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Abstract

A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-
marching schemes this approach uses relaxation of the steady equations. Application of this method
results in a discretization that correctly distinguishes between the advection and elliptic parts of the
operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids
and structured quadrilateral grids have been written. Flows in two-dimensional channels and over
airfoils have been computed. Using Gauss—Seidel relaxation with the grid vertices ordered in the flow
direction, ideal multigrid convergence rates of nearly one order-of-magnitude residual reduction per
multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the
compressible Euler equations and the incompressible Navier—Stokes equations. © 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Over the past three decades, computational fluid dynamics has become a powerful and
widely used tool for aerodynamic analysis and design. This began primarily with the
introduction of methods for solving transonic potential flow, and has progressed to methods
for solving the Euler and Reynolds-averaged Navier—Stokes equations [1]. Today, viscous
solutions for real aircraft geometries are routinely possible. At the same time, the utility of the
numerical methods is restricted by their slow asymptotic convergence rates. There has always
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been, and continues to be, a critical need to improve the convergence rates of computational
fluid dynamics codes in order to increase throughput and their overall utility.

Multigrid [2] has long been recognized as the most promising class of methods for obtaining
fast convergence rates for iterative solutions of partial differential equations. For purely elliptic
problems, multigrid methods can be shown to be O(n): that is, the work and memory required
to obtain a solution is directly proportional to the number of unknowns # in the problem. This
has led to many efforts over the years to apply multigrid methods to the non-elliptic problems
of fluid dynamics in the hope that similar convergence rates can be achieved. A pioneering
effort was made by South and Brandt [3] for the transonic small perturbation equation. This
work demonstrated both the promise of multigrid for non-elliptic and non-linear problems, as
well as some of the difficulties that would have to be overcome to achieve ideal, or “textbook™
convergence rates. Since that time, multigrid has been widely applied to methods for the Euler
and Navier—Stokes equations.

The application of multigrid to the Euler and Reynolds-averaged Navier—Stokes equations
generally is based on a discretization of the unsteady equations using some temporal integrator
as the smoother, combined with a full-approximation scheme (FAS) multigrid iteration. These
schemes fall into two classes. One approach is to use upwind-differencing and implicit time
integration as the smoother [4-6]. The more common approach is one originally proposed by
Jameson [7]. Starting with the unsteady equations, a finite-volume spatial discretization with
explicit artificial viscosity is combined with a Runge—Kutta time integration as a smoother.
This approach has also been successfully applied to the Reynolds-averaged Navier—Stokes
equations [8]. However, these approaches have resulted in poor multigrid efficiency. When
applied to high Reynolds number flows over complex geometries, convergence rates are often
worse than 0.99. Recently, significant improvements have been demonstrated by Pierce et al. [9].
Nevertheless, there is clearly a need to develop substantially more efficient multigrid solvers.

According to Brandt [2], one of the major obstacles to achieving better multigrid
performance for advection dominated flows is that the coarse grid provides only a fraction of
the needed correction for smooth error components. This obstacle can be removed by
designing a solver that effectively distinguishes between the elliptic, parabolic and hyperbolic
(advection) factors of the system and treats each one appropriately. For instance, advection
can be treated by space marching, while elliptic factors can be treated by multigrid. The
efficiency of such an algorithm will be essentially identical to that of the solver for the elliptic
factor only, and thereby attain textbook multigrid efficiency. Brandt presents an approach
called ‘‘distributive relaxation” by which one can construct smoothers that effectively
distinguish between the different factors of the operator. Using this approach, Brandt and
Yavneh have demonstrated textbook multigrid for the incompressible Navier—Stokes
equations [10]. Their results are for a simple geometry and a cartesian grid, using a staggered-
grid discretization of the equations.

