
Applied Mathematics and Computation 179 (2006) 344–351

www.elsevier.com/locate/amc
A fast algebraic multigrid preconditioned conjugate
gradient solver

Fábio Henrique Pereira, Sérgio Luı́s Lopes Verardi, Silvio Ikuyo Nabeta *

LMAG-PEA-EPUSP, Av. Prof. Luciano Gualberto, Travessa 3, n. 158, 05508-900 São Paulo/SP, Brazil
Abstract

This work presents a new approach for selecting the coarse grids allowing a faster algebraic multigrid (AMG) precon-
ditioned conjugate gradient solver. This approach is based on an appropriate choice of the parameter a considering the
matrix density during the coarsening process which implies in a significant reduction in the matrix dimension at all
AMG levels.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Algebraic multigrid; Coarsening process; Strength threshold; Preconditioner; Iterative methods; Linear systems; Sparse
matrices
1. Introduction

The multigrid method (MG) is a well-established numerical technique for solving linear systems. Several
works have explored the use of MG as a preconditioner for the conjugate gradient method (CG) [1–3]. In
[2] the MG is used with the CG in the resolution of the two-dimensional Poisson equation in a regular domain,
showing the superiority of this method in relation to the incomplete Cholesky conjugate gradient method
(ICCG).

In contrast to MG, where a mesh hierarchy is explicitly required, AMG constructs the matrix hierarchy and
transfer operators just using information from the original matrix. Hence, when the problem involves an irreg-
ular domain and unstructured meshes or when one is interested on black-box solvers the AMG is well suited as
a preconditioner for iterative solvers.

The standard AMG normally presents a high computational cost, thus it is not generally used in small and
medium size problems [4]. In [1] a modification in the conventional AMG is proposed to reduce its construc-
tion and solving time. In that work the original matrix is approximated to a symmetric M-matrix. However,
when the original matrix is very different of a M-matrix that approach can increase prohibitively the conver-
gence factor.
0096-3003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2005.11.115

* Corresponding author.
E-mail address: nabeta@pea.usp.br (S.I. Nabeta).

mailto:nabeta@pea.usp.br

F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351 345
In this work, we present a new approach to select the coarse grids that allows the use of the AMG as a
preconditioner for the CG method for small and medium problems. This approach leads to a significant reduc-
tion of the matrix dimension at all levels without losing the robustness.

The paper is organized as follows. In Section 2 we give a brief overview of the basic AMG algorithm,
detailing the coarsening process in Section 3. In Sections 4 and 5, the test cases and the numerical
results are presented, comparing the performance of the AMG with that of incomplete Cholesky method
in the preconditioning of the ill-conditioned matrices. Finally, some conclusions are formulated in
Section 6.

2. The algebraic multigrid

In this section we give an outline of the basic principles of AMG, and define some terminology and nota-
tion. Detailed explanations may be found in [3]. Consider a problem of the form
Au ¼ f ; ð1Þ

where A is an n · n matrix with entries aij. For AMG, a ‘‘grid’’ is simply a set of indices of the variables, so the
original grid is denoted by xk = {1,2, . . . ,n} with k = 1.

In any multigrid method, the central idea is that error e, that is not eliminated by relaxation, must be
removed by coarse-grid correction. This is done by solving the residual equation Ae = r on a coarser grid, then
interpolating the error back to fine grid and using it to correct the fine-grid approximation by u u + e. The
coarse-grid problem itself is solved by a recursive application of this method [7–11].

The AMG explores the use of many levels to eliminate the error components that are not efficiently
removed by relaxation [2,3]. In this way, the coarsest grid problem becomes sufficiently small to be solved
by a direct solver.

Using subscripts to indicate level number, where M denotes the number of levels and 1 is the finest level so
that A1 = A, the AMG algorithm consists of the following components [3,5]:

• Coarsening: define the splitting xk ¼ xk
C [xk

F of xk into sets of coarse and fine grid nodes xk
C and xk

F,
respectively.

• Transfer operators:
prolongation P k : V kþ1 ! V k;

restriction Rk ¼ P T
k .

ð2Þ
• Definition of the matrix hierarchy:
Akþ1 ¼ RkAkP k. ð3Þ

• Appropriate smoother: basic iterative method.

The most important issue to be discussed is the construction of the matrix hierarchy and the prolongation
operator, i.e., the setup phase [3,4]. This phase is explained as follows:

AMG setup phase:

1. Set k = 1 and A1 = A.
2. Partition xk into disjoint sets xk

C and xk
F

(a) Set xkþ1 ¼ xk
C.

(b) Define interpolation Pk.

3. Set Rk ¼ P T

k and Ak+1 = RkAkPk.
4. If xk+1 is small enough, set M = k + 1 and stop. Otherwise, set k = k + 1 and go to step 2.

