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SUMARIO

E aplicada a técnica multigrid na implementagdo de um programa computacional visando a
solu¢do numérica de problemas bidimensionais em coordenadas cartesianas e em regime
permanente de escoamentos laminares com geometrias simples e de problemas simples de
transferéncia de calor. O programa emprega malhas computacionais estruturadas e ortogonais,
estando generalizado ao uso de malhas nao-uniformes. As equacdes algébricas sdo obtidas
segundo uma formulacdo em volumes finitos, com as variaveis armazenadas no centro dos
volumes elementares em um arranjo co-localizado. O sistema de equagdes resultantes ¢
relaxado através dos algoritmos Gauss-Seidel e TDMA - TriDiagonal Matrix Algorithm. O
acoplamento pressao-velocidade ¢ feito segundo o método SIMPLE - Semi-Implicit Method
for Pressure-Linked Equations. O algoritmo multigrid ¢ implementado na formulagao
correction storage. A técnica ¢ demonstrada para alguns problemas bench-mark, com os
resultados apresentando uma aceleracao significativa do processo de convergéncia da solugdo
numérica multigrid (em relacdo as solugdes em malha unica), especialmente nas situagdes em

que foram empregadas malhas bastante refinadas e foi exigida elevada precisao.
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ABSTRACT

This work investigates the efficiency of the multigrid numerical method when used
to solve two-dimensional laminar velocity and temperature fields inside a rectangular domain.
Numerical analysis is based on the finite volume discretization scheme applied to structured
orthogonal regular meshes. Performance of the correction storage (CS) multigrid algorithm is
compared for different Reynolds number at inlet (Rein) and distinct number of grids. Up to
four grids were used for both V- and W-cycles. Simultaneous and uncoupled temperature-
velocity solution schemes were investigated. Advantages in using more than one grid are
discussed. For simultaneous solution, results further indicate an increase in the computational
effort for higher inlet Reynolds number Rein. Optimal number of intermediate relaxation

sweeps for within both V- and W-cycles are discussed upon.
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CAPITULO I - INTRODUCAO

I-1. SOLUCAO DE PROBLEMAS DE INTERESSE EM ENGENHARIA

De um modo geral, para se resolver um determinado problema de interesse em
engenharia pode-se recorrer a métodos analiticos, a métodos numéricos (experimentagao
numérica) ou a experimentagdo em laboratorio (experimentacao fisica).

A experimentacdo em laboratério tem a grande vantagem de tratar com a
conFiguracdo real. No entanto, muitas vezes ¢ de alto custo e ndo pode ser realizada ou por
questdes de seguranca ou pela dificuldade de reprodugdo das condicdes reais.

Os problemas resolvidos por métodos analiticos na maioria das vezes possuem
hipdteses simplificadoras que muito os afastam do fendmeno fisico real ou possuem
geometria e/ou condi¢des de contorno simples. Ainda assim, as solugdes analiticas sdo
extremamente Uteis para validar casos limites da experimentacdo numérica.

Por sua vez, os métodos numéricos nao apresentam restricoes quando o modelo
numerico ¢ aceitavel, podendo resolver problemas com condigdes de contorno complicadas e
geometrias arbitrarias, apresentando dados com boa rapidez. Entretanto, os dados obtidos
devem ser confidveis. A comparagdo dos resultados numéricos com resultados analiticos (se
existirem) ou com outros resultados numéricos caracteriza a valida¢do numérica, enquanto

que a validacao fisica ¢ feita pela comparagdao com resultados experimentais.
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I-2. SOLUCAO NUMERICA

A obtencdo de uma solugdo numérica de qualquer problema fisico requer
inicialmente a ado¢do do modelo matematico correspondente, o qual via de regra ¢ descrito
por meio de equagdes diferenciais parciais (EDPs). Tal modelo deve ser passivel de ser
resolvido em tempos de computacdo ndo-proibitivos e os resultados obtidos devem bem
representar o fenomeno fisico em questao.

A idéia do método numérico € resolver as EDPs, substituindo as derivadas nelas
existentes por expressoes algébricas envolvendo a func¢do incognita. Ao contrario do método
analitico que permite calcular os valores das varidveis dependentes em um numero infinito de
pontos, a aproximac¢ao numeérica fornece a solugdo em um numero discreto de pontos (ditos
pontos nodais) definido pela chamada malha computacional, conforme ilustra a Figural-1.
Espera-se que quanto maior for o nimero de pontos nodais, mais proxima da solugdo exata

esteja a solugdo numérica.

D
Método
numerico
&= 3D
Equacio diferencial £(¢)1=0 Sistermna de equagfies algébricas
e condigdes de contorno [A][¢] =[B]

Figura I-1 A idéia do método numérico
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O passo seguinte esta relacionado com a maneira de se obter as equacdes algébricas,
comumente denominado discretizagdo. Trés classes merecem destaque, a saber: discretizagdo
em elementos finitos, em diferengas finitas € em volumes finitos. No presente trabalho foi
adotada esta ultima classe, a qual sera assunto de capitulo posterior. Algumas consideracdes
basicas acerca das outras duas classes podem ser encontradas em Maliska, 1985., Patankar,
1980.

Quando a EDP ¢ linear, a discretizagdo da origem a um sistema linear de equagdes,
cuja matriz de coeficientes permanece constante ao longo do processo iterativo. Em
problemas como os de escoamento de fluidos, surgem nao-linearidades que sdo transferidas
para a matriz dos coeficientes, com vistas a manter linear o sistema de equagdes. Como
conseqiiéncia do ponto de vista de implementacdo, surge a necessidade da atualizacdo desta
matriz 2 medida que a solugd@o numérica evolui, caracterizando assim um processo iterativo.

A etapa final do método numérico diz respeito a escolha do algoritmo para a solugdo
do sistema de equacdes algébricas, com base nas caracteristicas do proprio sistema. Os
algoritmos de solu¢do podem ser diretos (os quais necessitam da inversdo da matriz dos
coeficientes) ou iterativos. Como neste trabalho sdo abordados problemas nao-lineares, foram

adotados métodos iterativos de solucao.

I-3. CONVERGENCIA DA SOLUCAO NUMERICA E METODO MULTIGRID

Para um sistema de equacdes ndo-lineares ndo ¢ possivel fazer afirmagdes a priori
acerca da convergéncia da solu¢do numérica. Valores adequados de tamanho da malha, de
intervalo de tempo (para problemas transientes) ¢ de coeficientes de relaxagdo que garantam a
estabilidade e convergéncia da solu¢do numérica sdo muitas vezes encontrados de maneira
empirica. Em todo caso, a observagdo de certas regras (ex: positividade dos coeficientes)
ajuda na convergéncia da solugdo numérica Maliska, 1985, Patankar, 1980.
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No inicio dos célculos, a taxa de convergéncia ¢ maxima, passando porém a decair
sensivelmente a medida que o processo iterativo evolui. Tal efeito € tanto mais pronunciado
quanto mais refinada for a malha computacional. Através de consideracdes da algebra linear,
Hackbusch, 1985, mostra que tal comportamento vem do fato do método iterativo ser
eficiente na remog¢ao somente daquelas componentes de Fourier do erro cujos comprimentos
de onda sdo menores ou comparaveis com o espagamento da malha. Apds algumas iteragdes
diz-se entdo que as componentes de baixo comprimento de onda ja foram suavizadas ¢ que o
processo de convergéncia tornou-se lento em decorréncia da ma suavizagdo das componentes
de comprimento de onda elevado.

Com base nessa observacao, a idéia do método multigrid (“malhas multiplas™) ¢é
cobrir um espectro maior de comprimento de onda através da iteracdo ndo apenas em uma
unica malha, mas em uma seqiiéncia de malhas cada vez mais grossas, isto ¢, de maior
espacamento. Deste modo, comprimentos de onda de componentes do erro que sdo grandes
em malhas finas s3o transformados em comprimentos menores em malhas grossas, podendo
entdo o erro ser ali melhor suavizado. Com isso acelera-se o processo de convergéncia,

através da iteragdo em malhas de espagamentos variados, nas quais as componentes do erro

com comprimentos de onda correspondentes sdo eficientemente reduzidas.

I-4. OBJETIVO E ORGANIZACAO DO PRESENTE TRABALHO

No presente trabalho aplicou-se a técnica multigrid na solugdo numérica de
problemas bidimensionais (coordenadas cartesianas) de mecanica dos fluidos e transferéncia
de calor.O programa baseou-se no trabalho desenvolvido por Rabi, 1998 que abordou o
método multigrid na solu¢do de escoamentos laminares, incompressiveis, em regime

permanente e propriedades constantes. Para discretizagdo em volumes finitos foram



empregadas malhas computacionais estruturadas e ortogonais € o sistema de equacdes
algébricas resultante € resolvido por algoritmos iterativos.

A organizacdo do texto ¢ descrita a seguir. O Capitulo I procura situar o trabalho e
faz uma breve introduc¢do aos principais assuntos por ele envolvidos. No Capitulo II sdo
apresentadas as equagdes governantes e as condi¢des de contorno dos problemas estudados. O
Capitulo III e o Capitulo IV dizem respeito a implementagdo da solu¢do numérica, enquanto
que o Capitulo V ¢ reservado para a apresentacdo e discussdao dos resultados. Neste capitulo
sdo apresentados estudos comparativos da velocidade de convergéncia das diferentes solugdes
implementadas, assim como da qualidade das mesmas. Por fim, o Capitulo VI contém as
principais conclusdes obtidas e sugere alguns desenvolvimentos futuros. O Capitulo VII

contém as referéncias bibliograficas.

I-5. REVISAO DA LITERATURA

Segundo Brandt, 1977, as primeiras investigagdes acerca dos métodos multigrid
foram feitos por Fedorenko em 1964 e por Bakhvalov em 1966, embora seus procedimentos
basicos como a suavizagdo de erro por relaxagdo e calculo de correcdes em malhas grossas
com aplicagdo recursiva ja vinham sendo estudados por varios autores, conforme citam
Stiiben e Trottenberg, 1982. Contudo, a eficiéncia da técnica foi verificada por Brandt em
1972, quem mais tarde apresentou uma descri¢do precisa de seu algoritmo Brandt, 1977,
incluindo a solugdo de problemas nao-lineares, como ¢ o caso dos problemas de mecanica de
fluidos. Um histdrico mais detalhado pode ser encontrado em Hackbusch, 1985, Brandt, 1977
e Stilben e Trottenberg, 1982, enquanto que um breve historico dos desenvolvimentos
posteriores e mais recentes pode ser encontrado em Thompson e Ferziger, 1989.

Embora tanto a filosofia geral do método multigrid como o seu algoritmo sejam de facil
compreensdo, a aplicacdo da técnica ndo ¢ trivial. Conforme comentério de Hackbusch, 1985,
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“ndo ha algoritmo multigrid operando como uma ‘caixa-preta’ para todos os problemas de
valor de contorno.” Os seus diferentes componentes devem ser adaptados de acordo com a
natureza do problema abordado. Assim, além dos cuidados necessarios a toda implementagao
de uma solu¢ao numérica, cuidados especiais devem ser tomados quando da utilizacao de
mais de um nivel de malha computacional (ex: transferéncia de valores entre as malhas).

Seguindo esta linha de trabalho Rabi e de Lemos, 1998b, realizaram uma analise dos valore

Otimos para os parametros v, v

e v¥. Em de Lemos e Mesquita, 1999a, foi apresentado
um estudo investigando a eficiéncia do método multigrid em escoamentos em tanques e
expansao abrupta, ambos laminares e nao-isotérmicos, para solugdes multigrid tanto em ciclo
V' como para o ciclo W. O trabalho Mesquita e de Lemos, 1999b, também considera o
escoamento laminar nao-isotérmico entre placas com expansao abupta, porém neste caso €
feita uma andalise mais criteriosa dos parametros 6timos do ciclo multigrid. Mais adiante, de
Lemos e Mesquita, 2000a , consideram os casos de escoamento em tanque retangular
aquecido e escoamento com expansdo abrupta. Neste trabalho considerou-se valores
diferentes para Re e suas implicacdes nos padrdoes de resultados do ciclo multigrid, com
solucdo acoplada e solu¢ao desacoplada entre temperatura e velocidade. Finalmente em

Mesquita e de Lemos, 2000b, foi proposto o estudo de escoamentos turbulentos nao-

isotérmicos com recirculagdo usando o método multigrid.
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CAPITULO II - MODELO MATEMATICO

II-1. EQUACOES DO ESCOAMENTO LAMINAR

No presente trabalho sdo analisados apenas escoamentos laminares bidimensionais
incompressiveis de fluidos em regime permanente. As equacdes que descrevem o movimento
de um fluido e do transporte de energia através dele sdo as equacdes para a massa, para a
quantidade de movimento e para a energia. Elas representam matematicamente o principio da
conservacdo destas grandezas e sdo abaixo apresentadas para um sistema de coordenadas
cartesianas. Maiores detalhes sobre a obtencdo destas equacgdes sdo encontrados em Bird,
Stewart e Lightfoot,1960, Eskinazi, 1960.

A equacio da continuidade (massa) para os escoamentos estudados neste trabalho ¢

i i
E(pUH@(pV) =0 (1I-1)

onde p ¢ a densidade e U e V' sdo as velocidades nas diregdes x e y, respectivamente.
A equacao da quantidade de movimento ou equacao de Navier-Stokes pode ser escrita

para cada uma das direg¢des coordenadas, sendo dadas por

direc;ﬁo-x:%(,1)U2)+%(;)UV):%(u%)+%£y%}—%+&J (I11-2)
reciioy: 2 K R T R T B 2 i ]
dlregao-y.dc(pUV)Jréy(pV) df[ﬂdf)+@/(#@/j 0}+SV (11-3)

onde u ¢ a viscosidade molecular e P ¢ a pressdo de movimento, que representa a diferenca
entre a pressao estatica e a pressdo hidrostatica. Os termos Sy e Sy guardam os chamados

termos fontes viscosos e sao dados por
II-1



SZi@,@}i@,ﬂj . Szﬁﬂ@ +£ﬂﬂ (I1-4)
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os quais se anulam pela equacdo da continuidade (II-1) para fluidos com p e i constantes.

Por fim, a equacdo da energia aqui resolvida € escrita em termos da temperatura 7 e pode ser
simplificada desprezando-se os trabalhos devido a pressao e as forgas viscosas. Esta hipotese
¢ valida para escoamentos a baixos nimeros de Mach, a qual ¢ consistente com a hipdtese de

densidade constante aqui assumida. A equagdo entdo assume a forma

o ’ J(Kar) J( K

sendo St o termo fonte (geragdo interna de calor), K a condutividade térmica e ¢, o calor

especifico a pressdo constante.

