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Abstract

A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-
marching schemes this approach uses relaxation of the steady equations. Application of this method
results in a discretization that correctly distinguishes between the advection and elliptic parts of the
operator, allowing e�cient smoothers to be constructed. Solvers for both unstructured triangular grids
and structured quadrilateral grids have been written. Flows in two-dimensional channels and over
airfoils have been computed. Using Gauss±Seidel relaxation with the grid vertices ordered in the ¯ow
direction, ideal multigrid convergence rates of nearly one order-of-magnitude residual reduction per
multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the
compressible Euler equations and the incompressible Navier±Stokes equations. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Over the past three decades, computational ¯uid dynamics has become a powerful and
widely used tool for aerodynamic analysis and design. This began primarily with the
introduction of methods for solving transonic potential ¯ow, and has progressed to methods
for solving the Euler and Reynolds-averaged Navier±Stokes equations [1]. Today, viscous
solutions for real aircraft geometries are routinely possible. At the same time, the utility of the
numerical methods is restricted by their slow asymptotic convergence rates. There has always
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been, and continues to be, a critical need to improve the convergence rates of computational
¯uid dynamics codes in order to increase throughput and their overall utility.
Multigrid [2] has long been recognized as the most promising class of methods for obtaining

fast convergence rates for iterative solutions of partial di�erential equations. For purely elliptic
problems, multigrid methods can be shown to be O(n): that is, the work and memory required
to obtain a solution is directly proportional to the number of unknowns n in the problem. This
has led to many e�orts over the years to apply multigrid methods to the non-elliptic problems
of ¯uid dynamics in the hope that similar convergence rates can be achieved. A pioneering
e�ort was made by South and Brandt [3] for the transonic small perturbation equation. This
work demonstrated both the promise of multigrid for non-elliptic and non-linear problems, as
well as some of the di�culties that would have to be overcome to achieve ideal, or ``textbook''
convergence rates. Since that time, multigrid has been widely applied to methods for the Euler
and Navier±Stokes equations.
The application of multigrid to the Euler and Reynolds-averaged Navier±Stokes equations

generally is based on a discretization of the unsteady equations using some temporal integrator
as the smoother, combined with a full-approximation scheme (FAS) multigrid iteration. These
schemes fall into two classes. One approach is to use upwind-di�erencing and implicit time
integration as the smoother [4±6]. The more common approach is one originally proposed by
Jameson [7]. Starting with the unsteady equations, a ®nite-volume spatial discretization with
explicit arti®cial viscosity is combined with a Runge±Kutta time integration as a smoother.
This approach has also been successfully applied to the Reynolds-averaged Navier±Stokes
equations [8]. However, these approaches have resulted in poor multigrid e�ciency. When
applied to high Reynolds number ¯ows over complex geometries, convergence rates are often
worse than 0.99. Recently, signi®cant improvements have been demonstrated by Pierce et al. [9].
Nevertheless, there is clearly a need to develop substantially more e�cient multigrid solvers.
According to Brandt [2], one of the major obstacles to achieving better multigrid

performance for advection dominated ¯ows is that the coarse grid provides only a fraction of
the needed correction for smooth error components. This obstacle can be removed by
designing a solver that e�ectively distinguishes between the elliptic, parabolic and hyperbolic
(advection) factors of the system and treats each one appropriately. For instance, advection
can be treated by space marching, while elliptic factors can be treated by multigrid. The
e�ciency of such an algorithm will be essentially identical to that of the solver for the elliptic
factor only, and thereby attain textbook multigrid e�ciency. Brandt presents an approach
called ``distributive relaxation'' by which one can construct smoothers that e�ectively
distinguish between the di�erent factors of the operator. Using this approach, Brandt and
Yavneh have demonstrated textbook multigrid for the incompressible Navier±Stokes
equations [10]. Their results are for a simple geometry and a cartesian grid, using a staggered-
grid discretization of the equations.
In a closely related approach, Ta'asan [11] presents a fast multigrid solver for the

