1.1)

that arises from discretizing some differential or integro-differential equations on a
discrete domain Q" with meshsize h. The superscript A in Eq. (1.1) may be dropped
when there is no confusion on the discretized space in question.

The multigrid idea is based on the observation that classical iterative methods,
such as the Gauss-Seidel relaxation and successive over-relaxation (SOR), strongly
damp oscillatory error components but converge slowly for smooth error components.
Hence, classical iterative methods work very well for the first few iterations. Inevitably,
however, the convergence slows down and the entire iterative scheme appears to stall
[13]. One effective way of removing the smooth error components is to approximate
them on a coarser grid with larger meshsize H (usually H = 2h, but this is not neces-
sary), on which the smooth errors become more oscillatory and can be removed quickly
by relaxation methods. Solving the residual equations (the equations for the errors)
on the coarse grid directly and interpolating the correction back to the fine grid give
the two-level method. The two-level method is an important theoretical and debugging
tool in developing the multi-level or multigrid method. However, since the number of
equations to be solved on the coarse grid is proportional to the original number of equa-
tions, the direct solver employed to obtain the coarse grid solution will be relatively
slow and costly. The multigrid method exploits the fact that the subproblem (residual
equations) on the coarse grid has the same structure as the original problem on the
fine grid, so the basic idea of the two-level method can be applied recursively, i.e.,
on the coarse grid, the subproblem (residual equations) is not solved exactly, instead,
oscillatory error components are damped out and the smooth errors are projected to
yet a coarser grid to be solved there. However, the two-level method contains all the
basic ideas of the multigrid method, which in turn can be viewed as recursively us-
ing coarser grid solutions to approximate the direct solver required by the coarse grid
in the two-level method. Hence, the main difference between the two-level method
and the multigrid method is the computational efficiency, not the theoretical issue of
accelerating basic convergence.

For a wide class of different problems, the multigrid method is found to be the



most effective method and the cost of the multigrid method is independent of the grid
meshsize [34, 69].

Briggs’ book [13] is generally considered excellent as an introduction to basic
multigrid concepts. Advanced multigrid techniques are presented in Brandt’s guide [7].
For detailed treatments, we recommend the books of Hackbusch [34] and Wesseling
[69].

1.2 Multigrid Acceleration Techniques

For elliptic problems such as the Poisson type equations it has been believed that there
is no advantage of using any acceleration scheme for the standard multigrid methods.
A few standard multigrid cycles are sufficient to bring the algebraic errors well below
the level of truncation errors [6]. However, we have found that carefully designed
acceleration schemes may accelerate the standard multigrid methods (see Chapter 2,
Appendix A and [77, 78]). Although this will not arouse any excitement if we just
solve a single Poisson equation, since the savings of the CPU time for a fast Poisson
solver are not a big deal on modern computers. The acceleration becomes attractive
if a fast Poisson solver is called repeatedly for many times as a subroutine in a major
computational project, such as solving the steady-state incompressible Navier-Stokes
equations, the accumulated savings in CPU time can be substantial.

For non-elliptic problems or problems containing non-elliptic components, accel-
eration schemes are generally required to obtain solution within reasonable CPU time,
sometimes are even necessary for convergence. FEfficient acceleration schemes must
first be cost-effective, which means to accelerate the original multigrid iteration with
reasonable (in most cases negligible) extra cost. There exist acceleration schemes that
accelerate the multigrid convergence in some situations, but the cost of the acceleration
is too prohibitive to be attractive for practical applications [46, 62]. Our acceleration
schemes developed in this dissertation are all cost-effective, in most cases the accelera-
tion cost is negligible.

The second criterion for an efficient acceleration scheme is the applicability. An
efficient acceleration scheme must be applicable to a wide range of problems of practi-
cal importance. Existing acceleration schemes such as the over-correction scheme [62]
and the steplength optimization technique [46] require that the coefficient matrix be
symmetric and positive definite (SPD). The SPD requirement severely limits the appli-
cation of these acceleration techniques. Usually the multigrid methods can solve many
SPD problems very efficiently and this fact renders these acceleration techniques much
less useful in practice. On the other hand, our acceleration schemes developed in this
dissertation research do not require that the coefficient matrix be SPD and thus are
much more applicable to solving practical problems.



1.3 Applications to Partial Differential Equations

The multigrid methods can be used to solve a large group of differential equations
efficiently. In this dissertation, we concentrate our attention on obtaining stable, ef-
ficient and accurate numerical solution of the convection-diffusion equations and the
steady-state incompressible Navier-Stokes equations, especially when the convection is
the dominant phenomenon. These equations are important in modern scientific compu-
tation, especially in computational fluid dynamics. But obtaining stable and accurate
numerical solution to these equations is a current research topic that many researchers
are devoting their energy.

One of the non-trivial problems associated with the solution process is to efficiently
solve the linear system (1.1) results from a discretized partial differential equation. For
the convection-diffusion equation with large Reynolds number, the coefficient matrix of
Eq. (1.1) is nonsymmetric and non-positive definite. Many classical iterative methods
become divergent when they are employed to solve Eq. (1.1) if the cell Reynolds number
is greater than a certain constant. Standard conjugate gradient type methods cannot
be applied directly due to the lack of symmetry in the coefficient matrix. For other
Krylov subspace methods, finding a suitable preconditioner for the convection-diffusion
equations is not always easy.

Standard multigrid methods become divergent as a result of the divergence of
the smoother. Multigrid methods with higher-order finite difference schemes usually
converge slowly and acceleration schemes are therefore needed to obtain solutions in a
reasonable time.

1.4 Finite Difference Schemes

Standard multigrid methods usually employ smoothers based on the second-order cen-
tral difference schemes. These schemes may be efficient for the Poisson type equations.
For problems like the convection-diffusion equations with large Reynolds numbers, stan-
dard multigrid methods diverge due to the divergence of the smoothers. Although there
exist complicated higher-order upwind difference scheme, the popular trend is to use
the first-order upwind difference scheme for the convective terms and the second-order
central difference scheme for the diffusive terms. This modification guarantees con-
vergence, but only gives solution of first-order accuracy. Hence, defect-correction or
double discretization techniques are used by many researchers to obtain higher-order
accuracy solution, in which the first-order upwind scheme is used for relaxation and
the second-order central difference scheme is used for residual computation [3, 33]. The
defect-correction multigrid methods may yield second-order accuracy solution for the
convection-diffusion equations with smooth convective coefficients. According to our
numerical experiments [81], for problems with highly oscillatory convective terms even
the central difference scheme may not offer solution of second-order accuracy.

By employing the fourth-order compact finite difference schemes in the multi-
grid, we can design stable multigrid solvers for the convection-diffusion equations with



highly oscillatory convective terms and with large Reynolds numbers. There is no need
to use upwind scheme for stability. Furthermore, the fourth-order multigrid methods
offer solution of fourth-order accuracy. The fourth-order multigrid method can further
be accelerated by the acceleration techniques developed in this dissertation and the
resulting accelerated fourth-order multigrid methods offer stable, fast and high accu-
racy solution for the convection-diffusion equations and the steady-state incompressible
Navier-Stokes equations with large Reynolds numbers.

1.5 Main Conclusions

e Standard multigrid methods may be effectively accelerated.
e Most acceleration schemes are cheap and cost-effective.

e The convergence deterioration of the standard multigrid methods may be caused
by the incorrect scale of the residuals that are projected to the coarse grid. Ac-
celeration may be achieved by correctly scaling the residuals.

e When standard multigrid methods with the central difference scheme are unsta-
ble, the multigrid methods with the fourth-order compact finite difference schemes
provide stability and efficiency.

e Classical relaxation methods can be turned into efficient smoothers by the accel-
eration schemes.

e High accuracy solution can come with cheap cost.

1.6 Summary and Structure of this Dissertation

This dissertation is composed of eight chapters and two appendices, each chapter starts

with its introduction, with the exception of the first and the eighth chapters. Notations

are introduced as the need arises and conclusions are given in each chapter separately.
Here are the summary of the major contributions of this dissertation:

e In Chapter 2, we explain the effect of the SOR relaxation on standard multigrid
Poisson solver and develop two acceleration schemes for the five-point red-black
Gauss-Seidel smoothing in the multigrid method for the Poisson equation. A long-
time mis-understanding in multigrid community concerning the applicability of
the SOR relaxation with the multigrid method for solving the Poisson equation
is resolved.

e In Chapter 3, we unify the concept of the multigrid residual scaling techniques and
prove the equivalence of the pre-scaling and post-scaling acceleration techniques.
The equivalence proof clears the way for developing efficient and general-purpose
pre-scaling acceleration schemes.



In Chapter 4, we systematically introduce the minimal residual smoothing tech-
niques to accelerate the multigrid convergence. Several application schemes are
designed and numerical experiments are used to show the attractive acceleration
rate.

In Chapter 5, the minimal residual smoothing techniques introduced in Chapter 4
are analyzed and theoretical results are given. We show how the minimal residual
smoothing accelerates the standard multigrid method.

In Chapter 6, a fourth-order compact finite difference scheme is combined with
the multigrid techniques to solve the convection-diffusion equations with high
Reynolds numbers. A heuristic residual analysis is used to derive optimal residual
injection factor for the high-order multigrid method.

In Chapter 7, a fourth-order multigrid method is designed for solving the steady-
state incompressible Navier-Stokes equations. Optimal residual scaling techniques
are used to obtain stable, fast and high accuracy numerical solution of the driven
cavity model problem for moderate to large Reynolds numbers.

Chapter 8 contains the conclusions of this dissertation and the outlook for future
research directions.

In Appendix A, we give a practical example of the heuristic residual analysis tech-
nique and derive an optimal residual injection factor for the five-point multigrid
Poisson solver.

Appendix B contains some theoretical results on the stability of the fourth-order
compact scheme and convergence of some iterative methods with this compact
scheme.



Chapter 2

SOR Multigrid for Poisson
Equation

2.1 Introduction

In this chapter, we concern ourself with the numerical solution of following two dimen-
sional Poisson equation with Dirichlet boundary conditions, which we call the model

problem,
—Au(z,y) = f(=,y), (z,y) €,
(2.1)
u(z,y) = g(z,y), (z,y) € 09,
where o2 o2

is the Laplace operator. For simplicity, €2 is assumed to be the unit square, but other
domains such as the rectangle are easily generalized. The discretization of Eq. (2.1)
will be the usual accurate five-point central difference scheme, with a meshsize h and a
truncation error of order h?. The discretization generates a system of linear equations
of the form (1.1), where A" is a sparse, symmetric positive definite matrix.

An important part of the multigrid algorithms for the solution of discretized two
dimensional Poisson-type problems is relaxation, whose purpose is to smooth the cur-
rent error in the approximation, i.e., to efficiently reduce all error Fourier components
that can not be approximated on the coarser grids. For various reasons such as good
smoothing effect and obvious parallel potential, the red-black Gauss-Seidel method has
been used extensively as a relaxation in the multigrid methods of many kinds [13].

It is well-known that, when used in an iterative method, a relaxation parameter
may improve the convergence property. Relaxed Gauss-Seidel method is usually called
the SOR (successive over relaxation) method, although under-relaxation is also in-
cluded. Using an optimal relaxation parameter in SOR can accelerate the convergence
dramatically in many cases, but finding the optimal parameter is not easy for most
practical problems. In multigrid, the main role of relaxation is to smooth the error, not
to reduce it. It has been observed that using relaxation parameters is not cost-effective



in many situations, particularly when applied to Gauss-Seidel relaxation [7, 59]. For
example, some slight improvement in the smoothing properties of Gauss-Seidel relax-
ation has been shown with slight over-relaxation in the case of the two dimensional
Laplace operator, but the two additional floating-point operations required rendered
this modification ineffective [59].

Probably due to the authoritative remarks made in [7, 59] that SOR is not cost-
effective for multigrid for solving Laplace operator, research works in this part of the
multigrid have been relatively inactive, comparing with others. Recently, there has
been some interest in using acceleration schemes or SOR in multigrid [11, 73, 76].
In [11], Brandt and Mikulinsky investigated using recombining multigrid iterants, or
“polynomial multigrid acceleration”, to solve a group of problems with non-simply
connected domains containing small “holes” or “islands”. They used the acceleration
on the coarse grids only, where the “island” cannot be presented directly; therefore it
adds normally only a little work to the usual multigrid cycle. In [73], Yavneh proposed
an over-relaxation for red-black Gauss-Seidel smoothing in multigrid for anisotropic
elliptic partial differential operators. He showed that relaxation parameters are quite
useful when the anisotropy is moderate and the same is true for isotropic operators
in higher dimensions. In [76], four smoothing methods were compared for a multigrid
method for the incompressible Navier-Stokes equations in general coordinates. Both
under- and over-relaxation SORs were tested. It was shown that the under-relaxation
parameter changes significantly as the problems change. For some problems, over-
relaxation had to be used instead of under-relaxation. Furthermore, it seems that, in all
the existing research works, relaxation parameters were used only when the convergence
of the usual Gauss-Seidel method is very slow, and that using relaxation parameters
for the model problem (2.1) has been carefully avoided.

In this chapter, we find the reasons why the multigrid V-cycle algorithm is not
sensitive to SOR acceleration for Laplace operator in the conventional sense. This is
because the first (restriction) half cycle is sensitive to under-relaxation only and the
second (interpolation) half cycle to over-relaxation only. Based on this discovery, we
present two acceleration schemes for the five-point red-black Gauss-Seidel smoother for
the multigrid method to solve the model problem. The schemes, embedded in a multi-
grid V-cycle algorithm, have been tested by several numerical experiments and results
in the acceleration of the average convergence rate by as much as 34% (see Table 2.6).
The cost of implementing the algorithm is negligible, which is remarkably contrary to
the remarks made in many monographs [6, 59]. Furthermore, the acceleration schemes
are very simple, one can just add several lines to the existing codes.

We briefly introduce the multigrid V-cycle algorithm and the red-black Gauss-
Seidel smoothing in Section 2.2. The relaxation analysis is conducted in Section 2.3.
In Section 2.4, we analyze the suitability and cost of accelerating the multigrid V-
cycle algorithm, and design two acceleration algorithms. In Section 2.5, we tested
our schemes against the usual red-black Gauss-Seidel smoother by several numerical
experiments. Some conclusions and remarks are given in Section 2.6.



2.2 Multigrid and Smoother

2.2.1 Multigrid V-cycle

We only give a brief sketch of a typical multigrid V-cycle algorithm. Detailed descrip-
tions of some more general multigrid algorithms can be found in [7] and [34]. [13] is
generally considered as an excellent introduction to multigrid.

Algorithm 2.2.1 One iteration of a usual multigrid V-cycle for solving the linear
system (1.1).

Program MG(f" u", h)

if (h = coarsest ) then u < (A?)~1fh

else

u < relaz(f,u,h)

— f— Ay
+— Rr ! R is a projection operator
+~0
— MG(r,v,2h)
+— u+ Pv !I' P is an interpolation operator
+ relax(f,u, h)

S S < I 03

IS

end if

One iteration of a simple multigrid V-cycle consists of smoothing the error using a
relaxation technique, solving an approximation to the smooth error equation on a
coarse grid, interpolating the error correction to the fine grid, and finally adding the
error correction into the approximation. An important aspect of the multigrid method
is that the coarse grid solution can be approximated by recursively using the multigrid
idea. That is, on the coarse grid, relaxation is performed to reduce high frequency
errors followed by the projection of a correction equation on yet a coarser grid, and so
on. Thus, the multigrid method requires a series of different (but similar) problems
to be solved on a hierarchy of grids with different meshsizes. A multigrid V-cycle
algorithm is the computational process that goes from the finest grid down to the
coarsest grid and back from the coarsest up to the finest. We summarize one iteration
of this procedure in Algorithm 2.2.1, where MG (f",u", f*) is a recursive procedure
and relaz(f,u,h) is a relaxation procedure (smoother). A common variation of the
V-cycle algorithm is to do two correction cycles at each level before returning to the
next higher level; this is the W-cycle algorithm. However, in this chapter, we restrict
our attention to the multigrid V(1,1)-cycle algorithm, which performs one relaxation
sweep before projecting the residual to the coarse grid and one after finishing the
coarse grid correction step. The W-cycle algorithm will be discussed in subsequent
chapters. Interested readers may also consult the listed references for more details on
other multigrid cycles [6, 13, 34, 69].

The well-behaved model problem may require a number of V-cycles to satisfy a
prescribed tolerance, denoted by e. Other problems such as the convection-diffusion



equation [23, 30, 31] (also see Chapters 6 and 7) require many V-cycles (or even diverge).
Therefore, the number of multigrid V-cycles, denoted by MYV, required to satisfy a
given € is an important factor of testing the computational efficiency of an algorithm
in experiments. The average residual reduction factor, or the contraction number, &,

_1
_ <||7“n||2> v
K =
lITol|2

’

is defined as

which is a more accurate convergence indicator. Here ||rg||2 is the initial discrete
residual in Ly norm, ||r,||2 is the final discrete residual.

The smoothing factor, defined below, is mainly used to predict the performance
of a multigrid algorithm in theory.

2.2.2 Five-Point Red-Black Gauss-Seidel Relaxation

For each internal grid point (4,7) in the discretized €, (1.1) is a system of equations of
the form
1 2
Uij = 4 [Ui—l,j + Uij—1 + Ui 1 + Uit + R fi,j] -

This means that, in each relaxation sweep, the value on a grid point is updated by
the average of its four immediate neighbor’s values. If we re-arrange the grids in an
alternative red and black order (see Figure 2.1), the relaxation can be carried out simul-
taneously on red points and black points independently. The red-black Gauss-Seidel
may therefore be considered as two Jacobi relaxations, each carried out on roughly half
of the grid points independently. This idea certainly benefits the parallel computers,
but it has been shown that, even on serial computers, when used in multigrid, the
red-black ordering is slightly superior to the natural ordering [24, p. 369]. This idea
(pattern relaxation) can be generalized to multiple colors immediately.

2.3 Relaxation Analysis

2.3.1 Conventional Analysis

Pattern relaxation methods, such as red-black Gauss-Seidel have been studied and
analyzed extensively in the context of multigrid algorithms [59]. It has been shown
that when the operator is essentially isotropic (the coefficient terms are equal, like the
Laplace operator), the most cost-effective known smoother (at least for low dimension)
is probably the point Gauss-Seidel relaxation in red-black ordering [72]. To avoid con-
fusing readers by using different notations and formulas with almost identical meanings,
we try to use formulas of [72] in this subsection and describe the smoothing analysis
here briefly. To this end, we need to normalize the Laplace operator in (2.1) slightly to

19 10
27 20x2  20y2’

so that the sum of the coeflicients is a unit.
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Figure 2.1: A 7 x 7 grid points marked in red-black ordering. Boundary points are not
included.

For Gauss-Seidel relaxation of five-point operators (in two dimensions) in red-black
ordering, Fourier components are not eigenfunctions, and two-dimensional subspaces
of error Fourier components are invariant [7, 39, 59, 69]. This means that the red-black
relaxation couples each Fourier component exp(ik - §) only with exp(ik - #), where

0= (61,0,), 0 = (61,62),

—r<0; <,

and
0; = 6; — sign(;), i=1,2. (2.3)

Here sign(0) is defined as —1. #; may take on discrete values only, however, for con-
venience in employing analytic techniques, we assume that 8; can take on any value in
(—m, 7] in the sequel.

An element 0; of mode 6 is called smooth if —7/2 < 6; < /2. Otherwise it is
rough. A Fourier mode 0 is called a high frequency if at least one of its elements 6; is
rough. Otherwise it is a low frequency.

We denote the subspace of high frequency 6’s by O, and the subspace of low
frequency 0’s by ©,,,. Corresponding to this definition, the coarse grid space is split
into an orthogonal sum of ;g and Oy, [59, p. 121].

Fourier modes that are high frequencies on the fine grid are not “visible” on the
coarse grid, in the sense that they can not be approximated on the immediate coarser
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grid that is assumed to provide the coarse-grid correction, since they alias with other
components. Hence they need to be smoothed efficiently by the relaxation on the fine
grid. Evidently, all pairs (6,) consist of either two high frequencies or one high and
one low frequencies [73]. Without loss of generality, we assume that @ is always a high
frequency.

The relaxation operator

which gives the amplitude of error Fourier components (exp(ik - ), exp(ik - 8))” after
one full relaxation sweep, when multiplied by their amplitudes before the sweep. It can
be obtained by multiplying the operators of two weighted-Jacobi half-sweeps performed
over the red points (whose index-sums are even) and the black points (whose index-
sums are odd). A sweep over the red points amplifies components of red-point errors
by the weighted-Jacobi symbol r,, without affecting the black-point errors, and vice
versa. Since red-point and black-point error components can be expressed as sums and
differences of the pairs of Fourier components, each half sweep operator can be written
as a two by two matrix [59, 73]

1

and _l ro(@)+1 —r

(0) +
2| ro(0)—1 r,(0)+1 —r,(0) +1 7 (0) +

1| ru(@)+1 r,(0) —
2 2

for the red-point and black-point relaxation half-sweeps, respectively. R is given by
their product:

Pl [ (1 (8) + 1) + (ru(B) = (1 = 10(8))  (ru(8) + 1)(1 () + 7, (B)* — 1 }
A1 (ro@)+ DA =ru(0) +ru(0)? =1 (ro(0) +1)2 + (ru(6) — (1 —ru,(9)) (' :
2.4
Here, the weighted Jacobi relaxation symbols are given by
ry(0) =1—w(l —e¢), ro(0) =1 —w(l+¢), (2.5)
where 1
¢ = —[cos(01) + cos(62)], (2.6)

2
and w is the relaxation parameter.

In relaxation operators for which the Fourier components are eigenfunctions (such
as the damped Jacobi relaxation for the present problem), R is a scalar, and the
smoothing factor [ is conventionally defined as the largest absolute value of R over the
space of high frequencies. i must give some information on the asymptotic reduction of
high frequency error components by the relaxation, given other parts of the multigrid
cycle are idealized. This motivation led to the following highly successful extension
to general R, introduced in [7] and [59, p. 91]: apply R and then annihilate the low
frequencies, while leaving the high frequencies unchanged, by projecting on the space
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of high frequencies. When R is a two by two matrix, the projection operator P, which
acts as the idealized coarse-grid operator, is given by

_ | @) 0
P_lO p(é)]’

where p = 0 for a low frequency argument and 1 otherwise. (Hence, our high frequency

2.7)

6 assumption implies p(f) = 1). The smoothing factor fi, when a single relaxation sweep
is performed between successive coarse-grid corrections, is conventionally defined by

fi = sup max p(PR), (2.8)
h

where p denotes spectral radius. The implication of the supremum is that 6 is allowed
any value in (—m,7]. This will henceforth be implicitly assumed, and sup; will be
omitted for brevity. Let

Ao = max p(PR),

eeelow
and
i"9" = max p(PR).
fi eéréhfihp( )
Hence
0o —low =high 2.9
fi = max (", ") (2.9)

in the conventional sense. The optimal relaxation parameter, Wopiimal, i the one that
minimizes fi, yielding fioptimai- It has been established [59, 69, 73] that figptima satisfies

_ _ 1
Hoptimal < Hw=1 = Z (210)

2.3.2 New Approach

The conventional smoothing analysis does not distinguish the different reduction effect
on the low and high frequencies by relaxation (only consider the reduction of high
frequency). In multigrid, low frequency and high frequency are affected differently by
high

restriction and interpolation. Therefore, it makes sense to consider po®

and p
separately, and only regard the conventional ji as a reference. To distinguish z/? and
©9h from the conventional context, we call them the reduction factors of low and high
frequencies respectively. Since these reduction factors are obviously a function of w, we
will make this relation clear in the following sections of this chapter.

For 0 € O}, p(f) vanishes as noted, leaving

low(

= . 2.11
P (w) = max |ry| (2.11)

low
Now, 6 € Oy,, implies by (2.6) that ¢ can take on any value between 0 (when all
components of § equal 7), and 1 (when all components of 6 equal zero). Hence (2.4),
(2.5) and (2.11) yield after rearrangement

1
w) = = max |w?e(l +¢) — 2w(1 +¢) +2|. (2.12)

low
( c€0,1]
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In order to find the maximum of the right-hand side of (2.12) over ¢ in the relevant
range, we must check the end-points, ¢ = 0 and ¢ = 1, and the point at which the
derivative with respect to ¢ vanishes. Setting ¢ = 0 yields |w — 1|. This implies that

0<w<2. (2.13)

Setting ¢ = 1 yields (w — 1)?, which is smaller than |w — 1] in this range of w. Equating
the derivative with respect to ¢ to zero yields after rearrangement

1
plo (w) = g|w2 + 4w — 4 (2.14)
t

& 2—w

‘T T
This ¢ is in [0, 1] so long as

2

SSws2 (2.15)

We do not want to make the assumption to restrict w € (1,2) as Yavneh did and
reached an over-relaxation scheme for anisotropic operators in [73]. Instead, we try to
find an wyy, that minimizes the low frequency errors. From (2.10) and (2.14), we have
the following inequality

1 1
plo (w) = §|w2 tdw—d< 2= plew (1). (2.16)
Solving inequality in the center of (2.16) gives us a favorable range of w

VT-2<w<, (2.17)

which reduces the low frequency errors better than w = 1. Combining (2.13), (2.15)
and (2.17) gives the relevant range of w favoring the reduction of low frequency errors

2
3 S wow <L (2.18)

Hence, we have the following proposition:

Proposition 2.3.1 Under-relazation with w € [%, 1) accelerates the reduction of low
frequency errors.

In the range of (2.18), we find that

Wiow = 2(V2 — 1) & 0.8284271

low —
optimal —

of high frequency errors, one step coarse grid correction could remove all low frequency

minimizes p'°%, giving p 0, ideally. This suggests that, without the presence
errors.

For 0 € Opjgn, P is the identity matrix, so PR = R, whose eigenvalues are given
by [73]

; 1
A?,léqh(w) =3 {Tll + oy £ \/(7“11 —r92)% +4r1ara1 | - (2.19)
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Substitution from (2.4) and (2.5) yields

ritre = w'cd —2w-—1),
T =T = we(2—w),
4riore; = 02w4(02 —1).

It follows that

; 1
high
>‘1,l2g (w) =5

5 Wi —2w—-1) £ wc\/w202 —4(w-1)|. (2.20)

Furthermore, 6 € ©p;y, implies that at least one of 6’s components is high frequency
(by definition), but also that at least one of its components is low frequency, otherwise
6 would be a low frequency, by (2.3), in contradiction to our assumption. Hence, by
(2.6), the relevant range of ¢ in (2.20) is given by

ol <

N | —

This bound is achieved when all of #’s components vanish, except that corresponds
to & = —m/2. Note in (2.20) that )\?igh(c) = Agigh(—c), so it suffices to consider
nonnegative values of ¢, and this will be assumed henceforth for convenience.

We then define Dy(c) = wc® — 4(w — 1). We find that if D, < 0, \/’{" are
complex, and [M9"| = |\}9"| = |, — 1|, independent of ¢. This is also hold for D, = 0.
Moreover, w?c? — 2(w — 1) > 0, if D,(c) > 0. Hence, only the “+” sign in front of the
square root in (2.20) (corresponding to A?igh) needs to be considered when seeking the
root that is larger in absolute value [73]. Thus we only consider p*9"(w) = )\}figh(w).
Moreover, in this case the corresponding root is evidently a monotonically increasing
function of ¢ [73, p. 188], so ¢ reaches its upper bound 1/2. We then define

: 1
,uthh(u)) _ g w2 — 8((4) _ 1) + wr/w? — 16(w — 1)

As in the case of u!°“(w), we find that p9"(1) = 1/4, which agrees with (2.10).
Furthermore, by solving the inequality x"9"(w) < p9"(1) for w in the relevant range

. (2.21)

(0,2), we have an interval which favors the reduction of high frequency errors

)
l<w< i (2.22)

Proposition 2.3.2 Over-relazation with w € (1, %) accelerates the reduction of high
frequency errors.

Taking the derivative with respect to w in (2.21), we find a critical point
Whigh = 4(2 — V/3) = 1.0717968,
at which z"9"(w) reaches its minimum

high  — 7 _ 4/3 ~ 0.0717968.

u’optimal
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Figure 2.2: The graphs of ;9" (w) and p'*(w).

This choice of w minimizes the high frequency errors solely.

For a better understanding the behaviors of ;9" (w) and u'°"(w), we plot their
graphs against w € (0,2) (see Figure 2.2).

It is clear from the above analysis and from Figure 2.2 that we are in a dilemma to
choose an optimal relaxation parameter. Under-relaxation reduces the low frequencies,
but excites the high frequencies. On the other hand, over-relaxation smoothes the high
frequencies, but amplifies the low frequencies. There may exist two solutions. One is to
use two different parameters, which will be referred to as two-way acceleration. Another
is to accelerate one half cycle only, which will be referred to as one-way acceleration.

This analysis shows the reason why the early applications of SOR in multigrid
for Laplace operator could not yield satisfactory results. They failed to distinguish
low and high frequencies, but treated them equally by using SOR as in the usual
iterative methods on fixed grids. Thus any parameter may accelerate one half cycle,
but deteriorates another half, yields virtually no acceleration. Moreover, the above
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analysis also implies that relaxation parameter should be used after the low and high
frequencies are distinguished. In other words, SOR should be avoided on the finest grid
of the first half cycle, i.e., before the application of restriction operator.

2.4 Analysis and Design of Algorithms

2.4.1 Suitability Analysis

We have removed the first finest grid from our candidate list for applying SOR. What
about other grids?