11-2. EQUACAO GERAL DE TRANSPORTE

As equagdes de transporte vistas no item anterior descrevem fenomenos fisicos similares e,
portanto, sdo compostas de termos semelhantes. Este fato sugere escrevé-la de uma maneira
geral, cuja forma para problemas bidimensionais em coordenadas cartesianas e em regime

permanente €

g g _O(p BV, P @ ]
dc(pU¢)+@;(pV¢) &(g&x}@(g@}sqj (11-6)

onde ¢ esta relacionado a alguma propriedade do escoamento (densidade, componentes do

vetor velocidade, temperatura), T, € o coeficiente de difusdo da propriedade em questdo e

S, ¢ o termo fonte. Este ultimo ¢ responsavel por acomodar todos aqueles termos que ndo se
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encaixam na forma apresentada pela Eq. (II-6) conhecida na literatura como equagao geral de

transporte (EGT). A tabela a seguir contém os valores assumidos por ¢, T, e S, para as

grandezas resolvidas no presente trabalho.

Tabela II-1 - Coeficientes de difusio e termos fontes da EGT.

g |1, Sy
a0 oUu 0 v
oo |- El g ) S F)
P U 0 174
Vo o|Hu ST 7Py PR S
ﬁy+@c(ﬂ@]+éy(ﬂ@j
r | X s
c, |T

Os termos do lado esquerdo da Eq. (II-6) representam o balango convectivo da variavel ¢ e
sdo os termos mais delicados para o tratamento numérico, devido as nao-linearidades. Os dois
primeiros termos do lado direito representam o balanco dos fluxos difusivos. O termo fonte ¢
o responsavel por acomodar todos aqueles termos que ndo se encaixam na forma apresentada
pela Eq. (II-6) possibilitando estabelecer normais gerais para que sua solucdo possa ser
estabelecida. Vale lembrar que para o caso de escoamentos com y e p constantes 0s termos
fontes viscosos sdo nulos (Sy = Sy = 0), de modo que os termos fontes para as velocidades

simplificam-se em

so=-L SV=—% (11-7)
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Por ultimo e apenas como um adendo, vale citar que na Tabela II-1 ndo foram apresentados os

termos referentes a densidade (9= p, I, =0, S, = 0) por esta ndo ser uma grandeza resolvida

uma vez que os escoamentos analisados sdo incompressiveis.

11-3. CONDICOES DE CONTORNO

A solucao da EGT para as grandezas do escoamento s6 ¢ possivel mediante a especificacao
das condigdes de contorno do problema em questdo. Quatro diferentes tipos de condi¢des de
contorno foram implementadas no programa que resolve escoamentos de fluidos: (1) parede
solida, (2) linha de simetria, (3) perfil de entrada ou (4) perfil de saida. A selecdo e
aplicacdo de um determinado tipo se faz conforme a geometria / fisica do problema de
interesse investigado, como ilustra a Figura (II-1). O subscrito n refere-se a direcdo normal a

fronteira e ¢ refere-se a dire¢c@o tangencial.

— = R |
C . parede X —
— n —
— —
[ |
S perfil de perfil de — at
- entrada saida — o ! n

— —_— !
L i
L — —= |
— —_—
— n —
= linha de simetria t .|

|

Figura II-1 - Condi¢des de contorno implementadas nos problemas de escoamento.

Cada tipo de condicdo de contorno para as componentes da velocidade é suscintamente
analisado a seguir. A discussao sobre a implementagdo numérica de cada um ¢ deixada para
capitulo posterior. No programa que resolve problemas térmicos somente a condigdo de valor

prescrito (condi¢ao de contorno de Dirichlet) foi implementada.
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I1.3.1 Parede sdlida
Em escoamentos laminares, a condicdo de aderéncia ¢ aplicada sobre paredes. Para

superficies impermeaveis, ¢ atribuido o valor zero para ambas as componentes da velocidade.

I1.3.2 Linha de simetria
Ao longo de uma linha de simetria sdo atribuidos valores nulos para o gradiente normal da

velocidade tangencial a ela e para a componente da velocidade normal a linha.

11.3.3 Perfil de entrada
Os perfis de entrada a serem prescritos podem ser extraidos de dados experimentais ou de
outra forma de informagdo empirica. Por um outro lado, podem ser simplesmente arbitrados

conforme o interesse ou a conveniéncia em relagdo ao problema analisado.

I1.3.4 Perfil de saida
Quando o perfil de saida esté suficientemente distante de regides com recirculagdo, assume-se
estar o escoamento totalmente desenvolvido. Deste modo, sdo desprezados os gradientes das

velocidades na dire¢do principal do escoamento.
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CAPITULO III - MODELO NUMERICO

I11-1.. FORMULACAO EM VOLUMES FINITOS

Na formulagdo em volumes finitos o dominio de calculo ¢ dividido em volumes finitos (VC)
ndo-superpostos, de modo que cada um envolva um unico ponto nodal da malha
computacional. Quando cada VC possui 0 mesmo niimero de Vcs vizinhos, a malha ¢ dita
estruturada e se todos tém formato retangular, ela ¢ classificada como ortogonal. Em uma

malha regular ou uniforme todos os VCs possuem as mesmas dimensoes.

volumes de pontos
VNJ= YNM controle nodais NN,
I » » - - - I
[ [ [ [ [
yNJ-Z .
i j+1
] [ [ [ [ [ [ ]
N
Y
-1 i i+1]
[ [ [ [ [ [ [}
W P E
YJ._1
. ™ ™ o' ™ ™ *
5
¥y
Py [ [ [ [ I
Y, » » - - -
X, Xz X1 X; mz Xy X

Figura III-1 - Disposi¢ao dos volumes de controle no dominio de célculo
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A Figura III-1 mostra como foi feita divisdo do dominio de calculo nos casos estudados, onde
os VCs foram definidos pela intersecao de linhas de coordenadas x e y constantes. As malhas
resultantes sdao estruturadas e ortogonais, podendo ser ou nao uniformes. Os pontos nodais
localizam-se no centro do volume de controle (esquema cell-centered) e sdo numeradas a
partir do canto inferior esquerdo. A existéncia de pontos nodais sobre as fronteiras do dominio

(VC de dimensao nula ) relaciona-se com a aplicagdo das condi¢des de contorno.

&
¥

oy

0 2
Z
=
1
m

&
4
3

4
¥
[ ]

AX A AX

g
@

1S

Figura I1I-2 - Esquema e nomenclatura de cada volume de controle

A Figura III-2 mostra o esquema de um VC tipico e apresenta em detalhes a nomenclatura de
suas principais dimensdes.Ha duas maneiras Maliska, 1985 de se obter as equagdes algébricas
no método de volumes finitos. Em uma delas, as equacdes sdao obtidas através de balangos de
conservacdo da grandeza no VC. Tal tarefa consiste basicamente em se escrever as taxas
macroscopicas de acumulacdo, de transporte, de produgdo e de dissipa¢ao da propriedade no

interior e nas faces do volume de controle.
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Contudo, a forma mais recomendada ¢ a partir da EGT na forma conservativa e integra-la
sobre o volume de controle. Isto vem do fato de nem todos os balangos serem faceis de se
deduzir. Esta forma foi adotada no presente trabalho e suas linhas gerais sao descritas no
proximo item.

Por fim, vale mencionar que as variaveis dependentes foram armazenadas segundo um arranjo
co-localizado, 0 mesmo VC sendo usado para realizar a integracdo da EGT para todas as
varidveis. De acordo com Patankar, 1980, no uso deste arranjo podem surgir problemas
relacionados ao acoplamento pressdo-velocidade e & deteccdo de campos oscilatorios. Um
modo de evita-los ¢ pelo uso do arranjo desencontrado (Maliska, 1985 e Patankar, 1980 ). O
outro ¢ realizar um esquema de interpolag@o para se obter os valores das velocidades nas faces

do VC. Este ultimo procedimento foi aqui adotado e serd descrito em item posterior.

I11-2. DISCRETIZACAO DOS TERMOS DA EGT

A integracdo da EGT, sobre um VC como o da Figura III-2 faz-se segundo

o(. op\ o ap
| {E(Q Ej + 5(@ Eﬂdv + 5] S, dv (111-1)

ov

J F (oUp)+ %(pw)}dv -

v d(

onde dv = dxdy define a extensdo do VC bidimensional. O proximo passo ¢ a discretizacdo da

Eq.(IlI-1) que sera apresentada separadamente para os seguintes termos:
® termos convectivos (integral do lado esquerdo);
e termos difusivos (primeira integral do lado direito) e

e termo fonte (Ultima integral do lado direito).

I11.2.1 Discretiza¢ao dos termos convectivos

A integracao dos termos convectivos sobre o VC pode ser expressa na forma
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(pU) dxdy + ﬁg(pw)dydx (111-2)

S

24
ox

£ —o

que apds uma primeira integragao fica
[[(oUp). - (pUB), Jdy + [[(oV9), - (pV8),]dx (I11-3)

onde os subscritos e, w, n, s representam as faces do VC sobre as quais as grandezas devem
ser calculadas.
Aqui ¢ feita entdo a hipdtese de que a grandeza avaliada no meio da face do VC seja constante

ao longo da mesma. Nestas condicdes, a integracao resulta em
Ce d)e - Cw ¢w + Cn ¢n - Cs ¢s (HI-4)

onde

Ce=(pU)e Oy, Co=(pU)w 8y, Co=(pVndx, Cs=(pl)sdx (I11-5)

sdo os fluxos massicos através das faces do VC.

Neste ponto torna-se necessario introduzir um esquema de interpolagdo que fornega uma
relagdo matematica que permita o calculo das grandezas e de suas derivadas nas interfaces do
VC em funcdo dos valores das mesmas em pontos nodais vizinhos. Em Maliska, 1985 e
Patankar, 1980 sdo encontrados e discutidos exemplos de diversos esquemas de interpolacao:
CDS - central differencing scheme, UDS - upwind differencing scheme, esquema exponencial,
esquema hibrido e WUDS - weighted upstream differencing scheme, apenas para citar alguns.
Para problemas hidrodindmicos, preservou-se o esquema originalmente adotado em Rabi,
1998 conhecido como flux blended deferred correction Khosla e Rubin, 1974, o qual faz uma
combinagdo linear dos esquemas CDS e UDS, apresentado a seguir.

Tomando a face e como exemplo, os valores sobre a mesma sao calculados segundo
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4. =/1¢ecns +(1_/1)¢UDS :¢UDS +/1(¢CDS _¢UDS) (I11-6)

€ € € €

onde o fator de combinacdo A varia entre 0 (UDS puro) e 1 (CDS puro). No procedimento
numérico, o termo entre parénteses ¢ calculado com valores oriundos do nivel iterativo

anterior (denotados com asterisco), fornecendo

g, = 82 + A - g5 (I11-7)

Este procedimento torna a matriz dos coeficientes estritamente positiva € com predominancia
diagonal, o que ¢ interessante do ponto de vista numérico (Maliska, 1985 e Patankar, 1980).
No esquema UDS, o valor da funcdo na interface ¢ igual ao valor da fun¢do no ponto nodal do
VC a montante do escoamento. Este esquema €, portanto, fisicamente consistente para
problemas convectivos, ou seja, de carater parabdlico. Matematicamente tem-se
C. 4, = max|C. 0] ¢, - max[-C. 0] g,
C.d, = max[C; ,O]¢W - max[— C, ,0] Do

C.4, = max[C: ,0] op — max[— C, ,0] N
C4, =max|C. 0] g — max|-C7 0] 4,

(I11-8)

O operador max[a,b] fornece o maior entre a ¢ b.
Por outro lado, o esquema CDS ¢ consistente para problemas puramente difusivos, ou seja, de
carater eliptico. Um perfil linear por partes é utilizado para relacionar os pontos nodais

vizinhos, matematicamente expresso por

¢e = (l - fx,P )¢P + x,P¢E ¢w = (l - fx,w )¢w + x,W¢P (I11-9)
b= (1= Lo Mo + 08 b, =(=1,)d+ £ 60
onde os fatores de interpolagdo linear f; p, fx.w, fy.p, fx,s sdo calculados segundo
xe B x xW B x n B yS - y
Sor = S fiwE T, fp = BAEmd B frs =" (I11-10)
Xg —Xp Xp —Xw YN = Vp Yp = Vs
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I11.2.2 Discretiza¢ao dos termos difusivos

A integracao dos termos difusivos sobre o VC ¢ expressa por

te o (L a o a
Iig@ gqﬁj“dyﬂ!g(ﬁ g}dydx (II-11)

S

Apo6s uma primeira integracao e pela hipotese de derivada constante ao longo da face, tem-se

a a a a
(r _¢l§y - (g gﬂw 5+ [Q gj e - (r¢ 5"}1& (IlI-12)

Por fim, o esquema CDS ¢ novamente utilizado para discretizar os gradientes nas faces do VC

(@j :¢E_¢P (@j :¢P_¢W
a ), Ax, a ), Ax,
(111-13)
(@J :¢N_¢P [@j =¢P_¢S
d)y Ay &) Ay

I11.2.3 Discretizacao dos termos convectivos e difusivos—esquema WUDS
O esquema WUDS proposto por Raithby e Torrance, 1974 usa dois coeficientes o e 3 que
servem como pesos entre os processos de convecgdo e condugdo. Conforme mencionado, ele
foi empregado no programa que resolve problemas térmicos. Tomando a face leste como

exemplo, o valor da temperatura e de sua derivada na interface sdo aproximados por
1 1 ar T, —T,
T.=\—+a, |T,+|——a, [T e — =p| =L 111-14
e (2 e j P [2 e j E @C ﬂe ( J ( )

Ax
com os coeficientes sendo expressos por

e ¢
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e f. =Pe, exp(Pe, /2) (I1I-15)
exp(Pe, )1

€

1 exp(Pe, /2) -1
° 2 exp(Pe,)-1
O parametro Pe. ¢ o numero de Péclet da célula baseado na distancia internodal Ax.. Ele ¢

avaliado com os valores do nivel iterativo anterior segundo

*

pU Ax
K/C,

Pe = (111-16)

e

Para as demais faces sdo propostas expressoes andlogas as anteriores (Maliska, 1985) com Pe
sendo calculado com os valores das grandezas na interface e com a respectiva distancia
internodal.

Contudo, as expressdoes para o e [ dadas pelas Eqs. (III-15) acarretam dificuldades
relacionadas com o tempo de computagdo para avaliar as exponenciais. Para contorna-las,

Raithby e Torrance, 1974, propde as seguintes aproximacodes, aqui também adotadas,

Pe? _ 1+0.005 Pe;

€

aQ=— e == 11-17
° 10+2Pe’ © 1+0.05P¢’ ( )

I11.2.4 Discretizacao do termo fonte
Com base no teorema do valor médio, a integral do termo fonte é expressa como o produto de

um valor médio, o qual esta associado ao ponto nodal central, pelo volume do VC

[S,dv=5,6v~S,,0v (I11-18)
oV

Em casos onde, por exemplo, o termo fonte Sy depende (linearmente ou ndo) da propria
grandeza ¢, recomenda-se (Maliska, 1985 e Patankar, 1980 ) proceder uma linearizacdo da

forma
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Sop =Se+ Sp dp (111-19)

Por ultimo, para obter solugdes fisicamente realistas e por questdes de estabilidade e
convergéncia, ¢ desejavel manter o coeficiente Sp negativo. Contribuigdes positivas ao termo

fonte devem ser incorporadas a S., conforme ¢ discutido em (Maliska, 1985 e Patankar, 1980).

