
A MULTIGRID SOLVER FOR THE STEADY STATE NAVIER-STOKESEQUATIONS USING THE PRESSURE-POISSON FORMULATIONDAVID SIDILKOVER� AND URI M. ASCHERyAbstract. This paper presents an e�cient multigrid solver for steady-state Navier-Stokes equationsin 2D on non-staggered grids. The pressure Poisson equation formulation is used, together with a �nitevolume discretization. A discretization of the boundary conditions for pressure and velocities is presented.An e�cient multigrid algorithm for solving the resulting discrete equations is then developed. The issue ofthe numerical treatment of advection is also addressed: a family of stable and accurate di�erence schemesfor the advection-dominated ow are presented. This family includes also second order accurate schemes.1. Introduction. The steady-state incompressible Navier-Stokes equations in two di-mensions can be written in the following primitive form� ��u+ (u � r)u+rp = s(1.1) r � u = 0(1.2)where u(x) is the velocity �eld at x; p(x) is the kinematic pressure; � � 0 is the kinematicviscosity; and s(x) is an external force. Here we consider a boundary-value problem for(1.1)-(1.2) in a domain �
 � 
 [ � with the boundary conditions considered in [4]u(x) = w on �D(1.3) � p+ �@un=@n = Fn and �@u�=@n = F� on �N ;(1.4)where � = �D [ �N , n stands for normal component and outward normal direction, and �stands for tangential component and tangential direction. If (and only if) � = �D (�N = ;),then w must satisfy the following solvability conditionZ� n �w = 0:(1.5)There exist several approaches towards discretizing the incompressible Navier-Stokesequations. E�cient multigrid solvers based on the staggered grid discretization of thesystem (1.1),(1.2) were developed, e.g., in [2],[1],[14].However, there are reasons why a discretization on a non-staggered grid is desirable.These include simpler procedures, at least conceptually, for local grid re�nement, treatmentof complex geometries and design of good smoothers. Especially in 3-D, this may proveuseful in reducing programmer's headaches considerably. It is well known that an attemptto discretize the system (1.1),(1.2) on a non-staggered grid using central di�erences to ap-proximate the pressure derivatives and the continuity equation leads to a discrete systemsu�ering from spurious modes in the pressure solution. A possible remedy can be to ap-proximate pressure derivatives and the continuity equation by one-sided di�erences orientedin a certain way (see [3]). However, the accuracy in this case will degrade to �rst order.� Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USAy Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.The work of this author was partially supported under NSERC Canada Grant OGP0004306.1



We adopt here a Pressure Poisson Equation formulation (PPE) of the Navier-Stokesequations. The equation for pressure can be obtained by taking a divergence of (1.1) andapplying (1.2) (see, for instance, [5]), yielding�p = �r � (u � r)u+r � s in 
(1.6)The obtained system (1.1),(1.6) can be sensibly discretized on a nonstaggered grid. However,the di�erential order of the system (1.1),(1.6) is higher than that of the primitive system(1.1),(1.2). Additional boundary conditions should therefore be speci�ed in order to makethe problem well-posed, and it is well-known that a careful speci�cation and discretizationof these additional conditions can be crucial for the performance of the resulting algorithm,especially in the viscous case.The boundary conditions for pressure considered in [4] are the following@p@n = n � (��u + s� u � ru) on �D(1.7) p = � @un@n � Fn on �N :(1.8)It is shown in [5] that for the case �N = ; and �D = � the corresponding Neumann problemfor p is well-posed (with a unique solution up to an arbitrary additive constant) if w satis�esthe solvability constraint (1.5).Here we consider directly two cases:� The viscous case (� > 0), with � = �D (�N = ;). The well-posed problem underconsideration is then (1.1),(1.6),(1.3),(1.7).