In a closely related approach, Ta’asan [11] presents a fast multigrid solver for the
compressible Euler equations. This method is based on a set of ‘“‘canonical variables” which
express the steady Euler equations in terms of an elliptic and hyperbolic partition [12]. This
form of the Euler equations is essentially Crocco’s relation. Ta’asan uses this form of the
equations to guide the discretization. A staggered grid is used, with different variables residing
at cell, vertex and edge centers. In Ref. [11] it is shown that ideal multigrid efficiency can be
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achieved for the compressible Euler equations for two-dimensional subsonic flow using body-
fitted grids. One possible limitation of the use of canonical variables is that the partition of the
inviscid equations is not directly applicable to the viscous equations.

In this paper, an alternative to distributive relaxation and to Ta’asan’s canonical variable
decomposition is presented. It is a generalization of the approach of Sidilkover and Ascher [13],
and has been applied to the incompressible Euler equations by the authors [14]. The theoretical
background to this method is presented in the paper by Sidilkover in this volume [15]. A
conventional vertex-based finite-volume or finite-difference discretization of the primitive
variables is used, avoiding the need for staggered grids. This simplifies the restriction and
prolongation operations, because the same operator can be used for all variables. A projection
operator is applied to the system of equations, resulting in a Poisson equation for the pressure.
By applying the projection operator to the discrete equations rather than to the differential
equations, the proper boundary condition on the pressure is satisfied directly. The Poisson
equation for the pressure may be treated by Gauss—Seidel relaxation, while the advection terms
of the momentum equation are treated by space-marching. Because the elliptic and advection
parts of the system are decoupled, ideal multigrid efficiency can be achieved. Compared with
distributive relaxation and the canonical variables approaches, this method is extremely simple.

2. Mathematical formulation

The incompressible Euler equations in primitive variables are

utty +vu, +p, =0
uvy + v, +p, =0
uy+v, =0

when u and v are the components of the velocity in the x and y directions, respectively, and p
is the pressure. The density is taken to be one. The advection operator is defined by

0 = udy + vo,, (1)
where 0y, 9, are the partial differentiation operators. The Euler equations may be written as

0 0 o, u
Lq={0 O & |[v]|=0 )
dy 9, 0 p

Introducing the adjoint to Q, defined by

0*(f) = —o(uf) — 3,(vf) A3)
a projection operator P is defined:
I 0 0
P=|0 I 0 4)

o 9, QOF
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Applying the projection operator to the Euler equations yields

) 0 0 a)\ [u 0
iq=PLg=[0 0 3 ||v]+2 0 (5)
00 4)\p (8:)(By1) — (D510)(,v)

where A is the Laplacian. The matrix operator on the right-hand side consists of the principal
part of L (i.e. the highest-order terms of the operator), and the remaining terms are the
subprincipal terms. These terms arise because the coefficients # and v in the operators Q and
Q* are not constant. It is important to note that the subprincipal terms can be ignored for the
purpose of constructing a relaxation scheme.

The system of Eq. (5) is a higher-order system than the original Euler Eq. (2). The
continuity equation, which is a first-order partial differential equation, has been replaced by a
second-order differential equation for the pressure. One might expect that Eq. (5) would
require a boundary condition on the pressure in addition to the physical boundary condition of
flow tangency at the wall, which is required by Eq. (2). However, at the boundary of the
domain, the third equation of Eq. (5) takes the form

(—udyv + voyu + dyp)ity + (udyv — vdsu + dyp)i, = 0 (6)

where 7., /i, are the components of the unit normal at the wall. This is simply the equation for
the momentum normal to the wall. Because the pressure equation at the wall takes the form of
Eq. (6), which in this case may be thought of as a compatibility condition of the governing
equations, no auxiliary boundary condition on the pressure is needed.

The operator on the left-hand side of Eq. (5) is upper triangular. Because the pressure
satisfies a Poisson equation, a conventional relaxation method, such as Gauss—Seidel, can be
used to solve it. Upwind differencing of the advection operator in the momentum equations
and a downstream ordering of the grid vertices allows marching of the momentum equations.
A collective Gauss—Seidel approach is used here, where the vertices are ordered in the flow
direction. This is described more fully in the Section 4.