Step 2 is the core of the AMG setup process and is detailed in the following section. Once the setup phase is
completed and all these components are defined, the recursively defined multigrid V(l1,l2)-cycle, which is used
here as a preconditioner for the CG method, can be performed as follows:

346 F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351
Algorithm. MGVk(uk, fk). The V(l1,l2)-cycle.

If k = M, solve AMuM = fM with a direct solver.
Otherwise:
Apply the smoother l1 times to Akuk = fk.
Perform coarse-grid correction:

Set ek+1 = 0 and rk = fk � Akuk.
Restrict rk+1 = Rkrk.
Apply MGVk+1(ek+1, rk+1).

Prolong ek = Pkek+1.
Correct the solution by uk uk + ek.

Apply the smoother l2 times to Akuk = fk.
3. The coarsening process

The AMG efficiency is improved by reducing the number of nonzero entries of the coarse matrices by using
the following sets of connections between grid points [1,3–5,7]:
Ni ¼ fj : jaijj 6¼ 0; i 6¼ jg;

Si ¼
n

j 2 Ni : jaijjP a max
k 6¼i
jaikj

o
;

ST
i ¼ fj : i 2 Sjg;
where Ni is the direct neighborhood of a point i, Si is the set of the points that strongly influence the point i and
ST

i is the points that are strongly influenced by point i. Here the influence concept is defined in terms of the
absolute value of the nonzero entries. For any set P, jPj denotes the number of elements in P.

The coarsening process is defined as follows [7]:
AMG coarsening process:

1. Input: the n · n matrix Ak (level k).
2. Initialize: xk

C ¼ 0, xk
F ¼ 0, U ¼ xk and ki ¼ jST

i j.
3. Loop until jxk

Cj þ jxk
Fj ¼ n:

(a) get i 2 U with maximal ki and set xk
C ¼ xk

C [fig, U = U � {i},
(b) for all j 2 ST

i \ U , make:

set xk

F ¼ xk
F [fjg, U = U � {j},

for all l 2 Sj \ U, set kl = kl + 1,

(c) for all j 2 Si \ U, set kj = kj � 1.
In this coarsening process the strength threshold a, which is a positive constant smaller than one, is modified
in order to increase jSij and jST

i j that ensures a reduction of jxk
Cj at each level. In contrast to standard AMG

which uses a fixed value, here a is expressed as a function of the matrix density d, defined as the ratio between
the nonzero number and the square of the number of rows of the matrix.
aðdÞ ¼ e�ð3d�1Þ2 þ 3d
3þ d

. ð4Þ
This function is illustrated in Fig. 1.
We can say that if the matrix density d is low then a point i will have few direct neighbors, in other words,

jNij will be small. In this way, the value of a should also be small to allow that more direct neighbors of that
point i make part of the set Si. Hence, the number of elements in the set ST

i will also increase, reducing jxCj. On
the other hand, when the matrix density d is high the value of a should increase to ensure an enough number of
points in jxCj to achieve an accurate interpolation. This approach preserves the robustness of the method and

Fig. 1. a as a function of the matrix density d.

F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351 347
allows a reduction in the AMG setup and resolution time. Expression (4) is a possible choice for a(d) that
incorporates the above analysis.

The storage space required by the operators Ak and for the right hand sides and approximation vectors over
all grids are also significantly reduced. Just as in the geometric case, the work in the solver phase of AMG is
dominated by relaxation and residual computations, which are directly proportional to the number of nonzero
entries in the operator [3]. Hence, the work of a V-cycle, which is used here in the preconditioning, turns out to
be proportional to the operator complexity that is defined as the total number of nonzero entries, in all matri-
ces Ak, divided by the number of nonzero entries in the fine-grid operator A1 = A. The measure of the storage
space required for the vectors is given by the grid complexity, which is defined as the total number of grid
points, on all grids, divided by the number of grid points on the finest grid.

4. Test cases

The proposed AMG preconditioning method was applied in the resolution of linear systems with ill-
conditioned matrices. These matrices were obtained from the Matrix Market [6] and Davis [12] sparse matrix
collections and have the characteristics summarized in Table 1. In that table, the fourth column indicates the
average nonzero per column and row in the matrix. All the matrices are symmetric and positive definite, hence
the incomplete Cholesky conjugate gradient method (ICCG) was used for compare the convergence results.

This paper pays special attention to the use of the AMG as a preconditioner for the CG method (AMGCG)
for small and medium problems. However, the method can be also used with great advantage for large prob-
lems. In this preconditioning a V-cycle scheme was used.
Table 1
Matrices characteristics

Matrix name Size Nonzero number Nonzero per row Condition number

bcsstk14 1806 · 1806 63,454 35 1.3e+10
sts4098 4098 · 4098 72,356 18 2.1e+08
bcsstk16 4884 · 4884 290,378 59 6.5e+01
bcsstk17 10,974 · 10,974 428,650 39 6.5e+01

348 F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351
In the tests we used a V(1,1)-cycle of AMG as preconditioner for matrix bcsstk14 and a V(2, 2)-cycle for
others three matrices. We used the Gauss–Seidel method as smoother and the right hand side vector f was
chosen as that the solution u of the problem (1) be a vector with all the elements equal to 1.0.