� The inviscid case (� = 0), with �D representing the inow boundary and �N { theoutow boundary.The high (though �nite) Reynolds number case can be considered under this cate-gory as well, using the parabolized Navier-Stokes equations (see [11]).We show how to treat such a coupled system e�ciently, using a multigrid methodapplied to a careful discretization scheme.The paper is organized as follows: In x2 we describe an e�cient multigrid solver for thePPE with Neumann boundary conditions. We present a scheme to discretize the pressureboundary conditions for both inviscid and viscous cases. This is followed in x3 by a de-scription of accurate and stable discretization schemes for the momentum equations for theentire range of Reynolds number. In x4 we describe the overall multigrid algorithm for solv-ing the obtained discrete system of equations and in x5 we present numerical experiments.All this is followed by a discussion of the current state of the algorithms and possible futuredevelopments.For the rest of this paper, we restrict the discussion to two space dimensions.2. Discretization of the PPE and the pressure boundary conditions. At �rst,consider a Poisson equation �p = f(x) in 
(2.1)subject to Neumann boundary conditions@p@n = g(x) on �(2.2) 2
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i,j-1i,jFig. 2.1. Interior control volume.The following relation between f and g should holdI� @p@nds � I� g ds = Z Z
 f(x; y)dxdy(2.3)in order to allow for solution existence. We shall refer to (2.3) as the compatibility condition.Assume 
 to be a rectangular domain so that @p@n is either px or py on the boundary.Recall the discretization of the Poisson equation using a �nite volume approach (see,e.g. [8]):At an interior grid point (i; j) consider a volume as shown in Fig.2.1. Integrating�p = r(rp) and using the divergence theorem givesh[(px)i+ 12 ;j � (px)i� 12 ;j ] + h[(py)i;j+ 12 � (py)i;j� 12 ] = h2fi;jand further using centered di�erences gives the usual formula�4pi;j + pi+1;j + pi�1;j + pi;j+1 + pi;j�1 = h2fi;jAt a boundary point, say (i; 0), consider a volume as shown in Fig.2.2. (Thus, for i nota boundary the volume is half the one for the interior.) Integration of �p now gives using(2.1) h[(px)i+ 12 ;0 � (px)i� 12 ;0] + 2h[(py)i; 12 � (py)i;0] = h2fi;0or, using (2.2) for (py)i;0,�4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 = h2fi;0 � 2hgi;0:Considering a corner point we obtain2h[(px) 12 ;0 � (px)0;0] + 2h[(py)0; 12 � (py)0;0] = h2f0;0or �4p0;0 + 2p1;0 + 2p0;1 = h2f0;0 + 2h(px)0;0 + 2h(py)0;0;where (px)0;0 and (py)0;0 are again given by (2.2).3



hhh hhh i+1,1i,1i-1,1i-1,0 i+1,0i,0 �Fig. 2.2. Boundary control volume.Remark 1 Note that even though the compatibility condition (2.3) holds on the con-tinuous level, a small-magnitude incompatibility may arise on the discrete level. Therefore,when solving the discrete equations by an iterative method like Gauss-Seidel one may ob-serve in general that the residuals do not decrease below a certain level. However, sincethe discrete incompatibility is due to the discretization error, the level at which the resid-uals stop decreasing is at that of the desired accuracy. Alternatively, an adjustment to theinhomogeneities can be made to ensure discrete compatibility, which allows convergenceof Gauss-Seidel to vanishing residuals, but which does not increase the accuracy of theobtained solution. 