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This article aims to assess the performance of a new, full multigrid algorithm in which there
is no restriction procedure for variables except for residuals. It simplifies the multigrid
strategy and the structure of program. This algorithm is used in combination with the
SIMPLE algorithm to solve fluid flows with heat transfer, using collocated grids and
higher-order schemes for convective fluxes. Accurate solutions are obtained for lid-driven
flow, natural convection in a cavity, and natural convection in an eccentric annulus.

INTRODUCTION

In recent years, significant progress has been made in the development of
multigrid methods for the solution of the Navier-Stokes equations. The available
results indicate that the multigrid-based solution procedures require less comput-
ing time compared to the traditional single-grid methods, which employ algorithms
such as SIMPLE. Multigrid methods are efficient not only for laminar isothermal
flows [1-4], but also for flows with heat transfer [5-7] as well as for complex
turbulent flows [8-10]. In addition, Shyy et al. [11] have extended the algorithm to
compressible flows.

So-called full multigrid /full approximation storage (FMG-FAS) methods are
widely employed in solving the Navier-Stokes equations. These methods involve the
discretization of the equations, the storage of the coefficients, and the solution at
every grid level. First the converged solution is obtained on the coarsest grid. This
solution is then interpolated to the next finer grid and used there as the starting
solution for the multigrid procedure. This procedure continues until the finest grid
level is reached, where variables and residuals on the fine grid are restricted to the
next coarser one. Initial fluxes through the control-volume faces of the coarse grid
are obtained by summing up the corresponding mass fluxes of the fine grid.
However, this technique yields mass fluxes that do not match the restricted
velocities.

Instead of the FAS algorithm, a new algorithm is proposed in this work, in
which only the residuals obtained from the fine grid are restricted to the next
coarser one. The variables, used as the starting solutions, are taken directly from
the previous cycle on the coarse grid. Thus, there is no restriction procedure for
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NOMENCLATURE
D, pressure gradient in { direction 0 dimensionless temperature
Gr Grashof number A underrelaxation factor
I prolongation operator n dynamic viscosity
i restriction operator v number of iterations
Ky equivalent conductivity p fluid density
nonlinear matrix ¢ dependent variable
m mass flux v gradient operator
Nu Nusselt number
p fluid dynamics pressure Subscripts
P dimensionless pressure
0. mass imbalance i inner surface
Pr Prandtl number o outer surface
R Residual nb neighbors of node P
Ra Rayleigh number w,s,e,n  west, south, east, north
Re Reynolds number
b o fluid temperature Superscripts
uv dimensionless velocity components
in x and y directions, respectively ) starting solution
v fluid velocity vector ) approximated solution
X, Y dimensionless Cartesian coordinates h fine grid
a thermal diffusivity H coarse grid
& correction in multigrid algorithm ! pressure correction

the variables but only for the residuals, which avoids problems of nonmatching of
mass fluxes, and simplifies the multigrid strategy and the structure of the program.
The treatment of the pressure correction equation on the coarse grid is achieved in
a way similar to the other variables. In the current FMG algorithm, the converged
solutions obtained on the coarsest grid are transferred to the second grid level.
These converged solutions on the coarsest grid are then taken as the starting
solutions for the first multigrid cycle.

The schemes used for the discretization of the convective terms in the
momentum and scalar transport equations have a strong influence on the accuracy,
efficiency, and convergence of the whole solution procedure. It has been shown
(e.g., [10, 12]) that, in order to have the same accuracy, a higher-order scheme
requires many fewer grid points than a first-order scheme such as the HYBRID,
the UPWIND, or the POWER-LAW differencing scheme [13]. A high-resolution
scheme used in combination with any multigrid method can significantly reduce the
computational cost, especially for a grid-independent solution.

In this article, a detailed description of the modified V-cycle FMG is
presented. The algorithm is applied to accelerate the convergence of a two-dimen-
sional flow solution with heat transfer, employing the higher-order schemes.

MATHEMATICAL FORMULATION

The steady, incompressible fluid flow and heat transfer can be described by
conservation equations for mass, momentum, and energy. Neglecting the viscous
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dissipation in the energy equation, the system of conservation equations is written
as follows:

V-(pV) =0 (1)
V-(p¥W) = -Vp+V-(uVV) + G (2)
V-(pVT) = V-(aVT) 3)

Due to the Boussinesq approximation, the buoyancy force G that appears in the
momentum Eg. (2) reads

G=p,gB(T-T,) (4)

where 8 and g represent the volumetric expansion and gravity acceleration vector,
respectively. 7|, denotes the reference temperature and p, its corresponding
density.

