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SUMÁRIO 

É aplicada a técnica multigrid na implementação de um programa computacional visando a 

solução numérica de problemas bidimensionais em coordenadas cartesianas e em regime 

permanente de escoamentos laminares com geometrias simples e de problemas simples de 

transferência de calor. O programa emprega malhas computacionais estruturadas e ortogonais, 

estando generalizado ao uso de malhas não-uniformes. As equações algébricas são obtidas 

segundo uma formulação em volumes finitos, com as variáveis armazenadas no centro dos 

volumes elementares em um arranjo co-localizado. O sistema de equações resultantes é 

relaxado através dos algoritmos Gauss-Seidel e TDMA - TriDiagonal Matrix Algorithm. O 

acoplamento pressão-velocidade é feito segundo o método SIMPLE - Semi-Implicit Method 

for Pressure-Linked Equations. O algoritmo multigrid é implementado na formulação 

correction storage. A técnica é demonstrada para alguns problemas bench-mark, com os 

resultados apresentando uma aceleração significativa do processo de convergência da solução 

numérica multigrid (em relação às soluções em malha única), especialmente nas situações em 

que foram empregadas malhas bastante refinadas e foi exigida elevada precisão. 
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ABSTRACT 

 This work investigates the efficiency of the multigrid numerical method when used 

to solve two-dimensional laminar velocity and temperature fields inside a rectangular domain. 

Numerical analysis is based on the finite volume discretization scheme applied to structured 

orthogonal regular meshes. Performance of the correction storage (CS) multigrid algorithm is 

compared for different Reynolds number at inlet (Rein) and distinct number of grids. Up to 

four grids were used for both V- and W-cycles. Simultaneous and uncoupled temperature-

velocity solution schemes were investigated. Advantages in using more than one grid are 

discussed. For simultaneous solution, results further indicate an increase in the computational 

effort for higher inlet Reynolds number Rein. Optimal number of intermediate relaxation 

sweeps for within both V- and W-cycles are discussed upon. 
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CAPÍTULO I - INTRODUÇÃO 

I-1. SOLUÇÃO DE PROBLEMAS DE INTERESSE EM ENGENHARIA 

 De um modo geral, para se resolver um determinado problema de interesse em 

engenharia pode-se recorrer a métodos analíticos, a métodos numéricos (experimentação 

numérica) ou à experimentação em laboratório (experimentação física). 

 A experimentação em laboratório tem a grande vantagem de tratar com a 

conFiguração real. No entanto, muitas vezes é de alto custo e não pode ser realizada ou por 

questões de segurança ou pela dificuldade de reprodução das condições reais. 

 Os problemas resolvidos por métodos analíticos na maioria das vezes possuem 

hipóteses simplificadoras que muito os afastam do fenômeno físico real ou possuem 

geometria e/ou condições de contorno simples. Ainda assim, as soluções analíticas são 

extremamente úteis para validar casos limites da experimentação numérica. 

 Por sua vez, os métodos numéricos não apresentam restrições quando o modelo 

númerico é aceitável, podendo resolver problemas com condições de contorno complicadas e 

geometrias arbitrárias, apresentando dados com boa rapidez. Entretanto, os dados obtidos 

devem ser confiáveis. A comparação dos resultados numéricos com resultados analíticos (se 

existirem) ou com outros resultados numéricos caracteriza a validação numérica, enquanto 

que a validação física é feita pela comparação com resultados experimentais. 
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I-2. SOLUÇÃO NUMÉRICA 

 A obtenção de uma solução numérica de qualquer problema físico requer 

inicialmente a adoção do modelo matemático correspondente, o qual via de regra é descrito 

por meio de equações diferenciais parciais (EDPs). Tal modelo deve ser passível de ser 

resolvido em tempos de computação não-proibitivos e os resultados obtidos devem bem 

representar o fenômeno físico em questão. 

 A idéia do método numérico é resolver as EDPs, substituindo as derivadas nelas 

existentes por expressões algébricas envolvendo a função incógnita. Ao contrário do método 

analítico que permite calcular os valores das variáveis dependentes em um número infinito de 

pontos, a aproximação numérica fornece a solução em um número discreto de pontos (ditos 

pontos nodais) definido pela chamada malha computacional, conforme ilustra a FiguraI-1. 

Espera-se que quanto maior for o número de pontos nodais, mais próxima da solução exata 

esteja a solução numérica. 

 

Figura I-1 A idéia do método numérico 



 I-3

 O passo seguinte está relacionado com a maneira de se obter as equações algébricas, 

comumente denominado discretização. Três classes merecem destaque, a saber: discretização 

em elementos finitos, em diferenças finitas e em volumes finitos. No presente trabalho foi 

adotada esta última classe, a qual será assunto de capítulo posterior. Algumas considerações 

básicas acerca das outras duas classes podem ser encontradas em Maliska, 1985., Patankar, 

1980. 