From Figure 2.2, we note that the choice of a good parameter will be a compromise
between minimization of high and low frequency errors. From w = 1 to w = wjpw,
1'% (w) decreases monotonically while ;"9"(w) increases monotonically. This suggests
that the employment of an under-relaxation parameter benefits mainly the reduction
of low frequency errors. This analysis basically agrees with conclusions of Stiiben
and Trottenberg [59, p. 128] that “the reduction of low frequencies is improved by a
parameter, the reduction of high frequencies (and by that the smoothing factor) usually
becomes even worse”. We point out that Stiiben and Trottenberg’s smoothing factor
is the conventional one i, which considers high frequencies only.

From Figure 2.2, we find ji10(w) and ppign(w) are smooth for w € (wiow, Whign)-
By carefully choosing a parameter, we may be able to reduce the low frequencies and
restrict the high frequencies, or to smooth the high frequencies and control the low
frequencies, at the same time. From Figure 2.2, it is obvious that w; € [wWiew, 1) and
wy € (lawhigh]'

Hence, a parameter may not be used on the finest level of the first half V-cycle,
where the main effort is to smooth the high frequency errors. The employment of a
parameter might reduce the effect of smoothing, and the computational cost of doing
some work on the finest grid is always expensive. On the other hand, a parameter may
not be used on the very coarse levels. On those levels, the magnitudes of the residuals
are already small and an acceleration helps little. Therefore, an under-relaxation pa-
rameter should be used on the levels where the the major low frequencies are removed
and the high frequencies are hidden. These are the second and the third finest levels of
the first (restriction) half cycle, as the restriction operator hides high frequencies. An
over-relaxation parameter should be used on the levels where the major high frequencies
emerge. These are the first and the second finest levels of the second (interpolation)
half cycle, as the interpolation operator excites the high frequencies [13, p. 73].

2.4.2 Cost Estimate

The main computational cost of a multigrid V-cycle is on the finest level. It is usual to
measure the computational cost in terms of the work unit, defined to be the computa-
tional cost of a relaxation sweep on the finest level. The work on each level is roughly
proportional to the number of unknowns. The work units for a V-cycle algorithm is
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about 2.6667 [24, p. 366]. The inter-grid transferring adds additional 15 — 30% to this
amount for a total of 3.4667 work units. One relaxation on the second level of a half
cycle costs about 0.25 work units.

The computation of the discrete error in Lo norm requires about three floating-
point operations. The five-point Gauss-Seidel has five floating-point operations, a pa-
rameter adds two more, if the parameter is stored and the code is modified properly.
Hence one-way acceleration on the second finest level costs 0.0625 more work units
than the usual Gauss-Seidel. This is about 1.8% of a V-cycle. One-way acceleration
on the finest level is about 7.2% of a V-cycle. Two-way acceleration on the same level
doubles the cost. For acceleration on the second finest level, the cost is negligible for
most practical applications.

On parallel machines, the acceleration involve only local operations and no com-
munication with other processors is needed. The relative cost of the acceleration is
even lower.

2.4.3 Design of Algorithms

Based on our foregoing analyses, we propose two acceleration schemes. The one-way ac-
celeration scheme is to embed an under-relaxation procedure, with a parameter wy, < 1,
in the five-point red-black Gauss-Seidel, on the second finest level of the first (restric-
tion) half V-cycles. The two-way acceleration scheme, based on the one-way accelera-
tion scheme, is to embed another over-relaxation procedure, with a parameter wo > 1,
on the second finest level of the second (interpolation) half V-cycles.

The two-way acceleration multigrid V-cycle algorithm is given by Algorithm 2.4.1.
The one-way acceleration multigrid V-cycle algorithm can be viewed as choosing wy =1
in the two-way acceleration algorithm. The usual (unaccelerated) multigrid V-cycle can
be viewed as choosing w; = wy = 1.

Algorithm 2.4.1 One iteration of a modified multigrid V-cycle algorithm with two-
way acceleration for solving the linear system (1.1).

Program MG(f" u", h)
if (h = coarsest ) then u <« A_lhfh
else
u < relaz(f,u,h)
if (h = second finest and first half cycle) then
u 4w+ (1 —wiu ! one-way acceleration
else
U — U ! no acceleration

<
T
~
[
b
S

+— Rr ! R is a projection operator
+~0
— MG(r,v,2h)

S <
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u + u+ Pv !' P is an interpolation operator
u < relaz(f,u,h)
if (h = second finest and second half cycle) then

U — wot + (1 —wo)u ! two-way acceleration
else

U U ! no acceleration
end if

end if

A two parameter SOR method was first investigated by Golub and de Pillis, they used
singular value decomposition (SVD) to improve SOR for the case that the coefficient
matrix is symmetric [22]. The determination of the optimal parameters w;, wy for
their mixed strategy is still an open question. Their results have been generalized
by Moussavi, who also considered a special nonsymmetric case [43]. More recently,
Prager considered using two parameter iterative method to solve algebraic systems of
domain decomposition type [45]. In multigrid, Stiiben and Trottenberg mentioned that
different parameters may be used for different Jacobi w-relaxation steps, when more
than one such relaxation steps are employed [59, p. 41]. Since Jacobi w-relaxation is not
efficient comparing with red-black relaxations, their remark was primarily intended for
the completion of their discussions. We are not aware of any practical attempt to use
two parameter SOR in multigrid in the form of what we proposed here for accelerating
the reduction of the high and the low frequency errors separately.

Our simple single relaxation sweep analysis in Section 2.3.2 only gives a rough
prediction of the range (upper and lower bounds) of the relaxation parameters. More
sophisticated analytic method may be employed to obtain more accurate estimate of
the optimal parameters. However, for a particular operator, the optimal parameters are
fixed (independent of meshsize but dependent on a particular level) and therefore may
be found by numerical methods. For our model problem (2.1), we find that w; = 0.9
and we = 1.06 are optimal choices for our one-way and two-way acceleration schemes
respectively. Although they may not be the best for every problem (any numerical
method tolerates some variations), our numerical experiments show that they are in
a small neighborhood of the best parameters and yield best results for MV and very
near-best for x for all of our test problems.

2.5 Numerical Experiments

We first define some notations. In addition to h, €, MV, k, w1 and wo defined above,
we define N = 1/h and (N —1)? is the number of unknowns on the finest grid. We also
define Sxqy and Sy as the reduction rates in MV and x respectively, for a particular
acceleration scheme, with respect to the unaccelerated red-black Gauss-Seidel multigrid.

We experiment our algorithm by several test problems. For simplicity, the do-
main is the unit square for all tests. The definition of f(z,y) and g(z,y) are referred
to the model problem (2.1) in the Section 2.1, here g(z,y) is also the exact solution.
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The original multigrid V-cycle Fortran 77 control routine, which uses a half-injection
operator and a bi-linear interpolation operator, was provided by Scott Fulton at Clark-
son University. The five-point red-black Gauss-Seidel with or without acceleration is
used as the smoother wherever applicable. Unless otherwise indicated explicitly, all
experiments are done on a SUN SPARCstation using double precision. All tests use
the initial guess u(x,y) = 0 except on the boundary it takes the prescribed values of
g(z,y). Different meshsizes are employed. The program set an upper bound of 20 as
the maximum number of V-cycles allowed. Therefore the cases that MVs equal 21
should be considered as equivalent to very slow convergence or divergence.

Test Problem 2.5.1

{ fly) = —a2(1—22)(2 - 12y%) — y2(1 — y?)(2 — 122%);
g(z,y) = 2?1 —=z)(1—y?).

{f(w,y) = —(2+y?) exp(ay);
g(w,y) = exp(zy).

Test Problem 2.5.3

{f(:z:,y) = 52cos(4x + 6y);
g(z,y) = cos(4zx + 6y).

To show the overall behavior of MV and x as functions of w; and wy, we experiment Test
Problems 2.5.1 to 2.5.3 by using our one-way acceleration algorithm for all w; € (0,2)
(fixing wy = 1). We also test the case in which a parameter is placed in the second
(interpolation) half cycles for all wy € (0,2) (fixing w; = 1). We compute, for all
different w; € (0,2) and wp € (0,2), MV (multigrid V-cycle or iteration number)
needed to achieve the prescribed tolerance e = 10~% and  (contraction number). For
all three problems, we use N = 128. The acceleration or SOR algorithms are embedded
on different levels (from the first to the third finest) of the multigrid V-cycles.

Figures 2.3 to 2.5 show the change of MV and &, as functions of wy or wy, for Test
Problems 2.5.1 to 2.5.3. For each figure, (a) shows MV against w; (with we = 1), (b)
shows k against wy (with wy = 1), (¢) shows MV against wy (with wy; = 1), (d) shows &
against wy (with w; = 1). All tests show that under-relaxation in the first (restriction)
half cycles with w; in some range achieves better convergence than no acceleration,
while over-relaxation in the first (restriction) half cycles deteriorates the convergence
(see subfigures (a) and (b) in each figure). The figures also show that the acceleration
on the second finest level is better than on the first finest level of the first (restriction)
half cycle, which support our analysis made in Section 2.4 that acceleration is more
efficient after restriction hides high frequency errors. Similarly, over-relaxation in the
second (interpolation) half cycles with wy in some range accelerates the convergence,
while under-relaxation usually makes it worse. We also note that acceleration on the
first finest level achieves slightly better results than on the second finest level of the
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Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N MY MY Sy MY Sy
32 10 10 0.00% 10 0.00%
64 11 10 9.09% 10 9.09%
128 11 10 9.09% 10 9.09%
256 11 10 9.09% 10 9.09%
512 12 10 16.67% 10 16.67%

Table 2.1: Comparison of the multigrid V(1,1)-cycle number for Test Problem 2.5.1.

second half (interpolation) cycle. This also supports our analysis that acceleration is
more efficient on the second (interpolation) half cycle after interpolation excites the
high frequency errors.

Next, we test MV and «k for the two-way acceleration scheme by fixing w; = 0.9
and letting wo change in (0,2). Test Problem 1 is not sensitive to this scheme (see
Tables 2.1 and 2.2 below), so we only record the results for Test Problems 2.5.2 and
2.5.3. We use N = 128, ¢ = 107 and 30 as the maximum V-cycle number allowed.
Figure 2.6 shows the tested results. For Test Problem 2, (a) shows MV against wo,
(b) shows k against wsy; for Test Problem 2.5.3, (c¢) shows MV against ws, (d) shows
k against wo. It is clear from Figure 2.6 that the two-way acceleration accelerates the
convergence. Subfigures (a) and (b) of Figure 2.6 show that one additional V-cycle is
reduced by employing interpolation acceleration after restriction acceleration.

We further compare the one- and two-way acceleration algorithms with the un-
accelerated red-black Gauss-Seidel in multigrid, for all three test problems, for various
N, with a fixed € = 107°. Tables 2.1 to 2.6 detail the comparisons. We note that, in
all test problems, the employment of our chosen parameters helps reduce the multigrid
V(1,1)-cycles by one to three, which amounts to as much as 18% reduction in iteration.
The reduction of contraction number is even more significant, up to 34%. These data
clearly demonstrate that the use of suitable parameters does pay for the cost. We also
show that the acceleration parameters are independent of the discretization parameter
N.

It is interesting to note that the acceleration schemes do not have much effect on
Test Problem 2.5.1, especially the two-way acceleration which yields no improvement
over the one-way acceleration. This may be due to the fact that the solution of Test
Problem 2.5.1 is a polynomial, which has been approximated very well by the unac-
celerated algorithm. Its MVs are smaller than those of Test Problems 2.5.2 and 2.5.3.
This suggests that our acceleration schemes be more effective when the convergence of
the usual multigrid V(1,1)-cycle algorithm is slow. This fact is also demonstrated by
the decrease of the meshsize which increases the number of multigrid V(1,1)-cycles due
to the fact that the magnitude of the residual norm increases as the meshsize decreases.
The acceleration rate increases as the number of iteration increases.
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Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N K K S K Sk
32 0.112 0.102 8.93% 0.103 8.04%
64 0.127 0.108 14.96% 0.108 14.96%
128 0.136 0.110 19.12% 0.110 19.12%
256 0.143 0.111 23.38% 0.111 23.38%
512 0.150 0.112 25.33% 0.112 25.33%

Table 2.2: Comparison of the contraction number for Test Problem 2.5.1.

Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N MV MV Smy MV Smy
32 13 12 7.69% 12 7.69%
64 14 13 7.14% 12 12.29%
128 15 13 13.33% 12 20.00%
256 15 14 6.67% 13 13.33%
512 16 14 12.50% 13 18.75%

Table 2.3: Comparison of the multigrid V(1,1)-cycle number for Test Problem 2.5.2.

Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N K K S K S
32 0.116 0.094 18.97% 0.088 24.14%
64 0.124 0.098 24.19% 0.086 30.65%
128 0.130 0.099 23.85% 0.087 33.08%
256 0.131 0.102 22.14% 0.087 33.59%
512 0.135 0.103 23.70% 0.089 34.00%

Table 2.4: Comparison of the contraction number for Test Problem 2.5.2.

Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N MV MV Sy MV Sy
32 12 11 8.33% 11 8.33%
64 13 12 7.69% 12 7.69%
128 14 13 7.14% 12 14.29%
256 15 13 13.33% 13 13.33%
512 16 14 12.50% 13 18.75%

Table 2.5: Comparison of the multigrid V(1,1)-cycle number for Test Problem 2.5.3.
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Gauss-Seidel | One-Way Acceleration | Two-Way Acceleration
N K K S K S
32 0.104 0.086 17.31% 0.082 21.15%
64 0.117 0.093 20.51% 0.088 24.79%
128 0.125 0.098 21.60% 0.087 30.40%
256 0.131 0.099 24.43% 0.087 33.59%
512 0.134 0.102 23.88% 0.088 34.33%

Table 2.6: Comparison of the contraction number for Test Problem 2.5.3.

2.6 Conclusions and Remarks

We have proposed a new approach to the relaxation analysis for the five-point red-black
Gauss-Seidel smoothing in multigrid method for two dimensional Poisson equations.
We have shown that under-relaxation is effective for the restriction half cycle and
over-relaxation for the interpolation half cycle. Two acceleration schemes based on
the these observations have been designed, recorded as much as 34% acceleration in
the convergence rate and 18% reduction in iteration (MYV). The additional cost of
implementing the acceleration schemes is negligible. The result corrects a long-time
misunderstanding in multigrid that relaxation parameter for Gauss-Seidel method used
as a smoother in multigrid for Laplace operator does not pay. Although the 34%
acceleration in convergence rate still may not be substantial enough to attract practical
use. It offers a new way of searching for better SOR (both under- and over-relaxation)
smoothers in multigrid.

It may be possible that even better algorithms may come up for our model problem
as the result of this research. Analytical optimal (but may not be the best for all
problems in practice) parameters may be obtained by some analytic means and may
further accelerate the convergence a little bit for specific problems. As we stated above,
the best parameters should lie in a small neighborhood of what we suggested, and the
best parameters should achieve the same results so long as the reduction of MV is
concerned.

Although the analysis in Section 2.3 is based on the five-point operators, the idea
of using different treatments for the high and the low frequencies is independent of any
particular operators and relaxation methods. It is in fact an intrinsic property of general
multigrid method. Therefore, we expect that similar one- or two-way acceleration
algorithms can be developed for other isotropic and anisotropic elliptic operators. For
the cases with slow convergence, our idea will provide a good means for acceleration.
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(a): MV, 1st half V-cycle

(b): Kappa, 1st half V-cycle
T : 0.4 -

0.3

0.2

8 0.1
0 1 2 0 1 2

(c): MV, 2nd half V-cycle (d): Kappa, 2nd half V-cycle
0.4

0.3

0.2

8 0.1

Figure 2.3: Different acceleration schemes for Test Problem 2.5.1. N = 128, ¢ = 10~ 8.
Solid line is on the finest level, dashed line on the second finest level, dotted line on the
third level. (a): MV vs w; in the first half cycle; (b): x vs w; in the first half cycle;
(c): MV vs wy in the second half cycle; (d): x vs wo in the second half cycle.
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(a): MV, 1st half V-cycle (b): Kappa, 1st half V-cycle

20 0.3
18 0.25
0.2
16
0.15
14 0.1 v
12 0.05
0 2 0 1 2
(d): Kappa, 2nd half V-cycle
20 0.3
18- 0.25
16 02|
14 0.15
12 : 0.1
0 1 2 0 1 2

Figure 2.4: Different acceleration schemes for Test Problem 2.5.2. N = 128, ¢ = 10 8.
Solid line is on the finest level, dashed line on the second finest level, dotted line on the
third level. (a): MV vs w; in the first half cycle; (b): x vs w; in the first half cycle;
(c): MV vs wy in the second half cycle; (d): x vs wo in the second half cycle.
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(b): Kappa, 1st half V-cycle

(a): MV, 1st half V-cycle

20 0.3
18 0.25
0.2
16
0.15
14 0.1
12 0.05
0 2 0 1 2
(d): Kappa, 2nd half V-cycle
20 I 0.3
I
18 ' 0.25
0.21
16
0.15
14 0.1
12 0.05
0 1 2 0 1 2

Figure 2.5: Different acceleration schemes for Test Problem 2.5.3. N = 128, ¢ = 10~ 8.
Solid line is on the finest level, dashed line on the second finest level, dotted line on the
third level. (a): MV vs w; in the first half cycle; (b): x vs w; in the first half cycle;
(c): MV vs wy in the second half cycle; (d): x vs wo in the second half cycle.
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(a): MV for Problem 2 (b): Kappa for Problem 2

22

20 1

18 -

16 -

14 "

12 '
0

Figure 2.6: Two way acceleration scheme for Test Problems 2.5.2. and 2.5.3. N = 128
and € = 107, Solid line is on the finest level, dashed line on the second finest level of
the second (interpolation) half cycle. (a): MV vs wo for Test Problem 2.5.2. (b): & vs
weo for Test Problem 2.5.2. (c): MV vs wy for Test Problem 2.5.3. (d): & vs wo for Test
Problem 2.5.3.
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Chapter 3

Multigrid Residual Scaling
Techniques

3.1 Introduction

In Appendix A, we developed a heuristic residual analysis to obtain an optimal resid-
ual injection parameter for the five-point RBGS multigrid method (also see [78]). The
resulting multigrid method with the optimal residual injection operator achieves conver-
gence rate even better than the two-way acceleration scheme introduced in [77]. Both
methods give near-optimal performance as claimed in Appendix A and in [78]. The op-
timal residual injection multigrid method results in about 40% reduction in CPU time
with respect to the standard multigrid method with full-weighting (see Appendix A
and [78] for numerical results).

The technique used in Appendix A and in [78] belongs to a more general cate-
gory of multigrid acceleration techniques which we will refer to as the residual scaling
techniques. Residual scaling techniques are concerned with the techniques that op-
timize the scale of the residuals which are projected to the coarse grid to form the
coarse-grid-correction subproblem. Residual scaling techniques have been used by sev-
eral investigators to accelerate the convergence of the standard multigrid methods in a
variety of applications [9, 35, 42, 46, 62, 78]. They have been given different names by
different authors in different contexts. It was termed as the “over-weighted residual”
technique by Brandt and Yavneh [9] and was used to accelerate the convergence of the
multigrid method for solving the convection-diffusion equations with high Reynolds
numbers. Mika and Vanék [42, 62] called it the “over-correction” technique and em-
ployed it in developing an algebraic multigrid method. Reusken [46] named it the
“steplength optimization” technique and used it to accelerate the convergence of both
linear and nonlinear multigrid methods. We called it an “under-injection” residual
transfer operator [78]. In this chapter, we will prove that, under certain conditions, all
of these techniques are mathematically equivalent, and we therefore give them a unified
terminology as the residual scaling techniques.

The minimal residual smoothing techniques proposed by us in Chapter 4 and [80]
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may also be considered as an (indirect) residual scaling techniques.

This chapter is organized as follows: In Section 3.2 the residual scaling techniques
are discussed and analyzed with respect to the two-level method. We prove the equiva-
lence of two special examples of the residual scaling techniques and generalize the results
to prove the mathematical equivalence of the pre-scaling acceleration techniques and
the post-scaling acceleration techniques. Conclusions and some remarks are given in
Section 3.3.

Practical applications of the residual scaling techniques and some numerical ex-
periments are discussed in Chapters 6 and 7, Appendix A and [80].

3.2 Analysis of Residual Scaling Techniques

The rate of convergence of the standard multigrid algorithm is strongly dependent on
the properties of the vector which is the correction of the error obtained on the coarse
grid. This correction usually approximates the error of the solution very well in the
sense of its “progress”, but not in the sense of its “size” [42]. Hence, standard multigrid
algorithm may be accelerated when we multiply the correction vector by a suitable
scalar factor. Several acceleration schemes based on this idea have been designed and
employed in a number of applications [35, 42, 46, 62].

Let A" be the coarse grid operator on Q7. A" must be nonsingular, but its exact
nature is not important in our current discussion. It may be an Q¥ version of A" or it
may be constructed by using the Galerkin technique [13].

Let (-,-)s and (-,-)i denote the usual inner products on Q" and Q| respectively.
We also denote |- |, = (-, -)}1/2 and |- |g = (-, )%2 the associated Euclidean norms.
Definition 3.2.1 The energetic inner product with respect to a symmetric and positive
definite matriz Z on Q" is defined as

<'7'>Z = (Za)h (31)
Furthermore, we define the corresponding energy norm with respect to Z as
1/2
I-llz = )77 (3.2)

The energetic inner product and the corresponding energy norm on Q may be defined
similarly.

Remark 3.2.2 If Z = [ (the identity matriz), then || - || reduces to the Euclidean

norm.

Let there be a regular splitting of A" and let M and N be nonsingular square
matrices on Q" satisfying the consistency condition

M+ NAh =T, (3.3)

where I is the identity matrix on Q"
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Definition 3.2.3 The smoothing iterative method is defined as of the form

S(v") = Mo" + N fh, (3.4)
where v" € Q" For any integer v > 1, we recursively define

S”(v") = S(SVL(W")). (3.5)
For notational convenience, we denote

SO(vh) = I(vh) = o",
where I(-) is the identity operator.

M is sometimes called the iteration matrix of the smoothing iterative method
(3.4).

Definition 3.2.4 Let v > 0 be any integer and Q(z) be a polynomial of degree v — 1
QV(III) :ZEV_1+ZEV_2+"'-|—ZE+1,

we define the matriz polynomial of degree v — 1 with respect to the iteration matriz M
as
Q' (M)=M""14+M" 24 ...+ M+1. (3.6)

Lemma 3.2.5 For any integer v > 0, the following identity is valid
Q" (M) = MQ¥ (M) + 1. (3.7)
Proof. The proof is trivial. O
Remark 3.2.6 The consistency condition (3.3) implies
S(u") = u”, (3.8)
where u" € QP is the exact solution of the linear system (1.1) (on the fine grid), i.e.
uh = Ah~ fh,

Lemma 3.2.7 For any integer v > 0 and any approzimate solution v € Q" we have
the following identity
S (v") = MY + QY (M)N fh. (3.9)

Proof. We prove Lemma 3.2.7 by induction on the integer v.
The identity (3.9) obviously holds for v = 1 with Q(M) = I by Definition 3.2.3.
Suppose the Lemma is true for v.
From Definition 3.2.3 and Lemma 3.2.5, we have
S (h) = S(87(v") by (3.5)
= S(MYv" + QV(M)N f") by induction assumption
= M[M"v" +Q"(M)NfM + Nfh by (3.4)
= Mvtlhwh 4+ [MQY(M) + I|N f"
= MV*lh 4 QUL (M)N f" by Lemma 3.2.5.
This completes the proof of Lemma 3.2.7. O
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Definition 3.2.8 Given an approzimate solution v" € Q", we define the error as
e = el (vh) = uh — v (3.10)
Definition 3.2.9 Given an approzimate solution v" € Q", we define the residual as
rh = fh — ARyl (3.11)

Remark 3.2.10 It is clear that e® € Q" and " € Q. We also have the following

error (residual) equation

Ahel = rh, (3.12)

Eq. (3.12) is the basis for the coarse grid equation.
Components of the error which are not effectively removable by smoothing, i.e.

will be called smooth components. We try to represent these smooth components in
QO using the interpolation operator P. The error e” € Q" can be represented in QF if
there exists some e/’ € Qf such that

e = pell. (3.13)

Eq. (3.13) means that the error e” lies entirely in the range of the interpolation oper-
ator P. This requirement is usually not satisfied in reality, otherwise solving the Qf
error (residual) equation exactly and doing coarse-grid-correction would give the exact
solution [13].

3.2.1 Standard Two-Level Method

One iteration of the standard two-level method is as follows:

Algorithm 3.2.11 One Iteration of the Standard Two-level Algorithm.

Step 0: Given an initial guess vf.

Step 1: Pre-smoothing o = S (vf).
Step 2: Compute rh = fh — Abyh
Step 3: Restrict r = Rrh.

Step 4: Solve el = AH 1t
Step 5: Correct U% = v{l + Pef
Step 6: Post-smoothing ~ vh = S2(v})

Lemma 3.2.12 If the correction step in Algorithm 3.2.11 is
v = ol 4+ el (3.14)
then the following equality holds

Sz (uhy = §v2(uh) + M2 Pet. (3.15)
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Proof. From Lemma 3.2.7 and the definition of the smoothing operator (3.4) we have

Svz(vh) = MYzl 4+ Qv:(M)N f" by (3.9)
= M¥2(v} + Pef) + Qv2(M)N f" by (3.14)

MY2olt + M2 Pe + QY2 (M)N fh

Sv2(vl) + Mv2 Pel by (3.9).

This proves Lemma 3.2.12. O

Corollary 3.2.13 For Algorithm 3.2.11, the following equality holds for any integer
vy >0
vl = 82 (vf) + M2 Pell. (3.16)

Lemma 3.2.14 Let v} € Q" be an approzimate solution to u" and vo > 0 be an integer,
then
M72eh (vl = e (82 (1)), (3.17)

Proof. From Definition 3.2.8 and Remark 3.2.6, we have

Mvzeh(ol) = M2 (ul —of) by (3.10)
— MUl 4 QU (M)N ff — M7l — QU (M)N f*
— 5% (uh) - S (ul) by (3.9)
= ul — 5V (vf) by (3.8)
el (Sv2(vlh)) by (3.10).
This proves Lemma 3.2.14. O

From Definition 3.2.8 and Corollary 3.2.13, we have the following lemma immedi-
ately:

Lemma 3.2.15 For any integer v > 0, the following identity is valid
e (vh) = e (872 (v})) — M2 Pel, (3.18)

From Lemma 3.2.14 and Lemma 3.2.15, we have the following lemma:

Lemma 3.2.16 For any integer v > 0, the following identity is valid
e (vl = Mv2[eh (vh) — Pel). (3.19)

The quality of the coarse-grid-correction of Algorithm 3.2.11 may be measured by the
ratio of the errors in some norm before and after the coarse-grid-correction.

Definition 3.2.17 Let Z be a symmetric and positive definite matriz, we define the

convergence rate T as:
_ e wh)lz
- 7
e (v$)1 2

where || - ||z is the energy norm with respect to Z.

(3.20)
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3.2.2 Over-Correction Technique

The convergence rate 7 of the standard two-level method may be accelerated by choos-
ing a scalar a such that the scale of the correction is optimized, i.e., in Algorithm 3.2.11,
we replace the correction Step 5 by

vh = ol 4 apell (3.21)
and « is chosen so that the convergence rate 7 in (3.20) is minimized.

Remark 3.2.18 Since vf! and vy are supposed to be given and u” is fized (the unknown
evact solution), minimizing T is equivalent to minimizing ||e"(v?)| 2 in (3.20).

Lemma 3.2.19 The minimization problems (3.20) and (3.21) is equivalent to the fol-
lowing minimization problem

| M2 [l (v]) — aPel]||; = min | M*2[e" (v}) — aPe]| 4, (3.22)
acR
where R is the set of all real numbers.

Proof. Since
M"2[aPel] = aM¥2 Pell,

The proof follows from Lemma 3.2.16 with Pe! being replaced by aPef’ and Re-
mark 3.2.18. O

Lemma 3.2.20 If Z is symmetric and positive definite, the minimization problem
(8.22) is solved by

(M2eh (o}), M2 Pefl) 5
127> P

for Mv2Pel £ 0. (3.23)

o =

If M2 Pefl =0, an arbitrary o fulfills the minimization condition (3.22).

Proof. If M”2Pe! = 0, the minimization condition (3.22) is obviously satisfied with
an arbitrary o.

Let M"2Pefl #£0 and let
fl@) = ||M™[e"(v}) — aPe]|5. (3.24)

From Definition 3.2.1 we have

fl@) = (M”2["(v}) — apPe], M2 [" (o) — aPe]) 4
= & (M Pe, M2 Pelly, — 2a(M¥2e" (vl), M2 Pell) ,
+(MV2el (ol M2 (1)) 5. (3.25)

f(@) is minimized if and only if @ satisfy the equation

df(@) _
~a =0 (3.26)
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From (3.25) and (3.26), together with the assumption that M"2Pef! # 0, we obtain
the unique minimizer

(M2 (o), M2 Pl
(Mv2Pefl Mve2 Pell) ,
(MV2el (v}), M2 Pell) ,

[M1v2 Pet|7,

We prove Lemma 3.2.20 by virtue of Definition 3.2.1 (3.2). 0
Remark 3.2.21 M"2Pef =0 implies that no coarse-grid-correction is needed.