3. Discretization of the equations

The first step in approximating L is to discretize the Euler Eq. (2). Unlike the methods of
Refs. [10,11], which use staggered grids, the current approach is vertex-based, where all the
unknowns are stored at the vertices of the grid. A great deal of flexibility in the form of the
discrete approximation to the momentum equations is possible with the current method.
However there are some subtle, but important, differences in the way the Poisson equation for
the pressure is discretized on triangular or quadrilateral grids. To understand these differences,
both schemes are described in turn below.

The unstructured triangular grid scheme is based on a cell-vertex discretization of the
equations. Consider a typical grid cell Q as shown in Fig. 1. Cell-averaged gradients of the
unknowns are found by using a trapezoidal rule integration around the boundary of Q. For
example, the discrete approximation to the gradient of u on Q is
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where Agq is the area of the triangle. The superscript # is used to denote the difference
approximation to the corresponding differential operator. Gradients of v and p are obtained
likewise. These gradients are used to approximate Eq. (2) on the triangle. An upwind
approximation to Q at the vertices of the grid is obtained by distributing the cell-averaged
momentum equation residuals to the vertices of each triangle appropriately. The current
scheme is not tied to any particular form of the upwind discretization. One choice, which was
used to obtain the unstructured grid results presented in Section 5, is the advection scheme of
Giles et al. [16]. In this scheme, the residuals are distributed to the vertices of Q using the
weights

wo= (14 012
3 ¢

where ¢, is the length of the projection of Q onto the crossflow direction, and An; is the
component of the length in the crossflow direction of the edge opposite the ith vertex. An
alternative upwind discretization currently being developed by the authors is based on the
multidimensional upwind formulation of Sidilkover [17].

Once the cell-averaged residuals of the continuity and momentum equations have been
computed, the projection operator P is applied to these discrete equations to obtain the
residual for the pressure Poisson equation of Eq. (5). Letting R, be the pressure equation
residual at vertex 0, the application of P can be written in integral form,
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Ry = § (@il - ol 0s)) o

Ao
- (@3-

where A, is the area of the control volume centered on vertex 0. This control volume is the
area bounded by the dual grid cell, shown as the dashed lines in Fig. 1. The superscript # is
used to denote the discrete approximations to the corresponding differential operators on the
primary cell triangles, as before. The boxed terms in Eq. (8) are the residuals of the x and y
momentum equations and the continuity equation averaged over the primary grid cells, as
given by Eq. (7). The contributions of these residuals in R, are found by taking the boxed
terms in Eq. (8) to be constant over the primary grid cells when evaluating Eq. (8) over the
segment of the boundary of 4, lying in each cell.

For a structured quadrilateral grid, the discretization of the momentum equations is
straightforward. At each vertex upwind differencing is used for the advection operator Q and
central differencing for the pressure. As with triangular grids, the exact choice of the upwind
discretization is not critical. In the results shown below, conventional second-order one-sided
difference formulas were used for the advection terms. The discretization of the Poisson
equation for the pressure is done by first discretizing the boxed terms of Eq. (8) on the edges
of the dual grid cell, shown as the dashed lines on the left of Fig. 1. The integral (8) is then
evaluated over the boundary of the dual grid cell. Unlike a triangular grid, where trapezoidal
rule integration over the primary grid cells is used to get cell-averaged gradients, the gradients
on a quadrilateral grid must be evaluated on the dual grid edge centers. This distinction is
indicated in Fig. 1 by the solid squares, which show the evaluation points of the gradients for
the two cases. If a conventional cell-vertex type of discretization is used to get the gradients at
the primary grid cell centers, as for the triangular grid, the resulting stencil for the pressure
equation is not A-elliptic, and admits a checkerboard error mode.