 Quando a EDP é linear, a discretização dá origem a um sistema linear de equações, 

cuja matriz de coeficientes permanece constante ao longo do processo iterativo. Em 

problemas como os de escoamento de fluidos, surgem não-linearidades que são transferidas 

para a matriz dos coeficientes, com vistas a manter linear o sistema de equações. Como 

conseqüência do ponto de vista de implementação, surge a necessidade da atualização desta 

matriz à medida que a solução numérica evolui, caracterizando assim um processo iterativo. 

 A etapa final do método numérico diz respeito à escolha do algoritmo para a solução 

do sistema de equações algébricas, com base nas características do próprio sistema. Os 

algoritmos de solução podem ser diretos (os quais necessitam da inversão da matriz dos 

coeficientes) ou iterativos. Como neste trabalho são abordados problemas não-lineares, foram 

adotados métodos iterativos de solução. 

I-3. CONVERGÊNCIA DA SOLUÇÃO NUMÉRICA E MÉTODO MULTIGRID 

 Para um sistema de equações não-lineares não é possível fazer afirmações a priori 

acerca da convergência da solução numérica. Valores adequados de tamanho da malha, de 

intervalo de tempo (para problemas transientes) e de coeficientes de relaxação que garantam a 

estabilidade e convergência da solução numérica são muitas vezes encontrados de maneira 

empírica. Em todo caso, a observação de certas regras (ex: positividade dos coeficientes) 

ajuda na convergência da solução numérica Maliska, 1985, Patankar, 1980. 
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 No início dos cálculos, a taxa de convergência é máxima, passando porém a decair 

sensivelmente à medida que o processo iterativo evolui. Tal efeito é tanto mais pronunciado 

quanto mais refinada for a malha computacional. Através de considerações da álgebra linear, 

Hackbusch, 1985, mostra que tal comportamento vem do fato do método iterativo ser 

eficiente na remoção somente daquelas componentes de Fourier do erro cujos comprimentos 

de onda são menores ou comparáveis com o espaçamento da malha. Após algumas iterações 

diz-se então que as componentes de baixo comprimento de onda já foram suavizadas e que o 

processo de convergência tornou-se lento em decorrência da má suavização das componentes 

de comprimento de onda elevado. 

 Com base nessa observação, a idéia do método multigrid (“malhas múltiplas”) é 

cobrir um espectro maior de comprimento de onda através da iteração não apenas em uma 

única malha, mas em uma seqüência de malhas cada vez mais grossas, isto é, de maior 

espaçamento. Deste modo, comprimentos de onda de componentes do erro que são grandes 

em malhas finas são transformados em comprimentos menores em malhas grossas, podendo 

então o erro ser ali melhor suavizado. Com isso acelera-se o processo de convergência, 

através da iteração em malhas de espaçamentos variados, nas quais as componentes do erro 

com comprimentos de onda correspondentes são eficientemente reduzidas. 

I-4. OBJETIVO E ORGANIZAÇÃO DO PRESENTE TRABALHO 

 No presente trabalho aplicou-se a técnica multigrid na solução numérica de 

problemas bidimensionais (coordenadas cartesianas) de mecânica dos fluidos e transferência 

de calor.O programa baseou-se no trabalho desenvolvido por Rabi, 1998 que abordou o 

método multigrid na solução de escoamentos laminares, incompressíveis, em regime 

permanente e propriedades constantes. Para discretização em volumes finitos foram 
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empregadas malhas computacionais estruturadas e ortogonais e o sistema de equações 

algébricas resultante é resolvido por algoritmos iterativos. 

 A organização do texto é descrita a seguir. O Capítulo I procura situar o trabalho e 

faz uma breve introdução aos principais assuntos por ele envolvidos. No Capítulo II são 

apresentadas as equações governantes e as condições de contorno dos problemas estudados. O 

Capítulo III e o Capítulo IV dizem respeito à implementação da solução numérica, enquanto 

que o Capítulo V é reservado para a apresentação e discussão dos resultados. Neste capítulo 

são apresentados estudos comparativos da velocidade de convergência das diferentes soluções 

implementadas, assim como da qualidade das mesmas. Por fim, o Capítulo VI contém as 

principais conclusões obtidas e sugere alguns desenvolvimentos futuros. O Capítulo VII 

contém as referências bibliográficas. 