Although the minimization condition (3.22) is solved by Lemma 3.2.20, the scaling
parameter « can not be computed from formula (3.23) for an arbitrary matrix Z, it
may be computed in a special case when Z is chosen to be A" and A" is symmetric
and positive definite. The last condition puts a severe limitation on the application of
this kind of acceleration technique to practical problems.

Lemma 3.2.22 Suppose that Z = A" and A" is symmetric and positive definite, for
any integer vo > 0, let

e" = Mv2Pell, (3.28)
o= §”2(uf). (3.29)
The optimal over-correction factor a may be computed from

0" = e,

(Aéha éh)h
(" = A"} &),
= BB . (3.30)
Ah
Proof. We want to show
(Mv2el (vh), M2 Petty ju = (f1 — AMol,Eh),,. (3.31)
By Definitions 3.2.1, 3.2.8 and Lemma 3.2.14 we have
(M2t (), M2 Pel) yn - = (Ah[M’” (o)), M2 Pe'), by (3.1)
= (AMe" (3”2( ?))],M”zPeH)h by (3.17)
= (AMe" ( 0] e by (3.28), (3.29)
(f" — Atal ety
by (3.11) and (3.12). O

Note that all the quantities in equations (3.28) and (3.29) are computable and the
optimal over-correction parameter v can therefore be computed from formula (3.30).
The modified two-level method with the over-correction technique is as follows:

Algorithm 3.2.23 One Iteration of the Two-level Algorithm with Over-Correction.
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Step 0: Given an initial guess v(}}.

Step 1: Pre-smoothing o = SV (vf).

Step 2: Compute rh = fh — Alyh,

Step 3: Restrict r = Rrh.

Step 4: Solve el = AH 1,

Step 5: Smoothing gh = M2 Pell,

Step 6: If eh=0 then ot = o, else
Step 7: Smoothing ol = S§v2(v}).

Step 8: Compute a=(f"— Ahgh e"),/lle" 4.
Step 9: Correct o = o + aeh.

Remark 3.2.24 If we put o = 1, Algorithm 3.2.23 is mathematically equivalent to
Algorithm 38.2.11, although Algorithm 3.2.23 is computationally much more expansive.
Lemma 3.2.19 guarantees that the convergence rate of Algorithm 3.2.23 is at least as
good as the convergence rate of Algorithm 3.2.11.

Acceleration techniques like Algorithm 3.2.23 compute the scaling parameter o
after the process of the coarse-grid-correction and were termed as post-optimization by
Reusken [46] for this reason. Algorithm 3.2.23 is the so-called over-correction accelera-
tion scheme due to Mika and Vanék [42, 62]. These techniques optimize the computed
correction and may accelerate the convergence substantially if the original computed
correction is not in an appropriate scale, albeit at a heavy computational cost. In addi-
tion to the cost of the standard two-level method (Algorithm 3.2.11), Algorithm 3.2.23
requires at least the following additional cost: two inner product computations, one
residual computation, one vector-matrix multiplication, one vector-vector addition and
one scalar-vector multiplication. Usually, a large number of pre-smoothing sweeps are
needed for the effect of the over-correction to be significant. In Vanék’s test problem
for solving an anisotropic Poisson equation [62], he used 7 pre-smoothing and 2 post-
smoothing sweeps (see [62]). The cost is high and the algorithm is not computationally
efficient for accelerating the standard multigrid method. Furthermore, the validity of
the algorithm depends on the symmetry and positive definiteness of the coefficient ma-
trix A". In many applications of practical interests, such as the convection-diffusion
equation with large convection coefficients, the coefficient matrix A” is nonsymmetric
and non-positive definite and Algorithm 3.2.23 can not be applied.

Reusken’s approach [46, 48] is similar to the over-correction Algorithm 3.2.23, but
he considered the problem in a different point of view and viewed the correction step
as an optimization process to search for the steplength parameter « along the direction
defined by the correction vector Pe! . In Reusken’s numerical test for solving a Poisson
equation, it was found that the convergence rate of a V-cycle algorithm accelerated by
the steplength optimization (over-correction) is somewhat equivalent to a standard
W-cycle algorithm.

Bounds for the convergence rates of the two-level methods with and without the
over-correction acceleration have been obtained by Mika and Vangk [42, 62]. More
quantitative bounds were obtained by Reusken [46].
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3.2.3 Weighted Residual Technique

Let us consider a different approach to optimize the coarse-grid-correction process.
We may modify the residual vector r" by multiplying it with a scalar 3 before it is
projected to the coarse grid to form the coarse grid subproblem. Hence, if the original
multigrid coarse-grid-correction is not optimal in “scale”, we may choose the weighting
parameter 3 so that the “scale” of the coarse-grid-correction is optimized. We refer to
this technique as the weighted residual technique.

The following lemma states the relation between the scale of the residuals and the
solution of the error (residual) equation.

Lemma 3.2.25 Suppose that AY is nonsingular and 3 is a scalar. If el is the solution

of the linear system Afel = rH gnd #H = BrH  then ¢! = Bel is the solution of the

scaled linear system A"et = #H

Proof. The proof is trivial. O
The following theorem follows immediately from Lemma 3.2.25.

Theorem 3.2.26 In the standard two-level method, the scale of the correction vector
is linearly dependent on the scale of the residual vector. The quality of the correction
vector may therefore be improved by properly modifying the scale of the residual vector.

Suppose that we have some way to find § to satisfy some conditions so that the
residuals are better “scaled” in some sense, then we can modify the standard multigrid
Algorithm 3.2.11 as follows

Algorithm 3.2.27 One Iteration of the Two-level Algorithm with Weighted Residual

Step 0: Given an initial guess v(}}.

Step 1: Pre-smoothing vl = SV (vf).
Step 2: Compute rh = fh — Alyh,
Step 3: Restrict i+ = BRr".

Step 4: Solve el = A2h~TpH
Step 5: Correct vl = o + Pell,
Step 6: Post-smoothing v} = S"2(vh).

Weighted residual techniques in different forms have been used by Brandt and Yavneh
[9], and Zhang [78, 80] to accelerate the multigrid convergence in different situations.
As Brandt and Yavneh [9] remarked that, when solving the convection-diffusion
equations with high-Reynolds number, the error is dominated by smooth components.
Hence, instead of increasing the number of pre-smoothing sweeps on the fine grid, they
concentrated their efforts on improving the coarse-grid-correction because in many
cases, the coarse grid solution fails to approximate that of the fine grid. They devel-
oped an over-weighted residual algorithm to accelerate the convergence of the red-black
Distributive Gauss-Seidel relaxation method to solve the convection-diffusion equations
and the Navier-Stokes equations. For example, the two-level convergence factor of the
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convection-diffusion equation (with vanishing diffusion coefficients) employing the first-
order discretization improves from 0.5 to 0.33 with a residual scaling factor § = 4/3.
Since the residual scaling factor 8 > 1, they called their technique the over-weighted
residual technique.

In Appendix A and [78], we used a heuristic residual analysis, based on the analysis
of the geometry of the grid points and the relaxation pattern, to derive a residual scaling
factor B = 0.4634 to inject the residuals from the fine grid to the coarse grid for the
five-point RBGS relaxation. Since 8 < 0.5 (0.5 is the standard half-injection factor),
we called the technique the under-injection residual transfer technique. The numerical
experiments conducted in [78] showed that the weighted residual injection operator
converges faster and is more computationally cost-effective (with about 40% reduction
in CPU time) than the standard multigrid method (Algorithm 3.2.11).

In the applications of the weighted residual techniques mentioned above, there is
no requirement that the coefficient matrix A" be symmetric and positive definite.

We will use a rather different form of the weighted residual technique named the
minimal residual smoothing technique in Chapter 4 (and in [80]) to smooth the residuals
before they are projected to the coarse grid. The new residuals are obtained as an
optimal linear combination of the current and the previous residuals. The optimality
is satisfied when the new residuals in Fuclidean norm are minimized.

From the above examples, it is clear that the residual weighting factor g is different
in different situation with different relaxation method. However, we note that, if 3
can be pre-determined by some kind of residual analysis, there is no additional cost
for the weighted residual algorithm (Algorithm 3.2.27) over the standard algorithm
(Algorithm 3.2.11). This is the primary incentive for us to investigate the weighted
residual technique because it is computationally efficient.

Remark 3.2.28 We point out that, in Algorithm 3.2.27, if the residuals need to be
scaled before they are projected to the coarse grid, then we may choose a suitable scaling
factor so that it scales the residuals result from the injection operator instead of from
the averaging (full-weighting) operator. If we use the injection operator, we save about
3/4 of the residual projection cost.

Next, we will prove the main theorem of this chapter which states that, under certain
conditions, Algorithm 3.2.23 and Algorithm 3.2.27 are mathematically equivalent.

Theorem 3.2.29 Suppose that A" is symmetric and positive definite, then the two-
level method with over-correction acceleration and the two-level method with weighted
residual acceleration have the same convergence rate if and only if the over-correction
parameter « in Algorithm 3.2.23 equals the residual weighting parameter B in Algo-
rithm 3.2.27.

Proof. Given any initial value v[}}, suppose that we choose the residual weighting

parameter § = « in Algorithm 3.2.27, the solution of the coarse-grid-correction reads

el = AH™ o Rrh. (3.32)
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The approximate value after the coarse-grid-correction is
. -1
v = o + Pet = ol 4 aPAET Rrh, (3.33)

By the definition of the smoothing operator (3.4) and Lemma 3.3, after the post-
smoothing, the approximate solution of the two-level method with weighted residual
is

vh = 8
Sv2(
SV (

v5)
o) + M™aP A" Rt
o) + aM”PAH ' Rt

Since the approximate solution from Algorithm 3.2.27 is the same as that from Algo-
rithm 3.2.23, we conclude that these two algorithms are mathematically equivalent and
have the same convergence rate.

On the other hand, if Algorithm 3.2.23 and Algorithm 3.2.27 have the same con-
vergence rate, then

vl = ol (3.34)
We have
i = sl
= S”(u} + PA" 'R
= S”2(uh) + pM2PAH T R, (3.35)
And
oh = o4 adt
= S”2(ul) + aM2PA" T Rih, (3.36)
It follows from (3.34), (3.35) and (3.36) that 8 = «. O

Because of Theorem 3.2.29, we can search for alternative methods to estimate
the over-correction parameter «. Hereinafter we refer to parameters « and § as the
residual scaling parameter . Theorem 3.2.29 states that it is the scale of the residuals
that really matters the convergence of the two-level method. If we can develop some
methods to estimate the appropriate magnitude of the residual scaling parameter and if
these methods do not rely on the symmetry and the positive definiteness assumption of
the coefficient matrix, Algorithm 3.2.27 is suitable for a larger area of applications and
is computationally more efficient than Algorithm 3.2.23. Fortunately these alternative
techniques do exist and we will discuss some of them in Chapters 4 to 7 and Appendix A.

Definition 3.2.30 We define the acceleration techniques that scale the residual before

it 1s projected to the coarse grid as the pre-scaling acceleration techniques.
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Definition 3.2.31 We define the acceleration techniques that scale the computed cor-
rection after it is interpolated back to the fine grid as the post-scaling acceleration tech-

niques.

From Theorems 3.2.26 and 3.2.29, we have the following corollary:

Corollary 3.2.32 In a two-level method, the pre-scaling acceleration techniques and
the post-scaling acceleration techniques are mathematically equivalent if and only if their
scaling factors are equal.

In parallel implementation, the injection operator is clearly advantageous because in-
jection is a local process and requires no communication with neighboring processors.
The full-weighting operator (or any other weighting scheme) requires communication
with eight neighboring grid points which may be stored in different processors.

3.3 Conclusions and Remarks

We have developed and unified the ideas of residual scaling techniques and proved the
equivalence of two residual scaling techniques and the mathematical equivalence of pre-
scaling and post-scaling acceleration techniques. These theoretical results clear the way
for developing efficient pre-scaling acceleration techniques for practical applications. In
Chapter 6 and Appendix A, we will introduce the concept of heuristic residual analysis
technique and use that technique to derive optimal residual scaling factors for partic-
ular applications. The optimal residual injection operators with the optimal residual
scaling factors will be used in standard multigrid method as well as high-order multigrid
method. We will show that the resulting multigrid methods achieve convergence rate
faster than the multigrid methods with the full-weighting and half-injection operators
in the sense of computational cost-effectiveness for solving the Poisson equations. For
some convection-diffusion equations, the residual injection is one way to retain con-
vergence, when the full-weighting operator diverges for highly convection-dominated
problems.
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Chapter 4

Minimal Residual Smoothing in
Multigrid

4.1 Introduction

In this chapter, we investigate the feasibility and the efficiency of employing some
minimal residual smoothing techniques to accelerate the convergence of the multigrid
method (MG). For reasons which will become clear later, the acceleration scheme dis-
cussed in this chapter is applied on the finest level only. Hence, our discussion will be
focused on the two-level method (Algorithm 3.2.11), because it contains all the basic
ideas of the multigrid method and because the multigrid method can be viewed as using
recursively defined two-level method to solve the coarse grid subproblem.

Suppose that a sequence {uy} is generated by some iterative method with the
associated residual sequence {ry}. Since it is generally not possible to measure the
convergence of the error directly, the quality of the iteration is usually judged by the
behavior of the residual norm sequence {|rg||}, where || - || is some norm, e.g., the
Euclidean norm. Usually, it is desirable that {||rx||} converges “smoothly” to zero. In
many classical iterative methods, residuals are not effectively utilized in the iteration
process, they are usually used to measure the convergence only.

Let us take a detour to review another category of iterative methods which utilize
residual techniques extensively.

In the widely used generalized minimal residual (GMRES) method [50], each wuy,
is characterized by

— Au = min — Au
If = Awla = min If = Aul

where || - ||2 is the Euclidean norm and the Krylov subspace Kp(ro, A) is defined by
K (ro, A) = span{rg, Arg, ..., A¥ ry}.

For GMRES, {||rk||2} converges to zero optimally among all Krylov subspace methods,
for which uy € ug+Kg(ro, A). Other comparable methods, such as biconjugate gradient
(BCG) [18, 40], and conjugate gradient squared (CGS) [56], have certain advantages
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over GMRES, but often exhibit very irregular residual-norm behavior [86]. This irreg-
ular residual-norm behavior has provided an incentive for the development of methods
that have similar advantages but produce better behaved residual norms, such as the
biconjugate gradient stabilized (Bi-CGSTAB) methods [32, 64] and methods based on
the quasi-minimal residual (QMR) approach [14, 15, 19, 20].

Another approach to generating well-behaved residual norms has been proposed
by Schonauer [54] and investigated extensively by Weiss [66]. In this approach, an
auxiliary sequence {v} is generated from {u} by a relation

Vo = Uo,
Vg = (1 _ﬂk)vk—l +Bk:uk:7 k= L2,..., (41)

in which each ( is chosen to minimize ||f — A[(1 — B)vk_1 + Buy]||z over 5 € R, i.e.

Sk—1,Tk — Sk—1)2
7k — sk—1ll%

where s, | = f — Av_1. Here (-,-) 7 is the energetic inner product given by (3.1) and
|||z is the energy norm given by (3.2) with respect to a symmetric and positive definite
matrix Z (Definition 3.2.1). The resulting residuals s; obviously have non-increasing
energy norms, i.e., ||sg|lz < ||sk—1llz and ||sk||z < ||rk||z for each k.

Remark 4.1.1 The energy norm used in the definition of MRS is for theoretical com-
pleteness. In practical computations, the Euclidean norm (corresponding to Z = 1) is
usually used.

In the context of the Krylov subspace methods, Weiss [66] explored and analyzed the
residual smoothing technique of the form (4.1) extensively, which was referred to by
Zhou and Walker [86] as the minimal residual smoothing (MRS) technique. Weiss
showed that applying MRS to an orthogonal residual method results in a minimal
residual method. Zhou and Walker extended MRS to a quasi-minimal residual smooth-
ing (QMRS) technique applicable to any iterative method [65, 86]. They also showed
that QMRS can be used to derive a QMS-type method from any given method. In their
numerical experiments, it was found that MRS residual norms were often, although not
always, slightly smaller than the QMRS residual norms and, in some cases, tended to
remain a little more stable in the final iterations. They have some preference for MRS
over QMRS for general use. In this dissertation, we choose MRS to smooth the residu-
als generated by the multigrid method (MG). In our numerical experiments using MRS
and QMRS to smooth and to accelerate the MG sequence, the MRS sequence is better
behaved than the QMRS sequence when both are used as smoothing techniques. How-
ever, when both are used as acceleration techniques, MRS is far better than QMRS.
The later is actually inefficient in our experiments when it is used as an acceleration
method for MG. Hence, discussion of applying QMRS to the multigrid method will not
be pursued here.
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More general forms of residual smoothing techniques are considered by Brezinski
and Redivo-Zaglia [12]. But we will limit our attention to MRS of the form (4.1) in
this dissertation.

Most existing research has been focused on employing MRS techniques as smooth-
ing methods to smooth the residuals generated by the Krylov subspace methods. Al-
though some numerical experiments are reported to show that sequence generated by
classical iterative methods such Jacobi and Gauss-Seidel methods can also be smoothed
[12], we are not aware of discussion on the practical implementation of employing MRS
techniques to accelerate the classical iterative methods. The major reason is probably
that residuals are not necessarily calculated in the classical iterative methods, and the
employment of MRS techniques requires residual computation. This may render the
cost of implementing MRS techniques prohibitive in the classical iterative methods.

However, in the two-level (multigrid) method, residuals are computed automati-
cally and used to form the subproblem on the coarse level. This advantage certainly
reduces the cost of implementing MRS techniques. Furthermore, since the subproblem
on the coarse-grid is a residual equation and the smoothness of the residuals are es-
sential for the solution of the coarse-grid subproblem to approximate that of the fine
grid problem so that a good coarse-grid-correction may be provided to the fine grid [6].
This gives the primary incentive to use MRS techniques to smooth the residuals before
they are projected to the coarse grid and the reason that this approach will accelerate
the convergence of the original two-level (multigrid) iterative process.

In this chapter, we emphasize the practical implementation of employing MRS in
the two-level (multigrid) method to accelerate the convergence of the original method.
Rigorous analysis is postponed in Chapter 5.

In Section 4.2, We briefly elaborate on MRS techniques and design algorithms
to employ MRS as smoothing techniques in the two-level iteration process. In Sec-
tion 4.3, we develop MRS acceleration scheme and algorithms that feed the sequence
with “smoothed” residuals generated by MRS back to the two-level and multigrid it-
eration processes. Numerical tests are employed in Section 4.4 to show the remarkable
acceleration rate and negligible cost of the MRS acceleration scheme used in the two-
level and multigrid methods. Conclusions are included in Section 4.5. Suggestions on
future research are given in Section 4.6.

4.2 Minimal Residual Smoothing

4.2.1 MRS Techniques

Assume that we have some iterative method which generates a sequence of iterates
{ug} with the corresponding residual sequence {ry}, we formulate the MRS technique
of [54] and [66] as follows:

Algorithm 4.2.1 Minimal residual smoothing (MRS) [54, 66]

Initialize so = ro and vy = ug.
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Fork=1,2,..., do:
Compute uy and .

Compute [r = —(Sk—1,7k — Sk—1)2/ |7t — 3k—1||22-
Set Sk = Sg—1 + Br(rk — sk—1);
and vk = Vg—1 + B (up — vg—1)-

4.2.2 Two-Level Method and MRS

Algorithm 4.2.1 may be applied to any step of the standard two-level method (Al-
gorithm 3.2.11) where there is an update of current values to generate one or more
sequences of iterates with smoothed residuals. However, application of MRS requires
the values of the residuals which are not generally computed at each step of TLM.
Normally, the computation of the residuals is equivalent to one relaxation on that grid
level and should be avoided whenever possible. Thus, we would like to use MRS to
smooth the residuals calculated in TLM before they are weighted and projected to the
coarse grid. Algorithm 4.2.2 is a procedure that incorporates MRS in TLM to generate
a sequence with “smoothed” residuals.

Algorithm 4.2.2 Two-level method and MRS

Given ul and v}y = fh — Ahul, set vy = ull and so = rf.
For k=0,1,2,..., do:
Relaz vy times on Ahuz = f" with the given initial guess uZ

Compute i = fl — Atult.

Compute  Bri1 = —(sp.rp — si)z/lry — skl
Set Skt1 = Sk + Brr1(rf — si);

and Vg1 = Vg + Bps1 (Ul — vg).

Restrict r,f = Rr',;.

Solve el = (AT)=tp L,

Correct uzﬂ = uz + Pef.
Relaz vy times on AhuféJrl = f with the initial guess uzﬂ.

Algorithm 4.2.2 generates a TLM sequence {u}'} with the associated residual sequence
{rh} and an MRS sequence {vj} with the smoothed residual sequence {sj.}. Note that
v and s are generated before uf and rf for k > 1. We have ||si|lz < [|r? ||z for all
k > 1. Furthermore, in most classical iterative methods used as relaxation schemes in
TLM, 7’(}} is not usually calculated. One exception is that when the initial guess is taken
as zero, i.e., ug =0, then rg = fP. In general, we may not want to compute the initial
residuals just for MRS. Algorithm 4.2.3 is a slight modification of Algorithm 4.2.2, only
vg and sg are generated after the first round of smoothing sweeps on the fine grid.

Algorithm 4.2.3 Two-level method and MRS
Given any initial guess ug.

For k=0,1,2,..., do:
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Relaz vy times on Ahuz = f" with the given initial guess uﬁ
Compute 7’,}5 = fh— Ahuz.
If k=0, then
Set vy = ug and sg = 7‘3.
Else
Compute B = —(sp_1,7) — sk_1)z/|Ir} — sk—1l3-
Set Sk = Sk—1+ Br(rf — sp-1);
and vk = Vg1 + Br(uf —vp_1).
End if.
Restrict 7“,? = RTZ.
Solve efl = (AT~
Correct uﬁﬂ = uﬁ + PekH.

Relaz vy times on AhuﬁJrl = f with the initial guess uzﬂ.

Algorithm 4.2.3 generates an auxiliary sequence {vy} with the associated residual se-
quence {sy} which satisfies ||sg||z < ||rk||z for all k. The new residual norm sequence
{l|skllz} is better behaved than the original residual norm sequence {||ri||z}. We ac-
tually have [67]

Iskllz <min{l[rollz, [Irllz, - [lrell 2}

This implies that if {||rx]|z} is not monotonically decreasing, {||sx||z} does, since
||5k||Z < ||5k—1“Z for all .

In our following discussions and numerical experiments, we use Algorithm 4.2.3
to generate MRS sequence.

4.3 MRS Acceleration Schemes

4.3.1 Two-Level Method with MRS Acceleration

The sequence {vy} generated by Algorithm 4.2.3 is guaranteed to have non-increasing
residual norms {||7||z}. Most existing research works employ MRS techniques as a
means to stabilize the residual sequence generated by some iterative method (usually
some Krylov subspace methods). These approaches utilize the smoothing property of
the MRS techniques and have been reported by many investigators [65, 66, 67, 86].
However, as Zhou and Walker remarked in [86], having a smoothly decreasing or mono-
tonically decreasing residual norm may be of real importance or just a nicety, dependent
on the particular application. Employment of MRS techniques as a means of acceler-
ation has not been pursued extensively outside the context of the Krylov subspace
methods. On the other hand, using MRS techniques to accelerate classical iterative
methods still faces the cost of residual computation, which may render potential MRS
acceleration scheme very expensive. If MRS techniques are applied to the sequences
generated by classical iterative methods such as Jacobi or Gauss-Seidel methods, unless
the original sequence diverges or behaves very irregularly, there is a serious question
about the cost of generating such a new sequence against doing one more iteration
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using the original iterative method. Because the cost of generating the new sequence
normally is larger than the computation of the original iteration due to the residual
computation. It would be better if we could feed the new sequence, which has a better
behaved residual norms, back to the original iteration, to accelerate the convergence
of the original iteration. In return, the accelerated original sequence will help MRS
generate a better new sequence with even more “smoothed” residuals. However, this is
not always possible. For instance, if the original sequence is generated by some Krylov
subspace method, as the cases usually discussed in MRS context, this approach would
destroy some properties of the original sequence, e.g., mutual orthogonality, which is
essential for the original sequence to converge. In particular, Schonauer originally devel-
oped MRS to smooth the sequence generated by the conjugate gradient-type methods
and explicitly mentioned that {sx} is computed without feedback to the original se-
quence [54, p. 261]. Only in a later chapter, when he discussed the development of the
PRES20 method, which is a pseudo-residual method, he restarted the original iteration
from the smoothed sequence after 20 iterations [53]. He also claimed that a restart
from the smoothed sequence pays.

However, in TLM, the situation is different. Since the new iterate is not solely
resulted from the old values by the relaxation scheme (it involves the correction from the
coarse grid), there is no specific property that the original sequence must obey. Thus
we may expect that a feedback of the new sequence generated by MRS will accelerate
the convergence of the original iteration. A further advantage of the two-level methods
is that the residuals of the original sequence are calculated even there is no MRS
involved. This advantage, if exploited properly, reduces the cost of implementing MRS
acceleration schemes significantly.

As we noted before, there are many places in a two-level method where we may
insert the MRS procedure. But we would like to do it in a cheapest way. i.e., to use
existing information as much as possible and to minimize computation of quantities
which are only useful in MRS. This leads us to insert MRS procedure just after the
residuals on the finest grid being computed and before they are projected to the coarse
level grid. At each major iteration, we replace the original TLM iterate uﬁ and its
residual iterate r,@ by the MRS iterate vy and the associated residual iterate s;. We then
project the residual s to the coarse-level grid to form a coarse-level grid subproblem.
(Note that we must replace both the TLM iterate uZ and its residual 7’,}; at the same
time, otherwise the coarse-grid subproblem would provide a wrong correction to the fine
grid.) In this way, we give the coarse grid smoothed residuals which are essential for the
coarse grid to provide a good coarse-grid-correction to the fine grid [6]. Therefore, we
expect that the acceleration rate is favorable. The following Algorithm 4.3.1 is parallel
to Algorithm 4.2.3, without unnecessarily computing the initial residuals before the
MRS acceleration scheme is applied.

Algorithm 4.3.1 Two-level method with MRS feedback
Given any initial guess ug.
Fork=0,1,2,..., do:
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Relaz vy times on Ahuz = f" with the given initial guess uﬁ

Compute r,@ = fh — Ahuz.

If k=0, then
Set vy = ug and sg = 7‘3.
Else
Compute By = —(sp—1,71 — sk—1)z/lry — sk—1ll%-
Set Sk = Sk—1+ Br(ry — sk-1);
and vk = vk 1 + Br(uf —vg_1).
Set uﬁ = v and TZ = S.
End if.
Restrict r,f = Rr,@.
Solve efl = (A)=pl,

h _ .h H
Correct Uy = uy + Pe)!.

Relaz vy times on Ahug_i_1 = f with the initial guess “g-;-l'

We refer to the acceleration scheme of replacing the TLM (MG) sequence and its resid-
ual sequence by the MRS sequence and its residual sequence as the MRS acceleration
scheme or MRS feedback. The role of the MRS acceleration scheme in the two-level
(multigrid) method is to accelerate the convergence of the coarse-grid-correction by
reducing the norm of the residuals (smoothing the residuals). Since high frequency
components of the errors have already been effectively removed by the pre-smoothing
sweeps, the MRS acceleration scheme primarily reduces the norm of the residuals as-
sociated with the low frequency components of the errors.

On the other hand, we may think the MRS acceleration scheme in a different way.
MRS may be used repeatedly to smooth the high frequency errors after the initial iterate
is generated by a particular relaxation scheme. This will be cheaper than using more
pre-smoothing sweeps, especially when A" is complicated, since the MRS acceleration
scheme is independent of the original operator A”.

4.3.2 Multigrid with MRS Acceleration

We have developed algorithms to accelerate the convergence of the two-level method
and by the heuristic arguments given above we predict that the acceleration effect will
be favorable. One question left in Section 4.1 is that why we are only interested in
using the MRS acceleration scheme on the finest level grid. In a multigrid method,
one may think that the MRS acceleration scheme developed above may be used on
the coarse level grids as well as on the finest grid. This is indeed possible if we are
solely interested in generating a smoothed sequence. Because MRS will generate a new
sequence with much smoother residuals regardless of the quality and the nature of the
original sequence. However, generating such a “well-behaved” sequence is meaningless
in the multigrid method. It will not be used to accelerate the convergence of the original
sequence. This new sequence can not be feeded back into the original iteration process in
the way we discussed above for the finest level (an exception is discussed in Section 4.6).
Because in each major MG iteration, different residuals are projected to the coarse level
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and thus the subproblem on the coarse level is different. The iterates (the coarse-grid-
correction) generated by a particular coarse-grid iteration have no direct connection,
they are used to correct the fine grid solution at each iteration and have no usefulness
after the coarse-grid-correction process.

Hence, this explains why we only use the MRS acceleration scheme on the finest
level. The multigrid method (MG) may be considered as a two-level method but solving
the coarse-grid subproblem by recursively employing coarser grids to obtain coarse-grid-
corrections.

Algorithm 4.3.2 is the formal multigrid method with the MRS acceleration scheme,
which is parallel to Algorithm 4.3.1 of the two-level method.