DISCRETIZATION METHOD

The conservation equations for all dependent variables can be expressed in
the following general form:

V-(pVg) = V- (I, Vo) + S, (5)

where ¢ stands for either V or 7. T, represents the exchange coefficient and §,
the source term.

The conservation equation is discretized using the finite-volume technique. A
complete review of the discretization procedure is available in [14]; only a brief
overview will be given here.

Integrating Eq. (5) over a finite volume and applying the Gauss divergence
theorem yields

Y F-A= Y (T,V¢-A) +5, (6)

all faces all faces

Here F = pV¢ is the convective flux, A is the cell face area, and S, is the

volume-integrated net source. The discretization of Eq. (6) at a cell P leads to the
form

—app + Za"hqbnb +8,=0 (7)
nb

where the subscript nb denotes the neighboring nodes of P involved in the
polynomials. The coefficient a, represents the combined convective and diffusive
fluxes associated with one of the cell faces, such as

any =f(Fnb'Dnh) (8)
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where F, and D, are the convective mass flux and diffusive flux coefficients,
respectively. The particular form of the function f depends on the type of the
convection scheme used. In this study, the higher-order schemes QUICK [15] and
TVD-type MUSCL [16] are used to approximate the convective fluxes, while the
diffusive fluxes are discretized via a central differencing scheme.

SOLUTION PROCEDURE

The pressure—velocity coupling is achieved by using the SIMPLE algorithm
[13]. The details of the SIMPLE algorithm are independent of the differencing
schemes used for the momentum equations. Since a nonorthogonal, nonstaggered
grid arrangement is used, the momentum interpolation proposed by Rhie and
Chow [17] is employed for calculating the cell-face mass fluxes to avoid pressure
oscillations. Equation (7) results in an algebraic system that is solved by the
strongly implicit procedure (SIP) of Stone [18].

The solution methods become less efficient on more refined grids because of
the iterative coupling of equations and the treatment of the nonlinearities. An
efficient solver for inner iterations does not overcome this problem, even if the
linearized system of equations is solved directly for each individual equation. The
number of outer iterations required to satisfy all equations simultaneously grows
almost linearly with increasing number of control volumes.

In this study, the mass, momentum, and energy equations are solved using a
coupled multigrid method. The performance of the multigrid method is compared
with that of the single-grid method based on the SIMPLE algorithm. In the next
subsection, a multigrid algorithm is discussed.

Modified Full Multigrid Algorithm with V-Cycle

The modified full multigrid method adopted here was described in detail by
Yan et al. [19]. The strategy is shown in Figure 1, where the arrow  symbolizes
the transfer of residuals from the fine grid to the next coarser one. The symbol ~
holds for the processes from the coarse grid to the next finer one. They include the
calculation of the coarse grid corrections, the prolongation of these corrections or

Modified FMG algorithm Modifed V-cycle
/
b
Q\ f
ARF RS

] Converged solution “\ Restriction

(*) Solution on the coarsest grid /" Prolongation

) Pre-smoothing or Post-smoothing —= Variable taken from previous V-cycle

Figure 1. Modified FMG algorithm and V-cycle.
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the converged solutions, and the correction of the previous intermediate solutions
on the fine grid. The arrow — symbolizes the processes in which the variables are
taken from the previous V-cycle.

Multigrid Method with SIMPLE Algorithm on the Coarse Grid

Applying the method proposed, Eq. (7) for momentum can be rewritten as
follows:

L{u;} + D p) + S{u;} = flu;) 9

where L{u;} represents the quantity —a,d, + La,, b, and Dp) and S{u,)
denote the pressure gradient term in the i direction and the source term, respec-
tively. flu;} is the right-hand-side term; it is zero on the finest grid and nonzero on
any coarse grid.

After performing », outer iteration sweeps with the SIMPLE algorithm on
the fine grid denoted by superscript /, the intermediate solutions of velocity
components and pressure are obtained. In general, the momentum equations are
not converged and have the residuals R”, which can be expressed as

LMal'} + DM p") + SMal} = f{u) + RMal) (10)

where @ and p" denote the intermediate solutions of the velocity components and
pressure, respectively, and R™{#!} is the residual of the u, equation.