I-5. REVISÃO DA LITERATURA 

 Segundo Brandt, 1977, as primeiras investigações acerca dos métodos multigrid 

foram feitos por Fedorenko em 1964 e por Bakhvalov em 1966, embora seus procedimentos 

básicos como a suavização de erro por relaxação e cálculo de correções em malhas grossas 

com aplicação recursiva já vinham sendo estudados por vários autores, conforme citam 

Stüben e Trottenberg, 1982. Contudo, a eficiência da técnica foi verificada por Brandt em 

1972, quem mais tarde apresentou uma descrição precisa de seu algoritmo Brandt, 1977, 

incluindo a solução de problemas não-lineares, como é o caso dos problemas de mecânica de 

fluidos. Um histórico mais detalhado pode ser encontrado em Hackbusch, 1985, Brandt, 1977 

e Stüben e Trottenberg, 1982, enquanto que um breve histórico dos desenvolvimentos 

posteriores e mais recentes pode ser encontrado em Thompson e Ferziger, 1989. 

Embora tanto a filosofia geral do método multigrid como o seu algoritmo sejam de fácil 

compreensão, a aplicação da técnica não é trivial. Conforme comentário de Hackbusch, 1985, 
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“não há algoritmo multigrid operando como uma ‘caixa-preta’ para todos os problemas de 

valor de contorno.” Os seus diferentes componentes devem ser adaptados de acordo com a 

natureza do problema abordado. Assim, além dos cuidados necessários à toda implementação 

de uma solução numérica, cuidados especiais devem ser tomados quando da utilização de 

mais de um nível de malha computacional (ex: transferência de valores entre as malhas). 

Seguindo esta linha de trabalho Rabi e de Lemos, 1998b, realizaram uma análise dos valore 

ótimos para os parâmetros preν , postν  e cgν . Em de Lemos e Mesquita, 1999a, foi apresentado 

um estudo investigando a eficiência do método multigrid em escoamentos em tanques e 

expansão abrupta, ambos laminares e não-isotérmicos, para soluções multigrid tanto em ciclo 

V como para o ciclo W. O trabalho Mesquita e de Lemos, 1999b, também considera o 

escoamento laminar não-isotérmico entre placas com expansão abupta, porém neste caso é 

feita uma análise mais criteriosa dos parâmetros ótimos do ciclo multigrid. Mais adiante, de 

Lemos e Mesquita, 2000a , consideram os casos de escoamento em tanque retangular 

aquecido e escoamento com expansão abrupta. Neste trabalho considerou-se valores 

diferentes para Re e suas implicações nos padrões de resultados do ciclo multigrid, com  

solução acoplada e solução desacoplada entre temperatura e velocidade. Finalmente em  

Mesquita e de Lemos, 2000b, foi proposto o estudo de escoamentos turbulentos  não-

isotérmicos com recirculação usando o método multigrid. 
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CAPÍTULO II - MODELO MATEMÁTICO 

II-1. EQUAÇÕES DO ESCOAMENTO LAMINAR 

No presente trabalho são analisados apenas escoamentos laminares bidimensionais 

incompressíveis de fluidos em regime permanente. As equações que descrevem o movimento 

de um fluido e do transporte de energia através dele são as equações para a massa, para a 

quantidade de movimento e para a energia. Elas representam matematicamente o princípio da 

conservação destas grandezas e são abaixo apresentadas para um sistema de coordenadas 

cartesianas. Maiores detalhes sobre a obtenção destas equações são encontrados em Bird, 

Stewart e Lightfoot,1960, Eskinazi,1960. 

A equação da continuidade (massa) para os escoamentos estudados neste trabalho é 
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onde ρ é a densidade e U e V são as velocidades nas direções x e y, respectivamente. 

A equação da quantidade de movimento ou equação de Navier-Stokes pode ser escrita 

para cada uma das direções coordenadas, sendo dadas por 
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onde µ é a viscosidade molecular e P é a pressão de movimento, que representa a diferença 

entre a pressão estática e a pressão hidrostática. Os termos SU e SV guardam os chamados 

termos fontes viscosos e são dados por 
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os quais se anulam pela equação da continuidade (II-1) para fluidos com ρ e µ constantes. 

Por fim, a equação da energia aqui resolvida é escrita em termos da temperatura T e pode ser 

simplificada desprezando-se os trabalhos devido à pressão e às forças viscosas. Esta hipótese 

é válida para escoamentos a baixos números de Mach, a qual é consistente com a hipótese de 

densidade constante aqui assumida. A equação então assume a forma 
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sendo ST o termo fonte (geração interna de calor), K a condutividade térmica e pc  o calor 

específico a pressão constante. 