Algorithm 4.3.2 Multigrid method with MRS acceleration scheme

ul < MG(ul, f7)
Given any initial guess ug.
For k=0,1,2,..., do:
If Q" = the coarsest grid, then
Solve ult = (AM)=1fh,
Else
Relaz vy times on Ahug = f" with the given initial guess uz
Compute 7"',€1 = fh— Ahug.
If Q" = the finest grid, then

If k=0, then
Set vy =u} and so = rf.
Else
— _ h _ h _ 2
Set B = —(sk—1,7 — sk-1)z/llrg — sr—1llz-

Set sy = sp—1 + Bi(rl — sp_1);
and v = vg_1 + ,Bk(u;c‘ — Vp—1).
Set uz = v and 7“,’9‘ = S.

End if.
End if.
Restrict r,%h = RTZ.
Set f2h = r,%h.
Set u%h =0.
Do ul — MG(u2h, f?h) u times.
Correct u;c‘_i_l = u;c‘ + Puih.
Relaz vy times on Ahug_i_1 = f with the initial guess uZ_H.

End if.

The parameter p in Algorithm 4.3.2 is set to control the number of times of the cycle
to visit the coarse grid before it returns to the fine grid. In practice, only p = 1
and p = 2 are usually used. This corresponds to the so-called V-cycle and W-cycle
schemes respectively (see [7, 69] for more details on definition of various multigrid
cycling schemes).
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4.4 Numerical Examples

Numerical examples are set to test the convection-diffusion equation with the Dirichlet
boundary condition (6.1) on a unite square (0,1) x (0,1).

Specifically, we take p(z,y) = Mz and q(z,y) = —My. M is a positive constant
to be chosen. The boundary conditions are given so that the exact solution is u(z,y) =
zy(l —z)(1 — y) exp(z + y).

The high-order compact finite difference scheme discussed in Chapter 6 is used
to discretize equation (6.1) which results in a linear system with a compact nine-point
formula. The reason for choosing this high-order discretization formula is that it is
stable for all M so that we do not worry about the magnitude of M which might cause
divergence if a lower-order, e.g., five-point formula, were employed.

The coefficient matrix A" on all levels is not stored, but computed in the process
of iterations. For the numerical experiments of the two-level method, the fine grid
mesh-size is 1/64 and the coarse grid mesh-size is 1/32. For the multigrid method, the
coarsest grid contains only one unknown (with mesh-size 1/2). For all computation,
we apply one pre-smoothing and one post-smoothing sweeps (v; = v, = 1). The
discrete grid space is naturally (lexicographically) ordered and the point Gauss-Seidel
relaxation is used as the smoothing method. The residual projection operator R is the
full-weighting scheme and the interpolation operator P is the bi-linear interpolation
(see [69]). As stated in Remark 4.1.1, unless otherwise indicated explicitly, the norm
used in the numerical experiments is the Euclidean norm.

The computations are done on a Cray-90 vector machine at the Pittsburgh Su-
percomputing Center using Cray Fortran 77 in single precision (equivalent to double
precision on serial machines such as SUN workstations).

4.4.1 Two-Level Method with MRS Acceleration

In this subsection, we test Algorithms 4.2.3 and 4.3.1, i.e., the two-level method with
and without MRS feedback (acceleration). In the two-level method, the coarse-grid
subproblem is not solved exactly. Instead, five relaxation sweeps are carried out on the
coarse grid.

We have four sequences generated by: TLM without MRS, MRS without feedback,
TLM with MRS feedback (acceleration) and MRS with feedback.

First, we choose M = 0 and Eq. (6.1) reduces to the Poisson equation. The
convergence histories of the residual norm sequences are depicted in Figure 4.1. Since
TLM is not a very efficient Poisson solver, it takes more than 400 iterations to converge
to the limit of residual reduction. In this dissertation, the limit of residual reduction
(LRR) is defined to be the limit of reducing residual norm by an algorithm on a given
computer using finite-precision computation. The sequence generated by MRS alone
converges faster than the sequence generated by TLM alone (without feedback). This
shows the smoothing property of the MRS technique. When TLM is combined with
MRS with feedback (acceleration), both sequences converge very fast and almost reduce
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the iterations by half to reach LRR. This demonstrates the acceleration property of the
MRS technique.

Next, we take M = 128, the cell Reynolds number (Re) on the finest grid is
1. In this case, the two-level method is more efficient (the spectral radius of A" is
smaller when Re = 128 than when Re = 0.) The convergence histories of the residual
norm sequences are graphed in Figure 4.2. The sequence generated by MRS without
feedback converges faster than the sequence generated by TLM without feedback from
MRS. This again proves that the minimal residual smoothing property of the MRS al-
gorithm. The convergence histories of sequences generated by TLM with MRS feedback
and MRS with feedback are overlapped, because they actually accelerate each other.
However, since the original sequence (generated by TLM without feedback) converges
quite satisfactorily, the acceleration by the MRS feedback is not as much as it did for
the Poisson equation (see Figures 4.1). Hence, when the original sequence converges
fast, the benefit of the MRS acceleration is somewhat less. We emphasize that the
MRS acceleration scheme is still efficient.

A convection-dominated case is studied next. We take M = 1.28 x 103, The
cell Reynolds number on the finest grid is 1000. The initial residual norm is increased
significantly. It is well-known that the magnitude of the cell Reynolds number affects
the convergence of the numerical methods inversely. The convergence histories of the
residual norm sequences are depicted in Figure 4.3. It takes TLM without MRS feed-
back about 2500 iterations to reach LRR. The sequence generated by MRS converges
faster, but is restricted by the TLM sequence, i.e., these two sequences are bounded
together by MRS.

Again, TLM with MRS feedback (acceleration) and MRS with feedback accelerate
mutually and their convergence histories are virtually the same. Both are remarkably
better than TLM and MRS sequences without feedback. The numbers of the iterations
are halved. This again supports the claim made earlier that TLM with MRS feedback
(acceleration) works very well when the original sequence converges slowly.

One might doubt the efficiency of the MRS acceleration scheme, because it may
be viewed as one sequence with double iterates. It will not be advantageous if the
double iterates generated at the same cost and reduce the iterations by half. The
matter of fact here is that the sequence generated by MRS is very cheap, comparing
with that generated by TLM. Because MRS does not involve the coefficient matrix
whose realization is very expensive for the variable coefficient equations. Therefore,
the cost of the MRS acceleration scheme is minimal, if not negligible. More about the
cost of the MRS acceleration scheme are discussed in subsection 4.4.3.

4.4.2 Multigrid with MRS Acceleration

In this subsection, we experiment with the multigrid method and the MRS acceleration
scheme. In Algorithm 4.3.2, u is chosen to be 1, which is a V-cycle scheme. Also, we
use a true V-cycle algorithm. Specifically, with & = 1/64 on the finest level, there are 6
levels and the coarsest level just contains one unknown. One relaxation sweep is carried
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out on the coarsest grid. We mention explicitly that the MRS acceleration scheme is
only applied on the finest level.

Again, we first consider the Poisson equation with M = 0. It is well-known
that the true multigrid method (MG) is one of the most efficient Poisson solver. The
convergence histories of the residual norm sequences are depicted in Figure 4.4. The
sequence generated by the standard MG reaches LRR in about 12 iterations. The
sequence generated by MRS without feedback converges slightly faster. On the other
hand, the sequences generated by MG with MRS acceleration and MRS with feedback
mutually accelerate the convergence and reach LRR in fewer iterations. This means
that MRS acceleration scheme is efficient even when the original method converges fast,
such as the true multigrid method, although the acceleration rate is somewhat low.

We again consider the case when M = 128, the convergence histories of the
residual norm sequences are contained in Figure 4.5. Again, the true multigrid method
is very efficient in this case. The sequence generated by MRS converges slightly faster
than the sequence generated by MG without feedback. The sequence generated by MG
with MRS acceleration converges faster than the sequences generated by MG and MRS
separately. The same is true for the sequence generated by MRS with feedback. By
comparing Figure 4.5 with Figure 4.4, we note that the acceleration rate is increased.

Next, we consider the multigrid method for problem with large Reynolds number,
here M = 1.28 x 10°. The convergence histories are depicted in Figure 4.6. Since the
convergence of the true MG is slow for the convection-diffusion equations with large
Reynolds number, Figure 4.6 is similar to Figure 4.5, except that the acceleration rate
is more attractive. MG with MRS feedback is a powerful method to accelerate the true
MG in this case, with almost one-half reduction in the number of the iterations.

Our conclusion from these test examples is that MRS acceleration scheme ac-
celerates the convergence of the multigrid method regardless of the convergence of
the original method. The MRS acceleration rate is more attractive when the original
method converges slowly,

4.4.3 Computational Cost and Computed Accuracy

In this subsection, we test the computational cost of the MRS acceleration scheme. We
also consider the two-level and multigrid methods separately. The computations are
terminated when the residuals in Ly norm on the finest level are reduced by 10'°. We
record the iteration numbers, the CPU time in seconds and the computed accuracy in
L norm.

Table 4.1 contains data for comparison of iterations and computed accuracy for
the two-level methods with or without MRS acceleration scheme (feedback). Table 4.2
is the same comparison of CPU time in seconds.

From Table 4.1, we again note that TLM with MRS feedback accelerates the con-
vergence of the original TLM considerably, especially when the original TLM converges
slowly (M = 0 and M = 1.28 x 10°). The rates of reduction are very attractive. In
the case of slow convergence, the rates of reduction are more than 40%. Furthermore,
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TLM without MRS TLM with MRS
M Iteration Error Iteration | Error | Rate of Reduction
0 358 5.57(-9) 195 5.57(-9) 45.53%
128 23 1.84(-6) 21 1.84(-6) 9.52%
128000 1982 1.32(-4) 1111 1.32(-4) 43.95%

Table 4.1: Comparison of iterations and computed accuracy for two-level methods.

M TLM without MRS | TLM with MRS | Rate of Reduction
0 27.98 15.28 45.39%
128 1.83 1.67 8.74%
128000 155.74 87.48 43.83%

Table 4.2: Comparison of CPU time in seconds for two-level methods.

comparing the rates of reduction in CPU time in Table 4.2 with those in iteration in
Table 4.1, we find that the cost of the MRS acceleration is truly negligible, less than 1%
of the TLM cost. This means that the MRS acceleration scheme is a very cost-effective
acceleration scheme for TLM. Even when M = 128, the acceleration is not very much,
but it comes with negligible cost.

The computed accuracy is the same with or without the MRS acceleration scheme
(see Table 4.1), this means that the MRS acceleration scheme maintains the computed
accuracy of the original TLM method.

Next, we consider the multigrid method with MRS feedback acceleration scheme.
Parallel to Tables 4.1 and 4.2, the data from the numerical experiments are given in
Tables 4.3 and 4.4.

Table 4.3 gives the similar results as Table 4.1. The rates of reduction are very
attractive in all cases. The average rate of reduction is even better than that for the
two-level method. The acceleration cost is negligible. The acceleration scheme does
not change the computed accuracy of the original multigrid method.

We note that in Table 4.4, when M = 0, the rate of reduction in CPU time is

MG without MRS MG with MRS
M Iteration | Error | Iteration | Error | Rate of Reduction
0 12 5.59(-9) 10 5.59(-9) 16.67%
128 30 1.84(-6) 20 1.84(-6) 33.33%
128000 2036 1.32(-4) 1117 1.32(-4) 45.14%

ol

Table 4.3: Comparison of iterations and computed accuracy in multigrid methods.




M MG without MRS | MG with MRS | Rate of Reduction
0 0.788 0.656 16.75%
128 1.963 1.328 32.35%
128000 132.67 74.99 43.48%

Table 4.4: Comparison of CPU time in seconds in multigrid methods.

slightly larger than that in iteration in Table 4.3. This is possibly caused by the nature
of the vector computer and the timing function. Since many users use the computer
at the same time and the overhead may be large with respect to the actual computing
time in this case.

From these tests, it is clear that MRS acceleration scheme is an efficient tech-
nique for accelerating the convergence of the multigrid method. When the linear sys-
tem results from discretized partial differential equations with variable coefficients, the
complexity of the coefficient matrix renders the cost of implementing MRS acceleration
scheme negligible.

4.5 Conclusions

We have shown that the minimal residual smoothing (MRS) is an effective way of gen-
erating sequence with “smoothed” residual norms in both two-level method (TLM) and
multigrid method (MG). We explored acceleration property of the MRS techniques and
constructed algorithms that effectively employ MRS acceleration scheme to accelerate
the convergence of both TLM and MG. Hence, MRS techniques are not only effective
smoothing techniques to stabilize the residuals of the original sequence, but also cost-
effective acceleration techniques to accelerate the convergence of the original sequence.
The MRS acceleration scheme developed in this chapter is independent of the origi-
nal operator A" and of the relaxation method employed. Our numerical experiments
demonstrated that the acceleration rate is remarkable and the cost of the accelera-
tion scheme is negligible. We also showed that the benefit of the MRS acceleration is
large when the original TLM or MG converge slowly. But the acceleration is achieved
regardless of the convergence of the original method.

4.6 Suggestions on Future Research

For those sequences which converge very slowly, such as those generated by the TLM
or MG in solving the convection-diffusion equations with variable coefficients and high-
Reynolds numbers, there may be a reason to use MRS techniques to accelerate the
original multigrid method more than once. One way of doing this is to smooth the
residual sequence repeatedly. Another way is to smooth the sequence when it finishes
the coarse-grid-correction cycle. The second way requires additional computation of
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residuals. However, if the MRS acceleration scheme is more efficient than the relaxation
sweep to remove the high frequency errors, this approach is viable as a substitute for
the inefficient relaxation schemes.

The more general minimal residual smoothing techniques discussed by Brezinski
and Redivo-Zaglia [12] may be employed to accelerate the convergence of the multigrid
method. Also, there is an approach of defining the new sequence by minimizing the
residual norm in a different sense, e.g., in the energy norm with respect to A", if A"
is symmetric and positive definite. The energy norm involves the coefficient matrix A"
and therefore may cost more when A" is complicated.

In Section 4.4.2, we mentioned that the MRS techniques are applicable only to the
finest level. On the coarse levels, each iteration solves a different subproblem projected
from the fine level and thus no continuous MRS acceleration like that for the fine level
makes sense on the coarse levels. However, MRS techniques may still be used to smooth
the residuals generated on the coarse level before and after they are projected to an even
coarser level. We may expect that this approach will give a better residual sequence
to the coarser level. In this way, only a short MRS sequence is generated in each MG

iteration.
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Figure 4.1: The convergence histories of the residual norms (in log scale) of TLM-MRS
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Chapter 5

Analysis of Multigrid-MRS

5.1 Introduction

In this chapter, we analyze multigrid-MRS and try to show how this technique works.
We also discuss some limitations of this acceleration technique and ideas of overcoming
these limitations.

This chapter is organized as follows: In Section 5.2 we prove that the MRS proce-
dure is a semi-iterative method with respect to the two-level method (TLM) and that
TLM-MRS is a polynomial acceleration of first order. We explain why TLM-MRS does
not work very well for the Poisson equation. The error and residual iteration matrices
for the MRS accelerated coarse-grid-correction operator and for the two-level operator
are obtained in Section 5.3. In Section 5.4 we prove some technical lemmas. In Sec-
tion 5.5 we give preliminary analysis on TLM-MRS. In Section 5.6 we formulate some
reasonable assumptions and give bounds for residual reduction rates of TLM-MRS.
Conclusions and some remarks are included in Section 5.7.

5.2 MRS as a Semi-Iterative Method

Definition 5.2.1 Let Q be an operator (matriz) on Q", we define the operator norm
of Q with respect to a symmetric, positive definite matriz Z as

1Qvllz

0£vEQh vllz

1Qllz = (5.1)

where v # 0 is any non-zero vector on QP

We will analyze TLM-MRS of Algorithm 4.3.1, multigrid-MRS can be analyzed
similarly. In Algorithm 4.3.1 the residual equation on the coarse grid is assumed to be
solved exactly by a direct solver.

Theorem 5.2.2 The MRS technique in Algorithm 4.5.1 is o semi-iterative method with
respect to the standard two-level (multigrid) method. The TLM-MRS Algorithm 4.3.1
(and multigrid-MRS) is a polynomial acceleration of the first order.
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Proof. Let

{UU,UI,UQ,...,Uk,...} (52)
be the sequence generated by the two-level iteration process after the pre-smoothing
sweeps. Let

{,007,017”27 sy Uky - }
be the sequence generated by the MRS scheme from the TLM sequence (5.2). Hence,
at the kth iteration, we have

v = Vg—1 + B (up — vp—1)

by the definition of the MRS acceleration (see Algorithm 4.3.1).
We define a new sequence {zj} by

V4 = U
2k Flk=0,1,....
22k+1 = Uk

It is obvious that the sequence {z;} is formed as

{UOaUOaulavlaUQaUQa cooy Uk, Uy - - }

It is easy to see that the sequence {z;} is actually the iterates of Algorithm 4.3.1, each
new iterate z; is generated by the procedure

2k = Zp—1 + ﬂk(ik — Zk—l) (53)

with
Zh_1 = U and Zp = u.

Iteration procedure (5.3) is called by Varga [61] the semi-iterative method with respect
to the basic two-level iterative method. The combined TLM-MRS is therefore the so-
called polynomial acceleration of the first order due to Hageman and Young [37, p. 40].
O

If the relaxation used in TLM-MRS is the Gauss-Seidel, iteration procedure (5.3)
is reminiscent of an SOR acceleration step. The only difference is that z;_; is not
the value of the previous Gauss-Seidel iteration, it is instead the value of the previous
TLM-MRS iteration.

If TLM-MRS (or multigrid-MRS) using Gauss-Seidel is considered as TLM using
SOR-type relaxation, we can expect that TLM-MRS (or multigrid-MRS) will not be
efficient in solving the Poisson equation when the grid space is ordered in a red-black
fashion and the discretization is the five-point second-order central difference scheme.

Remark 5.2.3 By Propositions 2.3.1 and 2.5.2 in Chapter 2, if the Poisson equation is
discretized by the standard five-point second-order central difference scheme and the red-
black SOR relaxation is used in multigrid method, two different relazation parameters
are necessary to achieve efficient acceleration. An under-relazation parameter (wy < 1)
should be used in the projection half cycle and an over-relazation (wy > 1) should be
used in the interpolation half cycle.
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It has long been observed that the SOR acceleration is not effective to accelerate
the nine-point Gauss-Seidel multigrid method [59]. Remark 5.2.3 may explain the
numerical results that we observed in Chapter 4 that the efficiency of MRS acceleration
scheme is reduced when it is used to accelerate the nine-point Poisson solver.

Brandt and Mikulinsky [11] considered some combining multigrid iterates to ac-
celerate the convergence of problems with “small island.” But they did not allow a
continuous iterates to be formed like we did for the MRS sequence in Chapter 4 (and in
[80]). What they formed there is some short sequence and the feature of the MRS tech-
nique was not fully exploited. They also suggested to apply their acceleration scheme
only once on the coarse grid to reduce the cost of the acceleration.

5.3 Convergence Analysis

5.3.1 MRS with Coarse-Grid-Correction Operator

Let us first assume that there is no smoothing, i.e., v; = o = 0, in order to analyze
the effect of the MRS acceleration on the coarse-grid-correction operator. The coarse-
grid-correction operator with respect to residual is given by [69, p. 90]

C=1-AP(A")"'R. (5.4)

For the standard two-level method (TLM), suppose that at the kth iteration, the resid-
ual is rg, then after the kth coarse-grid-correction the residual changes to

Th+1 = Cry. (5.5)

If TLM is accelerated by MRS (Algorithm 4.3.1), the residual after the kth MRS
accelerated iteration reads

se = (1= Br)sk—1+ Brrks (5.6)

where 0y is given by Algorithm 4.3.1.
Hence, after the kth coarse-grid-correction, the new residual is

rht1 = Osp = (1 — By)Csp—1 + BCry. (5.7)

Since we have replaced the TLM residual r;_; by the MRS residual s;_; at the (k—1)th
iteration, we have

Tk = Csg—1 (5.8)

by virtue of (5.5) with k being replaced by k — 1.
Substituting (5.8) into (5.7), we have the residual after the kth MRS accelerated
coarse-grid-correction

Thet1 = (1= Bp)re + BpCry
(1 = Be)I + BrClry
= [I—BAP(A™) 'R]ry, (5.9)
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by using (5.4) and (5.8).
Therefore, the error after the kth MRS accelerated coarse-grid-correction is

eps1 = A7V — gL AP(A") 7' R]ry. (5.10)

Theorem 5.3.1 At the kth TLM-MRS iteration without smoothing, the error iteration
matriz is given by

Ey=1- 3, P(AT) 'RA (5.11)
and the residual iteration matriz by

Ty = I — BrAP(AT) 'R (5.12)
with By given by Algorithm 4.3.1.

Proof. The residual iteration matrix (5.12) is obtained directly by (5.9).
At the kth iteration, the residual r; and the corresponding error e; satisfy the
following error (residual) equation (see Remark 3.2.10 and equation (3.12))

Aey, =Ty (5.13)

Substituting (5.13) into (5.10), we obtain (5.11) as the error iteration matrix of Algo-
rithm 4.3.1 at the kth iteration without smoothing sweep. O

Comparing the MRS accelerated coarse-grid-correction residual operator (5.12)
with the standard coarse-grid-correction residual operator (5.4), we have the following
corollary:

Corollary 5.3.2 The acceleration rate of the MRS acceleration scheme with the coarse-
grid-correction operator at the kth iteration is given by

= BP(AT) " RA|
"I~ P(AT)LRA| 4

(5.14)

with By being the MRS parameter given by Algorithm 4.3.1. The norm || - ||z is the
operator norm defined in (5.1).

Although the acceleration rate is theoretically given by (5.14), computing 74 by (5.14)
for each k is still a much involved task. Direct computation of residuals from the
MRS accelerated coarse-grid-correction residual operator and the standard coarse-grid-
correction residual operator at the kth iteration as an estimate of 7, may be more
economic.

The MRS acceleration scheme may be heuristically viewed as scaling the operator
P(A")"'RA by MRS parameter 3 so that 7, is smaller than 1 (hopefully). Note here
that (5.14) does not guarantee that 75, < 1.

From (5.14) it seems that the optimal scaling factor § for accelerating the conver-
gence is the one that fulfills the following minimization problem

3 Hy—1
I~ BP(A™) " RA|; = min{ sup W ZOPARARIZL
BeR.  0£venh vl z
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where R is the set of all real numbers. However, solving minimization problem (5.15)
is by no means realistic. In [46, 62], Reusken and Vanék discussed the so-called over-
correction technique that solves a minimization problem similar to (5.15) to optimize
the computed correction (after the coarse-grid-correction procedure) with the assump-
tion that Z = A (symmetric and positive definite) and the number of post-smoothing
sweeps is non-zero. As we remarked earlier, the requirement that A be symmetric and
positive definite severely limits the application of the over-correction technique.

5.3.2 MRS with Two-Level Operator

Now we consider the case that the number of smoothing sweeps is not zero, i.e., v1 +vy >
0.

Let the coefficient matrix A be split as M and N satisfying the consistency con-
dition (3.3) and the smoothing iterative method S be defined by Definition 3.2.3 as in
(3.4).

Definition 5.3.3 Denote the residual iteration matriz of the smoothing iterative method

(3.4) by (see [69, p. 90])
M=AMA™" =1 AN.

For any integer v > 1, we recursively define
MY = MM~
Lemma 5.3.4 For any integer v > 0, the following identities are valid:
MY = AMYA!, (5.16)
AT'MYA = MY, (5.17)
ATMY = MYATY, (5.18)
MYA = AM". (5.19)
Proof. (5.16) is proved by induction on v. (5.17) follows immediately from (5.16) and
Definition 5.3.3. (5.18) and (5.19) are special cases of (5.17). O

The two-level residual iteration operator with v pre-smoothing and vy post-
smoothing sweeps is given by [69, p. 90]

C = M»>CM™, (5.20)

where C' is the coarse-grid-correction residual operator (5.4).
The residual after the kth TLM-MRS iteration is

rre1 = Csy,
= M"CM"[(1 - Br)sk—1 + BT
= (1 — ﬁk)MWCMVISk,l + ﬁkMVZCMVI’I"k. (521)
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By the definitions of the MRS acceleration and of the standard TLM residual iteration
operator (5.20), we have
re = Csp_. (5.22)

Substituting (5.22) into (5.21), after the kth TLM-MRS iteration, we obtain the new
residual

repr = [(1=Be)I + BpM>C M ry,
= {(1 = Bp)I + BpM"™2[I — AP(AT) " LRIM"" }ry,. (5.23)
Theorem 5.3.5 At the kth TLM-MRS iteration, the error iteration matriz is given by
Ep=1— B[l — M2 4 M2 P(AT) L RAM™] (5.24)
and the residual iteration matriz by

Te = (1=B)l +pC (5.25)
= T —B[I - AM" 72 A7 L AM2 P(AT) T RAM™. (5.26)

Proof. The residual iteration matrices (5.25) and (5.26) are obtained directly from
(5.23) and Lemma 5.3.4.

The proof of (5.24) follows from (5.13), (5.23) and Lemma 5.3.4:
Ey = (1— B+ BrA M2 — AP(AT) 'RIM" A

= (1=B)I+ BM2A I — AP(A")"'R|AM™

= I— Bl — M + M P(AT) 'RAM™).

This finishes the proof of Theorem 5.3.5. O

5.4 Some Technical Lemmas and Notations

Definition 5.4.1 Let B be a set, the cardinality of B s defined as
card(B) = the number of elements contained in B.
Definition 5.4.2 For each integer k > 1, let P}, denote a set of 2% ordered set pairs
{{Mf, NEY, {Mf, NEY, . {ME NEY, (M, NG
with the element pair MF and NF defined as
MF = {m; : m; are natural numbers,1 < m; < k}

and

NF = {n; : n; are natural numbers,1 < n; < k}
such that the following two conditions are satisfied:
card(MF) + card(NF) = k (5.27)

and
card(MF U NF) = k. (5.28)
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Remark 5.4.3 For each integer k > 1, the elements of Mlk are necessarily different
from the elements of Nik for each 1 <i <2k j.e.

MFANEFE =0 (the empty set)

due to conditions (5.27) and (5.28). The union of MF and NF contains all natural

numbers less than and equal to k.
Remark 5.4.4 For any integer k > 1, if the equality
card(MF) = k

holds for some 1 < i < 2k, then

and vice versa.

Remark 5.4.5 For any integers k > 1 and 1 < i < 2F,
{MF,NfY # {(NF, M3,

because each element of Py is an ordered set pair.

Remark 5.4.6 For each integer k > 1, the elements of Py are formed by dividing all
natural numbers from 1 to k into two sets. Py contains all possible divisions.

Lemma 5.4.7 For any integer k > 1, the set Px11 may be formed from the set Py by
the union of two auxiliary sets:

Pl = {0 NEY, (NS NEY, (i N, (N NG
and
PRy = {0, NEFU (Mg, NEFYY M N M, N
where for each 1 <1i < 2k
MY = MFU{k+1},
NFL = NFU{E+1).
Proof. By Remark 5.4.5, each element of Py is ordered and it follows that
Pi o NPE, =0 (5.29)
Hence,
card(Pp,, UPZ,,) = card(Pp;) + card(PZ, ) = 2F + 2% = 2" = card(Pgy1). (5.30)

It is clear that each element of P} 41 and P? 41 18 formed by dividing the natural numbers
from 1 to (k + 1) into two sets. It follows from Remark 5.4.6, (5.29) and (5.30) that

1 2
Pry1 = Py U Py
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Definition 5.4.8 For any integer k > 1 and a set of k elements

{xl,xg,...,xj,...,xk}, (531)
let Mik be an index set containing at most k indices of set (5.31), for example, for some
1<I<Ek

Mz-k = {mil,mi2, e ,mil},
where
1<m;, <k, for s=1,2,...,1.
We define the product of all elements of set (5.81) whose indices are contained in set
Mlk by the symbol

H Tm = Lmi Lmy, = Ty Tm, -
mEMi’c

If MF =0, we define

H:I:mzl.

me)

Lemma 5.4.9 For any integer k > 1, let

{xl,xg,...,xj,...,xk},

{y17y27"' s Yjy e 7yk}
be two sets, each contains k elements, then the following identity holds:

ok

k
[H@i+u)=> | II «n]|| II v ], (5.32)
j=1

i=1 \ meM¥ neNF

where for each 1 <1 < ok

Proof. We prove Lemma 5.4.9 by induction on k.
The lemma is true for k£ = 1, since

o (1) (1) (n)
me{1} nef mep ne{l}

2
H$m Hyn )
=1

meM} neN}

)

and
(M} N'Ye P, for i=12.
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Let the lemma be true for k, then

k+1 k
[H@i+v) = @ +vee) [J 5 +u))
j=1 j=1

= (Ther + Yir1) [i:: (m L )(nl—][wyn”

e 5 ) () o (1) (1)

()] (1) £ ) ()

5 ) ()£ ()
i=1 \meMPFu{k+1} neNF meM} neNFU{k+1}

-y (1) ()5 (1) (1)

-2(m ) (me)

The last equality is valid due to Lemma 5.4.7, since

{{:%z]]:j\_};ﬁi E i:;i } , for each 1<i<2k,
we have
(M} NFtYY € Pryy,  foreach 1< <2FFL
This finishes the proof of Lemma 5.4.9. O

5.5 Preliminary Results

The following assumption is motivated by the work of Brandt and Mikulinsky [11].