To evaluate the gradients of pressure p at the dual grid face (i — 1/2, j) in Fig. 1, the partial
derivatives are written as

/N

M+ Bf;v)) dx (8)

Px = Py + Pyl (%a)

Py = Py + oy, (9b)

where ¢ and #n are the generalized coordinates corresponding to the i and j directions on the
grid, respectively. The derivatives dzp and 9,p are approximated on the face center by

3151",;1/%: Pij — Di-1,» (10a)

|
12 = g it F Pim1jit = Pij-1 = Pim1j-1) (10b)

dp

with similar expressions for the faces (i + 1/2, j), (i, j + 1/2), and (i, j — 1/2). The gradients of
u and v are found the same way. The grid metric terms &, ¢, n, and 7, are also evaluated on



T.W. Roberts et al. | Computers & Fluids 28 (1999) 427442 433

the dual grid face centers. These expressions are used in the boxed terms in Eq. (8). The
integral (8) is then evaluated to get the pressure equation residual at the vertex (i, j), taking the
boxed terms to be constant over each face of the dual grid cell. For a uniform cartesian grid,
the principal part of the resulting stencil is a conventional five-point approximation to the
Laplacian operating on the pressure.

Applying the projection operator P at the discrete level in this way, rather than starting with
the differential Eq. (5) and discretizing them directly, has two important advantages. First, the
discrete approximation of Eq. (8) at boundary vertices reduces to Eq. (6), automatically
providing the correct boundary condition for the pressure. Second, if the momentum and
continuity equations are discretized in conservation form, it is possible to obtain a fully
conservative scheme. This will be particularly important for extensions of the present scheme
to compressible flows with shocks.

4. Solution procedure

The multigrid algorithm uses a sequence of grids Gg, Gg _1,..., Gy, where Gk is the finest
grid and G, the coarsest. Call the discrete approximation to the operator L on the kth grid L,
and let q4 be the solution on that grid. This system has the form L.q;=f,, where the entries of
L, are 3 x 3 block matrices which operate on the unknowns (u, v, p)" at each grid vertex. A
general iteration scheme is constructed by writing the operator L, as L,=M,—N,, where the
splitting is chosen such that M, is easily inverted. Lexicographic Gauss—Seidel is obtained by
taking My to be the block lower-triangular matrix resulting from ignoring the terms above the
diagonal blocks of L. A further simplification is obtained if the diagonal blocks of M, contain
only those entries corresponding to the principal part of the operator. Because the operator in
Eq. (5) is upper triangular the diagonal blocks of M, will then be 3 x 3 upper triangular
matrices.

Letting q"; be the nth iterate of the solution on the kth grid, the relaxation iteration is

Miq; ™" = fi + Nig

The operator L, is nonlinear, so My and N, are functions of q; and qf "' Letting
oq=qi * 1_ng the iteration may be rewritten as
Mkéqz = fk — iqu (1 1)

Because M is block lower-triangular, 6q} is found by forward substitution. At each vertex, a
3 x 3 upper triangular matrix must be inverted.

If the discrete approximation to the advection operator Q is fully-upwind and the grid points
are ordered in the flow direction, then the 3 x 3 blocks of N, will have zeroes in the first two
rows. In this case, lexicographic Gauss—Seidel relaxation is equivalent to space-marching of the
advection terms. The advected error is effectively eliminated in one relaxation sweep and the
convergence rate of the system becomes that of the Poisson equation for the pressure. It is
possible to get ideal multigrid convergence rates because each component of the error is treated
appropriately.



434 T.W. Roberts et al. | Computers & Fluids 28 (1999) 427442

A straightforward full approximation scheme (FAS) multigrid iteration is applied to the
system of equations. Let L, _, be the coarse grid operator, If_| be the fine-to-coarse grid
restriction operator, and I§ ~' be the coarse-to-fine grid prolongation operator. If §j is the
current solution on grid k, the residual on this grid is r=fr—L.§,. This leads to the coarse-grid
equation

Li 1@y =fi =I5 e+ Ly (1,’;’7@,() (12)
After solving the coarse-grid equation for q, _ {, the fine-grid solution is corrected by
Qg + 1! (‘ik—l - Ilf-ﬂik) (13)

Eq. (12) is solved by applying the same relaxation procedure that is used to solve the fine-grid
equation. Multigrid is applied recursively to the coarse-grid equation. On the coarsest grid,
many relaxation sweeps are performed to insure that the equation is solved completely. A
conventional V-cycle or W-cycle is used.