I11.2.5 Forma final da equacio algébrica
Para obter a equagdo algébrica final para o ponto nodal P sdo introduzidas na EGT integrada
sobre o VC, Eq. (IlI-1), todas as discretizagdes apresentadas nos itens II1.2.1-111.2.4. Apds

algumas manipulagdes algébricas, chega-se a

ap op = aw Ow + ag Qe+ as ¢s +an on+ b (1I1-20)

Para a discretizagdo com base no esquema flux blended, os coeficientes sdo dados por

ag =max[—C: ,0]+’l£x—§y ay, =max[C; ,0]+M
Hy u, ox

a. =max|C. ,0| + 111-21
Ay, ’ ct.o) Ay, (=20

a, =a; +ay +ay+ag—S,0v

ay :max[— C,, 0]+

O termo b contém contribui¢des do termo fonte e do termo referente a deferred correction
b=Sov+ 7(a€,c¢$v +ap gy +at s +an dy —ay© ) (IT1-22)
onde os coeficientes desta ultima contribuicao sao dados por

aEDC = —max[— C: ’O]_ C:fx,P av‘ilc = _maX[C:v ’0]+ C:/ (1 —JxW )
ay = —max[— C, ,0]— C:;fy,P alt = —max[C: ,0]+ C, (1 -

DC _ _DC DC DC DC
ap =ay tTay tay tag

(111-23)

¥,S

Por outro lado, para a discretizacdo com base no esquema WUDS, os coeficientes sao
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aE=—(1—ae]c* B. (KIC,). & _(lmch* B (KIC,), &

e aW

2 . 2 " Ax,,
. (K/C,). ox . B (K/C). &
0 = _(l —anan SO EE, & (l_as] o B KGy), & (I11-24)
2 Ay, 2 Ay,
a, =ag +ay +ay+ag—S,0v b =S8

I11I-3. TRATAMENTO DOS TERMOS FONTES

A Tabela II-1 apresenta os termos fontes na EGT para cada grandeza resolvida pelo programa.

O tratamento dado a cada um destes termos ¢ discutido a seguir.

I11.3.1 Termo fonte da EGT para a quantidade de movimento

Os termos fontes nas equagdes discretizadas para a quantidade de movimento recebem
contribui¢des do gradiente de pressdo e dos termos viscosos. Estes ultimos, contudo, ndo
serdo considerados pois se anulam para escoamentos com p € L constantes, nos quais
enquadram-se os escoamentos estudados no presente trabalho.

Na dire¢do-x, a integracdo do gradiente de pressao sobre o VC da Figura III-2 leva a
P 7
—|—dv=—||—dxdy=—(P. - P IM1-25
5[/ ; j i S &y (P, = P, )6 (TMI-25)

onde P, e Py, sdo os valores da pressao nas faces e e w, respectivamente, e sao relacionados

com os valores armazenados nos pontos nodais segundo uma interpolacao linear

Pe:(l _ﬁ,P)PP+ﬁ(,PPE 5 PW:(I _ﬁc,W)PW+ﬁ;,WPP (III-26)

Nas faces coincidentes com as fronteiras do dominio, os valores da pressdo sdo obtidos por

extrapolacdo linear dos valores em pontos nodais vizinhos anteriores
Pe = PP + (PP - Pw)(l _fx,W) , PW = PP - (PE - Pp)f;(’p (IH—27)
Analogamente, para a equagao da quantidade de movimento na dire¢do-y tem-se
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- P =P - P)ox (I11-28)
&
com
pontos internos: P, = (1 —fyp) Pp + fyp Pn . Ps=(1 —f;s) Ps+ fis Pp (111-29)

pontos de fronteira: P, = Pp + (Pp — Ps)(1 —fys), Ps=Pp—(Px—Pp) fyp (IT1-30)

Com relacao a Eq. (III-19), S; dv guarda as contribui¢des ao termo fonte e faz-se Sp = 0.

I11.3.2 Termo fonte da EGT para a energia

Nao sdo consideradas fontes internas de calor, ou seja, St =0.
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I1-4. TRATAMENTO DAS CONDICOES DE CONTORNO

Com base no que foi discutido no capitulo anterior, a Tabela III-1 resume a forma como as
condig¢des de contorno sdo aplicadas. Para as componentes da velocidade, o subscrito n refere-

se a direcao normal a fronteira e t refere-se a dire¢do tangencial.

Tabela III-1 - Resumo das condi¢des de contorno implementadas.

Tipo de fronteira condi¢do de contorno
superficie solida U=U,=0
120}
plano / linha de simetria éht =U,=0
perfil de entrada perfis fornecidos: U, Uy, T
a(]t _ é’C]n _
perfil de saida M 0

Nos itens seguintes ¢ apresentada a implementacdo destas condi¢des de contorno para a
fronteira sul (subscrito s), primeiramente para o esquema flux-blended (para U e V) e em
seguida para o esquema WUDS (para 7). A implementacao para as demais faces pode ser
inferida por analogia.

Vale mencionar que no problema térmico estudado somente foi empregada a condi¢do de
valor prescrito na fronteira. Na Tabela III-1 ela consta como condig¢ao de contorno de perfil de

entrada.
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I11.4.1. Superficie solida
Pela condi¢ao de aderéncia e impermeabilidade, ambas as componentes da velocidade e o
fluxo massico normal sdao nulos ao longo da parede, Us = V= Cs* = (. Assim, também ¢é nula
a contribui¢do ao termo convectivo na equagao para ambas as velocidades, Eq. (III-8). Para a

velocidade tangencial, a contribui¢do ao termo difusivo, Eq. (IlI-12), é aproximada por

U, -U 8
AQEQJ&zﬂSP s =y (I1-31)

& &2 &2t

enquanto que para a velocidade normal tal contribui¢do se anula pelo fato de (é’V / @)S =0

pela equacdo da continuidade. Por estas consideracdes, na Eq.(I[I-20) para a velocidade

tangencial sdo introduzidas as modificacdes

o)
U, =U, =0 ay =% (111-32)
oy/2
enquanto que para a velocidade normal as modificacdes sdo
Vs=Vs= 0 as = 0 (IH—33)

I11.4.2 Linha de simetria
Como a velocidade normal V5 a linha de simetria ¢ nula, o fluxo convectivo se anula para
todas as grandezas do escoamento. Embora Vs seja nula, seu gradiente normal ndo precisa
necessariamente ser nulo também e pode ser aproximado de maneira aniloga a Eq.(III-31),

levando as seguintes modificagdes

&
Vi=V.=0 s R

s 111-34
s aS @/2 ( )
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Como o gradiente normal de U ¢ nulo, as modificagdes necessarias sao

Us= Up as =0 (I11-35)

I11.4.3. Perfil de entrada
Os valores prescritos as variaveis no perfil de entrada sdo atribuidos aos pontos nodais,
enquanto que os fluxos difusivos sdo aproximados segundo a Eq. (III-31). Assim,

" &
vV, =V £y

US = U entrada aS = m

entrada (III_36)
I11.4.4. Perfil da saida
Do ponto de vista computacional, a implementagdo das condi¢des de contorno de saida ¢

idéntica aquela utilizada para a condicdo de simetria, com exce¢do a componente normal da

velocidade, cujo gradiente passa agora a ser nulo também. Assim, para todas as variaveis,
Us = UP as = 0 (HI-37)

Além disso os fluxos méssicos de saida sdo corrigidos com relagdo aos fluxos de entrada de

modo a preservar a conservagdo de massa no interior do dominio

* i entrada
Csaida = Cf'Csaida > Cf = (111-38)
M ida
onde m 4., Mgy, correspondem ao somatorio de todos os fluxos massicos de entrada /

saida pelas fronteiras do dominio.

I11.4.5. Tratamento para o esquema WUDS
Em resumo, as condi¢des de contorno para as equacdes obtidas por meio do esquema WUDS
sao implementadas observando-se o tipo de condigdo matematica exigida. Serd tomada
novamente como exemplo a fronteira sul, podendo as demais serem inferidas por analogia.
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A condicdo de contorno implementada ¢ a de Dirichlet (valor prescrito, mesmo que nulo).
Assim, na Eq. (III-20) escrita para a temperatura, deve-se ter 7s = 75, o que ¢ obtido

impondo-se o, = 2 na expressao para T
1 1
T = E+0¢S T + E—as T, (IT1-39)

Por sua vez, s ¢ avaliado com Pes sendo calculado com Ays = 8y / 2. Os novos valores destes

dois parametros sdo entao levados as Eq.(I111-24)

I11-5. ACOPLAMENTO PRESSAO-VELOCIDADE

Segundo Patankar, 1980, a real dificuldade no calculo do campo de velocidade esta
relacionada ao campo de pressdo desconhecido, pois ndo ha uma equacao direta que permita a
sua obten¢do. No entanto, ele pode ser especificado indiretamente através da equagdo da
continuidade. Quando o campo correto de pressdao ¢ substituido nas equacdes da quantidade
de movimento, o campo de velocidade dai resultante satisfaz a continuidade.

O acoplamento pressao-velocidade aqui adotado ¢ baseado no algoritmo SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) desenvolvido porPantankar e Spalding, 1972.

O algoritmo ¢ composto dos seguintes etapas:

a) Valores iniciais das grandezas sdo estimados a fim de avaliar os coeficientes (fluxos
convectivos e difusivos) das EGTs na forma discretizada e as diferengas de pressao.

b) As equacdes da quantidade de movimento sdo montadas e relaxadas, resultando nos
campos U e V. Como a aproximacao inicial do campo de pressao P ¢ provavelmente
incorreta, estas velocidades ndo satisfazem a continuidade.

c) A partir da equacdo da continuidade e das equacdes da quantidade de movimento, €
derivada uma equagdao que fornega um campo de pressdo corrigido P, cuja obtengao

resulta em correcoes as velocidades, de modo a satisfazer a continuidade.
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d) Caso estejam sendo resolvidas, as demais grandezas do escoamento sdo agora tratadas.
, . ~ * . y
e) O novo valor P ¢ tratado como uma nova aproximagdao P e o algoritmo ¢ retomado a

partir do passo (b), até atingir a convergéncia.
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I11.5.1 Equacio de correcio da pressao

A equacao da continuidade discretizada pode ser colocada na forma
pUy—p Uy +pV,0k—plox=0 (I11-40)

A introdugio das velocidades U e V', conforme o passo (b), faz com que a continuidade nio

seja mais satisfeita, produzindo uma fonte de massa Sp,
p U —p ULy +pV,&—pl =8, (I1-41)

Neste ponto ¢ importante discutir o esquema de interpolacao empregado na determinagao das
velocidades nas faces Ue*, UW*, Vn* € Vs*. A razdo ¢ que para um arranjo co-localizado de
variaveis (que € o caso), a aplicacdo direta da interpolagdo linear leva ao desacoplamento
entre a velocidade e a pressdao e a possiveis solucdes oscilatorias Patankar, 1980. A seguir €
apresentada a determinagao de U, sendo analogas as expressoes para as demais faces.

As equacdes das quantidades de movimento para os pontos nodais P e E com base na

Eq.((I1I-20) escritas com os termos fontes 5" e b* expandidos ficam na forma

atUp =Y a"U., +s% - 5P - P))

111-42
atUn =S at Ut + st —(p. - P) R

O indice do somatério vz cobre os pontos nodais vizinhos a oeste, leste, sul e norte e os

termos s, e s, correspondem aos termos fontes viscosos ja discretizados. (Vale lembrar que

os mesmos se anulam para os casos considerados; este fato porém nao prejudica as
manipulacdes algébricas apresentadas a seguir, o que as torna gerais.)
A velocidade U, ¢ obtida interpolando-se linearmente todos os termos nas Egs.(I11-42),

exceto a diferenca de pressdo que ¢ avaliada segundo uma malha desencontrada, donde
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*
zaVZUVZ + SU
vZ

ap

R (P -P;) (I11-43)
(ap).

€

A interpolagdo do primeiro termo do lado direito da equagdo acima pode ser feita com o

auxilio das Egs. (I[I-42), de modo que a expressio final para U, fica

U: = (1 —Jir {U; + QP(P: - P\: ):| T Jxr |:U; + iE(Pe:: - P: )} - (l fé‘y(l))jp__'_P;i) E (I11-44)
— Jxp Jp xp dp

ap ap

A inser¢do das velocidades interpoladas para as faces na Eq. (III-41)permite o calculo da
fonte de massa S;,. Assim, corregdes para a velocidade e para a pressdo devem ser obtidas

com vistas a satisfazer a continuidade. As corre¢des para a velocidade sdo da forma
PUHUNSY = p (U, UG + p, (7, + V) = p (V] + V) =0 (I11-45)
que, com o auxilio da propria Eq.(III-41), pode ser rescrita na forma
pUy = p ULy + p,V ox—pliox==S, (111-46)

No passo seguinte, as corre¢des para a velocidade sdo relacionadas com as corregdes para a
pressdo. Para tanto, s3o utilizadas as equagdes da quantidade de movimento na forma

discretizada, resultando em uma expressao semelhante a Eq.(I11-43), a saber

Zasz\l/z + S{J
U, == - Y (p-p)) (I11-47)
ap (aP)e

€

No algoritmo SIMPLE, sdo desprezados os efeitos (implicitos) das correcdes para a

velocidade nos pontos vizinhos, simplificando a expressao acima para
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U= i(PE'—PP’) T (P —Py)

(C;P)e ?P)W (III-48)
V= (R - R V== (BB
o, B . )

onde também foram apresentadas as expressoes para as demais corregdes. Inserindo as Egs.

(ITI-48) na Eq. (I1I-46) resulta na equagdo da corre¢do para a pressao

a, Py =ayPy +ay Py +agP +a P, — S, (I11-49)
com
2 2 2 2
o) o)
gy =22 q, = L% g =P gy =P
(aP)w (aP)e (aP)s (aP)n (III_SO)

I11.5.2 Condicoes de contorno para a equac¢io da correcio da pressio
As condi¢des de contorno aplicadas dizem respeito a valores conhecidos para as velocidades
normais nas fronteiras. Tal ¢ o caso dos tipos de fronteira implementados: paredes solidas,
linhas de simetria e perfis de entrada / saida. Nestas circunstancias, a velocidade normal ndo
precisa ser corrigida.
Considerando por exemplo a fronteira sul, deve-se impor V' = 0, de modo que a Equagao

(ITI-46) fica na forma

pUy - p ULy +pV ok==8, (11-51)

Introduzindo na relagdo acima as expressdes para as corregdes para a velocidade, Eq. (I11-48),
chega-se a equacao da correcdo para a pressdo, desta vez porém com as = 0. Do ponto de vista

de implementacao numérica, tal situacdo corresponde a uma condi¢do de contorno de von
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Neumann de gradiente nulo. Expressdes andlogas podem ser obtidas para as demais

fronteiras.