In order to obtain the converged solutions, the following corrections for
velocity components and pressure are introduced:

af =ul +oul  p"=p"+ sp” (11)
which make the residuals vanish:

L"aty + DI(p") + SMaly = fi{u,) (12)
Subtracting Eq. (10) from Eq. (12) yields

L"aly + DIp™) + SMaly = T'@!) + §"@l} + DMp" — R"(@") (13)

constant

This equation is used as the basis for multigrid coupling. A similar equation for T
reads

Lh{fh} i gh{-f-h} — Eh{fb} e gh[TIr} —-E"{T"] (14)

constant
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Applying the multigrid method, the corrections can be obtained on the coarse grid.
As in the CS method, only the residuals are restricted to the coarse grid and the
multigrid algorithm described above is applied because of the nonlinearity of
velocities and other variables. The momentum equation on the coarse grid denoted
by superscript H now reads

L@y + Dl (p") + $"{al')

= fi{u,) = LY@} + DE{pY) + SHaf) - [1F|RMaly  (1s)

constant

Here, the variables @/ and p are the starting solutions, while #/" and p" denote
the approximations on the coarse grid. In the traditional FAS algorithm, the
starting solutions except for pressure are restricted from the fine grid. In the
current algorithm, 4/ and " are taken from the previous cycle. On the right-hand
side, the term [I1R™{#@!} is the restricted residual obtained from the fine grid,
whereas the other terms are calculated on the coarse grid using the starting
solutions. The right-hand-side terms remain unchanged within the iterative process
on the coarse grid.
The equation for T on the coarse grid results in

LHTHY + SHTHY = FATY = LHTH) + SH(TH) - [17]|RMT"}  (16)

constant

where the variable TH is taken from the previous cycle and used as an initial guess,
and T" denotes the approximation on the coarse grid. On the right-hand side, the
term [1//]R"{T"} is the restricted residual obtained from the fine grid, whereas the
other terms are calculated on the coarse grid based on the starting solutions.

The treatment of the pressure correction equation in the multigrid algorithm
deserves more attention. The pressure correction equation can be written in the
general form

Q.. =L{p} + 0Oy =fp) (17
where Q% = m* + m¥ + m¥* + m¥ and Q,, =m, + m, +m, + m, in cases of
2D. The terms ri* and r1 denote the mass fluxes before and after the correction
with the pressure correction p', respectively; QF and Q,, are the corresponding
mass imbalances. The term f{p'} on the right-hand side is zero on the finest grid
and nonzero on any coarse grid.

After some SIMPLE iterations on the fine grid, the solution of equations is
not converged and Eq. (17) still has the residual R*{p'}:

RMp') = O — f"(p) (18)
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The pressure correction equation on the coarse grid can be expressed as

07 = L{p*} + @z" = fi{p} = OF - [IF]R*p)) (19)

constant

where the Q,’,j' is the starting mass imbalance taken from the previous cycle. The
right-hand-side term f"{p'} remains constant during the iterations on the coarse
erid.

As Eq. (19) is solved with a nonzero right-hand-side term f"{p'} on the
coarse grid, the global mass flux should be corrected with the sum of f"{p'}
through the entire domain Xf”{p’}. In cases of open through-flow geometries, we
assume that the sum of mass fluxes at the inlet boundary is equal to the sum of
mass fluxes at the outlet one on the finest grid. On the coarse grid, ¥ f"{ p'} should
be added to the sum of inlet mass fluxes to satisfy the global conservation
condition. .

Beginning with the starting quantities &7, p”, and T, v, SIMPLE iterations
are performed to obtain the approximate solutions on the coarse grid. The
coarse-grid corrections are then calculated as

sufl =@l —afl  spf=p" —pf ST =T T4 (20

Once these coarse-grid corrections are obtained, they are prolongated to the fine
grid and added to the previous intermediate solutions:

ar=ul + A If) sult Pt =p" + A 14 8p"  Th=T"+ A [1}] 6T
21

Here, a stability measure is introduced into Eq. (21) by underrelaxing the correc-
tions with A (0 < A < 1) to compensate for a lack of smoothness in the coarse-grid
corrections.

It should be noted that the pressure correction S,f" is calculated directly by
Eq. (20). This is different from other works, in which the so-called correction of
pressure correction is calculated. In Eq. (19), the right-hand-side term consists of
two parts: the first part is taken from the previous cycle, while the other is
restricted from the fine grid. The treatment is the same for all variables.