compressible Euler equations. This method is based on a set of ``canonical variables'' which
express the steady Euler equations in terms of an elliptic and hyperbolic partition [12]. This
form of the Euler equations is essentially Crocco's relation. Ta'asan uses this form of the
equations to guide the discretization. A staggered grid is used, with di�erent variables residing
at cell, vertex and edge centers. In Ref. [11] it is shown that ideal multigrid e�ciency can be
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achieved for the compressible Euler equations for two-dimensional subsonic ¯ow using body-
®tted grids. One possible limitation of the use of canonical variables is that the partition of the
inviscid equations is not directly applicable to the viscous equations.
In this paper, an alternative to distributive relaxation and to Ta'asan's canonical variable

decomposition is presented. It is a generalization of the approach of Sidilkover and Ascher [13],
and has been applied to the incompressible Euler equations by the authors [14]. The theoretical
background to this method is presented in the paper by Sidilkover in this volume [15]. A
conventional vertex-based ®nite-volume or ®nite-di�erence discretization of the primitive
variables is used, avoiding the need for staggered grids. This simpli®es the restriction and
prolongation operations, because the same operator can be used for all variables. A projection
operator is applied to the system of equations, resulting in a Poisson equation for the pressure.
By applying the projection operator to the discrete equations rather than to the di�erential
equations, the proper boundary condition on the pressure is satis®ed directly. The Poisson
equation for the pressure may be treated by Gauss±Seidel relaxation, while the advection terms
of the momentum equation are treated by space-marching. Because the elliptic and advection
parts of the system are decoupled, ideal multigrid e�ciency can be achieved. Compared with
distributive relaxation and the canonical variables approaches, this method is extremely simple.

2. Mathematical formulation

The incompressible Euler equations in primitive variables are

uux � vuy � px � 0

uvx � vvy � py � 0

ux � vy � 0

when u and v are the components of the velocity in the x and y directions, respectively, and p
is the pressure. The density is taken to be one. The advection operator is de®ned by

Q � u@x � v@y; �1�
where @x, @y are the partial di�erentiation operators. The Euler equations may be written as

Lq �
Q 0 @x
0 Q @y
@x @y 0

0@ 1A u
v
p

0@ 1A � 0 �2�

Introducing the adjoint to Q, de®ned by

Q��f� � ÿ@x�uf� ÿ @y�vf� �3�
a projection operator P is de®ned:

P �
I 0 0
0 I 0
@x @y Q�

0@ 1A �4�
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Applying the projection operator to the Euler equations yields

~Lq � PLq �
Q 0 @x
0 Q @y
0 0 D

0@ 1A u
v
p

0@ 1A� 2
0
0

�@xv��@yu� ÿ �@xu��@yv�

0@ 1A �5�

where D is the Laplacian. The matrix operator on the right-hand side consists of the principal
part of LÄ (i.e. the highest-order terms of the operator), and the remaining terms are the
subprincipal terms. These terms arise because the coe�cients u and v in the operators Q and
Q* are not constant. It is important to note that the subprincipal terms can be ignored for the
purpose of constructing a relaxation scheme.
The system of Eq. (5) is a higher-order system than the original Euler Eq. (2). The

continuity equation, which is a ®rst-order partial di�erential equation, has been replaced by a
second-order di�erential equation for the pressure. One might expect that Eq. (5) would
require a boundary condition on the pressure in addition to the physical boundary condition of
¯ow tangency at the wall, which is required by Eq. (2). However, at the boundary of the
domain, the third equation of Eq. (5) takes the form

�ÿu@yv� v@yu� @xp�n̂x � �u@xvÿ v@xu� @yp�n̂y � 0 �6�
where nÃx, nÃy are the components of the unit normal at the wall. This is simply the equation for
the momentum normal to the wall. Because the pressure equation at the wall takes the form of
Eq. (6), which in this case may be thought of as a compatibility condition of the governing
equations, no auxiliary boundary condition on the pressure is needed.
The operator on the left-hand side of Eq. (5) is upper triangular. Because the pressure

satis®es a Poisson equation, a conventional relaxation method, such as Gauss±Seidel, can be
used to solve it. Upwind di�erencing of the advection operator in the momentum equations
and a downstream ordering of the grid vertices allows marching of the momentum equations.
A collective Gauss±Seidel approach is used here, where the vertices are ordered in the ¯ow
direction. This is described more fully in the Section 4.