I11.5.3 Atualizacdo da pressio, das velocidades e dos fluxos massicos
Apos relaxada a equacdo da correcao para a pressdo, a pressao em si, as componentes da

velocidade e os fluxos massicos sdo corrigidos segundo

P,=P, +P]
U, =0 -2 (p-p) Vo=vi -2 (P P) (I11-52)
ap ap
* ? ' ’ * né‘x2 i ’
Ce:Ce_peé:y (PE_PP) C’n:C’n_p (N_PP)
ap). (ap),

Estes novos valores satisfazem a conservagdo de massa mas ndo mais satisfazem as equagdes

da quantidade de movimento e servem como aproximacao inicial do préximo passo iterativo.

I1I-6. PARAMETROS DE SUB-RELAXACAO

Em virtude da ndo-linearidade das equagdes para a quantidade de movimento, do
acomplamento pressdo-velocidade e do fato de alguns termos serem desconsiderados na
deducao da equagdo para a pressdo, o algoritmo SIMPLE pode divergir caso ndo seja emprega
alguma forma de sub-relaxacdo. A pratica adotada no presente trabalho segue aquela existente
no programa computacional original Rabi, 1998, sendo abaixo descrita.

Ao invés da Eq.(I11-52), a pressdo ¢ corrigida segundo
P, =P + &P (IT1-53)

onde Ep € o fator de sub-relaxagdo para a pressao.
Para as componentes da velocidade, a Eq. (III-20) ¢ rescrita adicionando-se e subtraindo-se

em seu lado direito o valor ¢, oriundo da iteragdo anterior
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Zavz¢vz + bP
b=t +|—— ¢ (I1I-54)

ap

Ao termo entre parénteses que representa a variacao de ¢p por iteracdo € entdo aplicado um

fator de sub-relaxagdo & (ou seja, Ey e &y ) de modo a ter

zavz¢vz + bP
b=t +&| (I11-55)
ap
ou, equivalentemente,
ap ap
— P = zavz¢vz +b, +(l_é‘gp )_¢P (I11-56)

é:P vz §P

Este mesmo tipo de sub-relaxagdo ¢ também sugerida em Patankar, 1980.
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CAPITULO IV O METODO MULTIGRID

IV-1. A FILOSOFIA DO METODO MULTIGRID

No capitulo anterior foi apresentado o procedimento de discretizagdo da EGT aplicada a cada
grandeza do escoamento com vistas a obter as equagdes algébricas a serem resolvidas
computacionalmente pela aplicacdo de métodos numéricos. A equagdo algébrica resultante
para um dado ponto nodal (no centro do respectivo VC) pode ser colocada de um modo geral

na forma sugerida pela Eq.(III-20), mas aqui ela € rescrita na forma
ap (1)1_] —aw (I)i—lj — ag (I)i+1j — as q)ij—l — as (I)ij+1 — bl_] (IV—I)

onde os superscritos i j localizam na malha o ponto nodal nas dire¢des x, y respectivamente.
Promovendo a varredura de todos os indices i j, as Egs. (IV-1) resultantes formam um sistema

de equagdes algébricas expresso na forma matricial por
Ay @y = by (Iv-2)

onde Ay ¢ a chamada matriz dos coeficientes, ®y € a matriz das incognitas e by € a matriz que
acomoda os termos fontes. O subscrito k refere-se a malha computacional em questio.
Quando o sistema ¢ resolvido em apenas uma malha, este subscrito torna-se desnecessario.
Quando Ay tem estrutura tridiagonal, o sistema (IV-2) pode ser resolvido diretamente através
de algum algoritmo apropriado. No entanto, problemas bidimensionais resultam em Ay
pentadiagonal, requerendo a aplicagdo métodos iterativos.

Em métodos iterativos classicos como o de Jacobi, o de Gauss-Seidel ou o TDMA -
TriDiagonal Matrix Algorithm (Maliska, 1985 e Patankar, 1980), a taxa de convergéncia da

solugdo numérica ¢ elevada no inicio dos calculos, decaindo sensivelmente a medida que o
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processo iterativo evolui. Através de uma andlise espectral (ou seja, no espaco de fase),
mostra-se (Hackbusch, 1985, Brandt, 1977, Stiiben e Trottenberg, 1982 )que isto se deve ao
fato de o método iterativo ser capaz de suavizar, isto €, remover de modo eficiente apenas
aquelas componentes de Fourier do erro de altas freqiiéncias, o mesmo nao ocorrendo para as
de baixas freqiiéncias. A Figura IV-1(Stilben e Trottenberg, 1982) procura ilustrar este

comportamento

baixas frequéncias altas frequéncias

antes da relaxacao /\ /\ /\ /\
VARV

depois da relaxacio

reducéo pequena da amplitude redugio significativa da amplitude

Figura IV-1 - Comportamento da suavizagdo do erro em métodos iterativos de

suavizagao.

Conclui-se, pois, que as componentes do erro de baixas freqiiéncias sdo as responsaveis pela
lenta convergéncia eventualmente atingida pelos processos iterativos em malhas simples.
Como as componentes de altas freqiiéncias sdo aquelas cujos comprimentos de onda sdo
menores ou comparaveis com o espagamento da malha computacional, vem dai o fato deste
efeito ser tanto mais pronunciado quanto mais refinada for a malha.

A filosofia do método multigrid é baseada na premissa de que cada faixa de freqiiéncia do
erro deve ser suavizada na malha mais adequada para se fazé-la. Para que componentes do
erro de elevados comprimentos de onda (baixas freqliéncias) possam ser melhor suavizadas, o

método multigrid procura pois trabalhar ndo com uma tnica malha mas com uma seqiiéncia
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de malhas de refinamento decrescente. Deste modo, comprimentos de onda que sdo grandes
em malhas finas sdo transformados em comprimentos de onda menores em malhas grossas,
onde entdo sdo melhor suavizados. Assim, em cada nivel de malha visitado, as componentes
do erro correspondentes sdo eficientemente reduzidas, acelerando o processo de convergéncia.
Hé dois modos como o sistema de equagdes algébricas pode ser operado nas malhas mais
grossas: sao os chamados correction storage (CS) e full aproximation storage (FAS). Ambos
sdo descritos e discutidos a seguir. Em Brandt,1982 ¢ mostrado as operagdes necessarias para
se migrar do CS ao FAS. Para problemas lineares, recomenda-se a utilizagdo do CS, enquanto
que o FAS ¢ mais adequado para situagdes nao lineares (Brandt, 1977, Brandt,1982 e Vanka,
1986). Ainda assim, Jiang, et al, 1991 relatou ter obtido bons resultados na solug¢ao de alguns
problemas bidimensionais de mecanica dos fluidos usando o método multigrid na concepgao
CS.

Conforme podera ser verificado logo adiante, a maior vantagem do CS frente ao FAS ¢é que
este tipo de algoritmo multigrid quando da passagem de uma malha fina para uma mais grossa
(operagdo de restrigdo), requer apenas a manipulacdo dos residuos das equagdes na malha
fina, mas ndo requer a manipulacdo das grandezas resolvidas. Além disso, do ponto de vista
de implementacdo numérica, a restri¢do dos residuos ¢ bem mais simples do que a restri¢ao

das grandezas.

IV-2. CORRECTION STORAGE - CS

Neste esquema, procura-se obter nas malhas grossas (isto é, em todas as malhas exceto a mais
fina) aproximagdes da correg¢do para a grandeza do escoamento, sendo esta ultima resolvida
unicamente na malha mais fina. Em outras palavras, @y na malha mais fina guarda
aproximacdes da propria grandeza enquanto que em malhas grossas guarda aproximagdes da

sua corre¢do (donde o nome correction storage).
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Apds um certo numero de iteracdes aplicadas ao sistema(IV-2), obtém-se uma aproximacao
@, , acompanhada da respectiva corre¢io ¢y

=D - D, < b= O+ (IV-3)
Define-se o residuo ry como sendo

r,= b— A D, (IV-4)

Inserindo a Eq. (IV-3) na Eq.(IV-2), levando em conta a defini¢do ((IV-4) e considerando a
matriz Ag linear (dai sua melhor aplicabilidade em problemas lineares), mostra-se que a

corregdo ¢k ¢ a solucdo de
Ak ¢k = Iy (IV—S)
a qual tem a mesma forma que a Eq. (IV-2). A solucdo exata da Eq. (IV-5)) ¢ tao dificil

quanto a da Eq. (IV-2). Contudo, ¢x pode ser melhor aproximada que @y (Hackbusch, 1985).

Tal aproximacao ¢ realizada nas malhas mais grossas

A1 Gx-1 = T (IV-6)
onde ry_; ¢ obtido segundo

r, =1"r, (IV-7)

O operador /"', denominado restricdo, leva valores da malha k para a malha k-1 e sera

discutido em item posterior.

Em situacoes ideais, recomenda-se (Hackbusch, 1985) que a Eq. (IV-6)) na malha mais grossa
seja resolvida exatamente, o que nem sempre ¢ possivel. Todavia, por envolver um nimero
expressivamente menor de VCs, pode-se pelo menos realizar um niimero bem maior de

iteragdes nesta malha sem comprometer muito o esfor¢o computacional.
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ApoOs obtida, a aproximagao da corregao ¢7m71 em malha grossa ¢ levada de volta para malhas

mais finas através do operador prolongamento I}, (também discutido adiante)

T (IV-8)
de forma a refinar a aproximagdo @, segundo
O =D, +4, (IV-9)

De um modo global, todo o procedimento pode ser resumido na expressao

O™ =D, + 1 AL I (b, —A, D, ) (IV-10)

IV-3. FULL APROXIMATION STORAGE - FAS

Neste esquema, ao invés de se guardar nas malhas grossas correcdes para a grandeza do
escoamento, a idéia ¢ guardar em @y_; a aproximagao da propria grandeza.

Novamente parte-se da equacdo para a correcdo, Eq.(IV-5), porém escrita na forma

Ay D — Ay O, = 1y (IV-11)
cuja aproximac¢do em malha grossa ¢ da forma

A 1@ — A P, =1 (IV-12)

sendo este o sistema a ser resolvido na malha grossa. A exemplo de ry;, Eq.(IV-7), a

aproximacao na malha grossa ¢ dada por
O, =10, (IV-13)

Vé-se assim que, em contraste ao CS, ndo apenas o residuo como também a aproximagao sao

restringidos. Contudo, os operadores de restri¢do aplicados a cada um necessariamente nao
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sao os mesmos Stiiben e Trottenberg, 1982 e Bai e Mitra, 1994. Por outro lado, como
nenhuma restricdo foi feita a matriz Ay, este tipo de esquema ¢ o mais adequado para
problema nao-lineares, conforme ja citado.

No procedimento de prolongamento deve-se lembrar que em ultima instancia ¢ a corre¢ao que
estd sendo suavizada. Assim, apds obtido um novo valor para @, a corre¢do a ser

prolongada ¢

¢7k_1 = al?i‘ly -D (IV-14)
de modo que na malha fina a atualiza¢do da aproximacgao ¢ feita segundo
O =D, +4, =D, + 1,4, (IV-15)

Com o auxilio das Egs. (IV-13) e (IV-14), a equacdo acima ¢ rescrita na forma comumente
encontrada na literatura (Brandt, 1977, Thompson e Ferziger, 1989, Vanka, 1986 e Bai e

Mitra, 1994)

O =, + 11, (@1 - 117D, (Iv-16)

IV-4. PROCEDIMENTOS DE MUDANCA DE NiVEL DE MALHA

Conforme discutido nos itens anteriores, no algoritmo multigrid é necessario realizar a
transferéncia de valores entre os diferentes niveis de malha como também ter disponivel a
matriz dos coeficientes Ax e as coordenadas x ¢ y da malha em todos estes niveis k. Os

procedimentos envolvidos em cada uma destas operagdes sdo apresentados a seguir.

IV-4.a. Transferéncia de valores
A transferéncia de valores entre as malhas se d4 mediante o uso de operadores de

interpolacdo. Quanto a transferéncia ¢ no sentido “fina-para-grossa” (k para k—1), utiliza-se o
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operador de restri¢do (1,”"); quando a transferéncia se da no sentido oposto (k—1 para k), o

operador empregado é o de prolongamento (I,).

Em Hackbusch, 1985 sdo apresentadas diferentes defini¢des de operadores de interpolagio.
Uma forma de interpolacdo comumente empregada na literatura Thompson e Ferziger, 1989,
Vanka, 1986, Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989, Hortmann et al,
1990,Joshi e Vanka,1991, Bonhaus, 1993, ¢ a interpolagdo bilinear (ou operador Lagrangeano
de 4 pontos). Em algumas das referéncias acima citadas, este operador esta definido para uma
malha uniforme (espagamento igual entre os pontos nodais), o que lhe confere uma forma
invariante. No presente trabalho porém, com vistas a possibilidade de utilizacdo de malhas
ndo-uniformes, optou-se pela utilizacdo deste operador em uma situacdo genérica, descrita a
seguir.

Do ponto de vista de implementagdo, a idéia € construir uma malha intermedidria entre as
malhas fina e grossa. Esta malha auxiliar define um novo conjunto de pontos nodais, onde sao
armazenados temporariamente os valores @, resultantes da aplicagao do operador / sobre ®@
segundo uma unica direcao coordenada (por exemplo y, que corresponde aos indices j ). Em
seguida, o operador ¢ aplicado sobre ®,,x segundo a dire¢ao coordenada remanescente ( x,
indices i ) de modo a obter @ na nova malha interpolada. A Figura I'V-2 procura demonstrar

esta seqiiéncia de operacdes para a restricdo e para o prolongamento.
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i j+1 i1 j+1

1J+1 | @ o I+ J+1

I+ i+1 j+1

'—

— b= w
™

&

-

=
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L

—.

& ponto nodal da malha grossa

ponto nodal da malha auxiliar * Tﬂ - *

& ponto nodal da malha fina Jle Y 5 B I
—— malha grossa

— malha fina . . . -

1 indices da malha grossa
i1 Indices da malha fina

Figura IV-2 - Esquema dos procedimentos de restri¢ao (a) e de prolongamento (b).

Vale ressaltar que a operag@o acima esquematizada ndo ¢ aplicada para realizar a restri¢do do
residuo, Eq.(IV-7), mas apenas das aproximacdes para as grandezas, Eq.(IV-13).
Conseqiientemente, ela se torna desnecessaria para o algoritmo multigrid na formulagao CS.

Considerando a malha auxiliar ja construida, a opera¢do de prolongamento para se obter os

valores na malha fina ¢ realizada através da expressao

=A=Nh+ f ol (IV-17)
onde o fator de interpolagdo linear f com base no esquema exibido na Figura (cuja simbologia
e nomenclatura seguem as da Figura I'V-3 ¢ dado por

oA X TN (IV-18)
AX X =X,

A segunda igualdade pode ser obtida apds algumas manipulagdes algébricas. As coordenadas

x na Figura IV-3 e na Eq. (IV-18) sdo referentes a malha fina.
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Figura IV-3 - Detalhes do procedimento de prolongamento

O célculo de f de acordo com o exemplo acima ¢ um caso particular, onde o indice i ¢ um
nimero impar devido a existéncia de VCs de dimensdes nulas (ver Figura III-1). A

generalizacdo pode ser feita segundo

X Xiooii

Xiva-ii — Xica-ii
onde o indice ii acrescentado ¢ definido por
ii =mod(i—1, 2) (IV-20)

O operador mod(a, b) devolve o resto da divisdo de a por b, ambos sendo nimeros inteiros.