2A standard multigrid algorithm using, say, red-black Gauss-Seidel relaxation and theusual bilinear interpolation and its adjoint for prolongation and restriction, respectively,can now be applied. The obtained e�ciency is comparable to the excellent e�ciency of thesame method for Poisson's equation with Dirichlet boundary conditions.Turning to the equation for pressure (1.6), we write it in the following form�p+ 2(vxuy � uxvy) = sux + svy(2.4)where (su; sv) = s. This can be discretized using the �nite volume approach as follows� 4pi;j + pi+1;j + pi�1;j + pi;j+1 + pi;j�1+ 12((vi+1;j � vi�1;j)(ui;j+1 � ui;j�1)� (ui+1;j � ui�1;j)(vi;j+1 � vi;j�1))= h2((sux)i;j + (svy)i;j)(2.5)where the derivatives sux and svy can be either computed analytically or approximated by�nite di�erences.At a boundary point which is not a corner point, say (i; 0), integration of �p now givesh[(px)i+ 12 ;0 � (px)i� 12 ;0] + 2h[(py)i; 12 � (py)i;0] = 2h2(uxvy � vxuy)i;0 + h2((sux)i;0 + (svy)i;0)or �4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 =[(ui;1 � ui;0)(vi+1;0 � vi�1;0)� (ui+1;0 � ui�1;0)(vi;1 � vi;0)]+2 � h(py)i;0 + h2((sux)i;0 + (svy)i;0)(2.6)and a similar derivation is carried out for a corner point. The complication, compared tothe simple problem with (2.2), is in deriving appropriate expressions for (py)i;0. To simplifynotation, we assume from now on that s � 0.4



2.1. Pressure boundary conditions: inviscid case. For py we use the momentumand the continuity equations as in (1.7),py = �uvx � vvy = �uvx + vux(2.7)Discretizing this at the point (i; 0) gives(py)i;0 = �ui;0 vi+1;0 � vi�1;02h + vi;0ui+1;0 � ui�1;02h(2.8)We see that the pressure boundary condition does not depend on the internal velocity values.Therefore, this case can be reduced to the previously described case of Poisson equationwith Neumann boundary conditions without di�culty.2.2. Pressure boundary conditions: viscous case. Assume �D = � and considerthe Neumann problem for the PPE (1.6),(1.7). It is easy to see that the compatibilitycondition (2.3) is satis�ed in this case provided the continuity equation (1.2) holds.At the bottom boundary of our rectangular domain, (1.7) readspy = ��v � uvx � vvy = ��v � uvx + vux(2.9)Denoting the quantity on the right hand side of (2.8) by (�py)i;0, we now have(py)i;0 = � ((vx)i+ 12 ;0 � (vx)i� 12 ;0) + 2((vy)i; 12 � (vy)i;0)h + (�py)i;0Using the continuity equation we get(py)i;0 = � ((vx)i+ 12 ;0 � (vx)i� 12 ;0) + 2((vy)i; 12 + (ux)i;0)h + (�py)i;0Discretizing this and substituting into (2.6) gives�4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 =[(ui;1 � ui;0)(vi+1;0 � vi�1;0)� (ui+1;0 � ui�1;0)(vi;1 � vi;0)]+2�h [(vi+1;0 � 2vi;0 + vi�1;0) + 2(vi;1 � vi;0) + (ui+1;0 � ui�1;0)]+vi;0(ui+1;0 � ui�1;0)� ui;0(vi+1;0 � vi�1;0)(2.10)Remark 2 Note that while (2.3) holds, discrete compatibility in general holds only upto discretization error level, and Remark 1 applies. 23. Discretization of the momentum equations. We present in this section a dis-cretization scheme for the homogeneous u-momentum equation only, namely,� �r2u+ uux + vuy + px = 0:(3.1)The v-momentum equation can be treated in a similar way, and the treatment of force termsis obvious. 5



3.1. A hybrid scheme for the general case. Denote the discrete operator repre-senting the u-momentum equation byLuh = ui;j (ui+1;j�ui�1;j )+vi;j(ui;j+1�ui;j�1)2h+ pi+1;j�pi�1;j2h� (Fi+ 12 ;j�Fi� 12 ;j)+(Gi;j+ 12�Gi;j� 12 )h :(3.2)Here F and G are the viscous uxesFi� 12 ;j = F pi� 12 ;j + �i� 12 ;j � F ai� 12 ;jGi;j� 12 = Gpi;j� 12 + �i;j� 12 �Gai;j� 12(3.3)where F p; Gp denote the uxes due to the physical viscosityF pi� 12 ;j = � ui;j�ui�1;jhGpi;j� 12 = � ui;j�ui;j�1h ;(3.4) �i� 12 ;j = maxf0; jui� 12 ;j j � 2�=hjui� 12 ;j j g; �i;j� 12 = maxf0; jvi;j� 12 j � 2�=hjvi;j� 12 j g(3.5) ui� 12 ;j = ui;j + ui�1;j2 ; vi� 12 ;j = vi;j + vi�1;j2 ;(3.6) ui;j� 12 = ui;j + ui;j�12 ; vi;j� 12 = vi;j + vi;j�12 ;(3.7)and F a; Ga denote the arti�cial viscosity uxes. It can be easily shown that (3.2) approx-imates (3.1) with second order accuracy in the centered case when �i� 12 ;j ; �i;j� 12 = 0. Thecase of advection-dominated ow (when �i� 12 ;j > 0 or �i;j� 12 > 0) is more di�cult. Thearti�cial viscosity uxes should be constructed in such a way that the