Moreover, the corrections to the mass fluxes on the fine grid are calculated
by using velocity corrections. They are added to the previous mass fluxes. In
addition, postsmoothing with v, SIMPLE iterations is performed.

Restriction and Prolongation

In this work, only residuals are restricted from the fine grid to the next
coarser one. The summation of the corresponding fine-grid residuals provides a
consistent restriction method. This method is applied to all equations. The con-
verged solutions and the coarse-grid corrections are transferred to the fine grid
using a standard bilinear interpolation in 2D and trilinear interpolation in 3D.
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Boundary Conditions

On all grid levels, the boundary conditions are treated in the same way as in
any single-grid algorithm. Neumann conditions used for pressure correction at
boundaries on the finest grid are also applied to the pressure correction on any
coarse grid.

RESULTS

The modified full multigrid method described in the previous section is
implemented to solve fluid flow and heat transfer. Here, we focus on two-dimen-
sional test cases. Solutions are considered to be convergent if the summation of the
absolute residuals over all cells is less than 107*. To enhance stability and
smoothness, underrelaxation is employed, with related factors being 0.7 for veloci-
ties, 0.3 for pressure correction, and 0.8 for temperature. All calculations are
performed with FMG with fixed V-cycle. No attempt has been made to optimize
these parameters in favor of the computations.

Lid-Driven Square Cavity Flow

The performance of the proposed multigrid method is demonstrated by the
calculation of the lid-driven square cavity flow. For this isothermal problem, the
energy equation does not need to be considered, and the buoyancy term G can be
dropped in Eq. (2). Using the dimensionless quantities U = u/U,, X = x/L, etc,,
the governing equations become

au oV
— o= ) (22)
axX Y
al . U P 1 [(d*U U s
— GtV —= | — + —
ax Y dX Relax? aY?
U«;V+V5V P . 1 (3%  9*V -
— —_— m — — ——. _+___
ax iy dY Relax? aY?

where Re is the Reynolds number defined as Re = LU,/ v.

To investigate the behavior of the multigrid method, calculations are per-
formed for a Reynolds number of Re = 10 based on lid velocity U; = 1 m/s and
L =1 m. No-slip wall boundary conditions are used. As seen in Figure 2, a
sequence of four grid levels ranging from 16 X 16 to 128 X 128 grid cells has been
adopted. In general, the numbers of iterations for pre-/postsmoothing are v, =3
and v, = 2, respectively. The number of iterations for smoothing on the coarsest
grid is v, = 8. The QUICK and MUSCL schemes are employed. All computations
start with an initial field of zero velocities and zero pressure.

The evaluation of the method is based on the number of work units (WUs)
required to obtain a converged solution as well as the corresponding CPU time.
WU is a computer-independent measure that is defined as the computational work
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Figure 2. Segments of the four grids (one
quarter of each).

required for v, + v, outer relaxation sweeps on the finest grid. Tables 1 and 2
show that the number of iterations increases almost linearly with the number of
control volumes for single-grid computations. In contrast, the multigrid methods
even display a decrease. Calculations using the MUSCL scheme rather than the
QUICK scheme need somewhat more CPU time to obtain a converged solution.
However, the MGM has only a weak effect on the convection schemes.

The convergence behavior of the single-grid and multigrid calculations using
the MUSCL and QUICK schemes is displayed in Figure 3. The multigrid method
results in a significantly faster convergence of the solution procedure. In Figure 4a
the primary vortex and the two secondary vortices at the bottom corners of the
cavity can be clearly distinguished. Figure 4b compares present results for the
velocities along the vertical and horizontal cavity midlines. Both convection
schemes, MUSCL and QUICK, lead to identical results, which are in very good
agreement with the calculation obtained by Ghia et al. [20].

Table 1. Number of WUs and CPU time using MUSCL scheme for lid-driven square cavity flow

Single-grid MUSCL Multigrid MUSCL
Grid WU CPU time wu CPU time Speed-up
16 x 16 26 253 26 2.53 1.000
32x32 46 11.64 15 9.11 1.278
64 > 64 99 92.98 8 20.59 4516
128 x 128 313 1,253.09 5 49.80 25.162

Table 2. Number of WUs and CPU time using QUICK scheme for lid-driven square cavity flow

Single-grid QUICK Multigrid QUICK
Grid wu CPU time WU CPU time Speed-up
16 % 16 30 2.59 30 259 1.000
32 %32 45 10.29 15 8.69 1.184
64 X 64 99 83.19 8 18.90 4.402

128 = 128 315 1,145.27 4 43.18 26.523
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wu driven cavity flow at Re = 1,000.