3. Discretization of the equations

The ®rst step in approximating LÄ is to discretize the Euler Eq. (2). Unlike the methods of
Refs. [10, 11], which use staggered grids, the current approach is vertex-based, where all the
unknowns are stored at the vertices of the grid. A great deal of ¯exibility in the form of the
discrete approximation to the momentum equations is possible with the current method.
However there are some subtle, but important, di�erences in the way the Poisson equation for
the pressure is discretized on triangular or quadrilateral grids. To understand these di�erences,
both schemes are described in turn below.
The unstructured triangular grid scheme is based on a cell-vertex discretization of the

equations. Consider a typical grid cell O as shown in Fig. 1. Cell-averaged gradients of the
unknowns are found by using a trapezoidal rule integration around the boundary of O. For
example, the discrete approximation to the gradient of u on O is
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i@hxu� j@hyu �
i

2AO
u0�y1 ÿ y2� � u1�y2 ÿ y0� � u2�y0 ÿ y1�
ÿ �

ÿ j

2AO
u0�x1 ÿ x2� � u1�x2 ÿ x0� � u2�x0 ÿ x1�
ÿ � �7�

where AO is the area of the triangle. The superscript h is used to denote the di�erence
approximation to the corresponding di�erential operator. Gradients of v and p are obtained
likewise. These gradients are used to approximate Eq. (2) on the triangle. An upwind
approximation to Q at the vertices of the grid is obtained by distributing the cell-averaged
momentum equation residuals to the vertices of each triangle appropriately. The current
scheme is not tied to any particular form of the upwind discretization. One choice, which was
used to obtain the unstructured grid results presented in Section 5, is the advection scheme of
Giles et al. [16]. In this scheme, the residuals are distributed to the vertices of O using the
weights

Wi � 1

3
1ÿ Dni

`n

� �
; i � 0; 1; 2

where `n is the length of the projection of O onto the cross¯ow direction, and Dni is the
component of the length in the cross¯ow direction of the edge opposite the ith vertex. An
alternative upwind discretization currently being developed by the authors is based on the
multidimensional upwind formulation of Sidilkover [17].
Once the cell-averaged residuals of the continuity and momentum equations have been

computed, the projection operator P is applied to these discrete equations to obtain the
residual for the pressure Poisson equation of Eq. (5). Letting Rp0

be the pressure equation
residual at vertex 0, the application of P can be written in integral form,

Fig. 1. Primary and dual cells on triangular and quadrilateral grids.
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Rp0 �
�
@A0

Qhu� @hxp ÿ u @hxu� @hyv
� �� �

dy

ÿ Qhv� @hyp ÿ v @hxu� @hyv
� �� �

dx �8�

where A0 is the area of the control volume centered on vertex 0. This control volume is the
area bounded by the dual grid cell, shown as the dashed lines in Fig. 1. The superscript h is
used to denote the discrete approximations to the corresponding di�erential operators on the
primary cell triangles, as before. The boxed terms in Eq. (8) are the residuals of the x and y
momentum equations and the continuity equation averaged over the primary grid cells, as
given by Eq. (7). The contributions of these residuals in Rp0

are found by taking the boxed
terms in Eq. (8) to be constant over the primary grid cells when evaluating Eq. (8) over the
segment of the boundary of A0 lying in each cell.
For a structured quadrilateral grid, the discretization of the momentum equations is

straightforward. At each vertex upwind di�erencing is used for the advection operator Q and
central di�erencing for the pressure. As with triangular grids, the exact choice of the upwind
discretization is not critical. In the results shown below, conventional second-order one-sided
di�erence formulas were used for the advection terms. The discretization of the Poisson
equation for the pressure is done by ®rst discretizing the boxed terms of Eq. (8) on the edges
of the dual grid cell, shown as the dashed lines on the left of Fig. 1. The integral (8) is then
evaluated over the boundary of the dual grid cell. Unlike a triangular grid, where trapezoidal
rule integration over the primary grid cells is used to get cell-averaged gradients, the gradients
on a quadrilateral grid must be evaluated on the dual grid edge centers. This distinction is
indicated in Fig. 1 by the solid squares, which show the evaluation points of the gradients for
the two cases. If a conventional cell-vertex type of discretization is used to get the gradients at
the primary grid cell centers, as for the triangular grid, the resulting stencil for the pressure
equation is not h-elliptic, and admits a checkerboard error mode.
To evaluate the gradients of pressure p at the dual grid face (iÿ 1/2, j) in Fig. 1, the partial

derivatives are written as

px � pxxx � pZZx �9a�

py � pxxy � pZZy �9b�

where x and Z are the generalized coordinates corresponding to the i and j directions on the
grid, respectively. The derivatives @xp and @Zp are approximated on the face center by