resulting dicretizationwill be stable and accurate. The rest of this section is devoted to this objective.3.2. Advection dominated ow. We now develop several possible ways to discretizethe advection part of the u-momentum equation, considering the pressure derivative as aninhomogeneity.3.2.1. Upwind scheme. The simplest way to obtain a stable scheme is to de�ne thearti�cial viscosity uxes F ai� 12 ;j and Gai;j� 12 in the following wayFui� 12 ;j = 12 jui� 12 ;j j(ui;j � ui�1;j)Gui;j� 12 = 12 jvi;j� 12 j(ui;j � ui;j�1):(3.8)This choice obviously leads to a �rst order upwind scheme. The advantage of this well-known scheme is its stability, due to the arti�cial di�usion it introduces, but its accuracy islow. In addition to its general low order it may have signi�cant cross-stream error. Belowwe therefore proceed to update this scheme further by adding terms to it in order to improvethe accuracy without losing the stability. 6



3.2.2. Upwind narrow schemes I. A scheme with smaller cross-stream di�usion(though still �rst order accurate) is given by the following choice of the arti�cial viscosityuxes FNi� 12 ;j = F ui� 12 ;j + 12sui� 12 ;j�i� 12 ;j jvi� 12 ;j j(�yu)i� 12 ;jGNi;j� 12 = Gui;j� 12 + 12svi;j� 12�i;j� 12 jui� 12 ;j j(�xv)i;j� 12 ;(3.9)where �i� 12 ;j = min(1; jui� 12 ;j jjvi� 12 ;j j ) �i;j� 12 = min(1; jvi;j� 12 jjui;j� 12 j);(3.10) sui� 12 ;j = sign(ui� 12 ;j) svi� 12 ;j = sign(vi� 12 ;j)(3.11) sui;j� 12 = sign(ui;j� 12 ) svi;j� 12 = sign(vi;j� 12 )(3.12) (�yu)i� 12 ;j = 8<: ui�1;j � ui�1;j�(svi� 12 ;j); if ui� 12 ;j � 0ui;j � ui;j�(svi� 12 ;j); if ui� 12 ;j < 0(3.13)and (�xv)i;j� 12 = 8<: vi;j�1 � vi�(sui;j� 12 );j�1; if vi;j� 12 � 0vi;j � vi�(sui;j� 12 );j ; if vi;j� 12 < 0(3.14)This scheme is very similar to one presented in [9]. It was also presented in [13], where it wasnamed the N scheme (because of the narrow stencil). A detailed analysis of its propertiesis given in [10].3.2.3. Upwind narrow schemes II. The compact schemes developed for a scalaradvection equation can be viewed as the regular upwind scheme with some additional �rstorder small terms added in such a way that when grouped together with the �rst ordererror terms of the upwind scheme they will cancel each other (at least in part) due to theoriginal advection equation itself. However, here we deal with the Navier-Stokes systemof di�erential equations. We can use any of these equations to achieve the desired errorcancellation when approximating, say, the �rst momentum equation.This observation leads to another upwind narrow schemeFNCi� 12 ;j = F ui� 12 ;j + 12 jui� 12 ;j j(�yv)i� 12 ;jGNCi;j� 12 = GNi;j� 12(3.15)Here the continuity equation (1.2) is used to achieve error cancellation for F -uxes. ThisNC-scheme is simpler than the N-scheme above.7



3.2.4. Zero cross-di�usion schemes. An even better scheme is given by the follow-ing choice of the arti�cial viscosity uxesFZi� 12 ;j = FNi� 12 ;j � 12(1� �i� 12 ;j)jvi� 12 ;j j(ui�1;j�svi� 12 ;j � ui;j�svi� 12 ;j )GZi;j� 12 = GNi;j� 12 � 12(1� �i;j� 12 )jui;j� 12 j(ui�sui;j� 12 ;j � ui�sui;j� 12 ;j�1):(3.16)This scheme, which was �rst proposed in [7], is called a zero cross-di�usion scheme becauseits cross-stream truncation error component is second order small. It can also be obtainedas a particular case of the scheme presented in [12],[13]. A detailed analysis of the familyof zero cross-di�usion schemes is given in [6]. These schemes give a second order accuratesolution for a homogeneous steady-state advection equation.Again we now recall that the solution sought satis�es not just an advection equationbut the entire Navier-Stokes system. An alternative zero cross-di�usion scheme (using thecorrection term based on the continuity equation for F uxes) can be given by the followingarti�cial viscosity uxes FZCi� 12 ;j = FNCi� 12 ;jGZCi;j� 12 = GZi;j� 12(3.17)3.2.5. Second order scheme. Each momentum