 

II-2. EQUAÇÃO GERAL DE TRANSPORTE 

As equações de transporte vistas no item anterior descrevem fenômenos físicos similares e, 

portanto, são compostas de termos semelhantes. Este fato sugere escrevê-la de uma maneira 

geral, cuja forma para problemas bidimensionais em coordenadas cartesianas e em regime 

permanente é 
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onde φ está relacionado a alguma propriedade do escoamento (densidade, componentes do 

vetor velocidade, temperatura), φΓ   é o coeficiente de difusão da propriedade em questão e 

φS   é o termo fonte. Este último é responsável por acomodar todos aqueles termos que não se 
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encaixam na forma apresentada pela Eq. (II-6) conhecida na literatura como equação geral de 

transporte (EGT). A tabela a seguir contém os valores assumidos por φ, φΓ  e φS  para as 

grandezas resolvidas no presente trabalho. 

Tabela II-1 - Coeficientes de difusão e termos fontes da EGT. 
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Os termos do lado esquerdo da Eq. (II-6) representam o balanço convectivo da variável φ e 

são os termos mais delicados para o tratamento numérico, devido às não-linearidades. Os dois 

primeiros termos do lado direito representam o balanço dos fluxos difusivos. O termo fonte é 

o responsável por acomodar todos aqueles termos que não se encaixam na forma apresentada 

pela Eq. (II-6) possibilitando estabelecer normais gerais para que sua solução possa ser 

estabelecida. Vale lembrar que para o caso de escoamentos com µ e ρ constantes os termos 

fontes viscosos são nulos (SU = SV = 0), de modo que os termos fontes para as velocidades 

simplificam-se em 
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Por último e apenas como um adendo, vale citar que na Tabela II-1 não foram apresentados os 

termos referentes à densidade (φ = ρ, φΓ  = 0, φS  = 0) por esta não ser uma grandeza resolvida 

uma vez que os escoamentos analisados são incompressíveis. 

II-3. CONDIÇÕES DE CONTORNO 

A solução da EGT para as grandezas do escoamento só é possível mediante a especificação 

das condições de contorno do problema em questão. Quatro diferentes tipos de condições de 

contorno foram implementadas no programa que resolve escoamentos de fluidos: (1) parede 

sólida, (2) linha de simetria, (3) perfil de entrada ou (4) perfil de saída. A seleção e 

aplicação de um determinado tipo se faz conforme à geometria / física do problema de 

interesse investigado, como ilustra a Figura (II-1). O subscrito n refere-se à direção normal à 

fronteira e t refere-se à direção tangencial. 

 

Figura II-1 - Condições de contorno implementadas nos problemas de escoamento. 

 

Cada tipo de condição de contorno para as componentes da velocidade é suscintamente 

analisado a seguir. A discussão sobre a implementação numérica de cada um é deixada para 

capítulo posterior. No programa que resolve problemas térmicos somente a condição de valor 

prescrito (condição de contorno de Dirichlet) foi implementada. 
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II.3.1 Parede sólida 

Em escoamentos laminares, a condição de aderência é aplicada sobre paredes. Para 

superfícies impermeáveis, é atribuído o valor zero para ambas as componentes da velocidade. 

II.3.2 Linha de simetria 

Ao longo de uma linha de simetria são atribuídos valores nulos para o gradiente normal da 

velocidade tangencial a ela e para a componente da velocidade normal à linha. 

II.3.3 Perfil de entrada 

Os perfis de entrada a serem prescritos podem ser extraídos de dados experimentais ou de 

outra forma de informação empírica. Por um outro lado, podem ser simplesmente arbitrados 

conforme o interesse ou a conveniência em relação ao problema analisado. 

II.3.4 Perfil de saída 

Quando o perfil de saída está suficientemente distante de regiões com recirculação, assume-se 

estar o escoamento totalmente desenvolvido. Deste modo, são desprezados os gradientes das 

velocidades na direção principal do escoamento. 
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CAPÍTULO III - MODELO NUMÉRICO 

III-1.. FORMULAÇÃO EM VOLUMES FINITOS 

Na formulação em volumes finitos o domínio de cálculo é dividido em volumes finitos (VC) 

não-superpostos, de modo que cada um envolva um único ponto nodal da malha 

computacional. Quando cada VC possui o mesmo número de Vcs vizinhos, a malha é dita 

estruturada e se todos têm formato retangular, ela é classificada como ortogonal. Em uma 

malha regular ou uniforme todos os VCs possuem as mesmas dimensões. 