5. Results

The convergence of iterative methods like CG can be understood in terms of the eigenvalue analysis of the
preconditioned matrix [2]. Thus, we analyze the efficiency of preconditioner AMG through of eigenvalue dis-
tribution analysis of the matrix after the preconditioning.

Fig. 2 shows the eigenvalue distribution for matrix bcsstk14 after the applications of the AMG and the
incomplete Cholesky method (IC). For AMG the eigenvalues are clustered around 1 and a few eigenvalues
are scattered between 1 and 0. This makes the AMG preconditioner more effective than IC for CG in this case.
The eigenvalues are calculated directly from the preconditioned matrix which was explicitly created.

Table 2 shows the results of application of the AMGCG for matrix bcsstk14. The Table shows the values of
grid and operator complexity and presents the total time for the AMGCG setup and the solver phase for the
linear system with matrix bcsstk14. Several cases were analyzed, with fixed values for a and the proposed
approach where a is variable and a function of the matrix density d.

The results in Table 2 suggest the use of small values for a because it produces a great reduction in the grid
and operator complexity and, consequently, decrease in the AMG setup and solver phase times. However, the
use of very small values for a can increase prohibitively the convergence factor, reducing the robustness of the
method. Moreover, it is very difficult to determine the best fixed value for a given problem. On the other hand,
Table 2 shows also that the use of a strength threshold a as a function of the matrix density d produces very
similar results to the best results produced using a fixed a.

In Table 3 are presented the results of the application of AMGCG for matrix bcsstk16, for different values
of a. These results show that the use of a = 0.15 produces smaller setup time for that problem, but it is not
enough to solve it. In this case, the best computational performance was obtained with use of a = a(d).
Fig. 2. Eigenvalues distribution after preconditioning with AMG and IC.

Table 2
AMG grid and operator complexity for matrix bcsstk14

Matrix Method Grid complexity Operator complexity Number of iteration Total time (s)

bcsstk14 AMGCG(0.15) 1.39 1.30 61 5.34
AMGCG (0.25) 1.50 1.43 61 6.01
AMGCG (0.50) 1.61 1.52 61 6.05
AMGCG (0.75) 1.72 1.52 61 5.90
AMGCG (a = a(d)) 1.43 1.30 61 5.36
ICCG 2.00 2.00 142 6.99

F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351 349
The statistics on coarsening for AMG with strength threshold a as a function of the matrix density d are
shown in Table 4.

In Table 5, the results show the performance of AMGCG for matrix sts4098. Again, the use of AMG with
strength threshold a as a function of the matrix density presented the best results.
Table 3
AMGCG for matrix bcsstk16

Value of a Grid complex Operator complex Number of iteration Total time (s)

0.15 1.22 1.13 – –
0.25 1.28 1.23 47 61.48
0.50 1.47 1.57 45 79.75
a = a(d) 1.21 1.12 45 46.15

Table 4
Statistics on coarsening for AMG applied to matrix bcsstk16

Level Value of a Number of rows Number of nonzeros Density d

1 0.14 4884 290,378 0.012
2 0.25 670 33,886 0.075
3 0.22 170 1588 0.055
4 0.17 100 288 0.029
5 0.15 79 87 0.014

Table 5
AMGCG for matrix sts4098

Value of a Grid complexity Operator complexity Number of iterations Total time (s)

0.25 1.30 1.30 6 6.67
0.50 1.44 1.43 14 10.96
0.75 1.63 1.58 2 9.85
a = a(d) 1.24 1.26 6 6.02

Fig. 3. Convergence results of the CG method for matrix bcsstk14.

350 F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351
The convergence results for matrix bcsstk14 were compared to that of the application of the ICCG for the
same problem. These results are shown in Fig. 3.

The results of the application of AMGCG for the last case, the matrix bcsstk17, are presented next. Table 6
shows values related to the matrix in all levels, obtained from the AMG setup phase for different values of a.
The first five lines of the table correspond to the use of strength threshold a as a function of the matrix density
d.