Natural-Convection Flow in a Cavity

A common benchmark test for numerical computations is the flow in a

square cavity with one hot vertical wall and one cold facing wall. The horizontal
walls are assumed to be adiabatic. The same grid structure as before is used for the
computation. Here, the governing equations are nondimensionalized, with length,
velocity, and temperature scales as L, (g BATL)?%, and AT = T, — T, respec-
tively,

au oV "
ax | ay
" al Va P 1 (d*U d%U
—_—tV—=—-—+ + .
FD.¢ dY dX Gr |\ oX* aY?
1.0 1

Win e el

(a) ®)

Figure 4. Lid-driven cavity flow at Re = 1,000: (a) stream-
lines; (b) comparisons of u and v velocity components along
the vertical and horizontal midlines.

(25)

(26)
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U av v av P 1 v W ] @
— 4tV —==-— 4 +
ax 9 Y  JGr \oaX? aY?
7 a6 " a8 1 a% %0 a8
— VT —== + .
ax dY  Pr/Gr | dX? aY~

where the Grashof number Gr, the Prandtl number Pr, and the Rayleigh number
Ra are defined as follows:

r=

8BLXT, — T))
S =

= Ra=Gr-Pr (29)
v o

With no-slip conditions on all walls, the dimensionless temperatures on the
cold and hot walls vary between 0 and 1, respectively. Due to the inherent
conservation in the finite-volume method used here, the average Nusselt number is

evaluated by using the temperature gradient at the wall:

. 2
Nu=Nu,, = — j:ﬁdY (30)

Here, the calculation for Ra = 10° and Pr = 0.71 is carried out using the
MUSCL scheme. As reported in Table 3, the speed-up decreases significantly in
comparison to the lid-driven cavity flow, due to the weak coupling of temperature
and velocities. The average Nusselt number seems to converge monotonically
toward grid-independent value. Compared with the benchmark solution (Nu= 8.80)
presented by G. de Vahl Davis [21], the agreement is very good.

Figure 5 shows the convergence histories. The streamlines and isotherms in
Figure 6 show the complex structure of the flow with natural convection.

Natural Convection in an Eccentric Annulus

A pronounced test case is the flow between two horizontal eccentric cylinders
of radii r, with r, > r;, located at o and o' as shown in Figure 7. The eccentricity
of the inner cylinder is defined by the distance E. The inner and outer surfaces are
maintained at two different temperatures, 7, and 7., with 7, > 7.. As the length
scale is the average gap L = (r, — r;), the dimensionless governing equations are
the same as Eqs. (25)-(28).

Table 3. Number of WUs and CPU time for natural convection in a cavity at Ra = 10 and Pr = 0.71

Single-grid Multigrid
Grid WU CPU time wu CPU time Speed-up Nu
16 X 16 18 241 18 241 1.000 9.224
32x32 45 15.80 13 9.37 1.668 8.963
64 X 64 130 172.75 29 66.88 2.583 8.857

128 x 128 468 2,748.07 82 757.12 6.589 8.841
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(a) &)

Figure 6. Streamlines and isotherms for natural convection in
a cavity.

—— MUSCL, single grid
=== MUSCL, 4-level FMG

max Residual

Figure 5. Convergence history for natu-
0 100 200 300 400 soo  ral convection in a cavity at Ra = 10°
wu and Pr = 0.71.

This natural-convection flow has broad industrial applications involving ther-
mal insulation engineering, such as steam lines, gas lines in gas-cooled nuclear
reactors, cryogenics, and storage of thermal energy. Experimental studies of
eccentric geometry such as those of Koshmarov and Ivanov [22], Probert et al. [23],
Sande and Hamer [24], and Naylor et al. [25], are concerned primarily with the
variation of overall heat transfer with eccentricity and Rayleigh number. Detailed

(@) (b)
Figure 7. (a) Geometry. (b) Second grid level.
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interferometric results for both vertical and nonvertical eccentricities are presented
by Kuehn and Goldstein [26] in the boundary-layer regime (3 X 10° < Ra < 10°),
where the overall heat transfer coefficients are all within 10% of the concentric
geometry for E/L = 3,%. Numerical studies for the concentric and eccentric
annulus have been performed over a wide range of eccentricities and Rayleigh
numbers.