Além disso, o indice / na Eq. (IV-17) referente a malha grossa ¢ calculado segundo

[="- (IV-21)

sendo esta operagdo realizada em aritmética de nimeros inteiros.
A malha auxiliar ¢ obtida a partir da malha grossa de modo analogo, aplicado porém na
dire¢do-y. A vantagem deste procedimento ¢ que ele pode ser facilmente estendido para uma

situacdo tridimensional, uma vez que cada dire¢do ¢ tratada separadamente.
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A pratica utilizada Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989,Peric, Riiger e
Scheurer, 1989, Joshi e Vanka, 1991, Sathyamurthy e Patankar, 1994 na restricao do residuo ¢
simplesmente compor o residuo do VC da malha grossa somando-se os residuos dos 4 VCs da
malha fina que formam-no, segundo um esquema semelhante ao da Figura I'V-2 (a) (mas sem
a necessidade de construir uma malha auxiliar). Matematicamente esta operacao ¢ expressa
por

1 ij i+l i+l i+ j+
A S e S A (IV-22)

A razdo disso € que as equacgdes algébricas obtidas através da formulacdo em volumes finitos
representam o balango dos fluxos através das faces do VC e das fontes integradas no seu
interior. Deste modo, a equagdo de balanco na malha grossa ¢ equivalente & soma das quatro
equagdes de balango dos VCs de malha fina correspondentes. Vé-se assim que a restri¢ao do
residuo ¢ bem mais simples e direta que a restricdo das grandezas, sendo esta a principal
vantagem da formulag¢do CS frente a formulacao FAS.

Neste ponto vale citar o modo como as grandezas @y sdo armazenadas para todos os niveis £.
Primeiramente os indices i ¢ j sdo condensados em um unico indice i segundo um
procedimento idéntico ao que ¢ adotado em Rabi, 1998, permitindo o armazenamento em um
vetor unidimensional. Em seguida, cada um dos vetores referentes aos varios niveis de malha
sdo guardados seqiiencialmente a partir de £ = 1 até k = M = niimero de malhas.

A Figura 1V-4 procura ilustrar a forma do vetor unidimensional resultante deste modo de

armazenamento.

D, D, Dy s Dy

Figura IV-4 - Modo de armazenamento das grandezas pelos varios niveis de malha.
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Desconsiderando os VCs de fronteira, as dimensdes das malhas computacionais caem
segundo uma PG de razdo g = %4 a medida que & vai de M até 1. Assim, sendo dy a dimensao
da malha mais fina, o tamanho (superestimado) do vetor unidimensional resultante Figura(IV-
4) pode ser determinado a priori lembrando que a soma dos termos de uma PG infinita ¢ dada
por S, =du /(1 — g), donde S.,=(0.75)"" dy = 1.333 dy. No caso, todavia, ¢ adotado S., =2
dyi de modo a acomodar os VCs da fronteira (com folgas).

Do ponto de vista da manipulacdo dos valores @, sdo definidas matrizes de trabalho ¢(i, j)
(com os indices desacoplados) dimensionadas de acordo com o tamanho da malha mais fina.
Estas matrizes devolvem para e recebem do vetor unidimensional os valores @y do nivel de
malha em questdo, sendo implementadas para tal tarefa uma rotina de importagdo (do vetor

para a matriz-trabalho) e outra de exportacdo (da matriz-trabalho para o vetor).

IV-4.b. Obtenciao da matriz dos coeficientes
Considerando as Eqs. (III-21) e (III-24), observa-se que os coeficientes que compdem
a matriz Ax contem uma contribuicdo convectiva e outra difusiva, condizente com a
fisica envolvida na EGT,Eq. (II-6) ponto de partida na obtencdo destes coeficientes.
Conforme serd visto adiante, o algoritmo multigrid implementado tem inicio na malha
mais fina, onde entdo estas contribuicdes sdo calculadas e os coeficientes, montados.
A medida que vdo se procedendo as restri¢des, torna-se necessario obter a matriz A, em
niveis mais grossos (k < M). Um procedimento comumente adotado na literatura Jiang, et al,
1991, Peric, Riiger e Scheurer, 1989 e Hortmann, Peric e Scheurer, 1990 consiste em tratar
separadamente as contribuicdes convectivas e difusivas. Estas ultimas, por depender da
geometria da malha computacional, sdo recalculadas a cada mudanga de nivel de malha

(independentemente do sentido da mudanca). Por sua vez, os fluxos massicos nas interfaces
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(contribui¢des convectivas) sdao combinados, isto ¢, somados de modo a compor os

respectivos fluxos na malha grossa. A Figura I'V-5 procura ilustrar este procedimento, onde os

fluxos referentes as faces w e s foram omitidos por simplicidade.

I+1 j+1
g

| J

i+1
B

| J
r:ri1j+“l ? C:r“l j+
 j+1 i+1 j+1
» . e
| J
& -
& & el [
] i+1 |

Figura IV-5 - Combinagao dos fluxos massicos nas interfaces
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Recentemente, Sathyamurthy e Patankar, 1994 reportaram a implementacao de um algoritmo
multigrid no qual os coeficientes na malha grossa sdo obtidos a partir de combinacdes
apropriadas dos coeficientes da malha fina. No entanto, nenhuma informagao ¢ fornecida

Acerca do modo de como se operar tal combinagao apropriada.

IV-4.c. Tratamento das coordenadas da malha computacional
As malhas consideradas no presente trabalho s3o estruturadas e ortogonais, podendo ou nio
ser uniformes (regulares). Sendo assim, o procedimento adotado visa tratar a situagdo mais
genérica que corresponde as malhas ndo-uniformes, consistindo a situacdo de malha uniforme
em um caso particular.
As malhas ndo-regulares sdo extremamente uteis para se promover um refinamento maior em
regides do dominio de célculo onde ha gradientes elevados, de modo a aumentar a
concentragdo de pontos nodais nestas regidoes. Em sdo apresentados exemplos de fungdes
(stretching functions) capazes de realizar tais refinamentos da malha.
Contudo, no presente trabalho foi elaborado um algoritmo de constru¢do de malha que calcula
as coordenadas das faces dos VCs de modo que as dimensdes dos mesmos formem uma
progressdao geométrica (PG) crescente ou decrescente. A razdo de tal adogdo sera explicitada
mais adiante. A malha que de fato é construida ¢ a malha mais fina (k = M), sendo as demais
obtidas recursivamente a partir desta.
Um parametro importante ¢ a razao de espectro RE definida como a razdo entre as dimensoes
na dire¢do coordenada em questdo do primeiro e do ultimo VC de dimensdes nao-nulas da

malha. Com o auxilio da Figura, tem-se portanto para a dire¢do x como exemplo

RE, =22

= (IV-23)
(2N
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onde NI ¢ o nimero total de pontos nodais na dire¢ao x (incluindo os da fronteira). Para

valores crescentes de i, a PG ¢ decrescente se REy > 1 ou crescente se RE, < 1.

I - I
5% 5 b5 5, Oz Dy
s
I | I | I ]
| | | | | | |
X
)(1 )(2 )(3 4 )(NI-3

Figura IV-6 - Representacdo de uma malha ndo-uniforme

4 o=
M2 ThET TN

Sendo N = NI-2 o ntimero de VCs de dimensdes ndo-nulas e o comprimento Ly definido

como mostra a Figura IV-6, mostra-se que a razdo da PG ¢4 e a dimensdo inicial ox, sdo

dados respectivamente por

1

v l1—-¢q
q, = (R—EXJ e ox, =L - (]5] (IV-24)
As demais dimensdes sdo obtidas recursivamente segundo
Oxi =qx Oxi_; , 1=3,NI-1 (IV-25)
A malha uniforme corresponde ao caso REx = gx =1 e dxy =... = dxj =... = Oxn1 = Lx / N. Para

a diregdo y, aplica-se um procedimento semelhante.

Em casos em que ¢ desejavel promover um refinamento nas proximidades de ambas as

fronteiras do dominio a partir da linha média (ou em casos onde ocorra o contrario, isto &,

refinamento proéximo a linha média a partir das fronteiras), deve-se primeiramente dividir o

dominio ao meio e construir uma malha n3o-uniforme para cada metade segundo o

procedimento anteriormente descrito. Em uma das metades a razao da PG ¢ ¢y, enquanto que
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na outra é g ', além de haver a necessidade de existir no dominio como um todo um namero
par de VCs (para permitir a divisdo ao meio).

As coordenadas na malha grossa X sdo obtidas promovendo-se as igualdades X; = x;, onde os
indices da malha fina i variam de 1 até NI-1, percorridos de 2 em 2 (i = 1, 3, 5,..., NI-1), ao
passo que os da malha grossa sdo contados de 1 em 1 a partir de 1 enquanto durar a varredura
dos indices i. Ao término desta, ¢ feita a igualdade entre as coordenadas coincidentes Xn; =
Xni-1 (ver Figura ITI-1).

A vantagem da adocdo da malha ndo-uniforme em PG surge quando se opera o
prolongamento. As coordenadas coincidentes podem ser recuperadas em um procedimento
similar aquele descrito no paragrafo anterior, enquanto que as coordenadas intermedidrias sdo
recuperadas através da expressao

X, = %;xlﬂ (1V-26)

Inserindo gx = 1 na expressdo acima, observa-se que o caso uniforme (divisdo ao meio) ¢
satisfeito, podendo a mesma ser usada em qualquer situagdo. A vantagem consiste no fato de
que nem sempre ¢ facil obter as funcdes inversas (se existirem) para outras fungdes de
refinamento, que seriam necessarias para a recuperacao das coordenadas intermedidrias.
As coordenadas x; € yj sdo armazenadas em um Unico vetor, uma vez que podem ser rescritas
a cada mudancga de malha. Este tipo de tratamento tem, pois, a vantagem de se economizar
memoria que pode ser significativa em problemas que exijam varios VCs e/ou niveis de
malha. Tem, porém, a desvantagem de acarretar em um esfor¢o computacional extra a cada
mudanga de malha que pode prejudicar a performance do algoritmo.

Um procedimento alternativo seria calcular no inicio do algoritmo ndo apenas as
coordenadas da malha fina como também as coordenadas em todos os niveis de malha. Com

isso, evitar-se-ia a necessidade de a cada mudanca de nivel recalcular-se as coordenadas da
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malha em questdo, poupando tempo de computacdo. Em contrapartida, aumenta-se a
quantidade de informagdo a ser armazenada que pode ser relevante para problemas onde
sejam resolvidas véarias grandezas do escoamento. Como futuramente estas grandezas serao

incorporadas ao programa, este procedimento nao foi adotado no presente trabalho

IV-5. ESTRATEGIA DE MUDANCA DE NIiVEL DE MALHA

Durante o algoritmo multigrid diferentes niveis de malha sdo visitados, nos quais as
componentes do erro com comprimentos de onda comparaveis ao espagamento da malha
correspondente sdo eficientemente suavizadas. A seqii€éncia como os procedimentos (IV-10)e
(IV-16) sao concatenados entre niveis consecutivos de malha caracteriza os chamados ciclo-V
e ciclo-W. A Figura IV-7 mostra a seqiiéncia de operagdes em cada ciclo durante uma iteragao
multigrid completa para cada ciclo. As operagdes sdo de pré-suavizacdo (s), de restrigdo (1),
de iteragdo em malha grossa (g) e de prolongamento (p). As operagdes de pds-suavizagdo nao

sdo apresentadas por simplicidade.

=le W AW ]
7 A o s VAV S VA ANSVAY S VAY &5
k=1 P k=1
-3 Ciclo -W
(@) Ciclo -V (®)

Figura IV-7 - Sequéncia de operagdes em iteragdo multigrid completa com 4 malhas
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Duas estratégias distintas podem ser adotadas para se determinar o momento de se mudar de
malha. Uma delas consiste em monitorar a taxa de convergéncia da solugdo numérica, a qual
pode ser determinada pela razdo das normas dos residuos de duas iteragdes sucessivas.
Quando o problema em envolve a solu¢ao de uma tnica grandeza do escoamento, a aplicagdao
deste tipo de estratégia nao traz dificuldades pois ha apenas uma tnica taxa de convergéncia a
ser monitorada.

Contudo, para um sistema de equagdes acopladas torna-se necessaria a definicdo de um
critério de convergéncia que leve em conta a taxa de convergéncia das varias equagdes. Na
literatura podem ser encontradas diferentes defini¢des deste critério Thompson e Ferziger,
1989, Vanka, 1986, Peric, et al, 1989, Sathyamurthy e Patankar, 1994, Hutchinson et a/ 1988.
A desvantagem desta estratégia ¢ que as taxas podem diferir de equacdo para equacdo ¢ nao
ser necessariamente sempre monotonicas Hortmann, Peric e Scheurer, 1990.

Um procedimento alternativo adotado Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989,
Joshi e Vanka,1991 ¢ especificar o nimero de pré- e pos-suavigdes (suavizagdes antes da
restricdo e apoOs o prolongamento, respectivamente).Hortmann et al, 1990 cita que esta pratica

em certos casos ¢ mais eficiente que o critério dindmico, sendo aqui também adotado.

IV-6. FLUXOGRAMA DO ALGORITMO MULTIGRID CS

Pelo fato de problemas térmicos serem lineares, foi utilizado com sucesso o
algorimto multigrid na formulacdo CS. Dada a sua maior simplicidade de implementacao, seu
emprego foi estendido para o tratamento de problemas de mecanica dos fluidos. Embora
nestes casos o uso da formulagdo FAS seja o mais adequado, na literatura ha precedentes da
utilizagdo do algoritmo multigrid CS na solucao desta classe de problemas ndo-lineares Jiang,
et al, 1991, conforme citado no inicio deste capitulo.

IV-17



O fluxograma do algoritmo multigrid CS [3] € mostrado na Figura IV-8 O parametro
v € o que determina o tipo de ciclo multigrid. As escolhas y =1 e y =2 levam aos ciclos-V e -
W, respectivamente. Em malhas grossas (isto ¢, exceto na mais fina), vé-se que antes de se
proceder a pré-suavizagdo, as correcdes sdo inicialmente zeradas.