@hxp
���
iÿ1=2;j� pi;j ÿ piÿ1;j; �10a�

@hZp
���
iÿ1=2;j�

1

4
�pi;j�1 � piÿ1;j�1 ÿ pi;jÿ1 ÿ piÿ1;jÿ1� �10b�

with similar expressions for the faces (i + 1/2, j), (i, j + 1/2), and (i, jÿ 1/2). The gradients of
u and v are found the same way. The grid metric terms xx, xy, Zx and Zy are also evaluated on
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the dual grid face centers. These expressions are used in the boxed terms in Eq. (8). The
integral (8) is then evaluated to get the pressure equation residual at the vertex (i, j), taking the
boxed terms to be constant over each face of the dual grid cell. For a uniform cartesian grid,
the principal part of the resulting stencil is a conventional ®ve-point approximation to the
Laplacian operating on the pressure.
Applying the projection operator P at the discrete level in this way, rather than starting with

the di�erential Eq. (5) and discretizing them directly, has two important advantages. First, the
discrete approximation of Eq. (8) at boundary vertices reduces to Eq. (6), automatically
providing the correct boundary condition for the pressure. Second, if the momentum and
continuity equations are discretized in conservation form, it is possible to obtain a fully
conservative scheme. This will be particularly important for extensions of the present scheme
to compressible ¯ows with shocks.

4. Solution procedure

The multigrid algorithm uses a sequence of grids GK, GK ÿ 1, . . . , G0, where GK is the ®nest
grid and G0 the coarsest. Call the discrete approximation to the operator LÄ on the kth grid LÄ k,
and let qk be the solution on that grid. This system has the form LÄ kqk=fk, where the entries of
LÄ k are 3 � 3 block matrices which operate on the unknowns (u, v, p)T at each grid vertex. A
general iteration scheme is constructed by writing the operator LÄ k as LÄ k=MkÿNk, where the
splitting is chosen such that Mk is easily inverted. Lexicographic Gauss±Seidel is obtained by
taking Mk to be the block lower-triangular matrix resulting from ignoring the terms above the
diagonal blocks of LÄ k. A further simpli®cation is obtained if the diagonal blocks of Mk contain
only those entries corresponding to the principal part of the operator. Because the operator in
Eq. (5) is upper triangular the diagonal blocks of Mk will then be 3 � 3 upper triangular
matrices.
Letting qnk be the nth iterate of the solution on the kth grid, the relaxation iteration is

Mkq
n�1
k � fk �Nkq

n
k

The operator LÄ k is nonlinear, so Mk and Nk are functions of qnk and qn + 1
k . Letting

dqnk0qn + 1
k ÿqnk, the iteration may be rewritten as

Mkdqnk � fk ÿ ~Lkq
n
k �11�

Because Mk is block lower-triangular, dqnk is found by forward substitution. At each vertex, a
3 � 3 upper triangular matrix must be inverted.
If the discrete approximation to the advection operator Q is fully-upwind and the grid points

are ordered in the ¯ow direction, then the 3 � 3 blocks of Nk will have zeroes in the ®rst two
rows. In this case, lexicographic Gauss±Seidel relaxation is equivalent to space-marching of the
advection terms. The advected error is e�ectively eliminated in one relaxation sweep and the
convergence rate of the system becomes that of the Poisson equation for the pressure. It is
possible to get ideal multigrid convergence rates because each component of the error is treated
appropriately.
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A straightforward full approximation scheme (FAS) multigrid iteration is applied to the
system of equations. Let LÄ k ÿ 1 be the coarse grid operator, Ikkÿ 1 be the ®ne-to-coarse grid
restriction operator, and I k ÿ 1

k be the coarse-to-®ne grid prolongation operator. If qÃ k is the
current solution on grid k, the residual on this grid is rk0fkÿLÄ kqÃ k. This leads to the coarse-grid
equation

~Lkÿ1q̂kÿ1 � fkÿ1 � Ikkÿ1rk � ~Lkÿ1 Ikkÿ1q̂k
� �

�12�

After solving the coarse-grid equation for qk ÿ 1, the ®ne-grid solution is corrected by

q̂newk 3q̂k � Ikÿ1k q̂kÿ1 ÿ Ikkÿ1q̂k
� �

�13�

Eq. (12) is solved by applying the same relaxation procedure that is used to solve the ®ne-grid
equation. Multigrid is applied recursively to the coarse-grid equation. On the coarsest grid,
many relaxation sweeps are performed to insure that the equation is solved completely. A
conventional V-cycle or W-cycle is used.