Figura III-1 - Disposição dos volumes de controle no domínio de cálculo 
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A Figura III-1 mostra como foi feita divisão do domínio de cálculo nos casos estudados, onde 

os VCs foram definidos pela interseção de linhas de coordenadas x e y constantes. As malhas 

resultantes são estruturadas e ortogonais, podendo ser ou não uniformes. Os pontos nodais 

localizam-se no centro do volume de controle (esquema cell-centered) e são numeradas a 

partir do canto inferior esquerdo. A existência de pontos nodais sobre as fronteiras do domínio 

(VC de dimensão nula ) relaciona-se com a aplicação das condições de contorno. 

Figura III-2 - Esquema e nomenclatura de cada volume de controle 

 

A Figura III-2 mostra o esquema de um VC típico e apresenta em detalhes a nomenclatura de 

suas principais dimensões.Há duas maneiras Maliska, 1985 de se obter as equações algébricas 

no método de volumes finitos. Em uma delas, as equações são obtidas através de balanços de 

conservação da grandeza no VC. Tal tarefa consiste basicamente em se escrever as taxas 

macroscópicas de acumulação, de transporte, de produção e de dissipação da propriedade no 

interior e nas faces do volume de controle. 
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Contudo, a forma mais recomendada é a partir da EGT na forma conservativa e integrá-la 

sobre o volume de controle. Isto vem do fato de nem todos os balanços serem fáceis de se 

deduzir. Esta forma foi adotada no presente trabalho e suas linhas gerais são descritas no 

próximo item. 

Por fim, vale mencionar que as variáveis dependentes foram armazenadas segundo um arranjo 

co-localizado, o mesmo VC sendo usado para realizar a integração da EGT para todas as 

variáveis. De acordo com Patankar, 1980, no uso deste arranjo podem surgir problemas 

relacionados ao acoplamento pressão-velocidade e á detecção de campos oscilatórios. Um 

modo de evitá-los é pelo uso do arranjo desencontrado (Maliska, 1985 e Patankar, 1980 ). O 

outro é realizar um esquema de interpolação para se obter os valores das velocidades nas faces 

do VC. Este último procedimento foi aqui adotado e será descrito em item posterior. 

III-2. DISCRETIZAÇÃO DOS TERMOS DA EGT 

A integração da EGT, sobre um VC como o da Figura III-2 faz-se segundo 
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onde δv = δxδy define a extensão do VC bidimensional. O próximo passo é a discretização da 

Eq.(III-1) que será apresentada separadamente para os seguintes termos: 

• termos convectivos (integral do lado esquerdo); 

• termos difusivos (primeira integral do lado direito) e 

• termo fonte (última integral do lado direito). 

III.2.1 Discretização dos termos convectivos  

A integração dos termos convectivos sobre o VC pode ser expressa na forma 



 III-4

( ) ( ) xyV
y

yxU
x

dd   dd 
e

w

n

s

n

s

e

w
∫ ∫∫ ∫ + φρ

∂
∂φρ

∂
∂  (III-2) 

que após uma primeira integração fica 
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onde os subscritos e, w, n, s representam as faces do VC sobre as quais as grandezas devem 

ser calculadas. 

Aqui é feita então a hipótese de que a grandeza avaliada no meio da face do VC seja constante 

ao longo da mesma. Nestas condições, a integração resulta em 

Ce φe − Cw φw + Cn φn − Cs φs (III-4) 

onde 

Ce = (ρU)e δy ,  Cw = (ρU)w δy ,  Cn = (ρV)n δx ,  Cs = (ρV)s δx (III-5) 

são os fluxos mássicos através das faces do VC. 

Neste ponto torna-se necessário introduzir um esquema de interpolação que forneça uma 

relação matemática que permita o cálculo das grandezas e de suas derivadas nas interfaces do 

VC em função dos valores das mesmas em pontos nodais vizinhos. Em Maliska, 1985 e 

Patankar, 1980 são encontrados e discutidos exemplos de diversos esquemas de interpolação: 

CDS - central differencing scheme, UDS - upwind differencing scheme, esquema exponencial, 

esquema híbrido e WUDS - weighted upstream differencing scheme, apenas para citar alguns. 

Para problemas hidrodinâmicos, preservou-se o esquema originalmente adotado em Rabi, 

1998 conhecido como flux blended deferred correction Khosla e Rubin, 1974, o qual faz uma 

combinação linear dos esquemas CDS e UDS, apresentado a seguir. 

Tomando a face e como exemplo, os valores sobre a mesma são calculados segundo 
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onde o fator de combinação λ varia entre 0 (UDS puro) e 1 (CDS puro). No procedimento 

numérico, o termo entre parênteses é calculado com valores oriundos do nível iterativo 

anterior (denotados com asterisco), fornecendo 
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Este procedimento torna a matriz dos coeficientes estritamente positiva e com predominância 

diagonal, o que é interessante do ponto de vista numérico (Maliska, 1985 e Patankar, 1980). 