No teste de parada / convergéncia ¢ verificado se o residuo na malha mais fina ry
esta abaixo de uma certa precisdo (convergéncia) ou acima de um dado limite (divergéncia),
se o tempo de computacdo e se o numero de iteragdes excederam seus limites respectivos. A

veracidade de apenas um destes testes € suficiente para provocar o término da execugao.
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inicio:

iter=0, t=0, ¢ =1

ey

k=1

impresséo dos resultados

O by

iteragtes em
malha grossa

pre-suavizagio

M= e T | (restrigéo)

ke k-1
itk="i'
¢k:O

fim
continue iter
[
hy?
(teste de parada / convergéncia)
_ iter = iter +1
Lo K= M P e t+AL
- = By A
ek +1
it, = itk— 1
(prolongamento)

it, > 0

Figura IV-8 - Fluxograma do algoritmo multigrid na formulagao CS
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CAPITULO V RESULTADOS E DISCUSSAO

V-1. INTRODUCAO

Neste capitulo sdo apresentados os resultados obtidos a partir dos ensaios realizados no
programa desenvolvido. Para alguns casos apresentados, os ensaios foram realizados em um
computador IBM-PC com Intel Pentium de 166 MHZ e demais resultados foram obtidos em
um processador Intel Pentium III de 500 MHZ. O programa foi escrito em linguagem
FORTRAN 90, através do Micrososft Fortran Power Station do ambiente Microsoft
Developer Studio for Windows.

A partir da solucdo de problemas hidrodinamicos abordados na tese de Rabi, 1998, foi feito o
estudo de problemas térmicos bidimensionais simples em regime permanente, com o campo
de velocidades tido conhecido (solugdo desacoplada) ou desconhecido (soluc¢do acoplada).

Na solugdo desacoplada trata-se a solucdo de um problema linear, envolvendo apenas a
equagao da energia dado o campo de velocidades. Na solugdo acoplada os campos térmico e
hidrodinamico sao resolvidos simultaneamente portanto, envolve as equac¢des de Navier-
Stokes e da energia.

Finalmente, para todos os casos considerados foi feito um estudo com o objetivo de se
determinar os parametros 6timos do ciclo multigrid. A Tabela V-1 apresenta o sumario dos

resultados obtidos.
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Tabela V-1 — Stimario dos resultados

Secao Sub-secao Pagina Descricao Figura Variaveis
Escoamento Escoamento com V-15 - Escoamento entre placas com expansio abrupta V-11
com expansao abrupta V-17 - Escoamento com expansdo abrupta: residuos da velocidade U, Re= 100 e 400, Ciclo V| V-12 Ry x CPU
R N V-18 - Escoamento com expansdo abrupta: residuos da velocidadeV, Re= 100 e 400, Ciclo V V-13 Ry x CPU
rec1rcu1a(;ao V-19 - Escoamento com expansao abrupta: residuos da pressdo P, Re= 100 e 400, ciclo V V-14 Rp x CPU
V-20 - Escoamento com expansdo abrupta: residuos da velocidade U, Re=100 e 400, Ciclo W | V-15 Ry x CPU
V-21 - Escoamento com expansdo abrupta: residuos da velocidade V, Re= 100 e 400, Ciclo W | V-16 Ry x CPU
V-22 - Escoamento com expansao abrupta: residuos da pressao P, Re= 100 e 400, Ciclo W V-17 Rp x CPU
V-23 - Escoamento com expansdo abrupta: visualizagdo da regido de entrada V-18
Escoamento em tanque | V-24 - Escoamento em tanque retangular V-19
retangular V-26 - Escoamento em tanque retangular: visualizacdo do escoamento Re= 300 V-20
V-27 - Escoamento em tanque retangular: residuo da velocidade U, Re= 75, 150,300 Ciclo V. | V-21 Ry x CPU
V-28 - Escoamento em tanque retangular: residuo da velocidade V, Re = 75, 150, 300 CicloV | V-22 Ry x CPU
V-29 - Escoamento em tanque retangular: residuo da pressdo P, Re= 75, 150, 300 Ciclo V V-23 Rp x CPU
Escoamento de jato V-30 - Escoamento de jato confinado: visualizag@o da regido proxima a entrada. V-24
confinado V-31 - Escoamento de jato confinado: trecho da malha computacional ndo-uniforme V-25
V-33 - Escoamento de jato confinado: residuo da velocidade U, Re=50 e 300 Ciclo V V-26 Ry x CPU
V-34 -Escoamento de Jato confinado: residuo da velocidade V, Re=50 e 300 Ciclo V V-27 Ry x CPU
V-35 -Escoamento de jato confinado:residuo da pressdo P, Re= 50 ¢ 300 Ciclo V V-28 Rp x CPU
V-36 - Escoamento de jato confinado: visualiza¢do do escoamento em jato confinado. V-29
SOLUCAO DE Escoamento com V-39 - Escoamento com expansdo abrupta: visualizagdo do campo térmico para Re= 100 e V-30
PROBLEMAS expansdo abrupta 400(de cima para baixo)
TERMICOS V-40 - Escoamento com expansao abrupta: residuos da temperatura T, Re= 100 ¢ 400 Ciclo yo|V-31 Rrx CPU
V-41 - Escoamento com expansio abrupta: residuos da temperatura T, Re= 100 e 400 Ciclo W V-32 Ry x CPU
V-42 - Escoamento com expanséo abrupta: comparagdo entre a solugdo acoplada e a V-33 Ry x CPU
desacoplada
V-43 - Escoamento com expansao abrupta: comparacdo entre a solugdo em malha 144x48 ca | V-34 Rrx CPU
solugdo em malha 218x74 para os residuos da temperatura
Escoamento em tanque | V-45 - Escoamento em tanque retangular: visualizagdo do campo térmico para Re=75, 150 e V-35
retangular 300 (de cima para baixo)
V-46 - Escoamento em tanque retangular: residuos da temperatura T, Re= 75, 150 e 300. V-36 Ry x CPU
V-47 - Escoamento em tanque retangular: comparagéo entre a solugdo acoplada e a solugéo V-37 Rt x CPU
desacoplada.
Escoamento de jato V-49 - Escoamento de jato confinado: visualizagdo do campo térmico Re= 50, 300 (de cima V-38
confinado para baixo)
V-50 - Escoamento de jato confinado: residuo da temperatura T, Re= 50 e 300 Ciclo V V-39 Rt x CPU
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V-51 - Escoamento de jato confinado: comparagdo entre a solugdo acoplada e a solugdo V-40 Rrx CPU
desacoplada
OTIMIZACAO DOS | Escoamento com V-54 - Escoamento com expansao abrupta: esfor¢o computacional para diferentes numeros de | V-41 pre _ _,post
A . CPUxV" =V
PARAMETROS expansdo abrupta ) ) Ve
MULTIGRID iteracdes de pré-/pds-suavizagoes, =3.
V-55 - Escoamento com expansao abrupta: esfor¢o computacional para diferentes nimeros de | V-42 CPU x VP = pPost
cg
iteracdes de pré-/pds-suavizagdes V©7=¢6
V-56 - Escoamento com expansao abrupta: Esforco computacional para diferentes nimeros de | V-43 CPU x V7" = POt
cg
iteracdes de pré-/pds-suavizagdes V=9,
V-57 - Escoamento com expansao abrupta: Esforco computacional para diferentes nimeros de | V-44 CPU x V77 = POt
cg
iteracdes de pré-/pds-suavizagdes V" =1s,
V-59 - Escoamento com expansao abrupta: Influéncia do nimero de iteracdo na malha mais V-45 CPU x V8
cg
grossa V" sobre o esforgo computacional.
V-61 cg V-46 pre _ post
- Escoamento com expansdo abrupta: influéncia do refinamento da malha V" =1 Ciclo CPUxV™ =V
\4
V-62 pre post Vv-47 cg
- Escoamento com expansdo abrupta: influéncia do refinamento da malha v v CPUxV
cicloV
Escoamento em tanque | V-65 - Escoamento em tanque retangular: esforco computacional para diferentes numeros de V-48 CPU x 1P7e = Post
retangular ) ) ppre _ypost
iteracdes de pré-/pds-suavizacdes ( = ).
V-66 - Escoamento em tanque retangular: Influéncia do nimero de iteragdes na malha mais V-49 CPU x V<
cg
grossa ( 4 ) sobre o esforgo computacional.
Escoamento de jato V-68 - Escoamento de jato confinado: esforco computacional para diferentes nimeros de V-50 pre _ _ post
. ~ L s L CPUx V" =V
confinado iteragdes de pré-/ pos-suavizagdes, Re= 50 e 100
V-69 - Escoamento de jato confinado: influéncia do niimero de iteragdes na malha mais grossa | V-51

veE -
( ) sobre o esforco computacional.
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V-2.VALIDACAO NUMERICA

V-2.a.Problema hidrodinidmico
Com a finalidade de se verificar a validagao numérica das solugdes multigrid, foi considerado
o problema do escoamento entre placas planas e paralelas,uma vez que o perfil desenvolvido
da velocidade ¢ um resultado bastante conhecido. As dimensdes do dominio de célculo e as

condi¢des de contorno empregadas sdo esquematizadas na Figura V-1 .

L,=20L,

— parede

- perfil de entrada perfil de saida
> uniforme

—= Linha de simetria

Figura V-1- -Escoamento entre placas planas e paralelas

Os valores adotados foram L, = 0.05 m, L ,=1.0 m ¢ U,=0.1 m/s. Quanto as propriedades,
foram considerados p=1.0 Kg/m® ¢ 2= 10" Kg/m.s .

Definindo o nimero de Reynolds Re com base no didmetro hidraulico Dy =4 L, , tem-se

_ pUD,
yr

Re (V-1)

Os valores considerados levam a Re = 200, condizente com a hipdtese de escoamento laminar.
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Neste problema os maiores gradientes encontram-se proximos 4 regido de entrada e 4 parede.
Foi entdo usada uma malha ndo-uniforme com 160 x 32 VCs, estando os mesmos mais

concentrados nestas regides. As razdes de espagamento usadas foram RE, =0.5¢ RE, =2.

Quando o escoamento encontra-se totalmente desenvolvido, tem-se V=0 e o perfil da

componente U da velocidade ao longo da secdo transversal ¢ dada por Shah e London, 1978 :

U(y)=20, 1—[1] (vV-2)

com y medido a partir da linha de simetria. A Figura V-2 compara o resultado obtido com o
uso de 1 e 4 malhas computacionais com o perfil dado pela equagao (V-2) . Vé-se que a
solucao multigrid possui boa concordancia com a solugdo analitica .

As Figuras V-3, V-4 e V-5 mostram o comportamento dos residuos de U, V' e P na obtengao
desta solug¢ao multigrid (4M) e em malha unica (1M). Foram adotados &, =0.8, &, =0.6, &,

= 0.01 para os fatores de sub-relaxagdo e para a solugcdo multigrid foi empregado o ciclo V

com Vpre — Vpost

=y“= 1. Na Figura V-6 ¢ checado de maneira qualitativa o padrdao dos
resultados obtidos pela solugdo multigrid na regido de entrada. O desenvolvimento da camada

limite proxima a parede pode ser claramente observado.
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Figura V-2 - Escoamento entre placas: validagao numérica da solugdo multigrid
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Figura V-3 - Escoamento entre placas : residuo da velocidade U, Re =200, ciclo V
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Figura V-6 - Escoamento entre placas : Visualizacdo do escoamento entre placas planas

V-2.b.Problema térmico
Com o objetivo de se validar a solu¢do da equagdo da energia, foi considerado também o
problema de escoamento entre placas planas , com a geometria de acordo com a Figura V-1.

Para este caso, da mesma forma que o problema hidrodindmico, foram considerados os

seguintes valores L = 0.05 m, L =1.0 m, U,=0.1 m/s, p=1.0 Kg/m’ e 1 =10" Kg/m.s de

modo a ter Re = 200, lembrando que Re ¢ calculado de acordo com a equagdo (V-1). Foram

adotados &, = 0.8, &, =0.6, £, =0.01,&£, = 0.30 para os fatores de sub-relaxacdo e para a

solugdo multigrid foi empregado o ciclo V com v =y =y =1,
A Figura V-7 procura mostra a visualizagao da distribui¢do adimensional da temperatura pra o

escoamento entre placas planas da Figura V-1.
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Figura V-7 - Escoamento entre Placas : Visualizacdo do campo térmico para Re = 200

A Figura V-8 compara o comportamento do nimero de Nusselt, calculado a partir do dados
do programa, com o valor tedrico. Para a geometria considerada e no caso de escoamento
laminar e desenvolvido, com temperatura constante nas superficies, o valor de Nusselt
(Ozisik, 1985) ¢ N, = 7.541. Este resultado demonstra a boa concordancia entre a solucao
analitica e a solu¢cdo numérica.

A Figura V-9 compara o comportamento dos residuos da temperatura 7 para as solugdes
multigrid em malha tnica (1M) e 4 malhas (4M). As vantagens do método sdo claramente
observadas na figura. As diferengas encontradas quando se utiliza a solugdo acoplada e a
solugdo desacoplada, sdo apresentadas na Figura V-10 . Por se tratar de um problema
fisicamente desacoplado, a solu¢do numérica desacoplada & possivel, acarretando em uma

substancial economia no esfor¢o computacional exigido.
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Figura V-8- -Escoamento entre Placas : validagdo numérica da solucao térmica
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Figura V-9 - Escoamento entre Placas : residuos da temperatura T , Re = 200 Ciclo V
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1E-2 Escoamento entre Placas
Malha : 160 x 32
1E-3 Re = 200 CicloV
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Figura V-10 - Escoamento entre placas :comparacao entre a solugdo acoplada ¢ a

solugdo desacoplada
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V-3.ESCOAMENTO COM RECIRCULACAO

Nesta secdo sera apresentado o estudo de trés casos basicos de escoamento com recirculagao,
todos com geometrias distintas, a saber :

e Escoamento com expansdo abrupta

e Escoamento em tanque retangular

e Escoamento de jato confinado

V-3.a.Escoamento com expansiao abrupta
O primeiro problema hidrodinadmico laminar considerado foi o de escoamento com expansao
abrupta entre placas de expansdo abrupta (backward facing step flow), cujo o esquema ¢

mostrado na Figura V-11.

T Parede :
Ly12 |
L L
Sl S Saida : ¥
" Perfilde |
— entrada Parede |

L,=10L,

Figura V-11 - Escoamento entre placas com expansdo abrupta.

Para este problema foram adotados L,=005m, L, =05m, U;=02 m/s, p= 1.0 Kg/m3 e

1= 10" kg/m.s, de modo a ter Re= 100 ¢ 400, com o numero de Reynolds calculado segundo:
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U,L
Re = Pl (V-3)
Y7,

Foi usada uma malha ndo-uniforme com 144 x 48 VCs ¢ RE = RE = 0.333, com RE

calculada com base no VC proximo a parede e o VC junto da linha média ( hd maior
concentragdo junto as paredes e menor junto a linha média ). Os coeficientes de sub-relaxagao

adotados foram &,= 0.8, &,=0.6,&, = 0.3 e a estratégia para as solu¢cdes multigrid em ciclo

—V e para Ciclo-W foram v?”*= y""=1¢ v¥¢=2,

Nas Figura V-12 a Figura V-17 sdo mostrados o comportamento dos residuos das velocidades
U e V, da pressdao P em malha tnica (IM ) e em 4 malhas tanto em ciclo Ve Ciclo W, para
Re=100 e Re=400.