The values presented in Table 6 shows that the use of a as function of d and a = 0.13 produces very similar
values. However, as shown in Fig. 4, the use of a as function of d, proposed here, is more effective in this case.
Moreover, the use of other fixed values for a as 0.15, 0.25, 0.50 and 0.75, do not produce good preconditioning
results and do not solve the problem. Is important to remember that, in contrast to basic AMG coarse-point
Table 6
Statistics on coarsening AMG for matrix bcssta17

a Level Number of rows Number of nonzeros Density (% full) Operator complexity Grid complexity

0.129 1 10,974 428,650 0.0036 1.17 1.43
0.144 2 2269 63,991 0.0124
0.138 3 800 5756 0.0090
0.129 4 596 1404 0.0039
0.127 5 543 695 0.0024

0.13 1 10,974 428,650 0.0036 1.17 1.39
2 2330 67044 0.0123
3 797 5667 0.0089
4 581 1143 0.0034
5 535 605 0.0021

0.25 1 10,974 428,650 0.0036 1.24 1.50
2 2792 89,310 0.0115
3 924 8400 0.0098
4 645 2213 0.0053
5 564 890 0.0028

0.50 1 10,974 428,650 0.0036 1.42 1.67
2 4044 146,060 0.0089
3 1418 24,844 0.0123
4 777 5189 0.0086
5 615 1671 0.0044

Fig. 4. AMGCG convergence for matrix bcsstk17.

Table 7
AMGCG results for matrix bcsstk17

Strength threshold Number of iterations Time for iteration (s) Total time (s)

a = a(d) 59 0.532 80.64
a = 0.10 1120 0.830 976.72
a = 0.13 114 0.835 144.13

F.H. Pereira et al. / Applied Mathematics and Computation 179 (2006) 344–351 351
selection algorithm, which proceeds in two steps, here the objective is to create in a single step the best possible
set of coarse nodes xC. Fig. 4 shows the first 200 AMGCG iterations for matrix bcsstk17 with a = 0.10,
a = 0.13 and a = a(d). More details for this problem can be seen in Table 7.

The results for matrix bcsstk17, presented in Fig. 4 and Table 7, show with clarity the best performance of
a = a(d). Besides spending a smaller number of iterations the time spend in each iteration was also smaller,
resulting in a reduction about 45% of the total time regarding to the best result from a fixed a. Moreover,
the use of other fixed values for a as 0.15, 0.25 do not solve the problem.

6. Conclusions

The paper presented a new approach to the use of the AMG as a preconditioner for the CG method in the
resolution of small and medium size ill-conditioned problems. The proposed approach allowed a significant
reduction in the AMG setup and solver times and the storage space required by the operators and for the right
sides and approximation vectors over all grids of the AMG.

The results presented prove the robustness of the method for the test problems. For matrix bcsstk17, in
which the use of ‘‘standard’’ a = 0.25 is not effective, the a = a(d) produce a smaller number of iterations
reducing about 45% of the total time, regarding the best result from a fixed a. Moreover, for all other tests
the results from a = a(d) are always equal or better than to those with fixed a.

The matrices used in the tests possess a great number of nonzero elements per row, allowing small a to pro-
duce a great reduction in the values of grid and operator complexity. However, the use of a much small a can
commit the performance of the method. In these cases, the new approach proposed here presented very good
results.

References

[1] C. Iwamura, F.S. Costa, I. Sbarski, A. Easton, N. Li, An efficient algebraic multigrid preconditioner conjugate gradient solver,
Comput. Methods Appl. Mech. Engrg. 192 (2003) 2299–2318.

[2] O. Tatebe, The Multigrid Preconditioned Conjugate Gradient Method, vol. 3224, NASA Conference Publication, 1993, pp. 621–634.
[3] W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, second ed., SIAM, California, 2000.
[4] A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, Coarse-grid Selection for Parallel Algebraic Multigrid, Lawrence Livermore Nat.

Laboratory, Livermore, 2000.
[5] G. Haase, M. Kuhn, S. Reitzinger, Parallel algebraic multigrid methods on distributed memory computers, SIAM J. Sci. Comput. 24-

2 (2001) 410–427.
[6] National Institute of Standards and Technology, Matrix Market. Available from: <http://math.nist.gov/MatrixMarket/>.
[7] Q. Chang, Y.S. Wong, H. Fu, On the algebraic multigrid method, J. Comput. Phys. 125 (1996) 279–292.
[8] D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing 55 (1995) 379–393.
[9] J.W. Ruge, K. Stüben, Algebraic multigrid, in: Multigrid Methods, Society for Industrial and Applied Mathematics, Philadelphia,

PA, 1987.
[10] A. Brandt, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput. 19 (1986) 23–56.
[11] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281–309.
[12] T. Davis, University of Florida Sparse Matrix Collection. Available from: <http://www.cise.ufl.edu/research/sparse/matrices>, NA

Digest, vol. 92, no. 42, October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol. 97, no. 23, June 7, 1997.

http://math.nist.gov/MatrixMarket/
http://www.cise.ufl.edu/research/sparse/matrices

	A fast algebraic multigrid preconditioned conjugate gradient solver
	Introduction
	The algebraic multigrid
	The coarsening process
	Test cases
	Results
	Conclusions
	References