Assumption 5.5.1 Let C be the residual iteration matriz of the two-level method given
by (5.20). Let any initial residual ro be decomposed into one possibly slow component

(s) ()

ry and a remainder vy’ made up of fast components, i.e.

ro = r(()s) + r((]f),

where

C’rés) = ssr(()s)

and
G 7 < el 2.
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€s and £y measure the convergence of the slow and fast components, respectively. We
also assume that the following condition holds

0<er <05 < |eg] <1 (5.33)

Remark 5.5.2 The residual after the kth two-level cycle is (see [11])

Ck—l—l( ()+T(f)) Ic+1 ()+ ()

Tk+1 = k;_|_1a

where
IOz < ). (5.34)

Now, we prove the main lemma, of this section:

Lemma 5.5.3 Let the initial residual vy satisfy all conditions of Assumption 5.5.1,
then after the kth TLM-MRS iteration, the slow and fast components of the residual

Trr150tisfy:

[k
#o) = H(1—5j+,8jes)} esrs?, (5.35)
Li=1
) [k ] )
17z < H(|1—5j|+|5j|5f)J erllrg” Nl z- (5.36)
Li=1

Proof. Let Tj,j = 0,1,2,---, be the residual iteration matrices of the TLM-MRS
algorithm given by Theorem 5. 3 5 (see (5.25) and (5.26)). We first note that Ty = C
because fy = 1 by the definition of Algorithm 4.3.1.

The proof of Lemma 5.5.3 follows from Remark 5.5.2 and Lemma 5.4.9 with

Ly = (1_@)1}, for each 1<j<k.
vi = BiC

k
Tkl = HTTO

- ﬁ[l—ﬁjutﬂj C| Cro

=1

S,

k
1T Ic) Toro

J=1

S,

21c
= S | II a=81 I B.C)| Cro
=1 | meMf neNk
ok [
= Y| II @=8I| I Ba | G0 Crg
=1 | meMf neNk
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o [
= Z H (1= Bm)I H 8, écard(zvf)ﬂ(r(()s) N T(()f))
2| card(NF)+1 (s) . (f)
i s
= z; Hk(l —ﬁm)I Hkﬁn (&Ts o +TC&I‘d(Ni’°)+1>
ok [
= S| II a-61| II B <€§ard(Ni’°)+1T(()s)>
2k‘
(f)
+ 12::1 ];\[4]6(1 - /Bm)I gk /Bn (Tcard(Nik)H)
= &)+l

Hence,

2k
(s d(NFY+1 (s
P = ST a=81| I A (aiar (NEYH1( >)
=1

| meMf neNk
ok [
= Z H (1 —Bm) H Bn <5§ard(Nik) 6874(()8)>
=1 | meMf neNk
> | rd(nk
- S| I =8| II 8 (eSa ( i’) st
1=1 _mGMik neNk
ok [
= Z H (1 —Bm) H (Bnes) 6s'r'((JS)
=1 | meMf neNk
k
= H(l _Bj +/8j55) 857’(()5)-
7j=1
The last equality follows from Lemma 5.4.9 with
7 = 10 , for each 1<j5<k.
Yy; = ﬁjgs
This proves equality (5.35).
Furthermore,
ok [
=(f) _ ()
Tkt1 = ; g/[k(l = Bm)I gk P (Tcard(Ni’“)ﬂ)

It follows from (5.34) that
ok

F s < S| T 0l | TL 1801 ) (gl

i=1 | meMF neNk
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2k i
card(NF)+1
< S| T 1= fal | IL 18l | (554 1012
i=1 [ meM}F neNk
2" _ card(nk) f)
= | IL 1=l | IL 18l | (79) gt
i=1 [ meMF neNk
2k i 1
= S| TT 11— Bal TI 1Buesl| eslrd” 1z
i=1 [ meMF neNk
u (f)
= [ (1 -8l +18jler) ellrg” |l -
j=1

The last equality follows from Lemma 5.4.9 with

r; = [1-=3] }, for each 1<53<k.
yi = |Bjles
This proves inequality (5.36) and we finish the proof of Lemma 3.2.15. O

Corollary 5.5.4 After the kth TLM-MRS iteration, the residual norm satisfies

ITet1llz = | H Tjrollz
< 1Ok 17§71z + Oklep) IIrd 2. (5.37)
where
¢ 1
11— 8;+ Bjes) | es (5.38)
[]:1 J
and
k
= [H(|1—Bj|+|ﬂj|€f)] Ef. (5.39)
7j=1

|Ok(es)| and O (er) measure the reduction rates of the slow and fast components of
the residual with TLM-MRS, respectively. |O(es)|"/ 1) and O4(e;)"/*+) are the
average reduction factors of the slow and fast residual components for the first (k + 1)
TLM-MRS iterations.

5.6 Bounds of Residual Reduction Rates

Acceleration is achieved by speeding up the convergence of the slow component, this
leads to the following assumption:

Assumption 5.6.1 Let there exist some 0 < é; < 1 such that é5 < |es| and

|1 — Bk + Bres| < €s, for all k> 1. (5.40)
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€, is an upper bound of the residual reduction rate of TLM-MRS.

Lemma 5.6.2 If Assumption 5.6.1 holds, then the MRS parameter By satisfies:

1-¢&  »
> = 41
Bz =F (5.41)
or T
€
< = 42
/8142 = 1_¢, Ba (5 )
for each k > 1.
Proof. Inequalities (5.41) and (5.42) are the solutions of inequality (5.40). O

Lemma 5.6.3 Let Assumptions 5.5.1 and 5.6.1 hold, then

1Ok (es)| < leslés (5.43)
holds for any k > 1.
Proof. Inequality (5.43) follows from (5.38) and (5.40). O

Lemma 5.6.4 Let Assumptions 5.5.1 and 5.6.1 and the inequality

—1<es<—1/2 (5.44)
hold. We define
R def
ef(ess€syef)e = |1 — Bil + |Beles (5.45)
If
Ef — &g R
=7 <& 5.46
2—¢e5—¢€p c ( )
holds, then

ef(es,ésief)i < Es.

Proof. By assumption (5.44) and Lemma 5.6.2 (5.42), we have

~

14+ &
1 —¢g4

0<|Bk <B= <1 (5.47)
because &g < |eg| leads to é; < —es.
It follows from (5.45), (5.46) and (5.47) that, for each k > 1,

gf(gsaésagf)k < 1- B+ Bﬁf
e —es — (1 —e5)és
1— ¢4
Ef —Es

IA

2—¢gs—¢y

IN

Es.
This proves Lemma 5.6.4. O
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Lemma 5.6.5 Under the conditions of Lemma 5.6.4, the following bounds hold:
1 Ef — €s 3
5 < 2—e5— ¢y < 5

Proof. The lower bound is obtained as e; — 0 and ¢, = —1/2; the upper bound is
obtained when ey — 1/2 and ¢, — —1. O

Remark 5.6.6 Lemmas 5.6.4 and 5.6.5 imply that under the conditions of Lemma 5.6.4,
MRS may not provide any acceleration if the residual reduction rate of the underlying

TLM is smaller than 1/5. In other words, TLM-MRS may not be better than TLM if

the latter converges very fast.

Lemma 5.6.7 Under the conditions of Lemma 5.6.4, we have
Or(er) <ef élsc. (5.48)
Proof. The proof follows from (5.39) and Lemma 5.6.4. O

Theorem 5.6.8 Under the conditions of Lemma 5.6./4, at the kth TLM-MRS iteration
the residual satisfies
Iresallz < o €5
with
éf — 0, as k — oo,
where

a=les| Irz +e5 Ir 12

15 a constant independent of k.

Proof. By Corollary 5.5.4, Lemma 5.6.3 and Lemma 5.6.7, we have at the kth TLM-
MRS iteration:

~k ke
Irevillz < el &6 l1r67lz + 5 €6 lirg”.2

= (les] 17Nz + 25 11711 2) €

= aé

— 0, as k— 0.
This proves Theorem 5.6.8. |
Lemma 5.6.9 Let Assumptions 5.5.1 and 5.6.1 and the inequality
1/2<e,<1
hold, then

2> ef+es

g > — . 5.49
T 2465 —¢s ( )
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Proof. By Lemma 5.6.2 (5.41), we have

1—¢&

B> B = >1

1—¢g
because &5 < &,.
If bound (5.49) fails, we have

5f(55355a5f)k > ,B—l—i—,é&f
eftes —(L4e5)és
1— ¢4
ef +¢€s
2ter—es
> és’

which is impossible because the reduction rate of the fast components should be smaller

than the reduction rate of the slow component. Hence bound (5.49) must hold. O
Unlike Lemma 5.6.4, Lemma 5.6.9 does not state that MRS will provide any

acceleration. It only sets an lower bound for the possible residual reduction rate.

Lemma 5.6.10 Under the conditions of Lemma 5.6.9, the following bounds hold:

1< Ef +¢Es <
3 245 —eg

Proof. The lower bound is obtained when ey — 0 and e, — 1/2; the upper bound is
obtained when £, — 1, independent of €. O

5.7 Conclusions and Remarks

We have proved that the minimal residual smoothing (MRS) technique is a semi-
iterative method with respect to the original two-level or multigrid method, and that
the TLM-MRS or multigrid-MRS method is a polynomial acceleration of the first or-
der. We also give the error and residual iteration matrices of the MRS accelerated
coarse-grid-operator and TLM-MRS. Under our assumptions, we obtained quantita-
tive lower and upper bounds for the TLM-MRS residual reduction rates which support
our numerical results in Chapter 4. We gave heuristic arguments that TLM-MRS and
multigrid-MRS may not be efficient to solve diffusion-dominated (Poisson-type) prob-
lems.

We note that many analytical results can be generalized to multigrid-MRS straight-
forwardly by using the recursive idea. Some results, e.g., Theorem 5.2.2, can be gener-
alized to any underlying method accelerated by MRS acceleration scheme.
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Chapter 6

High Accuracy Solution of the
Convection-Diffusion Equation

6.1 Introduction

Numerical simulation of the convection-diffusion equations plays a very important role
in modern large scale scientific computation, especially in computational fluid dynam-
ics. The general convection-diffusion equation is of the form

Ugy + Uyy +p(wvy)u$ + q(m,y)uy = f(fIf,y), ((I,‘,y) € Qa } (6 1)
u(x,y) = g(x,y), (x,y) € 01. )

where p(z,y) and ¢(x,y) are continuously differentiable functions of z and y. Q is a
convex domain and 0f is the boundary of Q.

This equation often appears in the description of transport phenomena, especially
in those described by the incompressible Navier-Stokes equations. The magnitudes of
p(z,y) and g(z,y) determine the ratio of the convection to diffusion. In many problems
of practical interest the convective terms dominate the diffusion. Many numerical
simulations of (6.1) become increasingly difficult (converge slowly or even diverge) as
the ratio of convection to diffusion increases.

For convenience, we define the cell Reynolds number as

Re = max( sup |p(z,y)|, sup |q(z,y)) h/2,
(z,y)eQ (z,y)eN

where h is the uniform grid spacing. For Re < 1, we say that Eq. (6.1) is diffusion-
dominated. Otherwise it is convection-dominated.

When Eq. (6.1) is discretized using central differences, the resulting scheme is
a five-point formula (FPF) with a truncation error of order h2. In the case of the
FPF scheme, iterative methods for solving the resulting system of linear equations
do not converge when the convective terms dominate and Re is greater than a certain
constant.

Some attempts have been made to solve the convection-diffusion equation with
iterative methods based on FPF. Recently, Brandt and Yavneh [9] used FPF with
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added dissipation terms to solve (6.1) with high Reynolds numbers. They proposed
an over-weighted residual technique to accelerate the multigrid convergence for high-
Reynolds number flows. de Zeeuw and van Asselt [74], de Zeeuw [75] developed a
black-box multigrid solver with some matrix-dependent prolongations and restrictions.
A multigrid method based on the Schur complement of the coefficient matrix and the
matrix-dependent prolongation operator was recently proposed by Reusken [47, 48].
Elman and Golub [17] proposed methods that consist of applying one step of cyclic
reduction resulting in a reduced system of half the order of the original discrete problem.
Golub and Tuminaro [23] suggested a multigrid solution in conjunction with one step
of cyclic reduction to solve the convection-diffusion equation.

Gupta et al. [25, 26] proposed a fourth-order compact nine-point finite difference
scheme (NPF) for Eq. (6.1) which was shown to be both accurate and cost-effective.
It is also stable with the classical iterative methods (e.g., Gauss-Seidel, SOR) for large
values of p(z,y) and ¢g(z,y). The current work in this chapter is to merge the multigrid
technique with the N"PF scheme to develop a general convection-diffusion equation
solver.

In Section 6.2, we present the nine-point compact finite difference discretization
scheme for (6.1). A heuristic residual analysis is presented in Section 6.3 to obtain
an optimal residual injection operator for diffusion-dominated problems. The N'PF
multigrid solver for the convection-diffusion equation is designed in Section 6.4. In
Section 6.5, numerical experiments are employed to show the stability and the effec-
tiveness of the NPF multigrid solver. Some conclusions and remarks are included in
Section 6.6.

6.2 Finite Difference Scheme

The approximate value of a function u(x,y) at a mesh point (z, y) is denoted by ug. The
approximate values at its eight immediate neighboring points are denoted by w;,7 =

1,2,...,8, with the following computational stencil:
Ug U2 Us
u3 uUpg Ul (62)

Uy U4 U

The discretized values of p;,q; and f;,¢ =0,1,...,4, have their obvious meanings. The
compact finite difference formula for the mesh point (z,y) involves the nearest eight
neighboring mesh points with the mesh spacing h (see [26] for details):

8 2 3
h h
> ajuj = S Bfo+ it fot s+ fal + lpo(fi = f3) + qo(fo = fo)). (6.3)
j=0
The coefficients «;,72 = 0,1,...,8, are
h h2_
ap = 4+ Z[4p° +3p1 —p3 +p2 +pa] + §[4po +po(p1 — p3) + qo(p2 — p4)l,
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h h?

oy = 4+ 7ldqo+3p —q+q+ ) + §[4q§ +po(q1 — g3) + q0(q2 — qu)),
h h

a3 = 4-— Z[4p° —p1+ 3p3 4+ p2 + pa] + §[4po —po(p1 — p3) — @o(p2 — p4)],
h K,

oy = 4-— Z[4QO —q2+ 30 +q1 + g3+ §[4qo —po(q1 — q3) — q0(q2 — q4)],
h h h?

as = 1+ E(po +qo) + g(q1 —q3+p2 —pa) + 4 Podo;

N S S S L

Qg = 2 Po —qo 3 q1 — 43 T P2 — P4 4 Poqo,
h h h?

ar = 1— 5(;00 +qo) + g(m —q3+p2—pa) + — Podo;
h h h?

ag = 1+ 5(1)0 —qo) — g(fh —q3+p2—pa) — ~ Podo;

ag = —[20+R%(p§ + qf) + h(p1 — p3) + A2 — qu)]- (6.4)

The results of the numerical experiments in [26] show that this scheme converges for
any values of p(z,y) and ¢(z,y) when classical iterative methods such as SOR are used.
Some limited stability results for this scheme with constant coefficients are discussed
in Appendix B and [83].

When Re = 0, Eq. (6.1) reduces to the Poisson equation, and Eq. (6.3) reduces
to the well-known Mehrstellen formula [27]. Multigrid applications of the Mehrstellen
formula have been investigated by Schaffer [51, 52]. Recently, we [29] made some
comparisons between the nine-point and five-point multigrid Poisson solvers on serial
and vector machines and showed that NPF is more cost-effective than FPF.

In [30], we investigated the multigrid solution of Eq. (6.1) when p(x,y) and ¢(z,y)
are constants and observed the cost-effectiveness of employing a residual injection oper-
ator for convection-dominated problems. We found that the NPF multigrid converges
for any value of Re, while the FPF multigrid becomes divergent when Re > 1.

6.2.1 Multigrid Implementation

The discretized grid space is usually naturally (lexicographically) ordered. We may
rearrange the grids in an alternative red and black order in a checkerboard fashion.
The relaxation (smoothing) can be carried out simultaneously on red points and black
points (independently for FPF, but not independently for N’PF). This idea is cer-
tainly beneficial on the parallel computers. But it has been shown that, even on serial
computers, the red-black ordering is superior to the natural ordering for both FPF
and N'PF multigrid algorithms for solving the Poisson equation [29]. The Gauss-Seidel
relaxation with the red-black ordering is referred to as the RBGS relaxation (smooth-
ing).

The bi-linear interpolation will be used in all our algorithms to interpolate the
coarse grid correction to the fine grid. The full-weighting restriction or the injection
operators (defined below) will be used to transfer the residuals from the fine grid to
the coarse grid.
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In the context of the multigrid method, the right-hand side as it appears in (6.3)
is only evaluated once on the finest grid when the initialization of data (boundary
conditions) is performed. We may define F' at each reference point by

2 3
Fy = %[8f0 + fi+ fot f3+ fa] + hz[PO(fl — f3) + qo(f2 — f4)l-

Now (6.3) becomes
8
Z o;u; = Fp.
i=0

The computation of Fy for grid points close to the boundary requires the values of
f(z,y) on the boundary. We assume that f(z,y) is extended naturally on to 0€.

To utilize the computer’s memory more efficiently, practical multigrid solvers usu-
ally use a single long array to store the discretized values of v and f (here F') for all
grid levels. On the coarse grids, the locations of u and f are used to store coarse grid
correction and residual respectively.

It is also economical to pre-compute the values of p(z,y) and ¢(z,y) on each grid
points. We use another long array to store these values at each grid point and at each
grid level. This is similar to the long array used above to store values of the approximate
solution u(z,y) and the right-hand side f(z,y). The same pointers may be used for all
of the arrays.

From now on, we refer to the algorithms using the multigrid W(1,1)-cycle (see
Section 6.4) and the N'PF smoother as N'PF-MG; those use the FPF smoothers are
referred to as FPF-MG.

6.3 Residual Transfer Analysis

The methods to carry out residual transfer (projection) typically fall into two categories.
One is the direct injection of the fine grid residuals to the corresponding coarse grid
points weighted by a constant factor. In practice, the factor 1/2 is used for FPF-MG
when RBGS is used as the smoother (see Appendix A). If the lexicographic Gauss-
Seidel is used as the smoother, the factor 1 is used to inject the residuals and is called
the full-injection operator.

For N'PF-MG, the grid space is not completely de-coupled by the RBGS smooth-
ing and the half-injection is not accurate. On the other hand, the full-injection may
result in divergence for many diffusion-dominated problems.

Another category of projection operators is to weight the residuals at all fine grid
points and to project a weighted quantity to the coarse grid. The full-weighting scheme
is to weight the residual at the nearest nine points by formula (A.1).

For the full-weighting, we evaluate the residuals at all fine grid points and weight
them to the corresponding coarse grid points. On the other hand, the injection operator
needs only the residuals corresponding to the coarse grid points. There is no cost for
weighting the neighboring residuals. The cost of evaluating residuals on a grid space is
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equivalent to one full relaxation on that grid. Hence, computational cost of using the
injection operator is less than a quarter of the cost of using the full-weighting operator.
For N'PF-MG, the employment of the injection operator may result in 25% savings in
CPU time if the convergence of N'PF-MG does not deteriorate.

Our numerical experiments with the constant coefficients in [30] show that the
injection with a factor 1/2 or 1 is more cost-effective than the full-weighting for N'PF-
MG when Re is greater than 1. More interesting is the fact that the convergence is
not very sensitive to the injection factor. However, when Re < 1 (diffusion-dominated),
the half-injection deteriorates the convergence considerably and the full-injection causes
divergence for some problems.

6.3.1 Diffusion-Dominated Residual Injection

Our goal in this section is to find a residual injection scaling factor that will improve the
convergence of the diffusion-dominated problems (Re < 1). To this end, we investigate
the full-weighting scheme (A.1).

The heuristic residual analysis is similar to that we use in Appendix A to derive
an optimal residual injection scaling factor for the standard five-point Poisson solver.

In (A.1), the weight assigned to each point is determined by the involvement of
that point in the number of coarse grid point computation. For example, r;4q j41 is
weighted into the calculation of four coarse grid points at (i/2,5/2), (i/2,7/2+1), (i/2+
1,7/2) and (i/2+1,j/2+ 1). The weights in (A.1) correctly reflect these correlations.
But they do not reflect the geometric correlation of r; ; and ;41 j41, and the red-black
relaxation pattern.

To find the optimal injection operator is to find the optimal scaling factor « to
represent 7/ j/o in terms of r; j, as accurately as possible, i.e.

fz'/2,j/2 = ar;;- (6.5)

It is very difficult to give a precise representation of the residuals on each grid space.
However, with some assumptions, a reasonable estimate may be obtained. We assume
that the solution is not highly oscillating and the high frequency error components are
removed before the residuals are injected to the coarse grid. (If the smoothing condition
is not satisfied, several relaxation sweeps may be needed to smooth the high frequency
error components before the residuals are projected to the coarse grid [84, 85].) Hence,
the residual at each grid point is not supposed to differ by a large magnitude from those
at its nearest eight neighboring points. We assume that the residuals are locally equal
for each of the nine points involved in a particular N'PF relaxation step.

A half Jacobi sweep is carried out on the red points first without updating the
black points. Except for those points close to the boundaries, a red point is updated
by two previously updated (new) red points, two un-updated (old) red points and four
un-updated (old) black points (see Figure A.1). The update of a red point uses new
values at only two points and the residual at that point is supposed to be large (relative
to those at the neighboring black points). A subsequent half Jacobi sweep on the black
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points updates each black point by four new red points, two new black points and two
old black points. Hence, the residual at each black point is presumably smaller than
those at the nearest neighboring red points.

If we assume that, after one RBGS sweep on the entire grid, the residuals at all
the black points are zero, i.e.

Tit1,j = Tim1,j = Tij+1 = Tij—1 = 0, (6.6)

and residuals at all red points are equal (not zero, otherwise we would have reached
convergence and have no need to transfer the residuals),

Ticl,j—1 = Tiglj—1 = Ticlj41 = Tiglj+l = Tij- (6.7)

Substituting (6.5), (6.6) and (6.7) into (A.1), we obtain @ = 1/2, which is the half-
injection. Since this « results from the assumption that the residuals at the black
points are zero, this should be the lower bound of . We denote ajgyer = 1/2.

In practice, the residuals at the black points may not be zero. Since updating
a black point uses three times as much new information as updating a red point, we
assume that after one red-black full sweep on the entire grid, the residual r; ; at any
particular red point (7, ) is three times as large as the residuals at its four immediate
neighboring black points (¢,7 — 1), (4,5 + 1), (1 — 1,7), (1 + 1,4), i.e.

Titlj = Tim1,j = Tij41 = Tij—1 = %Ti,j- (6.8)

We also assume that the four neighboring red points (i—1,5—1), (i+1,7—1), (i—1,j+1)
and (74 1,7 4 1) have the residuals of the same magnitude as r; j. But their geometric
positions are /2 unit away from the reference point (i,4) and their influence on the
weighting scheme should be scaled by /2, i.e.

1
Fimtg=1 = Titly=1 = Timlj4l = Tt gl = 5T (6.9)
Substituting (6.5), (6.8) and (6.9) into (A.1), we have
1 2
- % ~ 0.5934. (6.10)

This would be the upper bound of the residual injection factor, we denote it by aypper-
The optimal factor agprimar lies between aypper and oyoyer- There exists & € (0, 1)
such that

Aoptimal = faupper + (1 - g)alower- (6'11)

In absence of further information to justify any better weighting scheme, we take ¢ =
1/2, (6.11) yields

~ (0.5467.

Qoptimal = OQupper T Qlower _ 22 4 3V2

2 48
Our numerical experiments on several test problems show that this choice of « for the
residual injection operator indeed gives better performance than both the full-weighting
and the half-injection operators. However, a slight variation of aptima may give even
better results for particular test problems.
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6.3.2 Convection-Dominated Residual Injection

When the cell Reynolds number Re increases, the smooth components of the errors
dominate [9]. This is characterized by the relation [10]

(PRSP (6.12)

where 7" and e are the normalized residuals and errors on the fine grid, respectively
(see [10] for definition of the normalized residuals). This relation states that the norms
of the smooth components of the errors are much larger than the norm of the normal-
ized residuals. Increasing relaxation on the fine grid reduces the magnitude of the high
frequency errors, but does not reduce magnitude of the low frequency errors. On the
other hand, due to the inconsistency between the fine and coarse grid approximations,
the residual equation on the coarse grid converges to a solution which is not the error
correction required by the fine grid. When this wrong coarse grid correction is inter-
polated back to the fine grid and is added to the fine grid solution, the latter tends to
diverge.

Therefore, the residuals on the fine grid must be scaled before they are projected
to the coarse grid. To modify the full-weighting operator so that it may reflect the
fine grid residuals more closely, Brandt and Yavneh [9] proposed to over-weight the
residuals to accelerate the FPF based multigrid methods with added dissipation terms
for recirculating flows with high Reynolds number. Their idea is to improve the coarse
grid correction to the error in the fine grid approximation by multiplying the residuals
that are transferred to the coarse grid by some constant 7 between one and two. For
example, the two-level convergence factor of the advection-diffusion equation (with
vanishing coefficients) employing the first-order discretization improves from 0.5 to
0.33 with n = 4/3.

The residual injection operator may reflect some behavior of the fine grid residuals.
If the residuals need to be scaled before they are injected to the coarse grid, we can
scale the residual injection factor so that we keep the cost of transferring residuals low
by using injection instead of full-weighting.

Moreover, when p(z,y) and ¢(z,y) are oscillatory rapidly in €, the direction of
the convection is complicated. In particular, when 2 contains stagnation points, where
the convection coefficient vanishes and the velocity is zero, the convection changes
direction around the stagnation points and equation (6.1) represents a recirculating
flow. The full-weighting operator usually mis-represents the closed characteristics of
the flow around the stagnation points. By projecting residuals with mis-represented
characteristics to the coarse-grid, the coarse-grid sub-problem fails to approximate that
of the fine-grid at all and causes divergence on the fine-grid for high Reynolds number
recirculating flows. On the other hand, the injection may maintain the characteristics.
These properties have been clearly simulated by our numerical examples presented in
Section 6.5.

Of course, the best residual injection factor will generally change from that we
obtained above for the diffusion-dominated problem. Since the smooth components of
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the errors increase as Re increases to infinity, the scaling factor « may be increased to
reflect this fact. Although there is no absolute guarantee that any single factor will
work for all practical problems, we find that, for most problems, the residual injection
factor is indeed an increasing function of Re, and it approaches a constant when Re
tends to infinity. This constant may be problem-dependent, but it is usually around
1, i.e., for high Reynolds number problems, the scaled residual injection for RBGS
relaxation tends to the full injection.

6.4 Design of NPF-MG Solver
We design our NPF-MG solver as follows:

1. Start from the fine grid with some initial guess and perform vy RBGS NPF
relaxation sweeps.

2. Calculate the residuals corresponding to the coarse grid points, multiply the
residuals by a scaling factor o and inject the residuals to the coarse grid.

3. Perform p multigrid cycles on this grid.

4. Interpolate the coarse grid correction to the fine grid by bi-linear interpola-
tion.

5. Perform 15 RBGS N'PF relaxation sweeps on the fine grid.

If p = 1, the multigrid cycle is called the V-cycle. If u = 2, it is the W-cycle. For
convection-dominated problems, it has been shown by Brandt and Yavneh [9] that the
W-cycle algorithm is usually better than the V-cycle algorithm. v; and v, are the
numbers of pre-smoothing and post-smoothing sweeps.

For all Re, choosing o = 0.5424 with residual injection guarantees convergence.
We note that the scaling parameter « can be fine tuned to accelerate the convergence.
Nevertheless, in all our numerical experiments followed, we take o = 0.5424 for all the
Reynolds number Re and no divergence has been found.

The multigrid cycle usually goes down to the coarsest grid with only one unknown.
On the coarse grids, the effective cell Reynolds number is large and the relaxation be-
comes more difficult. For high Reynolds number problems, it is sometimes advantageous
to stop the multigrid process at some coarse grid level before reaching the coarsest grid.

6.5 Numerical Experiments

Numerical results for three test problems are obtained using the NPF-MG solver.
The test problems given here are solved using a uniform mesh-size h on a square
domain Q = (—0.5,0.5) x (—0.5,0.5).
The boundary values of the solution are assumed to be known. The number of the
multigrid W(1,1) cycles (MW), the discrete error in Ly, norm (Error), and the CPU
time in seconds, are reported. All computations are done on an SGI (Silicon Graphic
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Indy) workstation using FORTRAN 77 programming language in double precision. The
computation is terminated when the initial residual (in Ly norm) on the finest grid is
reduced by a factor of 10'°.

For the N'PF-MG solver, standard coarsening technique (the mesh-size of the
coarse grid doubles that of the fine grid) is used and the coarsest grid contains only one
unknown (nine points in total including boundary points). The only exception is the
coarse-grid restriction option, where we stop coarsening when A = 1/16 (in this case,
there are 225 unknowns on the coarsest grid).

For the first test problem, N'PF-MG is first applied for different values of Re
with fixed mesh-size h = 1/128 to test the convergence of NPF-MG as a function of
the Reynolds number. Then we vary the mesh-size h to test the 4th order accuracy
promised by N'PF-MG. The second test problem is used to further test the Reynolds
number effect. For the third test problem, Re is fixed and we vary the mesh-size to test
the accuracy and the cost-effectiveness of the injection operator.

6.5.1 Test Problem 6.5.1
Consider the boundary value problem (6.1) with

Test Problem 6.5.1

p(ac,y) = an
Q(x’y) = _Pya
u(z,y) = zy(l—z)(1 —y)exp(z +y).