5. Results

Both unstructured grid and structured grid ¯ow solvers based on the theory in Sections 2±4
have been written. Many solutions obtained with these codes were presented in Ref. [14]. Only
results chosen to illustrate the e�ciency of the scheme are presented here.
Solutions for incompressible, inviscid ¯ow in a channel have been obtained with both

solvers. The channel geometry and boundary conditions are shown in Fig. 2. The shape of the
lower wall between 0ExE1 is y(x) = t sin2px. For the computations shown here, the
thickness ratio t is 0.05. The ¯ow angle and total pressure are speci®ed at the inlet and the
pressure is speci®ed at the outlet. The ¯ow tangency condition u�nÃ=0 is enforced at the upper
and lower walls of the channel. Solutions were obtained on quasi-uniform quadrilateral grids.
A simple shearing transformation was used in the center part of the channel to obtain
boundary conforming grids. For the unstructured grid solver, the grids were triangulated by
dividing each quadrilateral cell along a diagonal. A series of nested coarse grids was obtained
by coarsening the ®ne grids by a factor of two in each coordinate direction. In all cases shown
below, the coarsest grid was 7 � 3 vertices. Lexicographic Gauss±Seidel relaxation was used,
with the grid vertices ordered from the lower-left to the upper-right of the channel. This
resulted in downstream relaxation of the momentum equations. A V(2, 1) multigrid cycle was
used; that is, two relaxation sweeps were performed on each grid before restricting to the
coarse grid, and one relaxation sweep was performed after the coarse-grid correction was
added to the ®ne-grid solution.
The computed pressure on a grid of 97 � 33 vertices is shown in Fig. 3 for the unstructured

grid ¯ow solver and in Fig. 4 for the structured grid solver. Comparisons of convergence rates
for di�erent grid densities are shown in Figs. 5 and 6 for the unstructured and structured grid
¯ow solvers, respectively. The L1 norm of the pressure equation residual is shown; the
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Fig. 2. Channel geometry.

Fig. 3. Pressure, contour increment Dp= 0.01, for an unstructured grid of 97 � 33 vertices.

Fig. 4. Pressure, contour increment Dp= 0.01, for an structured grid of 97 � 33 vertices.
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momentum equation residuals show the same behavior. The ®nest grid used for each ¯ow
solver contained 385 � 129 vertices, with a total of seven grid levels.

The convergence rate of the unstructured grid solver on the ®nest grid is approximately
0.190 residual reduction per multigrid cycle. The structured grid results are slightly better at
0.167 per cycle. These rates are comparable to the ideal rate of 0.125 per cycle for the Poisson
equation. The better performance of the structured grid solver is most likely because of better
restriction and prolongation operators; the unstructured ¯ow solver performs bilinear
interpolation using only the locations of a ®ne-grid vertex and the three vertices of the coarse-
grid cell containing that vertex. What is most important is that the ®gures show nearly ideal
multigrid convergence rates, independent of the grid spacing. This shows that convergence is
achieved in order n operations.

Solutions for ¯ow over a symmetric KaÂ rmaÂ n±Tre�tz airfoil have been obtained with the
structured grid solver. A conformal mapping of a circular cylinder was used to generate the
airfoil. The center of the cylinder was placed at the point (ÿ0.1, 0) in the circle plane, yielding

Fig. 5. Comparison of convergence rates on unstructured grids.