No esquema UDS, o valor da função na interface é igual ao valor da função no ponto nodal do 

VC à montante do escoamento. Este esquema é, portanto, fisicamente consistente para 

problemas convectivos, ou seja, de caráter parabólico. Matematicamente tem-se 
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O operador max[a,b] fornece o maior entre a e b. 

Por outro lado, o esquema CDS é consistente para problemas puramente difusivos, ou seja, de 

caráter elíptico. Um perfil linear por partes é utilizado para relacionar os pontos nodais 

vizinhos, matematicamente expresso por 
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onde os fatores de interpolação linear fx,P, fx,W, fy,P, fx,S são calculados segundo 
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III.2.2 Discretização dos termos difusivos 

A integração dos termos difusivos sobre o VC é expressa por 
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Após uma primeira integração e pela hipótese de derivada constante ao longo da face, tem-se 
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Por fim, o esquema CDS é novamente utilizado para discretizar os gradientes nas faces do VC 
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III.2.3 Discretização dos termos convectivos e difusivos–esquema WUDS 

O esquema WUDS proposto por Raithby e Torrance, 1974 usa dois coeficientes α e β que 

servem como pesos entre os processos de convecção e condução. Conforme mencionado, ele 

foi empregado no programa que resolve problemas térmicos. Tomando a face leste como 

exemplo, o valor da temperatura e de sua derivada na interface são aproximados por 
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com os coeficientes sendo expressos por 
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O parâmetro Pee é o número de Péclet da célula baseado na distância internodal ∆xe. Ele é 

avaliado com os valores do nível iterativo anterior segundo 
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Para as demais faces são propostas expressões análogas às anteriores (Maliska, 1985) com Pe 

sendo calculado com os valores das grandezas na interface e com a respectiva distância 

internodal. 

Contudo, as expressões para α e β dadas pelas Eqs. (III-15) acarretam dificuldades 

relacionadas com o tempo de computação para avaliar as exponenciais. Para contorná-las, 

Raithby e Torrance, 1974, propõe as seguintes aproximações, aqui também adotadas, 

2
e

2
e

e2
e

2
e

e  Pe05.01
 Pe005.01

          e          
 Pe210

Pe
+
+

=
+

= βα  (III-17) 

 

III.2.4 Discretização do termo fonte 

Com base no teorema do valor médio, a integral do termo fonte é expressa como o produto de 

um valor médio, o qual está associado ao ponto nodal central, pelo volume do VC 

vSvSvS δδ φφ
δ

φ P,
V

d ≈=∫  (III-18) 

Em casos onde, por exemplo, o termo fonte Sφ depende (linearmente ou não) da própria 

grandeza φ, recomenda-se (Maliska, 1985 e Patankar, 1980 ) proceder uma linearização da 

forma 
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Sφ,P = Sc + SP φP  (III-19) 

Por último, para obter soluções fisicamente realistas e por questões de estabilidade e 

convergência, é desejável manter o coeficiente SP negativo. Contribuições positivas ao termo 

fonte devem ser incorporadas a Sc, conforme é discutido em (Maliska, 1985 e Patankar, 1980). 

III.2.5 Forma final da equação algébrica 

Para obter a equação algébrica final para o ponto nodal P são introduzidas na EGT integrada 

sobre o VC, Eq. (III-1), todas as discretizações apresentadas nos itens III.2.1-III.2.4. Após 

algumas manipulações algébricas, chega-se a 

aP φP = aW φW + aE φE + aS φS  + aN φN + b (III-20) 

Para a discretização com base no esquema flux blended, os coeficientes são dados por 
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O termo b contém contribuições do termo fonte e do termo referente à deferred correction 
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onde os coeficientes desta última contribuição são dados por 
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Por outro lado, para a discretização com base no esquema WUDS, os coeficientes são 
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III-3. TRATAMENTO DOS TERMOS FONTES 

A Tabela II-1 apresenta os termos fontes na EGT para cada grandeza resolvida pelo programa. 

O tratamento dado a cada um destes termos é discutido a seguir. 

III.3.1 Termo fonte da EGT para a quantidade de movimento 

Os termos fontes nas equações discretizadas para a quantidade de movimento recebem 

contribuições do gradiente de pressão e dos termos viscosos. Estes últimos, contudo, não 

serão considerados pois se anulam para escoamentos com ρ e µ constantes, nos quais 

enquadram-se os escoamentos estudados no presente trabalho. 