5. Results

Both unstructured grid and structured grid flow solvers based on the theory in Sections 2—4
have been written. Many solutions obtained with these codes were presented in Ref. [14]. Only
results chosen to illustrate the efficiency of the scheme are presented here.

Solutions for incompressible, inviscid flow in a channel have been obtained with both
solvers. The channel geometry and boundary conditions are shown in Fig. 2. The shape of the
lower wall between 0 <x<1 is p(x) =t sin’zx. For the computations shown here, the
thickness ratio 7 is 0.05. The flow angle and total pressure are specified at the inlet and the
pressure is specified at the outlet. The flow tangency condition u-#7=0 is enforced at the upper
and lower walls of the channel. Solutions were obtained on quasi-uniform quadrilateral grids.
A simple shearing transformation was used in the center part of the channel to obtain
boundary conforming grids. For the unstructured grid solver, the grids were triangulated by
dividing each quadrilateral cell along a diagonal. A series of nested coarse grids was obtained
by coarsening the fine grids by a factor of two in each coordinate direction. In all cases shown
below, the coarsest grid was 7 x 3 vertices. Lexicographic Gauss—Seidel relaxation was used,
with the grid vertices ordered from the lower-left to the upper-right of the channel. This
resulted in downstream relaxation of the momentum equations. A V(2, 1) multigrid cycle was
used; that is, two relaxation sweeps were performed on each grid before restricting to the
coarse grid, and one relaxation sweep was performed after the coarse-grid correction was
added to the fine-grid solution.

The computed pressure on a grid of 97 x 33 vertices is shown in Fig. 3 for the unstructured
grid flow solver and in Fig. 4 for the structured grid solver. Comparisons of convergence rates
for different grid densities are shown in Figs. 5 and 6 for the unstructured and structured grid
flow solvers, respectively. The L; norm of the pressure equation residual is shown; the
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Fig. 2. Channel geometry.

Fig. 3. Pressure, contour increment Ap = 0.01, for an unstructured grid of 97 x 33 vertices.

Fig. 4. Pressure, contour increment Ap = 0.01, for an structured grid of 97 x 33 vertices.

435
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Fig. 5. Comparison of convergence rates on unstructured grids.

momentum equation residuals show the same behavior. The finest grid used for each flow
solver contained 385 x 129 vertices, with a total of seven grid levels.

The convergence rate of the unstructured grid solver on the finest grid is approximately
0.190 residual reduction per multigrid cycle. The structured grid results are slightly better at
0.167 per cycle. These rates are comparable to the ideal rate of 0.125 per cycle for the Poisson
equation. The better performance of the structured grid solver is most likely because of better
restriction and prolongation operators; the unstructured flow solver performs bilinear
interpolation using only the locations of a fine-grid vertex and the three vertices of the coarse-
grid cell containing that vertex. What is most important is that the figures show nearly ideal
multigrid convergence rates, independent of the grid spacing. This shows that convergence is
achieved in order n operations.

Solutions for flow over a symmetric Karman—Trefftz airfoil have been obtained with the
structured grid solver. A conformal mapping of a circular cylinder was used to generate the
airfoil. The center of the cylinder was placed at the point (—0.1, 0) in the circle plane, yielding

0 T T T T T T T
L _ 385x129 grid |
......... 193x65 grid
-2 N - 97x33 grid
_____ 49x17 grid
log(Z,) —4 |
_6 -
-8 L ] L 1 L 1 L ] L
0 2 4 6 8 10

V(2,1) cycles

Fig. 6. Comparison of convergence rates on structured grids.
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Fig. 7. Surface pressure coefficient, nonlifting Karman—Trefftz airfoil, 193 x 97 grid.

an airfoil of approximately 15% thickness. The trailing edge angle is 10°. A fine O-grid of
385 x 193 vertices was generated from the conformal mapping, and the nested coarse grids
were generated by recursively eliminating every other vertex in each coordinate direction. The
grid spacing was chosen to obtain unit aspect ratio grid cells. The outer boundary is
approximately 13 chord lengths from the airfoil. Far-field boundary conditions are given by
the analytic solution. At inflow points along the outer boundary the total pressure and flow
inclination angle are specified. For outflow points the pressure is specified. On the airfoil
surface the tangency condition is enforced.