Fig. 6. Comparison of convergence rates on structured grids.
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an airfoil of approximately 15% thickness. The trailing edge angle is 108. A ®ne O-grid of
385 � 193 vertices was generated from the conformal mapping, and the nested coarse grids
were generated by recursively eliminating every other vertex in each coordinate direction. The
grid spacing was chosen to obtain unit aspect ratio grid cells. The outer boundary is
approximately 13 chord lengths from the airfoil. Far-®eld boundary conditions are given by
the analytic solution. At in¯ow points along the outer boundary the total pressure and ¯ow
inclination angle are speci®ed. For out¯ow points the pressure is speci®ed. On the airfoil
surface the tangency condition is enforced.
To obtain ideal multigrid convergence rates, it is necessary to sort the vertices in a

downstream order so that the advection terms in the momentum equations are marched. This
is easily done here by relaxing along the radial grid lines from the outer boundary to the airfoil
surface over the forward half of the domain, and from the airfoil surface to the outer
boundary over the latter half of the domain. For each case run, the coarsest grid consisted of
13 � 7 vertices.

Fig. 7. Surface pressure coe�cient, nonlifting KaÂ rmaÂ n±Tre�tz airfoil, 193 � 97 grid.

Fig. 8. Comparison of convergence rates for nonlifting KaÂ rmaÂ n±Tre�tz airfoil.
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Comparisons between computed and analytic surface pressure coe�cients for non-lifting ¯ow
around the KaÂ rmaÂ n±Tre�tz airfoil are shown in Fig. 7. A W(2, 1) multigrid cycle was used for
these comparisons. The computed solution agrees very well with the analytic solution, except
for the recompression at the trailing edge. Note that there is no clustering of the grid in this
region, which exacerbates the problem.

A comparison of the convergence rates of the pressure equation residual for three grid
densities is shown in Fig. 8. A slight deterioration of the convergence rate with increasing grid
re®nement is observed: on the 385 � 193 grid, the rate is 0.153 per cycle. Nevertheless, as with
the channel ¯ow results, the convergence rates are very nearly grid independent, and are very
close to the ideal rate of 0.125 per cycle.

A lifting solution for the KaÂ rmaÂ n±Tre�tz airfoil on the 385 � 193 grid is shown in Fig. 9.
The airfoil is at an angle-of-attack of 108. The exact and numerical solutions essentially lie on
top of one another. The convergence rate for the two momentum and the pressure equations
are shown in Fig. 10. The convergence rate for pressure is 0.186 per cycle, which is slightly

Fig. 9. Surface pressure coe�cient, lifting KaÂ rmaÂ n±Tre�tz airfoil, 385 � 193 grid, a = 108.

Fig. 10. Convergence rates for lifting KaÂ rmaÂ n±Tre�tz airfoil, 385 � 193 grid, a = 108.
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worse than for the nonlifting case. It is seen that the asymptotic convergence rates for the two
momentum equations are comparable to that of the pressure equation.
A summary of the convergence rates on the ®nest grid is presented in Table 1. Two sets

of results are shown: the convergence rate per multigrid cycle, and the convergence rate per
work unit. For the purposes of the discussion a work unit (WU) is taken to be one Gauss±
Seidel relaxation sweep on the ®nest grid. This is essentially the cost of one residual
evaluation on the ®nest grid. The actual convergence rates are compared to the ideal
convergence rates, which are computed as follows. Let m be the smoothing rate of the
relaxation method. For a V(m, n) or W(m, n) cycle, the ideal convergence rate is mm+n.
Lexicographic Gauss±Seidel for the Poisson equation has a smoothing rate m= 0.5. This
gives an ideal convergence rate of 0.53=0.125 for a V(2, 1) or a W(2, 1) cycle. To compute
the convergence rate per work unit we use the following formula. For each cycle, there are a
total of m+ n ®ne-grid relaxation sweeps. Examination of Eq. (12) shows that the ®ne-to-
coarse grid restriction requires one residual evaluation on the ®ne grid and an additional
residual evaluation on the coarse grid. The coarse grid residual evaluation is one-quarter the
cost of a ®ne grid residual evaluation. Because most of the cost of a relaxation sweep is in
the evaluation of the residual, we have that each cycle requires a total of (m+ n + 1 + 1/4)
work units on the ®nest grid. The cost of interpolating the residuals and solutions between
grid levels is neglected.
For a V(m, n)-cycle, we have that