This problem was used by Gupta et al. [26] to test the high order formula (6.3) with
classical iterative methods (SOR) using h < 1/32 and it was shown that N'PF with
SOR is convergent for any P, while the central difference scheme (CDS) is divergent
with P > 1000. A similar problem was used by Shapira et al. [55] to test their
automatic multigrid method (with a five-point stencil FPF) for h = 1/64. When
P = 150, both the standard multigrid method and the automatic multigrid method
converge. However, when P = 300, both methods diverge with the RBGS smoothing.
Note that the presence of a stagnation point at (0,0).

Tables 6.1 to 6.3 contain test results for fixed mesh-size h = 1/128. Compu-
tations are reported with full-weighting, residual-injection and coarse-grid restriction
techniques. We note that NPF-MG with the full-weighting residual projection opera-
tor provides accurate solutions for the values of P ranging from 0 to 1200. However the
iterations diverge when Re is large. Many multigrid solvers based on FPF diverge even
when Re is less than 1 on the finest grid (see an example in [55]) and the refinement of
mesh-size on the finest grid does not bring convergence. This suggests that the reason
for divergence is on the coarse grid. For example, when P = 1500, Re = 2.9279 on the
finest grid with A = 1/128, Re = 187.5 on the coarsest grid with h = 1/2.

One remedy to this divergence is to restrict the mesh-size of the coarsest grid and
to avoid the worst Reynolds number. We were able to obtain convergent solution for
values of P ranging from 0 to 12000. However, this approach reduces the number of
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P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 8 10 38

10 0.0195 8 10 36

50 0.0977 8 10 19
100 0.1953 9 10 12
500 0.9767 17 19 17
800 1.5625 24 27 24
1000 | 1.9531 29 31 29
1200 | 2.3438 32 35 32
1500 | 2.9297 diverge 38 35
2000 | 3.9062 diverge 46 43
5000 | 9.7656 diverge 72 67
8000 | 15.625 diverge 101 94
10000 | 19.531 diverge 136 127
12000 | 23.438 diverge 172 163
40000 | 78.125 diverge 713 diverge

Table 6.1: Test Problem 6.5.1 with h = 1/128: Comparison of iteration (the W(1,1)-

cycle) number for NPF-MG with options.

P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 7.45 6.85 32.03
10 0.0195 7.48 6.85 31.25
50 0.0977 7.48 7.01 16.02
100 0.1953 8.33 6.84 10.17
500 0.9767 15.80 12.90 14.35
800 1.5625 22.00 18.29 20.34
1000 | 1.9531 26.63 21.20 24.70
1200 | 2.3438 29.39 23.69 27.07
1500 | 2.9297 diverge 26.03 29.52
2000 | 3.9062 diverge 31.29 36.28
5000 | 9.7656 diverge 49.22 56.42
8000 | 15.625 diverge 68.87 79.78
10000 | 19.531 diverge 92.98 107.96
12000 | 23.438 diverge 117.45 138.11
40000 | 78.125 diverge 483.31 diverge

Table 6.2: Test Problem 6.5.1 with h = 1/128: Comparison of CPU time in seconds

for NPF-MG with options.
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P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 2.4(-11) 2.2(-11) 1.8(-09)
10 0.0195 2.9(-10) 2.9(-10) 1.6(-09)
50 0.0977 4.9(-09) 4.9(-09) 5.0(-08)
100 0.1953 1.3(-08) 1.3(-08) 1.3(-08)
500 0.9767 8.7(-08) 8.7(-08) 8.7(-08)
800 1.5625 1.4(-07) 1.4(-07) 1.4(-07)
1000 | 1.9531 1.8(-07) 1.8(-07) 1.8(-07)
1200 | 2.3438 2.2(-07) 2.2(-07) 2.2(-07)
1500 | 2.9297 diverge 2.7(-07) 2.7(-07)
2000 | 3.9062 diverge 3.5(-07) 3.5(-07)
5000 | 9.7656 diverge 8.2(-07) 8.2(-07)
8000 | 15.625 diverge 1.2(-06) 1.2(-06)
10000 | 19.531 diverge 1.5(-06) 1.5(-06)
12000 | 23.438 diverge 1.7(-06) 1.7(-06)
40000 | 78.125 diverge 4.1(-06) diverge

Table 6.3: Test Problem 6.5.1 with h = 1/128: Comparison of maximum errors for
NPF-MG with options.

multigrid levels and reduces the multigrid efficiency for the diffusion-dominated prob-
lems where P is small. Coarse-grid restriction computations take many more multigrid
cycles than full-weighting computations when P is small. For very large P such as
P = 40000, Re is large even on the finest grid and NPF-MG diverges with this option.
This indicates that more coarse grids may need to be removed to ensure convergence.

On the other hand, N'PF-MG with the residual-injection operator converged for
all values of P ranging from 0 to 40000. It is also more cost-effective than both the
full-weighting operator and the coarse-grid restriction option.

The residual-injection operator guarantees the convergence at a lower computa-
tional cost. In [30], we noticed that the injection operator (with a factor of 1/2 or 1) is
more cost-effective than the full-weighting operator when the cell Reynolds number Re
is greater than 1 though it is not as good as the full-weighting operator when Re < 1.
However, with the optimal residual injection factor developed here, we are able to gain
cost-effectiveness even for the diffusion-dominated cases.

For the convection-dominated cases, the computed accuracy is the same for dif-
ferent residual transferring operators and coarse-grid restriction option.

Next, we test the convergence and the improvement in the computed accuracy as
the mesh-size is refined. For NPF-MG with full-weighting operator, the results are
given in Tables 6.4 and 6.5. It can be observed that, in most cases, when the mesh-size
is halved, the maximum error is decreased by a factor of 16. This is the performance
of 4th order convergence. On the other hand, Table 6.4 shows that the convergence of
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P |[h=1/32[h=1/64 [ h=1/128 | h=1/256 | h =1/512
0 8 8 8 8 8
1 8 8 8 8 8
10 8 8 8 8 8
50 10 9 8 8 8
100 13 11 9 8 8
500 24 24 17 12 10
1000 27 33 29 19 13

Table 6.4: Test Problem 6.5.1: Iteration (W(1,1)-cycle) numbers of NPF-MG with
full-weighting and different meshsizes.

P [ h=1/32]h=1/64 | h=1/128 [ h=1/256 | h = 1/512
0 6.1(-9) | 3.8(-10) | 24(-11) | 1.5(-12) | 2.6(-13)
1 6.7(-9) | 4.2(-10) | 2.6(-11) | 1.6(-12) | 2.6(-13)
10 7TA(-8) | 4.6(-9) | 2. 9( 10) | 1.8(-11) | 1.1(-12)
50 1.3(-6) | 7.8(-8) | 4.9(-9) | 3.1(-10) | 1.9(-11)
100 | 3.4(-6) | 2.1(-7) 1.3(-8) | 8.3(-10) | 5.2(-11)
500 | 1.9(-5) | 1.4(-6) | 8.7(-8) 55(-9) | 3.4(-10)
1000 | 3.3(-5) | 2.6(-6) 1.8(-7) 1.1(-8) | 7.1(-10)

Table 6.5: Test Problem 6.5.1: Maximum errors of NPF-MG with full-weighting and
different meshsizes.

NPF-MG is h-independent for diffusion-dominated problems, but is affected by the
meshsize when Re is large.

Tables 6.6 and 6.7 contain data for the test for convergence and computed accuracy
when N'PF-MG is used with the residual-injection operator. The 4th order accuracy is
still maintained. The interesting information given by Table 6.6 is that the convergence
of NPF-MG with residual injection is less affected by the magnitude of Re than that
with full-weighting.

6.5.2 Test Problem 6.5.2

In Test Problem 6.5.1, the coefficients p(z,y) and ¢(z,y) were linear functions. Next,
we consider the nonlinear coefficient problem

Test Problem 6.5.2

p(z,y) = Pexp(z+y),
q(z,y) = —Pexp(—r—y),
u(z,y) = zy(l—z)(1 —y)exp(z +y).
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P h=1/32]h=1/64 | h=1/128 | h=1/256 | h = 1/512
0 10 10 10 10 10
1 10 10 10 10 10
10 10 10 10 10 10
50 11 10 10 10 10
100 13 11 10 10 10
500 25 25 19 14 11
1000 27 35 31 22 14
1500 40 43 46 37 23
2000 53 43 46 37 23
10000 | 139 202 136 118 148

Table 6.6: Test Problem 6.5.1: Iteration (W(1,1)-cycle) numbers of NPF-MG with

residual injection operator and different meshsizes.

P h=1/32h=1/64 | h=1/128 | h=1/256 | h = 1/512
0 6.1(-9) | 3.8(-10) | 2.2(-11) | 4.5(-12) | 5.2(-12)
1 6.7(-9) | 4.2(-10) | 2.5(-11) | 4.6(-12) | 5.2(-12)
10 74(-8) | 4.6(-9) | 29(¢-10) | 1.7(-11) | 4.8(-12)
50 1.3(-6) | 7.8(-8) | 4.9(-9) | 3.1(-10) | 1.9(-11)
100 3.4(-5) | 2.1(-7) 1.3(-8) | 8.3(-10) | 5.2(-11)
500 1.9(-5) | 1.4(-6) | 8.7(-8) 55(-9) | 3.4(-10)
1000 | 3.3(-5) | 2.6(-6) 1.8(-7) 1.1(-8) 7.1(-10)
1500 | 4.4(-5) | 4.9(-6) | 3.5(-7) 2.3(-8) 1.5(-9)
2000 | 5.2(-5) | 4.9(-6) | 3.5(-7) 2.3(-8) 1.5(-9)
10000 | 8.4(-5) | 1.5(-5) 1.5(-5) 1.1(-7) 7.2(-9)

Table 6.7: Test Problem 6.5.1: Maximum errors of N'PF-MG with residual injection

operator and different meshsizes.
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P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 8 10 38

10 0.0531 8 10 48

50 0.2655 9 10 27
100 0.5309 11 12 16
500 2.6546 22 23 22
800 4.2473 diverge 28 28
1000 | 5.3091 diverge 32 32
1200 | 6.3710 diverge 34 34
1500 | 7.9637 diverge 38 38
2000 | 10.618 diverge 51 47
5000 | 26.546 diverge 100 102
8000 | 42.473 diverge 147 145
10000 | 53.091 diverge 192 187
12000 | 63.710 diverge 236 231
40000 | 212.37 diverge 710 diverge

Table 6.8: Test Problem 6.5.2 with h = 1/128: Iteration (W(1,1)-cycle) numbers of
NPF-MG with options.

P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 7.46 6.83 32.43
10 0.0531 7.45 6.89 40.34
50 0.2655 8.34 6.92 23.03
100 0.5309 10.54 8.18 14.05
500 2.6546 20.28 15.75 18.47
800 4.2473 diverge 19.03 23.86
1000 | 5.3091 diverge 21.61 27.44
1200 | 6.3710 diverge 23.28 28.74
1500 | 7.9637 diverge 26.09 32.37
2000 | 10.618 diverge 34.55 39.66
5000 | 26.546 diverge 67.83 87.58
8000 | 42.473 diverge 99.37 122.15
10000 | 53.091 diverge 137.02 156.81
12000 | 63.710 diverge 161.48 193.72
40000 | 212.37 diverge 486.04 diverge

Table 6.9: Test Problem 6.5.2 with 4~ = 1/128: The CPU time in seconds for NPF-MG

with options.
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P Re Full-Weighting | Residual-Injection | Grid-Restriction
0 0.0000 2.4(-11) 2.2(-11) 1.8(-09)
10 0.0531 1.0(-09) 1.0(-09) 1.6(-09)
50 0.2655 1.3(-08) 1.3(-08) 1.3(-08)
100 0.5309 3.3(-08) 3.3(-08) 3.3(-08)
500 2.6546 2.2(-07) 2.2(-07) 2.2(-07)
800 4.2473 diverge 3.6(-07) 3.6(-07)
1000 | 5.3091 diverge 4.5(-07) 4.5(-07)
1200 | 6.3710 diverge 5.4(-07) 5.4(-07)
1500 | 7.9637 diverge 6.7(-07) 6.7(-07)
2000 | 10.618 diverge 8.9(-07) 8.9(-07)
5000 | 26.546 diverge 2.0(-06) 2.0(-06)
8000 | 42.473 diverge 2.9(-06) 2.9(-06)
10000 | 53.091 diverge 3.4(-06) 3.4(-06)
12000 | 63.710 diverge 3.8(-06) 3.8(-06)
40000 | 212.37 diverge 7.1(-06) diverge

Table 6.10: Test Problem 6.5.2 with & = 1/128: Maximum errors of NPF-MG with
options.

Information contained in Tables 6.8 to 6.10 supports the remarks made on the Test
Problem 6.5.1. Once again, the convergence and the accuracy worsen with increasing
Re. The N'PF-MG solver with the injection-operator is more cost-effective than that
with both the full-weighting operator and the coarse-grid restriction option.

It may be noticed that the convergence of NPF-MG with the injection-operator
is quite slow for large values of P, such as P = 40000. This is because we use the
residual injection factor a = 0.5424 for all Re. Faster convergence may be obtained by
using different « for different Re. Although the issue of optimal values of « is still not
fully resolved, we will give some test results in Section 6.5.4 to show that much faster
convergence is obtained with large a.

We observed in our numerical computations that the convergence of NPF-MG for
large Re is fairly rapid for the first few cycles. Since the computed accuracy deteriorates
for large Re, there may be no need to insist on reducing the initial residual by 10'°
to reach the final solution. In practical applications, we may be satisfied with lower
accuracy for high Reynolds number problems. Here we emphasize that the stability of
NPF-MG guarantees convergence for all Re. Again, test results for very large Re are
given in Section 6.5.4.

Again, we note that there is no difference in the accuracy of the computed solutions
for different residual transferring operators and coarse-grid restriction option when the
problem is convection-dominated.
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Full-Weighting Residual-Injection

h MW CPU Error MW CPU Error
1/4 8 9.305(-3) | 9.030(-05) 8 8.584(-3) | 9.030(-05)
1/8 8 2.333(-2) | 5.734(-06) 9 1.987(-2) | 5.737(-06)
1/16 9 1.013(-1) | 3.601(-07) 9 7.465(-2) | 3.601(-07)
1/32 9 4.448(-1) | 2.260(-08) | 10 | 3.577(-1) | 2.260(-08)
1/64 10 | 2.191(+0) | 1.413(-09) | 10 | 1.593(40) | 1.413(-09)
1/128 | 10 | 9.215(+0) | 8.831(-11) | 10 | 6.846(+0) | 8.892(-11)
1/256 | 10 | 3.982(+1) | 5.506(-12) | 10 | 2.969(+1) | 1.102(-11)
1/5612 | 10 | 1.769(+2) | 3.596(-13) | 10 | 1.325(+2) | 1.345(-11)

Table 6.11: Test Problem 6.5.3, NPF-MG with the full-weighting and the residual-
injection operators are tested on different mesh-sizes. The W(1,1)-cycle number (MW),
the CPU time in seconds and the computed accuracy (Error) are reported.

6.5.3 Test Problem 6.5.3

The previous two test problems were primarily designed to test the robustness of NP F-
MG with respect to the cell Reynolds numbers, especially for large Reynolds numbers.
Test Problem 6.5.3 is designed to test the accuracy of the solution computed using
NPF-MG with the full-weighting and the residual injection operators. Since this prob-
lem has a Reynolds number Re < 1 on all grids, the coarse-grid restriction technique
is not efficient as also demonstrated in Test Problems 6.5.1 and 6.5.2. In this case the
convection-diffusion equation (6.1) is defined by

Test Problem 6.5.3

p(z,y) = sin(2z),
q(z,y) = —cos(2y),
u(z,y) = z2+y%

Test Problem 6.5.3 is computed for different values of the mesh-size h. The multigrid
W (1,1)-cycle number, the CPU time in seconds and the computed accuracy are listed
in Table 6.11.

The data in Table 6.11 indicate clearly that NPF-MG is a fourth-order algorithm.
NPF-MG with the full-weighting residual projection operator maintains this rate of
convergence for all mesh-sizes tested. NPF-MG with the residual injection operator
This does not
severely restrict the applications of the residual injection operator since the high-order

maintains this property except for the very fine mesh-size (N > 256).

method is able to solve problems on relatively coarse discretizations, but provides much
higher accuracy than the other methods.

Probably more important is the fact that NPF-MG is more cost-effective with
the residual injection operator than with the full-weighting operator for all mesh-sizes.

90



h Test Problem 6.5.1 || Test Problem 6.5.2

a=05424 |a=1||a=0.5424 | a=1
1/8 9 8 11 11
1/16 21 18 26 19
1/32 38 34 52 36
1/64 61 31 62 41
1/128 99 32 100 52
1/256 157 32 158 66
1/512 240 32 243 82

Table 6.12: Number of NPF-MG W(1,1)-cycles for Test Problems 6.5.1 and 6.5.2 with
two scaling factors v = 0.5424 and @ = 1. P = 10'° and computations were terminated
after residual norm is reduced by 10°.

The residual injection operator reduces the residual transferring cost significantly, but

no serious deterioration in convergence is observed.

6.5.4 Tests for Very Large Reynolds Numbers

The convergence of test Problems 6.5.1 and 6.5.2 may seem pessimistic for large values
of P, say P = 40000. This is due to the fact that we use the same scaling factor «
for the injection operator in all test conditions. As we discussed in Section 6.3.2, for
convection-dominated problems, it may be advantageous to use a larger scaling factor.
Moreover, there is no reason why we should not terminate the computations before the
residual norm is reduced by a factor of 10'°, since we know that the achievable accuracy
is affected inversely by the magnitude of P.

We experimented Test Problems 6.5.1 and 6.5.2 again for very large values of P
and terminated the computations when the residual norm was reduced by a factor of
10°. For each problem, we test two different scaling factors o = 0.5424 and o = 1 to
assess the effect of the injection scaling factor on the convergence. For a particular
problem and with a particular mesh-size h, we find that the convergence is no longer
affected by the magnitude of P when P > 105. Table 6.12 contains the convergence
histories of Test Problems 6.5.1 and 6.5.2 with o = 0.5424 or « = 1 and P = 10'°.

Table 6.12 shows that the magnitude of the scaling factor @ makes a substantial
impact on the rate of convergence of NPF-MG. A large « accelerates the convergence
of the high-Reynolds number problems (but causes divergence for diffusion-dominated
problems). The rate of acceleration is more attractive when h is smaller.

Table 6.12 clearly indicates a very satisfactory convergence rate for large Reynolds
number problems when we choose the scaling factor & = 1. Although the data are
presented for P = 10'?, similar results would be obtained for all P > 10° (see [82]). Note
that for Test Problem 6.5.1, we have h-independent convergence. Since the convergence
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rate of NPF-MG with residual injection is Re-independent for large Re, we have a very
favorable convergence property of both A- and Re-independence. The results for Test
Problem 6.5.1 are slightly influenced by h, but we are sure that this less than perfect
results could be fixed by using slightly different residual scaling factor «.

6.6 Conclusions and Remarks

A nine-point compact discretization formula is used in conjunction with the multigrid
technique to develop a high-order multigrid solver (NPF-MG) to solve the general
convection-diffusion equation with variable coefficients. A residual injection operator
with a suitably chosen scaling factor is introduced to accelerate the convergence and
to increase the cost-effectiveness of our N'PF-MG solver. Several test problems have
been solved to demonstrate the efficiency and computed accuracy of our solver. From
the numerical experiments, it is clear that NPF-MG gives good results. The imple-
mentation of NPF-MG is simple since it employs same N'PF discretization scheme for
all grids. The beauty of N'PF-MG is that it requires neither preconditioner nor added
dissipation terms for high-Reynolds problems. The computed accuracy of N'PF-MG
is usually much better than FPF-MG (see [30]).

We have found that the full-weighting operator may cause divergence for some
high-Reynolds number problems and the residual-injection operator may be used to
regain the convergence. We have demonstrated that a larger scaling factor may be
beneficial for the convergence of large Reynolds number problems.

The convergence of the convection-dominated problems may further be improved
by using more powerful relaxation schemes such as the alternating line Gauss-Seidel or
by introducing the minimal residual smoothing acceleration techniques, see Chapter 4
and [80, 81].
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Chapter 7

High Accuracy Solution of the
Navier-Stokes Equations

7.1 Introduction

The Navier-Stokes equations that represent the conservation of mass, momentum,
and energy are used to model fluid dynamics phenomena describing two- and three-
dimensional flows of an incompressible viscous fluid. These equations are highly non-
linear and are very difficult to solve, especially when the approximate solutions are
required to have a high accuracy. Sometimes the nonlinear Navier-Stokes equations are
linearized in different forms. One linearization approach is to consider a Navier-Stokes
equation in a stream-function and vorticity formulation, which results in a Poisson equa-
tion coupled with a convection-diffusion equation. Hence, a problem closely related to
the numerical solution of the Navier-Stokes equations is that of obtaining highly ac-
curate solution of the convection-diffusion equation, especially when convection is the
dominating phenomena.

The general convection-diffusion equation satisfying Dirichlet boundary conditions
is of the form (6.1) and some high accuracy multigrid solution has been obtained in
Chapter 6.

Suppose that Eq. (6.1) is discretized by some finite difference scheme and results
in a linear system of the form (1.1). The linear system (1.1) is usually of very large
dimension. For such large systems, direct methods usually can not handle and iterative
methods become attractive for their low storage requirements as long as convergence is
guaranteed. The performance of classical iterative methods such as Jacobi and SOR is
sensitive to the number of equations to be solved, the type of boundary conditions and
other factors. Furthermore, the matrix A" in (1.1) is nonsymmetric and not positive
definite if the magnitudes of the convection coefficients are large, and this property
adds further difficulty for the classic iterative methods.

Since classical iterative methods for solving the system of linear equations resulting
from the central difference (CDS) do not converge when the convective terms dominate
and the cell Reynolds number (Re) is greater than a certain constant, the upwind
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difference approximation has been used for many years despite it is only first-order
accurate. Hence, in this research area, the so-called high-order methods were usually
of second order accuracy. To distinguish our following scheme from the traditional
high-order methods, we refer to our scheme explicitly as the fourth-order method.

Recently, there has been some interest in developing fourth-order compact schemes
for solving Eq. (6.1) and the incompressible Navier-Stokes equations with large Reynolds
numbers, see [16, 26, 28, 38, 41]. These schemes are somewhat similar and the numeri-
cal results reported by these investigators have no substantial difference. There are at
least three advantages shared by these schemes:

1.) Unconditional stability: Although the coefficient matrices are no longer diago-
nally dominant for large Reynolds numbers, the schemes have been shown numerically
stable for any Reynolds numbers [31];

2.) High accuracy: It has been shown that these schemes do produce numerical
solution of fourth-order accuracy;

3.) Easy boundary treatment: Since the computational stencil involves only the
nearest nine grid points, the schemes are of compact type and no special formula is
needed for computing grid points near the boundaries.

However, until recently, the computational advantages of these fourth-order com-
pact schemes have not been fully investigated. For example, it is not known if these
schemes can be used to solve the incompressible Navier-Stokes equations of very large
Reynolds numbers because of the limitations of the available computer power and the
difficulty with the traditional SOR-type iterative methods. Only in a recent paper [41],
one of these schemes were able to solve the lid-driven cavity problem with Re = 7500
and it was claimed in [41] that their scheme does not converge for Re > 9000 with SOR
iteration.

To fully investigate the properties of the the compact schemes, non-traditional
iterative methods are necessary for large Re. One promising technique is the multi-
grid method which has been successfully used with the first and second discretization
schemes for solving problems in the computational fluid dynamics (including the driven
cavity problem) (see, e.g., [8, 9, 21, 60, 70]). A preliminary investigation on combination
of the fourth-order compact scheme of the type which we will discuss in this chapter
with the multigrid techniques was made by Altas and Burrage recently [2], but their
multigrid method was only shown to converge for small Re (< 100) where the behavior
of the problems is relatively nice.

Our aim in this chapter is to investigate the possibility of combining multigrid
technique with the fourth-order compact schemes to solve the steady-state incompress-
ible Navier-Stokes equations for large Re. This follows the work of Chapter 6, where
we used the fourth-order compact scheme to develop an efficient multigrid method for
the convection-diffusion equations with variable coefficients and the resulting multigrid
solver was shown to yield high accuracy solution. and convergent for very large values
of p(z,y) and g(z,y).

In this chapter, we present the discretization schemes for the stream-function and
vorticity formulation of the incompressible Navier-Stokes equations in Section 7.2. In
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Section 7.3 we discuss issues related to the multigrid algorithms. The N"PF multigrid
solvers for the convection-diffusion (and the Poisson) equations and for the incompress-
ible Navier-Stokes equations are formally designed in Section 7.4. In Section 7.5, we
solve the driven cavity model problem and compare our numerical results with those
obtained by other investigators and by other methods. Concluding remarks are given
in Section 7.6.

7.2 Fourth-Order Finite Difference Schemes

The nine-point fourth-order compact discretization scheme for the convection-diffusion
equations (6.1) is given in Chapter 6 (6.3). Similar fourth-order compact schemes were
reported in [16, 38, 41]. There have been no convincing evidence that any of these
schemes is better than others.

When Re = 0, Eq. (6.1) reduces to the Poisson equation, and Eq. (6.3) reduces
to the well-known (simpler) Mehrstellen formula [27]:

1
4[UL + Uy + Uz + Uy] + Us + Ug + Uy + Ug — 20Uy = §h2[8f0+f1 + fo+ f3+ fa]. (7.1)

Multigrid applications of the Mehrstellen formula have been investigated by Schaffer
[52], Gupta, Kouatchou and Zhang [29].

For small Reynolds numbers (Re = 100), Altas and Burrage [2] used (6.3) as the
defect-correction procedure in a multigrid approach to solve the steady incompressible
Navier-Stokes equations. In their approach, Eq. (6.3) was only used to evaluate the
residuals on the finest grid. Their numerical results showed that the target accuracy of
the Poisson equation is of fourth-order, but it was not clear e if the computed accuracy
of the convection-diffusion equation (Re # 0) (and the Navier-Stokes equation) is of
fourth-order with the defect correction techniques.

The Navier-Stokes equations representing the two-dimensional steady flow of an
incompressible viscous fluid are given in stream-function and vorticity formulation as
follows [21, 28, 68]:

2 T 2 x
PUe) 4 PV — _p(a,y), (7.2)
2 x 2 T x x
TG 4 220w Re [u(w, y) 22 4 o(z,y) 225 | =0, (7.3)
u(z,y) = 2D y(a,y) = 20, (7.4)

Here U is the stream-function, ® the vorticity; u and v are the velocities in y and z
directions respectively; Re is the non-dimensional Reynolds number.

The stream-function (7.2) is a Poisson equation and the fourth-order approxima-
tion is given by the Mehrstellen formula (7.1) and by putting U = ¥ and f = —®. The
vorticity equation (7.3) is a special case of the convection-diffusion equation (6.1) and
the fourth-order approximation in this case may be obtained by putting u = ®, f =0
and p(z,y) = —Reu(z,y), q(z,y) = —Rev(z,y) in Eq. (6.3).
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The velocities u, v at a grid point (z,y) are calculated from the discrete approx-
imation of Eq. (7.4). It has been shown [28] that it is beneficial for both convergence
and accuracy to use the fourth-order approximations for the velocities. In particular,
Gupta [27] derived some high accuracy compact approximations for the gradients of the
solution of the Poisson equations. As the stream-function equation (7.2) is a Poisson
equation in W, high accuracy approximations for the gradient ¥, and ¥, can be ob-
tained from [27], and the corresponding fourth-order compact approximations for the
velocities are given as (also see [28]):

up = (Vg —Wy)/3h + (U5 — Wg — Uy — Wg)/12h + h(Py — @4) /12, } (7.5)

vy = (‘;[/3 — \111)/3h — (\1/5 — U — U7+ \IJg)/IQh —|—h(@3 — @1)/12

7.3 Multigrid Method

The multigrid method with the fourth-order nine-point compact schemes for the
convection-diffusion equation have been discussed in Chapter 6 and in [29]. The
smoother which we will use for solving the stream-function (Poisson) equation (7.2)
is the red-black Gauss-Seidel relaxation method without an acceleration parameter.
For solving the vorticity (convection-diffusion) equation (7.3) we use the red-black
Gauss-Seidel relaxation method with an acceleration parameter w; (which is the SOR
method). In both cases, the smoothers will be referred to as the RBGS smoother.
The bi-linear interpolation will be used in all our algorithms to interpolate the
coarse grid correction to the fine grid. Specifically, The values at the common mesh
points will be directly transferred, while the values at the new grid points will be
obtained by averaging either two or four nearest mesh points. The residual restriction
operator will be a scaled injection operator. The residuals on the fine grid points which
are common to the coarse grids are calculated and multiplied by a scaling factor «. The
properly scaled residuals are then injected to the coarse grid to form the coarse grid
subproblem. The scaling factor for the Poisson equation and for the convection-diffusion
equation with small Re (say, the cell Reynolds number is smaller than 2) is chosen to
be 0.5424, that for the convection-diffusion equation with large Re is chosen to be 1.
The advantages of using residual injection and the reason of choosing these residual
scaling factors are discussed in Chapter 6. For solving the Poisson equation and the
convection-diffusion equation when the diffusion terms dominate, although the current
combination of the restriction and interpolation operators does not satisfy the rule given
by Brandt and Hackbusch [69] governing the orders of the grid transfer operators and
the order of the differential equation, we have shown in Chapter 6 (and [31]) that the
resulting multigrid solvers are more cost-effective than the standard multigrid method
using the full-weighting scheme as the residual transfer operators. For the convection-
diffusion equations with stagnation point and large Reynolds numbers we have shown
in Chapter 6 (and [31]) that the injection operator is necessary for convergence. In this
case, the orders of the transfer operators satisfy the Brandt and Hackbusch rule because
the convection-diffusion equation approximates a first-order differential equation when
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the convection is very strong.