To obtain ideal multigrid convergence rates, it is necessary to sort the vertices in a
downstream order so that the advection terms in the momentum equations are marched. This
is easily done here by relaxing along the radial grid lines from the outer boundary to the airfoil
surface over the forward half of the domain, and from the airfoil surface to the outer
boundary over the latter half of the domain. For each case run, the coarsest grid consisted of
13 x 7 vertices.

0 —
i __ 385193 grid |
......... 193x97 grid
-2 r — 97x49 grid
log(Z) —4
_6 -
-8 L1 L Ly
0 2 4 6 8 10

w(2,1) cycles

Fig. 8. Comparison of convergence rates for nonlifting Karman—Trefftz airfoil.
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Fig. 9. Surface pressure coefficient, lifting Karman—Trefftz airfoil, 385 x 193 grid, « = 10°.

Comparisons between computed and analytic surface pressure coefficients for non-lifting flow
around the Karman-Trefftz airfoil are shown in Fig. 7. A W(2, 1) multigrid cycle was used for
these comparisons. The computed solution agrees very well with the analytic solution, except
for the recompression at the trailing edge. Note that there is no clustering of the grid in this
region, which exacerbates the problem.

A comparison of the convergence rates of the pressure equation residual for three grid
densities is shown in Fig. 8. A slight deterioration of the convergence rate with increasing grid
refinement is observed: on the 385 x 193 grid, the rate is 0.153 per cycle. Nevertheless, as with
the channel flow results, the convergence rates are very nearly grid independent, and are very
close to the ideal rate of 0.125 per cycle.

A lifting solution for the Karman—Trefftz airfoil on the 385 x 193 grid is shown in Fig. 9.
The airfoil is at an angle-of-attack of 10°. The exact and numerical solutions essentially lie on
top of one another. The convergence rate for the two momentum and the pressure equations
are shown in Fig. 10. The convergence rate for pressure is 0.186 per cycle, which is slightly

0 T T T T T T T T
| ____ pressure i
......... r—momentum
o L S y—momentum _|
log(Z,) —4 +
—6 |
-8 L ] L 1 L 1 A l .
0 2 4 6 8 10

w(2,1) cycles

Fig. 10. Convergence rates for lifting Karman—Trefftz airfoil, 385 x 193 grid, o = 10°.
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Table 1
Summary of convergence rates for multigrid solver on finest grids for channel and airfoil flows, with a comparison
to the ideal rates

Convergence rate

Per cycle Per work unit
Case Cycle Ideal Actual Ideal Actual
Channel, 385 x 129, unstructured V2, 1) 0.125 0.190 0.693 0.746
Channel, 385 x 129, structured 72, 1) 0.125 0.167 0.693 0.729
Airfoil, 385 x 193, structured, nonlifting w2, 1) 0.125 0.153 0.783 0.802
Airfoil, 385 x 193, structured, lifting w2, 1) 0.125 0.186 0.783 0.821

worse than for the nonlifting case. It is seen that the asymptotic convergence rates for the two
momentum equations are comparable to that of the pressure equation.

A summary of the convergence rates on the finest grid is presented in Table 1. Two sets
of results are shown: the convergence rate per multigrid cycle, and the convergence rate per
work unit. For the purposes of the discussion a work unit (WU) is taken to be one Gauss—
Seidel relaxation sweep on the finest grid. This is essentially the cost of one residual
evaluation on the finest grid. The actual convergence rates are compared to the ideal
convergence rates, which are computed as follows. Let p be the smoothing rate of the
relaxation method. For a V(m, n) or W(m, n) cycle, the ideal convergence rate is u” ",
Lexicographic Gauss—Seidel for the Poisson equation has a smoothing rate u = 0.5. This
gives an ideal convergence rate of 0.5°=0.125 for a V(2, 1) or a W(2, 1) cycle. To compute
the convergence rate per work unit we use the following formula. For each cycle, there are a
total of m + n fine-grid relaxation sweeps. Examination of Eq. (12) shows that the fine-to-
coarse grid restriction requires one residual evaluation on the fine grid and an additional
residual evaluation on the coarse grid. The coarse grid residual evaluation is one-quarter the
cost of a fine grid residual evaluation. Because most of the cost of a relaxation sweep is in
the evaluation of the residual, we have that each cycle requires a total of m + n + 1 + 1/4)
work units on the finest grid. The cost of interpolating the residuals and solutions between
grid levels is neglected.