Na direção-x, a integração do gradiente de pressão sobre o VC da Figura III-2 leva à 
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onde Pe e Pw são os valores da pressão nas faces e e w, respectivamente, e são relacionados 

com os valores armazenados nos pontos nodais segundo uma interpolação linear 

Pe = (1 − fx,P) PP + fx,P PE   ,    Pw = (1 − fx,W) PW + fx,W PP (III-26) 

Nas faces coincidentes com as fronteiras do domínio, os valores da pressão são obtidos por 

extrapolação linear dos valores em pontos nodais vizinhos anteriores 

Pe = PP + (PP − PW)(1 − fx,W)   ,    Pw = PP − (PE − PP) fx,P (III-27) 

Analogamente, para a equação da quantidade de movimento na direção-y tem-se 
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com 

pontos internos: Pn = (1 − fy,P) PP + fy,P PN  ,   Ps = (1 − fy,S) PS + fx,S PP (III-29) 

pontos de fronteira: Pn = PP + (PP − PS)(1 − fy,S) ,  Ps = PP − (PN − PP) fy,P (III-30) 

Com relação à Eq. (III-19), Sc δv guarda as contribuições ao termo fonte e faz-se SP = 0. 

III.3.2 Termo fonte da EGT para a energia  

Não são consideradas fontes internas de calor, ou seja,  ST = 0. 
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III-4. TRATAMENTO DAS CONDIÇÕES DE CONTORNO 

Com base no que foi discutido no capítulo anterior, a Tabela III-1 resume a forma como as 

condições de contorno são aplicadas. Para as componentes da velocidade, o subscrito n refere-

se à direção normal à fronteira e t refere-se à direção tangencial. 

 

Tabela III-1 - Resumo das condições de contorno implementadas. 

Tipo de fronteira condição de contorno 

superfície sólida Ut = Un = 0 

plano / linha de simetria 0n
t == U

n
U
∂

∂  

perfil de entrada perfis fornecidos: Ut, Un, T 

perfil de saída 0nt ==
n

U
n

U
∂

∂
∂

∂  

 

Nos itens seguintes é apresentada a implementação destas condições de contorno para a 

fronteira sul (subscrito s), primeiramente para o esquema flux-blended (para U e V) e em 

seguida para o esquema WUDS (para T). A implementação para as demais faces pode ser 

inferida por analogia. 

Vale mencionar que no problema térmico estudado somente foi empregada a condição de 

valor prescrito na fronteira. Na Tabela III-1 ela consta como condição de contorno de perfil de 

entrada.
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III.4.1. Superfície sólida 

Pela condição de aderência e impermeabilidade, ambas as componentes da velocidade e o 

fluxo mássico normal são nulos ao longo da parede, Us = Vs = Cs
* = 0. Assim, também é nula 

a contribuição ao termo convectivo na equação para ambas as velocidades, Eq. (III-8). Para a 

velocidade tangencial, a contribuição ao termo difusivo, Eq. (III-12), é aproximada por 
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enquanto que para a velocidade normal tal contribuição se anula pelo fato de ( ) 0s =yV ∂∂  

pela equação da continuidade. Por estas considerações, na Eq.(III-20)  para a velocidade 

tangencial são introduzidas as modificações 
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enquanto que para a velocidade normal as modificações são 

VS = Vs = 0           aS = 0 (III-33) 

 

III.4.2 Linha de simetria 

Como a velocidade normal Vs à linha de simetria é nula, o fluxo convectivo se anula para 

todas as grandezas do escoamento. Embora Vs seja nula, seu gradiente normal não precisa 

necessariamente ser nulo também e pode ser aproximado de maneira análoga à Eq.(III-31), 

levando às seguintes modificações 
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Como o gradiente normal de U é nulo, as modificações necessárias são 

US =  UP             aS = 0 (III-35) 

III.4.3. Perfil de entrada 

Os valores prescritos às variáveis no perfil de entrada são atribuídos aos pontos nodais, 

enquanto que os fluxos difusivos são aproximados segundo a Eq. (III-31). Assim, 
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III.4.4. Perfil da saída 

Do ponto de vista computacional, a implementação das condições de contorno de saída é 

idêntica àquela utilizada para a condição de simetria, com exceção à componente normal da 

velocidade, cujo gradiente passa agora a ser nulo também. Assim, para todas as variáveis, 

US =  UP             aS = 0 (III-37) 

Além disso os fluxos mássicos de saída são corrigidos com relação aos fluxos de entrada de 

modo a preservar a conservação de massa no interior do domínio 

*
saidasaida .CcfC =      ,     

saida

entrada

m
m

cf
&

&
=  (III-38) 

onde entradam& , saidam&  correspondem ao somatório de todos os fluxos mássicos de entrada / 

saída pelas fronteiras do domínio. 