In this test case, the dimensionless temperatures at the inner and outer
surfaces are prescribed by 1 and 0, respectively. The heat transfer data is presented
in terms of the equivalent conductivities K, and K., at the inner and outer
surfaces, respectively, which represent the influence of the buoyancy-driven fluid
motion:

a6 r
o =|—|rIn| 2 31
;= | 5 |7 n( f:) (31)
=‘3—3 r, In r—“) (32)
o Jonl, ©

Here, n is the local coordinate normal to the surfaces. The integration for the local
heat fluxes on the cylinder surfaces leads to the average conductivity K., in the
annulus:

_ EK,, AS,

K LRe, A5, K (33)
U AS, - -

Keq, “tas,  Ke

where AS; and AS, denote the discretized arc length of the inner and outer
surfaces, respectively.

Calculations of the flow field are performed at Ra = 10%, Pr = (.71 and
E/L = 0.6 using the MUSCL scheme for various azimuthal angles m. Table 4
compares the experimental and numerical results of the averaged conductivity K,
which are in good agreement. The experimental average conductivity (1.339) for
the case m = 0° is greater than that for the case n = 45° (1.335). The numerical
results indicate that the value of K, increases with the angle %, due to the
development of larger and stronger convective cells.

Table 4. Comparisons between the experimental and numerical values of
average conductivities at Ra = 10° and Pr = 0.71

n E (exp.) K_cq (num.) Percentage difference
0° 1.339 1.340 0.075%
45° 1.335 1.354 1.423%
90° 1.358 1.376 1.325%
135° 1.421 1.443 1.548%

180° 1.448 1.478 2.072%
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Table 5. Number of WUs and CPU time for natural convection in an eccentric annulus at Ra = 107,
Pr = 0.71,and » = 135°

Single-grid Multigrid
Grid wu CPU time wu CPU time Speed-up KTCI
20 X 10 11 1.56 11 1.56 1.000 1.448
40 x 20 21 8.78 8 5.67 1.548 1.445
80 % 40 74 136.77 15 36.22 3.776 1.444
160 x 80 284 2,273.43 40 364.01 6.245 1.443

Table 5 shows the number of WUs, CPU time, speed-up factor, and average
conductivity K., for the case = 135°, which differs slightly on various grid levels.
The convergence histories are shown in terms of WU in Figure 8. The main
features of the flow are shown in Figure 9 by the distributions of streamlines and
isothermal lines for n = 135°. The distribution of the isothermal lines shows that
the heat conduction is predominant in the narrowest part of the gap. A high
temperature gradient due to the rising plume near the top of the outer surface
results in two maximum values for the local K, distribution at the outer surface.

max Residual
s

—— MUSCL, single grid
=== MUSCL. 4-level FMG

(@ ()

Figure 9. Streamlines and isotherms for natural convec-
tion in an eccentric annulus at Ra = 103, Pr = 0.71, and
n =135

Figure 8. Convergence history for natu-
ral convection in an eccentric annulus at
Ra = 10® and Pr = 0.71.
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Figure 10. Comparison of the local

. ) . ) equivalent conductivity for natural con-

0 60 120 130 240 300 360  vection in an eccentric annulus at Ra =
Angle 103, Pr = 0.71.

Figure 10 shows comparisons between the experimental and numerical values of
the local equivalent conductivities, where the angle is measured clockwise from the
upward vertical axis. The local equivalent and average conductivities are in
good agreement with the experimental results, as demonstrated in Figure 10 and
Table 4.

CONCLUSION

This work outlines a modified full multigrid method. In this algorithm, only
residuals are restricted from the fine grid by a way of summation, where the
starting solutions on the coarse grid are taken from the previous cycle. There is no
restriction procedure for the variables but only for the residuals. Nonmatching of
mass fluxes does not pose a problem. This simplifies the multigrid strategy and the
structure of the program. The treatment of the pressure correction equation on the
coarse grid is achieved in a way similar to the other variables. The modified full
multigrid version of the SIMPLE algorithm using collocated grids is shown to be
efficient for the calculation of fluid flow and heat transfer, with a speed-up of up
to 25.
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