For a V(m, n)-cycle, we have that

V—cycle 4 4716

LY P
LG

Because a W-cycle involves two coarse-grid solutions per cycle, we have

WU 1 11
] [/ /s i | [} (N R I A
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LY (L | L
W—cycle 4 274

5
=2 b
(m+n+4)

These numbers yield ideal convergences rates of 3¢ + W/ + n % 5/4)

cycle and p " * /G + n+ S yer work unit for a W-cycle.

The V(2, 1) cycle is seen to require 5% WU per cycle. The W(2, 1) is 50% more expensive,
requiring 8% WU per cycle. By way of comparison, one ¥(2, 1) cycle is only slightly more
work than a single time step of a five-stage Runge—Kutta scheme on the finest grid. The ideal
convergence rates for lexicographic Gauss—Seidel is 0.693 per WU for a V(2, 1) cycle and 0.783
per WU for a W(2, 1) cycle. The actual rates shown in Table 1 are seen to be very close to
ideal.

The convergence rates in Table 1 can be used to estimate the work required to obtain a
solution to the level of the discretization error on the fine grid. Let p be the order of
approximation of the discrete operator and let /4, be the grid spacing parameter on the kth
grid. An initial guess to the solution on the fine grid G is obtained by interpolating a solution
computed on grid Gg _ ;. Assume that the solution on Gx _; has been obtained to the level of
the discretization error tx 1 =O(h”%._,) on that grid. The multigrid cycle is used to reduce the
error from tg _ | to 1. Letting uy be the convergence rate per work unit, the amount of work
Wk required to get the solution on Gy from the initial solution on Gg _ is

W = 10 = 10
" log g(TK—l log uy e

A full multigrid (FMG) cycle starts with a solution on the coarsest grid, Gy, and recursively
generates improved solutions on the finer grids using the strategy above.

For the nested grids considered here, the grid spacing parameters are related by A, _ =2 Ay,
and the amount of work on each grid is related by W) _ = W,/4. The discretization is second-
order accurate, i.e. p = 2. This gives us the estimate for the total work to obtain a solution
accurate to tx to be

» 1 11
Wiowl = log(=)(14+>+—+---
out logﬂwog<2)( IR )

8 log2
=—= 14
3log uy (1)

per work unit for a V-

Using the values in the last column of Table 1 for u;, we see that channel flow solutions can
be obtained to the level of discretization error in approximately 6.4 WU using a FMG cycle.
Airfoil solutions can be obtained in about 8.3 WU. These estimates are generally low, and in
fact are less than work of a single FMG cycle (7.6 and 11.3 WU for the channel and airfoil
cases, respectively). The work computed using Eq. (14) also does not account for the
introduction of short-wavelength errors in the interpolation of the coarse grid solutions to the
fine grids. Nevertheless, Eq. (14) is a useful guide to the expected performance of the multigrid
scheme.
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6. Conclusions

A multigrid algorithm which yields textbook multigrid efficiency for the steady Euler
equations has been developed. It has the virtue of simplicity; conventional finite-difference or
finite-volume discretizations of the governing equations may be used, allowing flexibility in the
choice of the underlying numerical method. The correct boundary condition for the pressure
equation is obtained directly. Ideal multigrid convergence rates have been demonstrated for
both two-dimensional channel flows and airfoil flows. This method has a direct extension to
subsonic compressible flows as shown by Sidilkover [15]. Finally, this method can be applied to
incompressible, viscous flow following the ideas of Sidilkover and Ascher [13].
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