WU

Vÿcycle1 m� n� 1� 1

4

� �
1� 1

4
� 1

16
� � � �

� �

� 4

3
m� n� 5

4

� �

Because a W-cycle involves two coarse-grid solutions per cycle, we have

Table 1
Summary of convergence rates for multigrid solver on ®nest grids for channel and airfoil ¯ows, with a comparison

to the ideal rates

Convergence rate

Per cycle Per work unit

Case Cycle Ideal Actual Ideal Actual

Channel, 385 � 129, unstructured V(2, 1) 0.125 0.190 0.693 0.746
Channel, 385 � 129, structured V(2, 1) 0.125 0.167 0.693 0.729

Airfoil, 385 � 193, structured, nonlifting W(2, 1) 0.125 0.153 0.783 0.802
Airfoil, 385 � 193, structured, lifting W(2, 1) 0.125 0.186 0.783 0.821
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WU

Wÿcycle1 m� n� 1� 1

4

� �
1� 1

2
� 1

4
� � � �

� �

� 2 m� n� 5

4

� �
These numbers yield ideal convergences rates of m 3(m + n)/(4(m + n + 5/4)) per work unit for a V-
cycle and m (m + n)/(2(m + n + 5/4)) per work unit for a W-cycle.
The V(2, 1) cycle is seen to require 5 2

3 WU per cycle. The W(2, 1) is 50% more expensive,
requiring 8 1

2 WU per cycle. By way of comparison, one V(2, 1) cycle is only slightly more
work than a single time step of a ®ve-stage Runge±Kutta scheme on the ®nest grid. The ideal
convergence rates for lexicographic Gauss±Seidel is 0.693 per WU for a V(2, 1) cycle and 0.783
per WU for a W(2, 1) cycle. The actual rates shown in Table 1 are seen to be very close to
ideal.
The convergence rates in Table 1 can be used to estimate the work required to obtain a

solution to the level of the discretization error on the ®ne grid. Let p be the order of
approximation of the discrete operator and let hk be the grid spacing parameter on the kth
grid. An initial guess to the solution on the ®ne grid GK is obtained by interpolating a solution
computed on grid GK ÿ 1. Assume that the solution on GK ÿ 1 has been obtained to the level of
the discretization error tK ÿ 1=O(h

p
Kÿ 1) on that grid. The multigrid cycle is used to reduce the

error from tK ÿ 1 to tK. Letting mW be the convergence rate per work unit, the amount of work
WK required to get the solution on GK from the initial solution on GK ÿ 1 is

WK � 1

log mW
log

tK
tKÿ1

� �
� p

log mW
log

hK
hKÿ1

� �
A full multigrid (FMG) cycle starts with a solution on the coarsest grid, G0, and recursively
generates improved solutions on the ®ner grids using the strategy above.
For the nested grids considered here, the grid spacing parameters are related by hk ÿ 1=2 hk,

and the amount of work on each grid is related by Wk ÿ 1=Wk/4. The discretization is second-
order accurate, i.e. p = 2. This gives us the estimate for the total work to obtain a solution
accurate to tK to be

Wtotal � p

log mW
log

1

2

� �
1� 1

4
� 1

16
� � � �

� �
� ÿ 8

3

log 2

log mW
�14�

Using the values in the last column of Table 1 for mW, we see that channel ¯ow solutions can
be obtained to the level of discretization error in approximately 6.4 WU using a FMG cycle.
Airfoil solutions can be obtained in about 8.3 WU. These estimates are generally low, and in
fact are less than work of a single FMG cycle (7.6 and 11.3 WU for the channel and airfoil
cases, respectively). The work computed using Eq. (14) also does not account for the
introduction of short-wavelength errors in the interpolation of the coarse grid solutions to the
®ne grids. Nevertheless, Eq. (14) is a useful guide to the expected performance of the multigrid
scheme.
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6. Conclusions

A multigrid algorithm which yields textbook multigrid e�ciency for the steady Euler
equations has been developed. It has the virtue of simplicity; conventional ®nite-di�erence or
®nite-volume discretizations of the governing equations may be used, allowing ¯exibility in the
choice of the underlying numerical method. The correct boundary condition for the pressure
equation is obtained directly. Ideal multigrid convergence rates have been demonstrated for
both two-dimensional channel ¯ows and airfoil ¯ows. This method has a direct extension to
subsonic compressible ¯ows as shown by Sidilkover [15]. Finally, this method can be applied to
incompressible, viscous ¯ow following the ideas of Sidilkover and Ascher [13].
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