equation can be viewed as a steadyadvection equation with inhomogeneity (pressure derivative). Therefore, in order to achievea second order accuracy in this case, the scheme (3.16) has to be modi�ed. This can bedone by the following choice of the arti�cial viscosity uxesFTi� 12 ;j = FZi� 12 ;j � 12sui� 12 ;j�i� 12 ;j(pi;j � pi�1;j)GTi;j� 12 = GZi;j� 12 � 12svi;j� 12�i;j� 12 (�xp)i;j� 12 ;(3.18)where (�xp)i;j� 12 = 8<: pi;j � pi�(sui;j� 12 );j; if vi;j� 12 < 0pi;j�1 � pi�(sui;j� 12 );j�1; if vi;j� 12 � 0(3.19)The second order accuracy of this scheme follows from the fact that the �rst order truncationerror terms vanish when substituting (3.1).A simpler second order accurate scheme is given by the following ari�cial viscosity uxesFTCi� 12 ;j = FNCi� 12 ;jGTCi;j� 12 = GTi;j� 12(3.20)The second order accuracy of this scheme follows from the fact that the �rst order truncationerror terms vanish when substituting (3.1) and (1.2).Among the second order schemes the TC-scheme is preferable over the T-scheme be-cause it is signi�cantly simpler.Note that all of the schemes presented in this section are nonconservative. This isbecause the scheme (3.2) is nonconservative, approximating the di�erential equation (3.1),which is written in nonconservative (quasilinear) form (as is (1.1)). It is possible to gen-eralize the construction presented here so that the resulting scheme will be conservative.However, this is not our concern here (see x6).8



4. Multigrid algorithm for the steady state, incompressible Navier-Stokesequations. The multigrid algorithm implemented in order to e�ciently solve the discretesystem of equations developed in the previous two sections is a relatively standard one (see,e.g., [1]). It employs a Gauss-Seidel relaxation for a smoother, with red-black ordering. (Anexception is for high Reynolds number in case that the ow direction is known. In sucha case an ordering that goes with the ow is preferable.) A bilinear prolongation and itsadjoint full-weight restriction are used for grid transfers. This is embedded in a FAS-FMGsetting.At interior grid points the three unknowns corresponding to each grid point are relaxedsimultaneously. At a point next to �D the three unknowns together with the pressureunknown at the closest boundary point are relaxed simultaneously (i.e. a 4 � 4 system isinverted). At a point next to a corner of �D a 6 � 6 system of equations is solved for thethree unknowns at the interior grid point plus three pressure values at the corner and itsneighboring corner grid points.5. Numerical experiments. All the numerical experiments presented here were per-formed on the square domain 
 = f(x; y) : 0 � x � 2; 0 � y � 2g. We use 5 levels (grids),where the meshspacing of grid k is hk = 21�k, k = 1; : : : ; 5.5.1. Viscous case. Here we consider the case where the Dirichlet boundary conditionsfor velocities are given on the entire boundary � (i.e. �D = �).Example 1 First we consider the following problems = 0 and � = 1;(5.1)with the velocity boundary conditions u = x+ 2v = 2� y(5.2)The solution of this problem is given by (5.2) together withp = �x(x2 + 2)� y(y2 � 2):(5.3)It is easy to see that this solution satis�es the discrete approximation of the momen-tum equations (see x3) and the pressure Poisson equation with Neumann-type boundaryconditions (see x2) exactly. Therefore the discrete compatibility condition is also satis�ed.The purpose of this example was to test the e�ciency of our multigrid algorithm forviscous problems, and indeed a reduction of residuals by a factor of 8� 10 per V (2; 1) cyclewas observed in this case. 2Example 2Still assuming (5.1), let the velocity boundary conditions be given byu = sin x � sin yv = cos x � cos y(5.4)It can be seen that (5.4) together withp = �12(cos2 y + sin2x)(5.5) 9