A solucdo do problema térmico-hidrodinamico é acoplada, ou seja, o campo térmico € o
campo hidrodindmico sdo solucionados simultanemente, de modo que a temperatura ¢ sempre
relaxada ap6s o campo do escoamento, de acordo com o ciclo multigrid. Para baixos valores
de Re obtém-se solucdes mais rapidas. Neste caso, os termos difusivos sdo de maior
importancia relativa e, assim, contribuem com peso maior a estabilidade numérica do sistema
de equacdes. Com o aumento valor de Re, de 100 para 400, verifica-se maior gasto de tempo
de CPU. Sendo, porém, a vantagem da solu¢do multigrid mais pronunciada, tanto para o ciclo

V quanto para o ciclo W.
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Figura V-12 - Escoamento com expansao abrupta: residuos da velocidade U, Re= 100 e

400, Ciclo V
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Escoamento com Expanséo Abrupta
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Figura V-13 - Escoamento com expansao abrupta: residuos da velocidadeV, Re= 100 e

400, Ciclo V.
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Escoamento com Expansao Abrupta
Solucao Acoplada
Malha : 144 X 48
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Figura V-14 - Escoamento com expansao abrupta: residuos da pressdo P, Re= 100 e

400, ciclo V
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Escoamento com Expansao Abrupta
Solugéo Acoplada
1E-3 Malha : 144 x 48
Ciclo W
1E-4
o Elﬁi M =1, RE = 100
M =1, RE =400
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Figura V-15 - Escoamento com expansao abrupta: residuos da velocidade U, Re=100 e

400, Ciclo W
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Figura V-16 - Escoamento com expansao abrupta: residuos da velocidade V, Re= 100 e

400, Ciclo W
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Figura V-17 - Escoamento com expansao abrupta: residuos da pressdao P, Re= 100 e

400, Ciclo W.
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A Figura V-18 contém a visualizacdo dos vetores velocidade na regido proxima a entrada,
obtidos a partir da solugdo 4M. A Figura mostra a bolha de recirculagdo obtida e indica que

reproduz o padrao esperado dos resultados.

\/4 = = = =
s

=
=

Figura V-18 - Escoamento com expansao abrupta: visualiza¢ao da regido de entrada.
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V-3.b. Escoamento em tanque retangular
O segundo caso analisado foi o escoamento em um tanque retangular conforme o esquema da

Figura V-19, onde L, = 0.6 m, L,=0.6 m,U, =0.01 m/s, p= 1.0 Kg/m’ e 1= 10" kg/m.s.

Foi empregadas uma malha ndo- uniforme com 66 x 66 VCs e as razdes de espagamento

usadas foram RE_=RE =1.0. Os fatores de sub-relaxagdo empregados foram &, = 0.6, &, =

0.6, £,= 0.1. Para as solugdes multigrid em ciclo-V e ciclo-W assumiu-se v =y =y« =

1.

Perfil de

entrada Saida

Figura V-19 - Escoamento em tanque retangular.
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Como ja foi mencionado, no caso do tanque retangular foi utilizada uma malha 66x66 assim
como trés valores diferentes de nimero de Reynolds, a saber Re= 75, 150, 300. Vale lembra
que Re ¢ calculado de acordo com a equacao (V-3).

Na Figura V-20 o padrao dos resultados obtidos pela solu¢do multigrid 4M ¢ verificado de
maneira qualitativa, demonstrando mais uma vez que a solugdo multigrid reproduz o padrao
dos resultados obtidos com uma malha unica.

As Figuras V-21 a V-23 visualizam os residuos das velocidades U e V' e da pressao P, com Re
=75, 150, 300 com a solu¢do em malha unica (IM) e 4 malhas (4M) para o ciclo V. A
solugdo do problema térmico-hidrodinamico ¢ acoplada, ou seja o campo térmico € o campo
hidrodindmico s3o solucionados simultineamente, de modo que a temperatura é sempre
relaxada apés o campo do escoamento, de acordo com o ciclo multigrid, que para o presente
caso adotou-se somente o ciclo V. Nota-se que baixos valores de Re obtém-se solu¢des mais
rapidas. Para os valores de Re= 75,120 e 300, verifica-se também maior gasto de tempo de
CPU quanto maior o valor de Re. Porém, a vantagem da solugdo multigrid 4M, torna-se

evidente mais uma vez.
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=300

a0 do escoamento Re

Figura V-20 - Escoamento em tanque retangular: visualizag
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Escoamento em Tanque Retangular
Solugao Acoplada
Malha : 66 x 66
1E-4 CicloV
1E-5 —{>— M=1,Re=300
1E-6 —ff— M=4,Re =300
1E-7 - @ M=1,Re=150
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o
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Figura V-21 - Escoamento em tanque retangular: residuo da velocidade U, Re= 75, 150,

300 Ciclo V.
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Escoamento em Tanque retangular
Solugao Acoplada
Malha : 66x66
1E-5 Ciclo Vv
1E-6 !R“ ——>— M=1,Re=300
Al
187 1 [} M=4,Re=300
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Figura V-22 - Escoamento em tanque retangular: residuo da velocidade V, Re = 75, 150,

300 Ciclo V.
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Escoamento em Tanque Retangular
Solugao Acoplada
Malha : 66x66
CicloV
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Figura V-23 - Escoamento em tanque retangular: residuo da pressao P, Re= 75, 150,

300 Ciclo V.
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V-3.c. Escoamento de jato confinado

Por fim, foi considerado o escoamento de um jato confinado, cujo esquema ¢ mostrado na
Figura V-24. Os valores adotados foram L = 0.5m, L ,=2.0m,U, = 0.0lm/s, o= 1.0 Kg/m’ e
1=10"Kg/m.s.

Foi empregada uma malha nao-uniforme contendo 160 x 64 VCs e as razoes de espacamento

usadas foram RE = 0.25 ¢ RE = 0.4, esta ultima com base no VC proximo ao canto superior

esquerdo. A Figura V-25 ilustra o trecho da malha préximo da regido de entrada do jato.

_E erfil unif linha de simetria :

perfil uniforme !

de entrada :

|

parede |
perfil de | LV

saida :

L |

parede |

Figura V-24 - Escoamento de jato confinado: visualizagdo da regido proxima a entrada.
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Nesta geometria as solugdes multigrid empregam no maximo 3 niveis de malha. Nao foi
usado um quarto nivel porque neste caso, na malha mais grossa o VC do canto superior
esquerdo (entrada do jato) seria solicitado a oeste por duas condigdes de contorno diferentes

(entrada e parede).

Os fatores de sub-relaxa¢do empregados foram &,= 0.6, &, = 0.6, £,= 0.1 e a estratégia para

as solugdes multigrid em ciclo V fez uso de v"“= v"*'= y¢=1,

Figura V-25 - Escoamento de jato confinado: trecho da malha computacional ndo-

uniforme.
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Nas Figuras V-26 a V-28 sdo exibidos os comportamentos dos residuos na solugao em malha
unica (1M) e em 3 malhas (3M) para o ciclo V com Re=50 e 300. A solugdo do problema
térmico-hidrodinamico ¢ acoplada, ou seja o campo térmico e o campo hidrodindmico sao
solucionados simultaneamente. Aqui também com baixos valores de Re obtém-se solugdes
mais rapidas. Para os valores de Re, 50 e 300, verifica-se maior gasto de tempo de CPU. Para
Re =300, confirmando o padrao dos resultados até aqui apresentados, a vantagem da solugdo
multigrid, torna-se evidente mais uma vez.

A Figura V-29 checa de maneira qualitativa o padrao dos resultados obtidos pela solucao
multigrid 3M.

Vale destacar, que, para as trés geometrias estudadas, o uso de nimero de malhas maior que
quatro, ndo significa necessariamente maior ganho, pois a partir deste valor o tempo gasto nas
operacdes de transferéncia entre malhas, pode acarretar num maior tempo de CPU,

comprometendo,desta forma a eficiéncia global do ciclo multigrid.
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1E-5 Escoamento em Jato Confinafo
Solucio Acoplada

166 B Malha : 160 x 64
£y S —£3— M=1,RE =50
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Figura V-26 - Escoamento de jato confinado: residuo da velocidade U, Re=50 e 300

CicloV
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Figura V-27-Escoamento de Jato confinado: residuo da velocidade ¥, Re=50 e 300

Ciclo V.
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1E-3
Escoamento em Jato Confinado
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Figura V-28-Escoamento de jato confinado:residuo da pressdo P, Re= 50 e 300 Ciclo V.
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Figura V-29 - Escoamento de jato confinado: visualiza¢do do escoamento em jato

confinado.
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V-4.SOLUCAO DE PROBLEMAS TERMICOS

V-4.a. Escoamento com expansiao abrupta
O primeiro caso térmico analisado foi o escoamento entre placas com expansdo abrupta,

conforme a Figura V-11. Para este problema, também foram adotados L,=0.05m, L, =0.5m,
U,=02m/se0.8m/s, p= 1.0 Kg/m® e 1= 10" Kg/m.s de modo a ter Re= 100 e 400.

Foi usada uma malha ndo-uniforme com 144 x 48 VCs e RE = RE = 0.333, com
RE | calculado com base no VC proximo a parede ¢ o VC junto da linha média (ha maior

concentragdo junto as paredes e menor junto a linha média). Os coeficientes de sub-relaxagao

adotados foram &,= 0.8, &, = 0.6, £,= 0.03, &,= 0.30. A estratégia para as solucdes

multigrid para ciclo V e o ciclo W adotou v”“= v**' =1 ¢ v"'= 2. Com a finalidade de
verificar o efeito do niumero Re, a Figura V-30 mostra a distribui¢do adimensional da
temperatura para o escoamento com expansao abrupta da Figura V-11.

Todas as paredes sdo conservadas na mesma temperatura, sendo esta mais alta que a
temperatura de entrada do fluido. No caso simulado as paredes sdo mantidas a 100°C e a
temperatura de entrada do fluido ¢ 50°C. O efeito do incremento de Reynolds pode ser
facilmente visualizado na Figura, através do aumento da penetragao do fluido mais frio.

As Figuras V-31 e V-32 mostram os residuos da temperatura para a solu¢cdo multigrid em
ciclo V e W respectivamente. Mais uma vez fica evidenciado que o aumento de Re requer
maio tempo de CPU e a solucao multigrid apresenta melhor resultado.

A Figura V-33 apresenta os residuos da equagao da energia para duas situagdes distintas, uma

¢ a solucao simultanea da velocidade e da temperatura (chamada aqui de solugdo acoplada) e
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a outra e a solucdo desacoplada que consiste da resolucdo da equacao da energia isoladamente
a partir do campo hidrodinamico dado. Como ja era esperado, o numero de iteragdes da
solucdao desacoplada ¢ bem menor que o da solugdo acoplada. Conseqiientemente o uso de
malhas multiplas ¢ mais vantajoso quando se utiliza a solu¢do acoplada pois, nestes casos os
tempos de computagdo sao maiores.

Com a finalidade de se verificar também a influéncia do nuimero de malhas no esforgo

computacional, foi simulado para a mesma geometria da Figura V-11, onde L,=0.05m, L =
0.5m e com U,= 0.2 m/s e 0.8m/s, o= 1.0 Kg/m’ ¢ 1= 10 Kg/m.s de modo a ter Re= 100 e

400. Utilizou-se uma malha ndo-uniforme mais refinada com 218 x 74 VCs ¢ RE = RE =

0.333. Este estudo foi feito em um computador IBM-PC com processador Intel Pentium III de
500 MHz.

A Figura V-34 indica que para valores menores de Re, ndo importando a malha utilizada,
solugdes mais rapidas sdo obtidas. O uso de um menor nimero de malhas com o mesmo
numero de Reynolds ¢ vantajoso. Estas caracteristicas fazem o método multigrid uma técnica
atrativa, justificando o seu crescente uso. Por outro lado, o aumento do nimero de VCs da

malha mais fina desacelera a convergéncia como ja esperado, independente do Re utilizado.
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Figura V-30 - Escoamento com expansao abrupta: visualizacdo do campo térmico para

Re=100 e 400(de cima para baixo).
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Figura V-31 - Escoamento com expansdo abrupta: residuos da temperatura 7, Re= 100 ¢

400 Ciclo V.

V-40



Escoamento com Expansao Abrupta
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Figura V-32 - Escoamento com expansdo abrupta: residuos da temperatura 7, Re= 100 ¢

400 Ciclo W.
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Figura V-33 - Escoamento com expansao abrupta: comparagao entre a solu¢ao acoplada

e a desacoplada.
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Figura V-34 - Escoamento com expansao abrupta: comparagao entre a solu¢cdo em

malha 144x48 e a solu¢do em malha 218x74 para os residuos da temperatura.
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V-4.b. Escoamento em tanque retangular
E agora apresentado o escoamento em um tanque retangular, conforme a Figura V-19, onde

L,=0.6m, L= 0.6m, U= 0.1, 0.05 0.02 m/s, o= 1.0 Kg/m’ e 1= 10" Kg/ms. estes

parametros acarretam em Re= 300, 150 e 75.
Neste caso ¢ empregada uma malha ndo-uniforme com 66x66 VCs e as razdes de

espagamento utilizadas foram RE = RE = 1.0. Os fatores de sub-relaxacdo empregados
foram &,= 0.6, &, = 0.6, £,= 0.01, &,= 0.30. Na estratégia para as solugdes multigrid em

ciclo V foi adotadas o valor v""“= y"*= p€=1,

A Figura V-35 mostra a distribuicdo adimensional da temperatura para o tanque da Figura
V-19, onde todas as paredes sdo mantidas a 100°C e a temperatura de entrada do fluido ¢ de
50°C. O efeito do incremento de Reynolds pode ser facilmente visualizado na Figura, através
do aumento da penetragdo do fluido mais frio. E interessante notar que os maiores gradientes
da temperatura estdo na parede do lado direito, indicando elevagdo local troca de calor com
material sélido.

A Figura V-36 ilustra os residuos da temperatura para a solu¢do multigrid em IM e 4M,
ambas utilizando o esquema de ciclo V. A Figura comprova uma vez mais que, baixos valores
de Re aumentam a taxa de convergéncia. Nota-se também que, a solugdo multigrid 4M
apresenta os melhores resultados quando comparados as solugdes com malha tnica.
Finalmente, a Figura V-37 faz a comparacao entre a solugdo acoplada e a solucdo desacoplada
e, como esperado, a segunda metodologia necessita de um menor numero de iteragdes.
Conseqiientemente, o uso do método multigrid torna-se mais vantajoso quanto se usa a

solugdo acoplada devido ao maior tempo computacional necessario.
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Figura V-35 - Escoamento em tanque retangular: visualiza¢do do campo térmico para

Re=75, 150 ¢ 300 (de cima para baixo)
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Figura V-36 - Escoamento em tanque retangular: residuos da temperatura 7, Re= 75,

150 e 300.
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Figura V-37 - Escoamento em tanque retangular: comparacao entre a solu¢ao acoplada e

a solugdo desacoplada.
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V-4.c. Escoamento de jato confinado
Neste item ¢ apresentado um estudo sobre o escoamento de jato confinado, cujo esquema foi

mostrado na Figura V-24. Para esta geometria adotou-se L, =0.5m, L, =2.0m, U,= 0.01 m/s

e 0.06m/s, p= 1.0 Kg/m® e 1= 10 Kg/m.s, de modo a se ter Re= 50 e 300 respectivamente.