For solving nonlinear equations, it is advisable to use full approximation scheme
(FAS). However, since we linearized our Navier-Stokes equation by using the stream-
function equation and the vorticity equation, we use the linear multigrid method (the
correction cycle as described in Chapter 6) to solve the two linear equations. Since FAS
and the correction cycle are mathematically equivalent for solving linear equations and
FAS is computationally more expensive, our implementation poses no difficulty and is
more cost-effective.

In the context of linear multigrid the residual equations are solved on the coarse
grids, the right-hand side as it appears in Eq. (7.1) is only evaluated once on the finest
grid when the initialization of data (boundary conditions) is performed. With f being
replaced by ® we may define Fy by

2
_?[
Now Eq. (7.1) (with U being replaced by ¥) becomes

Fy = 8Dy 4+ @1 + Dy + O3 + (1)4]. (76)

4[\111+\If2+\1/3+\1f4]+\I/5+\116+\I/7+\118—20\110 = Fj. (77)

There is an option of pre-computing all values of the coefficient matrix A" for the
vorticity equation (7.3), but this requires four and a half times more storage space than
usually required for storing the coefficients of the nine-point multigrid solver. There is
a trade-off between the storage and the computational efficiency. If the problem can be
solved in a few multigrid cycles to the required accuracy, as it is the case in our current
application, computing the coefficient matrix A” in the iteration process may be more
cost-effective.

We close this section with reference to some existing implementations of multigrid
method to obtain accurate solution of Eq. (6.1) (or equivalently the system (1.1)) and
the Navier-Stokes equation (7.2) — (7.4). Since the central difference scheme results in
a matrix A" which is not diagonally dominant for large Re, classical iterative methods
such as the damped Jacobi and SOR methods diverge when they are employed to solve
the resulting linear system (1.1). Although the traditional upwind discretization is
convergent for any Re, it is only of first-order accuracy. (Higher order upwind schemes
are usually complicated and not easy to implement.) Hence, efforts have been made
by many investigators to combine these two schemes to guarantee convergence and
accuracy at the same time. In the context of multigrid method, the popular trends seem
to use the defect-correction techniques of various kinds on the finest grid. The main
idea behind the defect-correction techniques is to use the upwind scheme for relaxation
(stability) and the central difference scheme for residual evaluation (accuracy) [3, 33].
It was demonstrated by those and other investigators that if the basic discretization is
of first-order and the target discretization is of second-order, then the resulting solution
is of second-order.

Several defect-correction techniques have been developed and used with some suc-
cess by many authors to obtain stable second-order accuracy solutions of the convection-
diffusion equations and of the Navier-Stokes equations [8, 9, 70]. However, since most

97



reported methods were published with numerical results on convergence rate only, it is
not clear if all these methods achieved the second-order accuracy in practice. On the
other hand, we have demonstrated in Chapter 6 that NPF with multigrid techniques
does produce solution of fourth-order accuracy.

Since Gupta et al. [26] have shown that N'PF is stable for all Re and is of
fourth-order accuracy, it is not necessary to use any defect-correction technique for the
sake of combining stability and accuracy. We also showed in [29] that, to compute the
solution of the Poisson equation to a given accuracy, the N'PF multigrid is much more
efficient than the FPF multigrid. Hence, in our implementation, we use N'PF for both
relaxation and residual evaluation, this will guarantee (theoretically) that our solution
is of fourth-order accuracy.

Hereinafter we refer to the algorithms using the multigrid cycling techniques and
the N'PF smoother as NPF-MG; those use FPF (CDS) smoothers are referred to as
FPF-MG.

7.4 Design of NPF-MG Solver

A pseudo code of the NPF-MG p-cycle algorithm is as follows.

Algorithm 7.4.1 NPF-MG p-cycle algorithm.
ul — NPF-MG(ul, f)
Given any initial guess ug.
For k=0,1,2,..., do:
If Q" = the coarsest grid, then
Solve ult = (AM) L fh,
Else
Relaz vy times on Ahuﬁ = f" with the given initial guess u',;
Compute TZ = fh— Ahuﬁ corresponding to the coarse grid.

2h __ 2h
Set [ =ari.
Set uzh =0.
Do uh «— NPF-MG(uih, f2h) p times.
Correct “2-1-1 = uZ + Pu%h.

Relaz vy times on A””ug_i_1 = f" with the initial guess “2-1-1-
End if.

For the stream-function equation (7.2), a V(1,1)-cycle algorithm is sufficient to
obtain accurate solution with acceptable convergence and is more cost-effective than a
W(1,1)-cycle algorithm. As stated above the smoother for the stream-function is the
RBGS without a parameter. For the vorticity equation (7.3), we use a W(1,1)-cycle
algorithm. The smoother is the RBGS with a damping parameter w; € (0, 1).

The Navier-Stokes equation (7.2) — (7.4) may be solved by nested inner-outer
iteration procedure (see [28]) with different multigrid cycling algorithms being applied
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to the stream-function equation (7.2) and the vorticity equation (7.3). While it is
somewhat advantageous to solve Eqgs. (7.2) — (7.4) simultaneously to maintain the
physical coupling between them [21, 68], the relaxation methods (such as the coupled
strongly implicitly (CSI) procedure [21] and incomplete LU decomposition [68]) used to
accomplish this coupling are usually very expensive comparing with the point Gauss-
Seidel relaxation. We are not sure which of these relaxation schemes is the best for
the fourth-order compact scheme with the multigrid and decide to leave this problem
as future research direction. Our primary concern of this chapter is to show that the
fourth-order compact scheme with multigrid can accelerate the usual SOR iteration
significantly and to show the computed results for large Reynolds numbers previously
claimed impossible for SOR method.

7.5 Application to Model Problem

The steady flow of an incompressible viscous fluid in a square cavity Q@ = [0,1] X
[0,1] has been used for a long time as the model problem by many investigators to
test their new numerical schemes and solution methods [2, 21, 28, 60, 68], although
there are singularities at two of its corners. Highly accurate benchmark solutions are
available in the literature. In particular, Ghia et al. [21] used the multigrid technique
and grid points of 257 x 257 to compute numerical solutions for 100 < Re < 10000.
Their solutions have been considered to be accurate because of the small grid spacing
employed.

The flow is induced by the sliding motion of the top wall (y = 1) from right to left
and is described by the Navier-Stokes equation (7.2)—(7.4). The boundary conditions
are those of no slip: on the stationary walls u = 0 and v = 0; on the sliding wall © = —1
and v = 0 (see Figure 7.1).

In order to solve the driven cavity problem, we replace the Navier-Stokes equa-
tion (7.2)-(7.3) by the finite difference approximations given in Eqs. (6.3) and (7.1)
respectively. The velocities, defined in Eq. (7.4), are calculated by using the fourth-
order approximations (7.5). The unit square is covered by a grid of uniform mesh-size
h (= 1/(N —1)). The discrete approximations (6.3), (7.1) are written at each of the
(N — 2)? interior grid points. Zero values are prescribed for U on the boundary. The
usual approximations for vorticity ® on the boundary are the Jensen formulas (see
[28, 49]), which have a local truncation error of second order. Fourth-order approxi-
mations could also be defined for obtaining boundary values of ®. In particular, some
fourth-order approximations analogous to the Jensen formulas were obtained by Altas
and Burrage [2]:

r=0: ®3 = (—=6h2®y+ h2P —2Uy — 2Wy — 20Wy)/Th?;

r=1: & = (—6h2@0 + hz@g —2Uy — 20, — 20\110)/7h2, (7 8)
y=0: &, = (—6h2@0 + hz@g — 20U, —2U3 — 20\110)/7h2, '
y=1: &, (24h — 6h2®g + h2D, — 20y — 203 — 20W,)/Th?.

An inner-outer iteration procedure is employed to obtain numerical solutions (see [28]).
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Figure 7.1: Driven cavity problem.

At each outer iteration, the linear system from the discrete stream-function equation
(7.2) is solved by a multigrid V(1,1)-cycle algorithm with the RBGS smoother (us-
ing (7.7) without a damping factor). We then compute the velocities by using the
fourth-order formulas (7.5); and evaluate the boundary conditions by using the fourth-
order formulas (7.8). After that, we solve the discrete vorticity equation (7.3) using
a multigrid W-cycle algorithm using RBGS smoother (6.3) with a relaxation parame-
ter w; € (0,1). The outer iteration process for the stream-function equation and the
vorticity equation are also damped after each iteration using different damping factors
ws € (0,2) and wy € (0,2) to give the new iterates.

At each inner iteration of the stream-function equation, one or two multigrid
V(1,1)-cycles are applied; at each inner iteration of the vorticity equation, one multigrid
W (1,1)-cycle is applied. Since the stream-function equation converges very fast and
the nine-point Mehrstellen formula (7.7) is cheaper than the nine-point formula for the
convection-diffusion equation (6.3), the major cost of each iteration step is in solving
the vorticity equation. We have found that, at each outer iteration step, there is no
need to solve each inner iteration to a higher accuracy. One or two multigrid cycles are
enough and cost-effective.

The inner-outer iteration process for our multigrid solver may be described as
following:

e Set initial guess as 0 for all values except the boundary values of the known
velocities.

e For k=0,1,2,---, do
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e Step 1: Compute the right-hand side of the stream-function using (7.6);

e Step 2: Solve approximately the stream-function equation (7.2) by performing
one or two N'PF-MG V(1,1)-cycles using (7.7);

e Step 3: Compute the difference between the current and the previous values of
the stream-function;

e Step 4: Damp the values of stream-function using a damping parameter wg €
(0,2);

e Step 6: Compute the vorticity boundary values by using the fourth-order bound-
ary approximations (7.8);

e Step 7: Solve approximately the vorticity equation (7.3) by performing one N'PF-
MG W(1,1)-cycle and by using a relaxation parameter w; € (0,1) and using the
fourth-order approximations (6.3);

e Step 8: Compute the difference between the current and the previous approximate
values of the vorticity;

e Step 9: Damp the approximate values of the vorticity by using a parameter
wy € (07 2)7

e Step 10: Check the convergence, if both differences of the current and previous
approximate values of the stream-function and vorticity computed from Steps 3
and 8 are less than a prescribed tolerance, then stop; otherwise go to Step 1 and
begin next outer iteration.

Unlike the multigrid algorithms designed by other investigators [2, 21] who had to
restrict the meshsize of the coarsest grid in order to insure convergence, our multigrid
cycles are complete, i.e., the coarsest grid contains only one unknown. We solved the
driven cavity problem (7.2) to (7.4) for 100 < Re < 10000. For each Re, we give the
values and location coordinates of the maximum of the stream-function (strength of
the main vortex) and the corresponding vorticity values. The problem with the same
Re was solved several times using different discretization mesh-sizes on the finest grid
to investigate what is the coarsest mesh-size producing acceptable solution for a given
Re. The iterations were terminated when the maximum difference between successive
approximations of both ¥ and ® were smaller than 1075 for Re < 5000 and 10~* for
7500 < Re < 10,000. Since each subsequent inner iteration uses the solution of the
previous iteration as the starting values, we did not use nested multigrid iterations
(the full multigrid method) for each inner iteration. The computations were carried
out on an SGI (Silicon Graphics Indy) workstation using the Fortran 77 programming
language in double precision.
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N WU nax 0] Location

17 0.10290118 3.30727162 (0.375000, 0.750000
33 0.10335397 3.28239537 (0.375000, 0.750000
65 0.10350108 3.10864335 (0.390625, 0.734375
129 0.10351141 3.16874534 (0.382813, 0.734375

~— ~— ~— ~—

Table 7.1: Values and locations of the primary vortex for Re = 100 using different
discretizations.

7.5.1 Comparison with Benchmark Solution

Unless otherwise indicated explicitly, we compare our results with those obtained by
Ghia et al. [21] as the benchmark solutions. Our problem was set up slightly different
from that of Ghia et al. [21] and the u velocity at the top wall (y = 1) is different due
to the fact that the flow in our problem is induced by the sliding motion of the top
wall from right to left (it was induced from left to right in the model problem solved
by Ghia et al. in [21]). The computed values at a grid point (z,y) listed in our tables
should be compared with those at the point (1 — z,y) in tables of [21].

We first solve the model problem for Re = 100 with N = 17,33,65,129 and
compare our results with those of Ghia et al. with NV = 129. The numerical values are
given in Tables 7.1 and 7.2. Tt can be seen that, if a 5% departure from the benchmark
solution is acceptable as the engineering accuracy, our method with N = 17 can produce
acceptable results, while Ghia et al. used much finer discretization. Note that when
the mesh is refined, the accuracy of our solution is increased rapidly.

When Re increases to 1000, The results in Tables 7.3 and 7.4 show that finer
mesh is needed to produce accurate solution. However, we can see that with only a
quarter of the number of equations used by Ghia et al., our method produced high
accuracy solutions. With the same mesh-size, the solution given by our method, which
we believe, is actually more accurate than that of Ghia et al.

When Re > 2000, Gupta reported slow convergence when the compact scheme
was used with the SOR iteration [28]. It is shown in Tables 7.5 and 7.6 that our
multigrid accelerated SOR method can compute very accurate solution for Re = 3200
with N = 129.

With Re = 5000, Ghia et al. used N = 257 to compute accurate solution, we
found (see Tables 7.7 and 7.8) that our fourth-order multigrid method can compute
solution to comparable accuracy using N = 129.

For Re = 7500, with N = 129, Tables 7.9 and 7.10 show our method was still
able to yield solution accurate enough (the error is less than 5%) to compare with
benchmark solution of Ghia et al. [21] using N = 257.

For Re = 10000, no numerical result has been reported with the fourth-order
compact scheme. (The largest Re reported was 7500 in [41].) We have been able to
have our NPF-MG converge with Re = 10000. Tables 7.11 and 7.12 show that the
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N Error in U ax Error in @

17 0.59% 4.37%
33 0.15% 3.59%
65 0.01% 1.90%
129 0.00% 0.00%

Table 7.2: Errors in values of the primary vortex for Re = 100 using different discretiza-
tions, comparing with Ghia et al.’s solution.

N WU nax 0] Location

17 0.09120785 3.07333247 0.437500, 0.750000
33 0.10672291 2.02672391 0.468750, 0.593750
65 0.11738557 2.05660796 0.468750, 0.562500
129 0.11880609 2.06677691 0.468750, 0.562500

A~~~ N /N
~— ~— ~— ~—

Table 7.3: Values and locations of the primary vortex for Re = 1000 using different

discretizations.

N Error in U« Error in ®
17 23.36% 48.57%
33 13.32% 2.02%
65 1.36% 0.58%
129 0.17% 0.09%

Table 7.4: Errors in values of the primary vortex for Re = 1000 using different dis-
cretizations, comparing with Ghia et al.’s solution.

N WU onax 0] Location

65 0.10909425 1.89353365 (0.484375, 0.578125)
129 0.12015739 1.94893416 (0.484375, 0.539063)
257 0.12165982 1.95948705 (0.484375, 0.539063)

Table 7.5: Values and locations of the primary vortex for Re = 3200 using different

discretizations.
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N Error in U ax Error in @

65 9.95% 2.93%
129 0.18% 4.01%
257 1.07% 1.46%

Table 7.6: Errors in values of the primary vortex for Re = 3200 using different dis-
cretizations, comparing with Ghia et al.’s solution.

N Winax P Location
129 0.11812146 1.90621386 (0.484375, 0.539063)

Table 7.7: Values and locations of the primary vortex for Re = 5000 using N = 129.

N Error in U ax Error in @
129 0.71% 2.48%

Table 7.8: Errors in values of the primary vortex for Re = 5000 using N = 129,
comparing with Ghia et al.’s solution.

N Winax 0] Location
129 0.11433776 1.87589672 (0.492188, 0.554688)

Table 7.9: Values and locations of the primary vortex for Re = 7500 using N = 129.

N Error in U ax Error in @
129 4.28% 0.21%

Table 7.10: Errors in values of the primary vortex for Re = 7500 using N = 129,
comparing with Ghia et al.’s solution.

N Winax P Location
129 0.10237164 1.62562304 (0.500000, 0.5546875)
257 0.10529822 2.12947152 (0.464835, 0.6484375)

Table 7.11: Values and locations of the primary vortex for Re = 10000 using different
discretizations.
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N Error in U ax Error in @
129 14.50% 13.57%
257 12.05% 13.22%

Table 7.12: Errors in values of the primary vortex for Re = 10000 using different
discretizations, comparing with Ghia et al.’s solution.

Re ws wy wj Iteration
100 0.92 0.87 0.32 47
400 1.00 0.75 0.25 113
1000 1.24 0.77 0.15 269
2000 0.68 0.68 0.10 1088

Table 7.13: Convergence with different Re. N = 64 and the damping parameters. Only
one multigrid cycle was used for each inner iteration.

solution with N = 129 and N = 257 computed from our method differ significantly
from Ghia et al.’s solution. However, we did obtain converged solutions in both cases.
Since there is no exact solution available for the driven cavity problem and published
results for high Reynolds numbers are still open to discussion, we are not sure which
of these solutions is more accurate.

In Table 7.13, we list the number of outer iterations of our multigrid solver and the
damping factors used for solving the cavity problem for h = 1/64 with some Re’s tested
in [28, 41] (using h = 1/40). These results compare well with those listed in [28, 41]
using the SOR method. Since we only use one multigrid V(1,1)- and W(1,1)-cycles in
each inner iteration the cost of each inner iterations is about 4 to 6 SOR iterations on
the finest grid. Had we used more multigrid cycles in each inner iteration the number
of the outer iterations would be smaller, but the CPU timings could be larger and the
algorithm might be less cost-effective.

7.5.2 Comparison of High Accuracy Solutions

In the last subsection, the errors for the vorticity values are usually larger than the
errors of the stream-function values for large Re, as indicated by data in Tables 7.5 and
7.6 for Re = 3200 and in Tables 7.7 and 7.8 for Re = 5000. This was caused by the error
of the benchmark solution for large Re. As indicated in [44], a higher order of accuracy
in space is necessary for the (time-dependent) high Reynolds number simulations.

In Table 7.14, we give some recently available higher order results for Re = 3200
and compare them with our scheme with NV = 129 and N = 257.

It can be seen from Table 7.14 that Ghia et al.’s solution has some difference from
the high-order, high-accuracy solutions recently available in the literature, especially
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Authors W max o

Current 0.12015739 1.94893416
Current 0.12165982 1.95948705
Li, Tang & Fornberg [41] 0.120529 1.94286
Nishida & Satofuka [44] 0.121154 1.95078
Ghia, Ghia & Shin [21] 0.120377 1.98860

Table 7.14: Comparison of recent high accuracy results for Re = 3200.

Authors Discretization Accuracy Order
Current 129 x 129 4th-order
Current 257 x 257 4th-order
Li, Tang & Fornberg [41] 129 x 129 4th-order
Nishida & Satofuka [44] 129 x 129 6th-order
Ghia, Ghia & Shin [21] 129 x 129 2nd-order

Table 7.15: Comparison of recent high accuracy solution methods for Re = 3200.

the vorticity value which is shown to have a relative difference of 1.49% with respect to
our very accurate solution computed by using the 4th-order algorithm and N = 257.
In contrast, our solution with N = 129 has only a relative difference of 0.54% with
respect to our very accurate solution, but has a relative error of 4.01% with respect to
Ghia et al.’s solution. This comparison again supports the claim made by Nishida and
Satofuka [44] that higher-order algorithm is necessary (at least beneficial) for the high
Reynolds number computation.

7.5.3 Solution Contours

The streamlines and the vorticity contours for Re = 3200, 5000, 7500, 10000 for N = 129
are presented by Figures 7.2 to 7.5. These figures compare well with well-known figures
obtained by Ghia et al. [21], taking into account the difference in definition. Note that
although our Wy, value for Re = 10000 differs from the benchmark solution by more
than 10%, the streamline and vorticity curves are qualitatively correct.

7.6 Concluding Remarks

Fourth-order compact discretization formulas have been used in conjunction with the
multigrid technique to develop a high accuracy multigrid solver (NVPF-MG) for the
steady-state incompressible Navier-Stokes equations. A driven cavity model problem
with small to large Reynolds numbers has been solved by using our method. The
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computed solutions compare well with the benchmark solutions obtained by other in-
vestigators using finer discretizations.
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Figure 7.2: Streamline and equivorticity curves for Re = 3200 with N = 129 x 129.
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Figure 7.3: Streamline and equivorticity curves for Re = 5000 with N = 129 x 129.
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Figure 7.4: Streamline and equivorticity curves for Re = 7500 with N = 129 x 129.
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Figure 7.5: Streamline and equivorticity curves for Re = 10000 with N = 129 x 129.
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Chapter 8

Conclusions and Outlook

We have developed unified approach to the multigrid acceleration techniques and de-
signed a class of efficient multigrid acceleration schemes. From our analysis and numer-
ical experiments, it is clear that these acceleration schemes are useful and cost-effective
in accelerating standard multigrid method, especially when the standard multigrid
method converges slowly. Convergence of the standard multigrid method deteriorates
when it is coupled with higher order finite difference schemes for solving the convection-
diffusion equations with large Reynolds numbers. In addition to efficiency, the acceler-
ation schemes presented in this dissertation are easy to implement.

We have designed some fourth-order multigrid methods for the convection-diffusion
equations and the incompressible Navier-Stokes equations with large Reynolds numbers.
The fourth-order multigrid methods have been shown to be stable, converge fast and
produce high accuracy numerical solution.

8.1 Accomplishments of Chapter 2

e We developed efficient ways to analyze and design acceleration schemes for the
isotropic operators. We proposed the idea that acceleration should be considered
for smoothing both the low and high frequency components of the errors. We
explained the reason why traditional SOR method is not cost-effective comparing
with Gauss-Seidel relaxation in multigrid. The analysis that we employed in
Chapter 2 unveils that different acceleration should be used for different part of
the multigrid cycle (pre-smoothing and post-smoothing sweeps). The estimates
of the under-relaxation parameter for the pre-smoothing sweep and the over-
relaxation parameter for the post-smoothing have been verified by the numerical
experiments.

e Perhaps the most important result of Chapter 2 is that it corrects a long-standing
misunderstanding in multigrid community that standard multigrid with SOR
for solving the Poisson equation does not pay. This research result clears the
way for searching for effective acceleration schemes for the Poisson equation and
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8.2

other isotropic operators (or slightly anisotropic operators). Some more generally
applicable acceleration schemes have been developed in Chapter 3 and 4.

Although using two parameters to accelerate iterative methods have been investi-
gated by several researchers including Golub and de Phill [22], the issue of how to
estimate these parameters has not been fully resolved. The idea that we proposed
in Chapter 2 is the first time (at least in the multigrid context) that an analytical
means is used to accurately estimate the optimal relaxation parameters.

In all, Chapter 2 provides a new way of thinking and opens a new direction for
searching for efficient acceleration schemes in multigrid.

Accomplishments of Chapter 3

There have been various acceleration schemes proposed to accelerate the multi-
grid methods in different situations. Some of them are theoretically justified.
Typical examples are the so-called steplength optimization of Reusken and the
over-correction scheme of Vanék and Mika [42, 62]. The cost of these acceleration
schemes is prohibitively high and the validity of these schemes are based on the
assumption that the coefficient matrix is symmetric and positive definite. The
symmetry and positive definiteness of the coefficient matrix are usually violated
in many interesting applications, such as the linear system arising from discretiz-
ing the convection-diffusion equations with large convection coefficients. Hence,
these acceleration schemes are of limited usefulness.

Another class of acceleration schemes is to modify the residuals before they are
projected to the coarse grid. Typical examples in this group are the over-weighted
residual technique of Brandt and Yavneh [9], and the the scaled residual injec-
tion operators of Zhang [80, 81]. These techniques are primarily based on some
heuristic residual analysis and do not have a very rigorous theoretical justifica-
tion. However, the cost of these acceleration schemes are usually zero or negligible.
There is no assumption on the coefficient matrix. These acceleration techniques
are potentially useful in practical applications.

The essential results of Chapter 3 are the unification of all the coarse-grid ac-
celeration schemes, including the two categories mentioned above. We proposed
the concept of residual scaling techniques to include all these techniques, because
they all essentially modify the scale of the residual equation. We have proved
the equivalence of the pre-scaling [9, 79, 80, 81] and post-scaling [42, 46, 62]
techniques. The proof is essentially saying that all these (and possibly others)
coarse-grid acceleration schemes are mathematically equivalent.

Because of the equivalence that we proved and the residual scaling concept that
we proposed in Chapter 3, we can research for alternative methods to estimate
the residual scaling parameters and to avoid the assumption of the symmetry

113



8.3

8.4

and positive definiteness of the coefficient matrix. The efficiency and the cost-
effectiveness of the pre- and post-scaling techniques are unified.

We also set a foundation for developing practical methods to estimate the resid-
ual scaling parameters. The method is the so-called heuristic residual analysis
method which is based on the geometry of the grid points and the particular re-
laxation pattern employed. The heuristic residual analysis method is successfully
used to estimate the residual scaling parameters for a standard multigrid Poisson
solver in Appendix A and a high-order multigrid method for solving the Poisson
equation and the convection-diffusion equations with small convection coefficients
in Chapter 6.

The research results obtained in Chapter 3 are of both theoretical and practi-
cal importance. Theory is initially proposed, rigorously proved and numerically
verified in later chapters.

Accomplishments of Chapter 4

Chapter 4 introduces the minimal residual smoothing techniques into the multi-
grid context. The minimal residual smoothing techniques have been primarily
used in the conjugate gradient type methods, but rarely elsewhere. Chapter
4 develops several algorithms that may utilize the minimal residual smoothing
technique in multigrid. Since this is a new application area, we gave several al-
gorithms so that interested readers may find a suitable one for their particular
applications. But we gave our preferred version of the algorithm and the reasons
of our preference.

The minimal residual smoothing technique may be considered as an (indirect)
residual scaling technique. In particular, the minimal residual smoothing tech-
nique we used in the multigrid algorithm is a pre-scaling technique, which may
compare with the post-scaling techniques of Reusken, Vanék and Mika. Unlike
other pre-scaling techniques, the minimal residual scaling has some theoretical
basis for optimization (the norm of the residual). The effect of the minimal
residual smoothing is supposed to compare well with the steplength optimiza-
tion technique of Reusken and the over-correction techniques of Vanék and Mika.
The most important observation we would like to point out is that the minimal
residual smoothing technique does not require that the coefficient matrix be sym-
metric and positive definite. In fact, it is independent of the coefficient matrix
and of the particular relaxation method employed. This implies that the minimal
residual smoothing technique may be used in a wide range of applications.

Accomplishments of Chapter 5

e Although heuristic justification may be given, there has been no rigorous theoret-
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8.9

8.6

ical convergence theory for applying the minimal residual smoothing techniques
in multigrid. These techniques have been used in the Krylov subspace meth-
ods for many years without theoretical justification. Only in recent years, there
have been efforts to justify these techniques. But their results are based on the
Krylov subspace methods which are essentially based on the residual orthogonal-
ity assumption and therefore are not suitable for general analysis, such as in the
multigrid methods.

In analyzing the minimal residual smoothing technique accelerated multigrid
method, we have focused on how to explain the acceleration effect. We do not
want to impose limitation on the coefficient matrix because our original intention
was to design an acceleration scheme that is independent of the coefficient matrix.
So we imposed some conditions on the decomposition of the initial residual. It
seems that our assumptions were well suitable for the analysis purpose.

The analysis and theorems proved in Chapter 5 are very important in explaining
how minimal residual smoothing technique accelerates and stabilizes the multigrid
convergence. Some of the theoretical results are applicable to analyzing other
iterative methods accelerated by the minimal residual smoothing techniques. Our
results are obtained without the assumption of the orthogonality of the residuals.

Accomplishments of Chapter 6

Fourth-order compact finite difference discretization methods are used with the
multigrid techniques to solve the convection-diffusion equations with large
Reynolds numbers. The methods are efficient, accurate and stable.

Residual injection operator is used and the optimal residual scaling parameter
is obtained through the heuristic residual analysis technique for the diffusion-
dominated problems.

We have found that for solving the convection-dominated problems with stagna-
tion point and large Reynolds numbers, the residual injection is more robust than
the full-weighting.

Accomplishments of Chapter 7

Fourth-order compact finite difference discretization methods are used with the
multigrid techniques to solve the steady-state incompressible Navier-Stokes equa-
tions. We have shown that the fourth-order multigrid do give high accuracy
numerical solution for the model test problem of driven-cavity with relatively
coarse grid.

Fourth-order velocity and boundary approximations are used in conjunction with
the fourth-order relaxation method.

115



e This is the first time that genuine fourth-order compact finite difference schemes
are seriously considered with the multigrid techniques (without defect correction
techniques) to solve the incompressible Navier-Stokes equations. Our results are
very encouraging and comparing well with benchmark solutions.

8.7 Future Research Outlook

We think the efficiency of the multigrid method is in the correct scale of the residual
that is projected to the coarse grid to form the coarse grid subproblem. If the residual
is not in the correct scale, the multigrid method will not be in an optimal shape and
the convergence will be seriously deteriorated. The acceleration schemes developed in
this dissertation are essentially to modify the residual to the correct scale. This idea is
compatible with the unified concept of the residual scaling technique.