provide the solution to the problem.The main purpose of this example is to verify the accuracy of the algorithm. Here, afteran initial rapid reduction of residuals comparable to the previous example, this reductionslows down to a halt at the discretization error level (recall Remarks 1 and 2). Table 5.1presents the solution errors on each grid obtained after the residuals no longer decreasemeaningfully. We can conclude that the second order accuracy is achieved even though theLevel L1 error normu v p2 :291 � 10�2 :814 � 10�3 :130 � 1013 :211 � 10�3 :110 � 10�3 :2354 :290 � 10�4 :281 � 10�4 :450 � 10�15 :650 � 10�5 :709 � 10�5 :944 � 10�2Table 5.1Solution errorsresiduals do not vanish. This is similar to what is observed when solving Poisson's equationwith inhomogeneous Neumann boundary conditions: since the compatibility condition isobeyed on the continuous level, the only source of the discrete incompatibility is the dis-cretization error. Note that this phenomenon of non-vanishing residuals occurs only for theNeumann problem, i.e. in our context only when � = �D.Note that in Table 5.1 not only the velocity errors but also the pressure errors appearto be second order. We have also observed second order accuracy in the discrete divergence,i.e. in the obtained approximation for (1.2). 2Our colleague Brian Wetton has performed additional calculations with our scheme for achannel ow (periodic boundary conditions in x, Dirichlet conditions in y), obtaining similarconclusions about the second order of the method in velocity, divergence and pressure.5.2. Large Reynolds numbers . Here we consider the inviscid limit of the momen-tum equations (1.1) supplemented by the pressure equation (1.6).Example 3 Consider the following problems = 0 and � ! 0;(5.6)with the velocity boundary conditions on the inow part of the boundary�D = f0 � x � 2; y = 0g [ fx = 0; 0 � y � 2gu = ey v = ex(5.7)and the Dirichlet boundary conditions for pressure given on the outow part of the domain�N = fx = 2; 0 � y � 2g [ f0 � x � 2; y = 2gp = �ex+y(5.8)It is easy to see then that the solution to this problem is also given by (5.7), (5.8).The L1 error in the u-velocity component on di�erent grid levels obtained using di�erentschemes to solve this problem is presented in Table 5.2. The �rst column corresponds to the10



regular upwind scheme. The second and third columns correspond to the narrow NC andzero cross-di�usion scheme ZC, respectively. It seems from these results that neither theNC nor the ZC schemes have any advantages over the simple upwind scheme. However,we should remember that this is an \arti�cial" problem. The usual feature of the realistichigh Reynolds number ow is that the velocity �eld is smoother in the streamwize directionthan in the cross-stream direction. Use of the NC and ZC schemes can be advantageousin this case. The last column corresponds to the TC scheme, which clearly demonstratessecond order convergence for this problem.The multigrid e�ciency for the inviscid problem deteriorates compared to the lowReynolds number case. This is because only a fraction of the desirable correction in thecharacteristic components ( .5 for a �rst order scheme and .25 for a second order scheme)can be obtained from the coarse grid in this case (see [1],[14]). We do not address this issuehere.6. Discussion and future work. An e�cient and accurate multigrid solver for thesteady-state incompressible Navier-Stokes equations on non-staggered grids based on thepressure Poisson equation (PPE) formulation of the Navier-Stokes system was constructed.The entire range of Reynolds numbers can be handled in this way. This is possible due tothe following two developments:1. An appropriate discretization and an e�cient treatment of the pressure boundaryconditions have been developed.2. A family of discretization schemes for the advection-dominated ow has been con-structed.Preliminary numerical results reported here con�rm that the resulting