Os fatores de sub-relaxagdo empregados foram v?“= v = y%€=1,

A Figura V-38 mostra a distribuicdo adimensional da temperatura para o escoamento de jato
confinado, todas as paredes sdao mantidas a 100°C e a temperatura de entrada do fluido ¢
50°C. O efeito do incremento de Reynolds pode ser facilmente visualizado na Figura V-38,
através do aumento da penetragao do fluido mais frio.

Na Figura V-39 sdo mostrados os residuos da equacao da energia para a solu¢do multigrid em
ciclo V. A Figura mostra que com incremento de Re, independente do nimero de malhas, ¢
necessario um maior tempo computacional. Nota-se, entretanto que esta diferenca ndo ¢ tao
marcante quanto nos outros casos analisados.

A Figura V-40 faz a comparagao entre a solugdo acoplada e a solucdo desacoplada, ambos os
casos em relacdo ao residuo da temperatura. Como esperado, a segunda solu¢do apresenta
menor nimero de iteragdes para um mesmo residuo minimo. Conseqiientemente, o uso do
método multigrid torna-se mais vantajoso quanto se usa a solucao acoplada devido ao maior
tempo computacional requerido na soluc¢ao simultanea. Confrontando aos resultados da Figura
V-40 com os resultados obtidos nas Figuras V-33 e V-37, mais uma vez fica evidenciado a

influéncia da geometria nos resultados apresentados.
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Figura V-38 - Escoamento de jato confinado: visualizagao do campo térmico Re= 50,
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Figura V-39 - Escoamento de jato confinado: residuo da temperatura 7, Re= 50 ¢ 300

Ciclo V.
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Figura V-40 - Escoamento de jato confinado: comparagao entre a solu¢do acoplada e a

solugdo desacoplada.
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V-5. OTIMIZACAO DOS PARAMETROS MULTIGRID

V-5.a. Escoamento com expansiao abrupta

No trabalho de Rabi e de Lemos, 1998b, foi feito um estudo com a finalidade de se investigar
valores 6timos para os pardmetros v, v e v . Uma vez que as solugdes intermedidrias
antes ¢ depois da mudanga de malha, ndo sao resolvidas inteiramente, mas sim relaxadas v’ e

vP* vezes, surge a questdo a respeito do valor 6timo, para estes parametros. As operagdes de
prolongamento e restri¢do introduzem imprecisdes aos valores transferidos. Entdo, a solucao
numérica intermediaria deve ser relaxada um certo nimero de vezes, ndo s6 para remover as
imprecisoes introduzidas nas operagdes de transferéncia mas, também para reduzir o residuo a
cada iteragcdo. Alguns destes testes foram divulgados por de Lemos e Mesquita, 1999 e sdo
aqui também apresentados

Foi considerado novamente a geometria da Figura V-11 com as mesmas dimensdes

apresentadas nos estudos anteriores, ou seja L, = 0.05m, L, = 0.5m e com U,= 0.2 m/s ¢

0.8m/s, p= 1.0 Kg/m® e 1= 10™* Kg/m.s, de modo a se ter Re= 100 e 400.

Para um niimero fixo de itera¢des na malha mais grossa, (v), a saber 3, 6, 9 e 15 as Figuras
V-41, V-42, V-43 ¢ V-44 reproduzem o tempo necessario para convergéncia quando o
numero de pré-/pos-suavizagdes variam livremente, mantendo-se sempre v =v"""

Pode-se claramente detectar um valor 6timo para os parametros de relaxacdo em cada caso
apresentado. Um numero adicional de iteragdes, além dos valores 6timos determinados pode
significar consumo extra do esfor¢o computacional. Por outro lado, menores valores de v
ou V" demandardo maiores esforcos computacionais. E interessante salientar a vantagem

em se usar o ciclo V na solugdo desacoplada. Estes resultados sdo condizentes com as
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conclusoes de Rabi e de Lemos, 1998b. Neste trabalho foi observada uma redug¢ao no esfor¢o

computacional para os casos de velocidade conhecida e uso do ciclo V.
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700 Escoamento com Expansao Abrupta

Solugao Desacoplada
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vPre=yPost=nymper of pre-/post -smoothing iterations

Figura V-41 - Escoamento com expansao abrupta: esfor¢o computacional para

diferentes numeros de iteracdes de pré-/pos-suavizagdes, v = 3.
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700 — Escoamento com Expansao Abrupta
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SLEi

W Cycle - Re =400

300

R
1 2 3 4 5 6 7 8 9 10

vPre=yPost=nymber of pre-/post -smoothing iterations

Figura V-42 - Escoamento com expansao abrupta: esfor¢o computacional para

diferentes nimeros de itera¢des de pré-/pos-suavizagdes v = 6.
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Escoamento com Expansao Abrupta

700 — Solucgao Desacoplada
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Figura V-43 - Escoamento com expansao abrupta: Esfor¢o computacional para

diferentes nimeros de iteragdes de pré-/pos-suavizagdes v<=09.
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Escoamento com Expansao Abrupta
500 T Solugao Desacoplada
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1 2 3 4 5 6 7 8 9 10
vPre = ypPost = numero de pre-/pos -suavizagdes

Figura V-44 - Escoamento com expansao abrupta: Esfor¢o computacional para

diferentes numeros de iteragdes de pré-/pos-suavizagdes v = 15.
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Na Figura V-45 o nimero de pré-/pos-suavizagdes foi fixado em v”“= y?*' = 2, enquanto
que o numero de iteragdes na malha mais grossa v varia livremente Os resultados
apresentam certo espalhamento e portanto nenhum valor 6timo pode ser observado.

As Figuras V-41 a V-45 sugerem um balango delicado entre todos os parametros envolvidos
com a finalidade de se obter um tempo minimo de CPU. Um conjunto 6timo de parametros
ndo pode ser facilmente determinado a priori e por isto,estratégias adaptativas foram
propostas na literatura. Em certos algoritmos, a média dos residuos apos duas varreduras
sucessivas ¢ monitorada e usada como critério para mudanca de malha.

No trabalho de Hortmann et al, 1990, ¢ ressaltado que esté pratica ¢ preferida para sistemas de
equacdes simples, mas para o caso de equacdes completas, como aqui apresentado, esta
pratica torna-se de dificil implementacdo. Sendo assim, muitos trabalhos na literatura
especificam um ntmero fixo de varreduras, como mostrado por Hutchinson et al 1988,

Sathyamurthy e Patankar, 1994.
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Figura V-45 - Escoamento com expansao abrupta: Influéncia do nimero de iteracdo na

malha mais grossa v sobre o esfor¢o computacional.
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Com a finalidade de se verificar também o refinamento da malha no esfor¢o computacional e
conseqiientemente nos pardmetros do ciclo multigrid (v, v”e v®*), foi também
empregada uma malha ndo-uniforme com 218 x 74 VCs. Este estudo foi feito em um
computador IBM-PC com processador Intel Pentium III de 500 MHz. As Figuras V-46 ¢
V-47 ilustram os resultados obtidos.

A Figura V-46 reproduz o tempo necessario para convergéncia quando o niamero de pré-/pds-
suavizagOes varia livremente, mantendo-se o0 mesmo valor para v =1. Embora nos resultados
apresentados pela Figura V-46, a identificacdo de um ponto 6timo ndo seja clara nas Figuras
V-41 a V-44, ainda ¢ possivel identificar um valor 6timo para os parametros de relaxagio . E
interessante ressaltar que para a mesma geometria, o uso de malhas distintas causa variagao
no padrao dos resultados e conclusodes .

Na Figura V-47 o numero de pré-/pos-suavizagdes foi fixado em v”“=y?*" =3 e o0 nimero de

interacdes na malha mais grossa (V) varia livremente. Neste caso ¢ possivel detectar um
valor 6timo para os parametros de relaxacdo. Este resultado confirma a influéncia do
refinamento da malha no padrdo dos resultados. Para isso basta confrontar os resultados da

Figura V-45 com os da Figura V-47.
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Figura V-47 - Escoamento com expansao abrupta: influéncia do refinamento da malha
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v =yP* ciclo V.
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V-5.b. Escoamento em tanque retangular

Baseado na Figura V-19 do escoamento em tanque retangular, para um numero fixo de

varreduras na malha mais grossa (v*= 6 e 10), a Figura V-48 reproduz o tempo necessario

ara convergéncia, quando o nimero de iteracdes pré-/pds-suavizacdes (v =y?*"
p g > q ¢ pre-/p ¢

) varia
livremente.

Pode-se ver que mais de uma varredura para relaxa¢do da solucdo intermediaria, antes e
depois da mudanca de nivel de malha, ndo traz necessariamente alguma vantagem e,
conseqlientemente, quando o nimero de relaxagdes ultrapassa este limite, um aumento do
esfor¢o computacional ¢ observado.

A vantagem obtida quando se usa o Ciclo W, também ¢ aparente, ao visualizarmos a Figura
IV-7 notamos que o tempo gasto na malha mais grossa no ciclo V é em média maior,
conseqlientemente erros de baixa freqliéncia s@o melhor suavizados (Rabi e de Lemos,
1998b). Entretanto esta explicacdo esta contraria aos resultados anteriormente apresentados.

Assim sendo, ndo se pode tirar conclusdes universais totais para os parametros 6timos em

algoritmos multigrid.

Ainda, para os dois valores de v“usados (6 ¢ 10) nao foi detectado, para ambos os ciclos,
nenhuma melhora significativa no tempo computacional.

Na Figura V-49 o nimero de pré-/pos-suavizagdes foi fixado em v”"“=v"""= 2, de modo que
o numero de iteragdes na malha mais grossa v varia livriemente. Um valor 6timo pode ser
identificado claramente para ambos os ciclos e pardmetros maiores que estes ndo significam
necessariamente ganho em tempo de CPU. Aqui novamente a superioridade do ciclo W ¢

aparente.
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As Figuras V-48 e V-49 sugerem um balango delicado entre todos os parametros envolvidos
com a finalidade de se obter um tempo minimo de CPU. Um conjunto 6timo de parametros
ndo pode ser facilmente determinado a priori. Como ja foi mencionado, estratégias

adaptativas foram propostas na literatura.
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Figura V-48 - Escoamento em tanque retangular: esforco computacional para diferentes

numeros de iteragdes de pré-/pos-suavizagdes (v =v""").
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Figura V-49 - Escoamento em tanque retangular: Influéncia do nimero de iteragdes na

malha mais grossa (V) sobre o esfor¢o computacional.
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V-5.c. Escoamento de jato confinado

Conforme o esquema da Figura V-24 do escoamento em jato confinado, a Figura V-50
reproduz o tempo necessario para convergéncia, quando o nimero de iteragdes pré-/pds-
suavizagdes (v7*=v?*") varia livremente para um valor fixo do nimero de iteragdes na
malha mais grossa (v =3). A partir dos resultados, é possivel identificar claramente um valor
otimo para os parametros de relaxacdo. Um nimero de varreduras maior que este valor 6timo,
pode vir a consumir um tempo computacional maior, comprometendo a eficiéncia do ciclo
multigrid.

Finalmente na Figura V-51 o numero de pré-/pds-suavizagdes foi fixado em v7“=y"" =1, de
modo que o nimero de iteragdes na malha mais grossa v varia livremente. Através dos

resultados ¢ possivel identificar valores 6timos para ambos os valores de Re.
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Escoamento de Jato Confinado

3000 Malha : 160 x 64
Soluc¢do Desacoplada
— CicloV, V9 =3
—(5— Re=50
2500 —
2000 —
tempo de
CPU(s)
1500 —
1000 —

00 | | | |

2 4 6 8 10

VPT® — v POS _ niimero de pré/pds suavizacdes

Figura V-50 - Escoamento de jato confinado: esfor¢o computacional para diferentes

numeros de iteragdes de pré-/ pds-suavizagoes, Re= 50 e 100.
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Malha : 160 x 64
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CPU (s)
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V€9 numero de iteragdes na malha mais grossa

Figura V-51 - Escoamento de jato confinado: influéncia do niimero de iteragdes na

malha mais grossa (V) sobre o esfor¢o computacional.
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CAPITULO VI CONCLUSAO E DESENVOLVIMENTOS

FUTUROS

No presente trabalho foi aplicada a técnica multigrid na implementagdo de um
programa computacional visando a solucdo numérica de problemas bidimensionais de
mecanica dos fluidos (regime laminar) e transferéncia de calor. Foram utilizadas malhas
computacionais estruturadas e ortogonais, assim como um algoritmo iterativo para a solu¢ao
do sistema de equagdes algébricas, obtidas segundo uma discretizagdo em volumes finitos.No
método multigrid foi empregado o esquema CS (correction storage).

Em todos os casos considerados e estudados ficou nitida a melhor perfomance dos
métodos iterativos com a formulagdo multigrid através destes métodos pode-se obter solugdes
numéricas com ganhos expressivos de tempo de computacdo em relagdo a solucdo obtida em
malha tinica, sem ao mesmo tempo comprometer a qualidade da solu¢do. Observou-se ainda
ser este ganho tanto maior quanto mais refinada for a malha computacional empregada (nivel
de malha mais fino).

Foi verificado também que, no caso em que temos a solucdo desacoplada, com o
incremento do nimero de Reynolds a solucdo tende a se tornar mais rapida, fato oposto ao
verificado quando se tem a solug¢do acoplada, ou seja, com o aumento de Reynolds, a taxa de
convergéncia torna-se mais lenta.

Com relagdo a otimizacdo dos pardmetros do ciclo multigrid, chegou-se a seguinte
conclusdo que cada caso ¢ peculiar, tem que ser analisado separadamente, tanto a nivel de
refinamento das malhas quanto ao nimero de Reynolds.

Como desenvolvimentos futuros ao presente trabalho, podem ser apontados os

seguintes:

VI-1



Considerar problemas com propriedades do fluido (p e/ou p) variaveis (ex:
convecg¢ao natural).

Tratamento de problemas com fontes internas de calor (lineares e/ou nao-lineares).
Extensdo para problemas tridimensionais. Para estes casos, além das extensdes a
serem introduzidas no procedimento de obtencdo das equagdes algébricas, devem
ser introduzidos passos adicionais nos procedimentos de restricdo e
prolongamento.

Incluir tratamento de geometrias mais complexas. Uma extensdo interessante seria
a de escrever o programa computacional em coordenadas generalizadas, o que
além de acarretar em dificuldades adicionais ao processo de discretizagao, deve
trazer cuidados especiais na implementa¢ao do método multigrid.

Implementacao de algoritmo multigrid com critério dinamico de mudanga de nivel
de malha, com vistas a permitir comparagdo com o algoritmo de nimero pré-

fixado de iteragdes em cada nivel de malha (aqui utilizado).
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