The minimal residual smoothing technique can scale the residual dynamically and
applicable to almost any problems. Other pre-scaling and post-scaling techniques use
fixed scaling parameters and thus are very cheap in implementation, but the optimal
scaling parameter is usually problem-dependent.

There exists a link between the successive over relaxation parameter w and the
residual scaling factor «. In fact, if a typical SOR step is represented as

up = Up—1 + w(Up — up_1),

then we have
Tk = Th—1 + W(Tk — Th—1).

Hence the change of w affects «, but not vice versa. Also, the interval in which we may
vary « seems much larger than the interval contains the useful w. In our numerical
experiments, we observed that if the scale of the residual is optimized, there is no
need to use any relaxation parameter. On the other hand, these two parameters can
be adjusted with respect to each other. Hence, it seems that there is no need to use
relaxation parameter so long as the relaxation method does not diverge. We can adjust
the residual scaling factor to achieve the same efficiency with lower cost. There may
be a quantitative relation between these two parameters.

Our numerical experiments also suggested that the minimal residual smoothing
technique be more efficient than the steplength length optimization or over-correction
techniques. This seems contradicting to the conventional wisdom because the over-
correction technique optimizes correction scale at each step while the minimal residual
smoothing minimizes residual norm before the coarse-grid-correction step. However,
the superiority of the minimal residual smoothing technique may be explained as it
uses information from the previous step and we may expect that the effect is better
than a single step optimization. Detailed comparison are given in Zhang [85].
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Appendix A

An Optimal Residual Projection
Operator

A.1 Introduction

Individual multigrid operators, including relaxation (smoother), projection (restriction)
and interpolation (prolongation) operators, should be optimally combined to achieve
true multigrid efficiency. There exist some options for each operator, some of them are
much more expensive than others. In practical applications, sacrifice in convergence
sometimes is made to favor the computational cost-effectiveness. If the discretization
is the five-point 2nd-order central difference scheme and the grid space is ordered in
a red-black fashion (see Figure A.1), the five-point red-black Gauss-Seidel (RBGS) re-
laxation, together with half-injection and bi-linear interpolation, is probably the most
cost-effective two dimensional Poisson solver in existence. This combination is consid-
ered almost perfect. For example, Yavneh’s recent work on multigrid acceleration is
only applicable to the anisotropic operators (in two dimensional cases) [72, 73].

Nevertheless, we have made some progress in designing SOR-type acceleration
schemes to accelerate the convergence of the RBGS smoothing in multigrid for the two
dimensional isotropic operators (see Chapter 2 and [77]). Our work in Chapter 2 indi-
cates that acceleration parameters may be used to accelerate RBGS in multigrid with
negligible cost. The results corrected a long-time misunderstanding in multigrid that
such an acceleration would not pay for the cost (see, e.g., [59, 73]). Our research work
demonstrates that projection and interpolation processes should be treated (acceler-
ated) separately, possibly by using different parameters. The results of Chapter 2 are
indeed near-optimal in the sense of computational cost-effectiveness, as we shall claim
here.

Other acceleration schemes which are restricted to the positive definite coefficient
matrices are proposed by Reusken [46] and Vanék [62]. These post-optimization ac-
celeration schemes optimize the computed correction and the acceleration rates are
optimal in the sense of per cycle convergence. In practice, however, these schemes
are too costly (and restricted) to be efficient. A similar pre-optimization acceleration
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scheme (i.e., the minimal residual smoothing) which is applicable to any coefficient
matrices and which is cheaper than the post-optimization schemes has been proposed
in Chapter 4 and analyzed in Chapter 5. Most of these existing acceleration schemes
have aimed at accelerating the convergence rate only. However, in this appendix, we in-
troduce a different acceleration scheme derived from a novel heuristic residual analysis
technique which is based on the geometry of the grid points and a particular relaxation
pattern. The philosophy of developing residual injection operator is to achieve optimal
computational efficiency as well as optimal convergence.

From a theoretical point of view, employment of residual injection has some dis-
advantages, as noted by Stiiben and Trottenberg. The spectral and energy norms of
the corresponding local two-grid operators are not bounded [59, p. 127]. In practice,
convergence may deteriorate as the meshsize tends to zero. Hence, full-weighting is
regarded as more robust. For RBGS, the injection operator has its special attraction.
Since the residuals at the black points are zero, the injection operator is equivalent to
the five-point half-weighting (optimal-weighting) operator (see [59]).

In this appendix, we optimize the residual injection operator by choosing an op-
timal residual injection factor (residual scaling parameter). The optimal injection op-
erator maintains the low cost of half-injection, but provides convergence faster than
full-weighting. The numerical results obtained by using this scaled residual injection
operator are slightly better in average than the results obtained by using the two-way
acceleration scheme introduced in Chapter 2, but not overwhelmingly. One advan-
tage of the current approach is that it incurs virtually no extra cost. The two-way
acceleration scheme in Chapter 2 requires about 4% additional cost for each V-cycle.

We restrict our attention to the two dimensional Poisson equation discretized
by the five-point 2nd-order central difference scheme. (A similar residual injection
operator for a high-order multigrid is considered in Chapter 6.) The RBGS relaxation
and bi-linear interpolation are employed. We only optimize the projection operator.

A.2 A Heuristic Residual Analysis

The RBGS relaxation is probably the most efficient smoother in multigrid for Poisson-
like equations [59, p. 85]. The bi-linear interpolation is customarily employed for a V-
cycle algorithm. In practice, the half-injection projection operator is used in connection
with RBGS. The residuals are directly injected (transferred) to the corresponding coarse
grid points weighted by 1/2. The factor of 1/2 is motivated by the fact that the residuals
are zero at black points on the fine grid, hence the other residuals should be multiplied
by 1/2 to represent the correct average [4, p. 219].

The multigrid method solves the residual equations on the coarse grids. Since the
half-injection operator does not take this difference into account and the linear system
is not solved accurately on the finest grid, the residuals injected from the finest grid to
the coarse grid using half-injection is not accurate.

To find the optimal residual injection operator with the optimal scaling parameter,
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Figure A.1: A red-black ordered nine-point stencil for full-weighting scheme.

we consider the full-weighting scheme (see Figure A.1):

. 1
Tifpgfe = qaldrig +2(rivrg +ricig +rige + i)
F(rivrgen +rivrg-1 i i)l (A.1)

Here 7; ; is the residual on the finest grid at the point (4, 7), ¢« and j are even numbers
(the center point in Figure A.1). ((4,7) is a red point.) 75 ;o is the quantity to be
transferred to the corresponding coarse grid point (/2, j/2). The weight assigned to the
residual at each grid point is determined by the involvement of that point in the number
of coarse grid point residual computations. For example, ;1 41 is weighted into the
residual calculation of four coarse grid points at (i/2,/2),(i/2,5/2 +1),(i/2 + 1, /2)
and (i/2+1,5/24 1), respectively. The weights in formula (A.1) correctly reflect these
algebraic relations. But they do not reflect the geometric relations of the reference
point (4,7) and its immediate four neighboring red points involved in the computation
of formula (A.1).

To take their relative geometric positions into consideration, we use the following
simple heuristic residual analysis. Since RBGS is used, the residuals at the black points
are zero as noted above, i.e.

'ri+1,j == 'rz'fl,j == Ti,j+1 == ’I“iyjfl =0. (AQ)

Formula (A.1) is reduced to

1

Tif25/2 = g [Ar; 5 + (Tit1,j41 + Tig1,j—1 +Tic1jp1 +ric1-1)] - (A.3)

We look for an optimal scaling factor « such that ar;; approximates 7;/5;/5 as accu-
rately as possible. After substituting 7;/5 j/2 = ar;; into equation (A.3) we have

1

Tii T 1{da = 1) [rivrjen +rivrg—1 +ricyie ol (A.4)

According to the multigrid philosophy the residuals should be sufficiently smoothed

by relaxation before they are projected to the coarse grid, we may assume that the
residual at the the grid point (i, 7) is locally equal to the residuals of its immediate four
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neighboring red points involved in the weighting scheme (A.1) (or equivalently (A.4)),
then

Tifl 4+l = Titlj—1 = Ti 141 = Ti-1,j—1 = Tij- (A.5)

If r; ; = 0, any scaling parameter « is optimal with respect to the current reference
point (4,7). We can neglect this point and choose another red point as the reference
point. If the residuals at all red points are zero, we have reached convergence. Without
loss of generality, we assume that r; ; # 0.

If we neglect the relative geometric positions of the red points in formula (A.4)
and substitute equation (A.5) into equation (A.4), we obtain the idealized half-injection
factor & = 1/2, which would be an upper bound of the injection factor, so we denote
Qypper = 1/2.

However, the real positions of these red points are rotated by 45° from the positions
of the nearest (black) grid points. Their distance from the reference center point (4, 5)
is increased from 1 to v/2. Therefore, their weights in formula (A.4) should be scaled
by a factor of 1/ V2. Hence, we set

1

Titl,j+1 = Tit1,5-1 = Ti—1,541 = Ti—1,j—1 = E""i,j- (A.6)

Substituting (A.6) into (A.4) and cancel r; j(# 0), we have
242
8

~ 0.4268.

«

This gives the lower bound of the factor «, we denote gyper = 0.4268.
The optimal scaling factor agprima lies between aypper and ajoper- There exists
some & € (0,1) such that

Oéoptimal = galower + (; — g)aupper = 4 + (\/8_ — 2)6 . (A7)

In absence of further information to justify any preferred choice of £, we take £ = 1/2
and equation (A.7) yields

6+ V2
Qoptimal = 16 ~ 0.4634.

Since gpimer 1s smaller than the traditional half-injection factor, we refer to the residual
injection operator with this scaling factor as under-injection.

The scaling factor aptimar is used for injecting the residuals from the finest grid to
the coarse grid. Subsequent residual injection from coarse grid to coarser grid, however,
uses a = 0.5.

A.3 Computational Cost Analysis

For full-weighting, we must compute the residuals at all fine grid points and weight
the residuals (according to formula (A.1)) at the red points which correspond to some
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N under-injection | full-weighting | half-injection | two-way accel.
16 9 11 9 9

32 9 11 10 10

64 9 11 11 10

128 9 11 11 10

256 9 11 11 10

512 9 11 12 10

Table A.1: Comparison of the number of V(1,1)-cycles for Test Problem 2.5.1.

coarse grid points. On the other hand, residual injection needs only to compute the
fine grid residuals at the red points which correspond to some coarse grid points. The
computation of residuals on a given grid is roughly equivalent to one full relaxation on
that grid. Hence, the cost of residual injection is about a quarter of the cost of full-
weighting. If we take into consideration the cost of the weighting scheme (A.1), the cost
of residual injection is about one-fifth of the cost of full-weighting. If a V(1,1)-cycle
algorithm is employed and both full-weighting and residual injection have the same
convergence rate, using residual injection may save up to 30% computer’s time.

A.4 Numerical Experiments

Our numerical experiments are conducted with the model Poisson equation (2.1) and
the Test Problems 2.5.1, 2.5.2 and 2.5.3 in Chapter 2.

The Poisson equation is discretized by the usual five-point 2nd-order central dif-
ference scheme. The RBGS relaxation, bi-linear interpolation and full-weighting or
injection of some kind are employed in the multigrid V(1,1)-cycle algorithm. All ex-
periments are done on a SUN SPARCstation 1+ using Fortran 77 in double precision.
Initial guess is u(z,y) = 0. (N + 1)? is the number of points on the finest grid and
the coarsest grid contains 9 points (one unknown). The program terminates when the
residual on the finest grid in Lo norm is less than 1072, (Note that this stopping criteria
is the absolute reduction in residual norm, not the relative reduction in residual norm.)

For different N, we solve the three test problems of Chapter 2 using multigrid
method with different residual projection operators, i.e., under-injection, full-weighting
and half-injection. We also test the two-way acceleration scheme introduced in [77].
The numbers of V(1,1)-cycles (convergence rate) are tabulated in Tables A.1 to A.3.

From Tables A.1 to A.3, we note that in all cases, under-injection achieves conver-
gence rate better than full-weighting and half-injection. For Test Problem 2.5.1, under-
injection is better than the two-way acceleration scheme. For Test Problem 2.5.3, their
convergence rates are similar. For Test Problem 2.5.2, with N = 128,512, the two-way
acceleration achieves better convergence.

These numerical tests show that under-injection and the two-way acceleration
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N under-injection | full-weighting | half-injection | two-way accel.
16 11 13 11 11
32 11 13 13 12
64 12 13 14 12
128 13 13 15 12
256 13 14 15 13
512 14 14 16 13

Table A.2: Comparison of the number of V(1,1)-cycles for Test Problem 2.5.2.

N under-injection | full-weighting | half-injection | two-way accel.
16 10 12 11 10
32 11 13 13 11
64 12 13 14 12
128 12 13 15 12
256 13 14 15 13
512 13 14 16 13

Table A.3: Comparison of the number of V(1,1)-cycles for Test Problem 2.5.3.

scheme are effective ways of accelerating the convergence of standard multigrid method.
Under-injection is more attractive because it incurs virtually no additional cost over
half-injection. The two-way acceleration scheme incurs about 4% extra cost per V-cycle,
although this additional cost is negligible.

The acceleration rates in convergence achieved by the under-injection operator
are in the range of 10 — 20% with respect to the full-weighting operator. However, the
comparison of convergence rate in Tables A.1 to A.3 does not take into consideration
the fact that the cost of the residual injection operators is only about a quarter to one-
fifth of the cost of the full-weighting operator (see discussion in Section A.3). Table A.4
gives the CPU time in seconds for the under-injection, full-weighting and half-injection
operators. The efficiency rate in the fifth column of Table A.4 represents the reduction
rate in CPU time for the under-injection operator with respect to the full-weighting
operator. We note that the efficiency rates are almost 40%. This is more than what we
estimated in Section A.3 because under-injection achieves faster convergence. These
efficiency rates are very attractive.

One may tend to combine the two-way (SOR-type) acceleration scheme of Chap-
ter 2 with the under-injection operator. However, since we have optimized the residual
injection operator, we expect that the SOR acceleration will have little effect on the
projection process. We have done some numerical experiments which showed that this
is true and w; = 1 (no acceleration) is indeed optimal for the projection process. On
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N under-injection | full-weighting | half-injection | efficiency rate
16 0.19 0.27 0.19 29.63%
32 0.61 0.99 0.68 38.38%
64 2.47 3.91 3.03 36.83%
128 10.37 16.26 12.65 36.22%
256 41.91 66.05 51.57 36.55%
512 177.28 276.31 235.86 38.84%

Table A.4: Comparison of CPU time in seconds for Test Problem 2.5.1.

the other hand, interpolation process may be accelerated. The optimal parameter is
about wy = 1.16 for acceleration on the second finest level of the interpolation process
for Test Problems 2.5.2 and 2.5.3. Unfortunately, this acceleration option deteriorates
the convergence rate of Test Problem 2.5.1. Since there is an extra 2% cost for this
acceleration. The average cost-effectiveness is not as competitive as the optimal resid-
ual injection without additional SOR acceleration. This implies that both two original
schemes are near-optimal in the sense of computational cost-effectiveness.

A.5 Conclusions and Remarks

We have obtained a near-optimal under-injection factor through a novel heuristic resid-
ual analysis. The under-injection operator has been tested to show near-optimal con-
vergence rate in the sense of computational cost-effectiveness. In fact, these test results
have been posted in the electronic multigrid newsletter [79] for open discussion. The
reduction rates in CPU time resulted from using the under-injection operator are al-
most 40% with respect to the full-weighting operator. Although the overall CPU cost
for solving a Poisson equation using multigrid method with any residual projection op-
erator discussed above is trivial on modern computers, if a Poisson solver is repeatedly
called as a subroutine in solving a complicated problem, such as the incompressible
Navier-Stokes equation, using the under-injection operator is obviously advantageous.
In addition, there is no coding complexity for the under-injection operator.

The main idea of the heuristic residual analysis technique is to consider the ge-
ometric locations of the grid points and the relaxation pattern. This technique may
be extended to derive optimal residual injection operator for other multigrid applica-
tions, not necessarily limited to the Poisson equation. It has been shown in Chapter 6
and in [31] that using a residual injection operator is necessary for convergence when
a high-order multigrid method is used to solve the convection-diffusion equations. A
heuristic residual analysis technique similar to that used in this paper has been em-
ployed to develop some optimal residual injection operator for the high-order multigrid
(see Chapter 6 and [31]).

123



Appendix B

On Convergence of Iterative
Methods for a Fourth-Order
Discretization Scheme

B.1 Introduction

We consider the two-dimensional constant coefficient convection-diffusion equation

um$+uyy+pum+quy = _f(a:ay)? (IIJ,y) EQ?

w(z,y) = g(z,y), (z,y) € 09, (B.1)

where (2 is a smooth convex domain in R2.

Recently, there has been growing interest in developing fourth-order finite differ-
ence schemes for the convection-diffusion equation (and the Navier-Stokes equations)
which give high accuracy approximations, see [16, 25, 26, 41, 57] and the references
therein. In particular, Gupta et al. [25] proposed a fourth-order compact finite differ-
ence scheme for solving (B.1) and showed numerically that the scheme is both highly
accurate and computationally efficient. Classical iterative methods with this scheme
have been shown numerically to converge for all values of p and ¢ [25]. In [26], this
compact scheme was extended to solve the convection-diffusion equation with variable
coefficients. The new scheme has also been shown numerically to have a truncation
error of order h* and good numerical stability for large values of p(z,y) and q(z,v).

However, we are not aware of any analytical result to prove that any of the clas-
sical iterative methods converge with these fourth-order compact schemes. A rigorous
justification is always desirable in spite of the fact that numerical experiments have
been successfully conducted,

In this appendix, we give some conditional convergence results for some classical
iterative methods using the fourth-order compact scheme developed by Gupta et al.
[25, 26]. Although our results are limited, they are a first step towards the convergence
analysis of such iterative methods for the fourth-order approximation schemes.
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B.2 Fourth-Order Compact Scheme

The nine-point compact fourth-order discretization scheme results in a linear system
(1.1) (for details, see [25]), where A = (a;),2xy2 is a square matrix, which is usually
nonsymmetric and non-positive definite. Each equation of (1.1) is of the form:

8 2

h
> aiu; = 7[(]04 + fs+ fa+ fr +8f0) +v(fr — f3) +0(f2 — fa)l, (B.2)
i=0
where the coefficients «;,7 = 0,...,8, are described by the computational stencil:
A o Qs —(1=7)(1+68) —21+46?-2 —(1+7)(1+9)
as ap a = —2(1—7)2 =2 20+49y2+40%> —2(1+7)?-2
or o4 ag —(L=)(1=0) —20-82—2 —(1+7)(1-0)

(B.3)
Here v = ph/2 and § = qh/2 are referred to as the cell Reynolds numbers [17]. When
max{|y|,|0|} < 1, we say that the linear system (1.1) (and the discretized boundary
value problem (B.1)) is diffusion-dominated, otherwise it is convection-dominated. The
numerical experiments conducted in [25] showed that classical iterative methods with
this scheme converge for any values of p and q. We also showed numerically in [80] that
the multigrid method with this scheme converges for all values of p and ¢ even when
they are functions of x and y.

B.3 Convergence for Diffusion-Dominated Case
Lemma B.3.1 The coefficients of the nine-point stencil (B.3) satisfy

< -2, i=1,234, (B.4)
for all values of v and 4.

Proof. Direct verification. O

Lemma B.3.2 The coefficients of the nine-point stencil (B.3) satisfy asay; > 0 and
agag > 0 if one of the following conditions hold:

Iyl < 1,16 <1, (B.5)
or
ly| > 1,[0] > 1. (B.6)
Proof. asa; > 0 if
(1 —~2)(1—d2%) > 0. (B.7)
It is easy to see that (B.7) holds if either (B.5) holds or (B.6) holds.
The conditions for agag > 0 can be verified similarly. O

Lemma B.3.3 The matriz A is irreducible.
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Proof. It is readily verified that the directed graph of A is strongly connected. O
Lemma B.3.4 The matriz A is irreducibly diagonally dominant if |y| <1 and |0] < 1.

Proof. A is diagonally dominant if

la; ;| > Z la; |, for i=1, ,n? (B.8)
J=1,j#1
(B.2) and (B.8) imply
8
oo > [y, (B.9)
j=1

Substituting (B.3) in (B.9) after simplification, we have
(T +A[+ L =D(1 + 6] +[1 = 6]) <4 (B.10)

Since (|1 +v|+ |1 —7]) =2if |y| <1, and (|1 + 0| + |1 —0]) = 2 if [0] < 1, it follows
that (B.10) holds if |y| <1 and |§] < 1 both hold.

A is irreducible by Lemma B.3.3. Since the strict inequality in (B.8) holds for at
least the first row of A for |y| < 1 and |§] < 1, A is irreducibly diagonally dominant
(see pp. 23 of Varga [61]). O

From Lemmas B.3.3 and B.3.4, we have the following theorem:

Theorem B.3.5 The point Jacobi and the point Gauss-Seidel methods associated with
A for |y] <1 and 6| < 1 are convergent for any initial guess.

Proof. A is irreducibly diagonally dominant by Lemma B.3.4. The result follows from
Theorem 3.4, pp. 73 of Varga [61]. O

B.4 Symmetrization of Coefficient Matrix

Theorem B.3.5 establishes the convergence property of the point Jacobi and point
Gauss-Seidel methods with the fourth-order compact scheme when the problem is
diffusion-dominated. To analytically show the convergence of classical iterative meth-
ods with this scheme for larger cell Reynolds number, following Elman and Golub [17],
we first show that, under certain circumstances, A is symmetrizable by a real diagonal
similarity transformation.

Theorem B.4.1 The coefficient matriz A can be symmetrized with a real diagonal
similarity transformation if and only if one of the following conditions hold:

vy=040=0, (B.11)

or

7l = 18] = V2. (B.12)



Proof. The unknowns can be ordered so that the matrix A has the block tridiagonal

form

A= trilAj 1, A4, Aj i),

where A; ;1 = trijay, as, ag], Aj j = tri[as, g, o], Aj j41 = tri[og, oo, as).
We look for a matrix @ = diag(Q1, @2, ..., Qn), where @) is a real diagonal matrix
of the same order as A; ;, such that Q' AQ is symmetric. Let

Q_]:dia"g(q%])7q£])7"'7q§i7))7 j:]‘727"'7n'
We first consider the diagonal block: Q;lAj,ij is symmetric if and only if

/@ e

Sy =y 1<i<n-—1, 1<j<n, (B.13)
() ()

441 4q;

where qgj ) may be arbitrary. Thus, the diagonal blocks can be symmetrized provided

. el
a7, = ,/a—lq,(”, (B.14)

and this recurrence is well defined if and only if a3/ay is positive, which is true by
Lemma B.3.1. The (equal) quantities (B.13) are the (4,7 — 1) and (¢ — 1,7) entries of
the jth diagonal block of the symmetrized matrix.

For the offdiagonal blocks, we require

Q;'Ajj1Q5 1= (Q; 1 A;1,;Q)" (B.15)

Relation (B.15) holds if and only the following three scalar relations hold:

4 _ 4 G) _ [a4 (j-1),

qgj) a4 = qz(jfl)az’ or q;" = a2q,~ ; (B.16)
(G-1) (4)

49 ; . s (i

Siros = gpas orqf) = /2y (B.17)
4q; qz'+1 6

(G-=1) ()

4 _ Gin G) _ o1 (j-1)

q,@l Qry = qgj_l)%, or 431 = s q; . (B.18)

(B.16) is well defined if and only if asay > 0 which is true for any v and § by
Lemma B.3.1. (B.17) is well defined if and only if agag > 0, which is true if ei-
ther |y| < 1 and |d] < 1 both hold, or |y| > 1 and || > 1 both hold by Lemma B.3.2.
The same conditions are required for (B.18) being well defined.

However, Q' AQ is symmetric if and only if conditions (B.14), (B.16), (B.17) and
(B.18) hold simultaneously.

From (B.14) and (B.16), we have

G) _ [0 (-1 B.19
qz+1 alanz 9 ( . )
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which is well defined since ajasazay > 0 by Lemma B.3.1. _
Substituting (B.19) into (B.18) and equating the coefficients of qZ(J*l), we have
ooy — agagas = 0. (B.20)
Substituting (B.14) into (B.17), we obtain

() _ [ (j-1)
4y = a1a6qi+1‘ (B.21)

Substituting (B.16) with the subscript i being replaced by i + 1 into (B.21) and

comparing the coefficients of qgfll), we have

arog0g — agagag = 0. (B.22)

Substituting the coefficient values of (B.3) into (B.21) and (B.22), after simplifi-
cation, we have the system of two equations which must hold simultaneously

(7 + 0) (=272 + 290 — 26% +4%62) = 0,
9 9 969 (B.23)
(=7 +0)(27y° + 290 + 26 —~y%6%) = 0.
The solutions to system (B.23) are
vy = 0 = 0,
=100 = L
o= 18l = V2.
Since we must also have agag > 0 and aza; > 0 for (B.17) and (B.18) being well
defined, solution |y| = |§| =1 is excluded by Lemma B.3.2. O

Remark B.4.2 If (B.11) holds, (B.1) reduces to the Poisson equation and the matriz
A is symmetric and positive definite by itself. The interesting case is when |y| = |0| =
V2, equation (B.1) is convection-dominated and the linear system (1.1) is nonsymmet-
ric and non-diagonally dominant.

The following corollaries can be verified directly:

Corollary B.4.3 If vy =6 = +/2, the coefficient matriz A with the following compu-
tational stencil
1 —4(2£V2) —(vV2£1)?
—4(2 FV?2) 36 —4(2 £V?2)
~(V2F1)? —4(2FV?2) 1
is symmetrizable by the real diagonal similarity transformation Q = diag(Q1,Qa, ..., Qn),
where

Q1 = diagll,V2F 1,(V2F1)%,..., (V25 1)" ),
Qi=W2F1)Qj—1, j=2,3,...,n.

The symmetrized coefficient matriz A has the computational stencil

1 —4y2 -1
—4v/2 36 —4v2
-1 =42 1
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Corollary B.4.4 If vy =2, § = —V2 or v = —V/2,6 = /2, the coefficient matriz A

with the following computational stencil

-(V2F1)? —42Fv2) 1
—4(2 FV?2) 36 —4(2 £2)
1 —4(2++V2) —(vV2+£1)?

is symmetrizable by the real diagonal similarity transformation Q = diag(Q1,Q2, ..., Qn),
where

Q1 = diagll, V2 F 1,(V2F 1)%,(V2F1)%,..., (V2 F )" 1],
Qi=(2£1)Qj 1, j=23,...,n

The symmetrized coefficient matriz A has the computational stencil

-1 =42 1
—4/2 36 —4v2
1 —4y/2 =1

Remark B.4.5 Although the original coefficient matriz A is not diagonally dominant
when |y| = |0| = V2, the symmetrized coefficient matriz A is strictly diagonally domi-
nant.

B.4.1 A Bound for Line Jacobi Method

Let A be split by the line Jacobi iteration, i.e.
A=D-C, (B.24)

where D is the diagonal block and —C' contains the upper and lower diagonal parts of
A. Suppose that A can be symmetrized by a real diagonal similarity transformation @
and the symmetrized matrix is A = Q 1 AQ. Corresponding to the line Jacobi splitting
(B.24), A is split as

A=D-C. (B.25)

We now derive a bound for the spectral radius of the iteration matrix M = D~!C
based on the line Jacobi splitting of the coefficient matrix A, in the case where A is
symmetrizable, i.e., when |y| = |§| = v/2. Note that

M =QD'CQ,

i.e., M is similar to M = D 'C and they have the same eigenvalues. Hence, we can
restrict our attention to M. The analysis is based on the result

o(D7C) < ID7'Cl2 < D7 H2lICl2 = == (B.26)
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where the equality follows from the symmetry of D and C. o(C) is the spectral radius
of C' and Apin(D) is the smallest eigenvalue in absolute value of D. For |y| = |6] = v/2,
D is symmetric positive definite and can be factored symmetrically as D = LL”. Hence

L'p'crL T=r'cL™ 7.

That is, M, and therefore M, are similar to a symmetric matrix, and their eigenvalues
are real. The M-matrix D has block diagonal form diag(D, ..., D), where each D =

tri(—4v/2,36, —4v/2). Hence, Apin(D) = Amin(D).
By Lemma 2 of Elman and Golub [17], the eigenvalues of the tridiagonal matrix
D of order n are {\; = 4(9 — 2v/2cos jrh),j = 1,2,...,n}. Hence,

Amin(D) = Amin(D) = 4(9 — 2v/2 cos 7h). (B.27)
The spectral radius of C' is bounded by Gerschgorin’s theorem [61]:
o(C) < 4(1 +2v/2). (B.28)
Hence, from (B.26), (B.27) and (B.28) we have the following theorem:

Theorem B.4.6 If |y| = |§| = /2, the spectral radius of the line Jacobi iteration
matrix for the linear system (1.1) is bounded by

1+2V2

M < — "
olM) < 9 — 2y/2cosh
% ~ 0.6023, as h —0.

B.5 Conclusions

We proved that the point Jacobi and point Gauss-Seidel methods converge for solving
the linear system resulted from a fourth-order finite difference discretization of the
convection-diffusion equation when the equation is diffusion-dominated. We also proved
that the line Jacobi method converges when the coefficient matrix is symmetrizable.
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