solver is capable ofproducing second order accurate solutions for the entire range of Reynolds number. The e�-ciency of the developed solver for the viscous case is comparable to the typical multigrid e�-ciency for the Poisson equation. The e�ciency of the algorithm for the advection-dominatedow is worse, being the same as the multigrid e�ciency for the advection equation. An im-provement in this case can be achieved by incorporating in the algorithm the techniquesdeveloped in [14].Another issue left for future implementation is that of complex geometries. The dis-cretization procedure developed here is easy to generalize to a boundary segment which isnot aligned with the grid. We use the continuity equation to replace normal �rst derivativesat the boundary by tangential ones, which are then approximated using the given velocityboundary values. The second derivative normal to the boundary, which appears in the vis-cous case, is replaced by a di�erence quotient of �rst normal derivatives near the boundaryand at the boundary. Only the �rst derivative near the boundary is further discretizedin the normal direction. Local averages are now used to express everything in terms ofgridpoint values.While the methodology presented here has been applied for the steady state case, atime-dependent Navier-Stokes solver can be developed based on it (cf. [4]). An analysis ofthe method and its implementation in this context are planned for the near future.AcknowledgementsWe have bene�tted from a number of discussions with Dr. B. Wetton.REFERENCES[1] A. Brandt, Multigrid techniques: 1984 Guide with applications to uid Dynamics, The WeizmannInstitute of Science, Rehovot, Israel, 1984. 11



[2] A. Brandt and N. Dinar, Multigrid solution to elliptic ow problems, in Numerical Methods forPDE's, Academic Press, New York, 1979, pp. 53{147.[3] L. Fuchs and H.-S. Zhao, Solution of three-dimensional viscous incompressible ows by a multi-gridmethod, Internat. J. Numer. Methods Fluids, 4 (1984), pp. 539{555.[4] P. M. Gresho, Some current issues relevant to the incompressible Navier-Stokes equations, Comput.Methods Appl. Mech. Engrg., 87 (1987), pp. 201{252.[5] P. M. Gresho and R. L. Sani, On pressure boundary conditions for the incompressible Navier-Stokesequations, Internat. J. Numer. Methods Fluids, 7 (1987), pp. 1111{1145.[6] C. Hirsch, A general analysis of two-dimensional convection schemes, VKI Lecture Series 1991-02 onComputational Fluid Dynamics, Von Karman Institute, Brussels, Belgium, Feb. 1991.[7] B. Koren, Low-di�usion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler ows, Report NM-R 9021, CWI, Amsterdam, 1990.[8] S. F. McCormick, Multilevel Adaptive Methods for Partial Di�erential Equations, SIAM, 1989.[9] J. Rice and R. Schnipke, A monotone streamline upwind method for convection-dominated problems,Comput. Methods Appl. Mech. Engrg., 48 (1985), pp. 313{327.[10] P. L. Roe and D. Sidilkover, Optimum positive linear schemes for advection in two and threedimensions, SIAM J. Numer. Anal., 29 (1992), pp. 1542{1568.[11] M. Rosenfeld and M. Israeli, Numerical solution of incompressible ows by a marching multigridnonlinear methods, AIAA Journal, 25 (1987), pp. 641{647.[12] D. Sidilkover, Numerical solution to steady-state problems with discontinuities, PhD thesis, TheWeizmann institute of Science, Rehovot, Israel, 1989.[13] D. Sidilkover and A. Brandt, Multigrid solution to steady-state 2D conservation laws, SIAM J.Numer. Anal., 30 (1993), pp. 249{274.[14] I. Yavneh, Multigrid Techniques for Incompressible Flows, PhD thesis, Weizmann Institute of Science,Rehovot, Israel, 1991.

12



Level Di�erence schemeupwind NC ZC TC2 :517 :580 :570 :3103 :232 :250 :252 :910 � 10�14 :998 � 10�1 :105 :106 :233 � 10�15 :453 � 10�1 :465 � 10�1 :483 � 10�1 :583 � 10�2Table 5.2L1 error in u-velocity.
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