III.4.5. Tratamento para o esquema WUDS 

Em resumo, as condições de contorno para as equações obtidas por meio do esquema WUDS 

são implementadas observando-se o tipo de condição matemática exigida. Será tomada 

novamente como exemplo a fronteira sul, podendo as demais serem inferidas por analogia. 
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A condição de contorno implementada é a de Dirichlet (valor prescrito, mesmo que nulo). 

Assim, na Eq. (III-20) escrita para a temperatura, deve-se ter TS = Ts, o que é obtido 

impondo-se αs = ½ na expressão para Ts 

PsSss 2
1

2
1 TTT 
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 −+






 += αα  (III-39) 

Por sua vez, βs é avaliado com Pes sendo calculado com ∆ys = δy / 2. Os novos valores destes 

dois parâmetros são então levados às Eq.(III-24)  

III-5. ACOPLAMENTO PRESSÃO-VELOCIDADE 

Segundo Patankar, 1980, a real dificuldade no cálculo do campo de velocidade está 

relacionada ao campo de pressão desconhecido, pois não há uma equação direta que permita a 

sua obtenção. No entanto, ele pode ser especificado indiretamente através da equação da 

continuidade. Quando o campo correto de pressão é substituído nas equações da quantidade 

de movimento, o campo de velocidade daí resultante satisfaz a continuidade. 

O acoplamento pressão-velocidade aqui adotado é baseado no algoritmo SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) desenvolvido porPantankar e Spalding, 1972. 

O algoritmo é composto dos seguintes etapas: 

a)  Valores iniciais das grandezas são estimados a fim de avaliar os coeficientes (fluxos 

convectivos e difusivos) das EGTs na forma discretizada e as diferenças de pressão. 

b)  As equações da quantidade de movimento são montadas e relaxadas, resultando nos 

campos U* e V*. Como a aproximação inicial do campo de pressão P* é provavelmente 

incorreta, estas velocidades não satisfazem a continuidade. 

c)  A partir da equação da continuidade e das equações da quantidade de movimento, é 

derivada uma equação que forneça um campo de pressão corrigido P, cuja obtenção 

resulta em correções às velocidades, de modo a satisfazer a continuidade. 
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d)  Caso estejam sendo resolvidas, as demais grandezas do escoamento são agora tratadas. 

e)  O novo valor P é tratado como uma nova aproximação P* e o algoritmo é retomado a 

partir do passo (b), até atingir a convergência. 
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III.5.1 Equação de correção da pressão 

A equação da continuidade discretizada pode ser colocada na forma 

0ssnnwwee =−+− xVxVyUyU δρδρδρδρ  (III-40) 

A introdução das velocidades U* e V*, conforme o passo (b), faz com que a continuidade não 

seja mais satisfeita, produzindo uma fonte de massa Sm 

m
*

ss
*

nn
*
ww

*
ee SxVxVyUyU =−+− δρδρδρδρ  (III-41) 

Neste ponto é importante discutir o esquema de interpolação empregado na determinação das 

velocidades nas faces Ue
*, Uw

*, Vn
* e Vs

*. A razão é que para um arranjo co-localizado de 

variáveis (que é o caso), a aplicação direta da interpolação linear leva ao desacoplamento 

entre a velocidade e a pressão e a possíveis soluções oscilatórias Patankar, 1980. A seguir é 

apresentada a determinação de Ue
*, sendo análogas as expressões para as demais faces. 

As equações das quantidades de movimento para os pontos nodais P e E com base na 

Eq.((III-20) escritas com os termos fontes bP e bE expandidos ficam na forma 
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O índice do somatório vz cobre os pontos nodais vizinhos a oeste, leste, sul e norte e os 

termos P
Us  e E

Us  correspondem aos termos fontes viscosos já discretizados. (Vale lembrar que 

os mesmos se anulam para os casos considerados; este fato porém não prejudica as 

manipulações algébricas apresentadas a seguir, o que as torna gerais.) 

A velocidade Ue
* é obtida interpolando-se linearmente todos os termos nas Eqs.(III-42), 

exceto a diferença de pressão que é avaliada segundo uma malha desencontrada, donde 
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A interpolação do primeiro termo do lado direito da equação acima pode ser feita com o 

auxílio das Eqs. (III-42), de modo que a expressão final para Ue
* fica 
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A inserção das velocidades interpoladas para as faces na Eq. (III-41)permite o cálculo da 

fonte de massa Sm. Assim, correções para a velocidade e para a pressão devem ser obtidas 

com vistas a satisfazer a continuidade. As correções para a velocidade são da forma 

0)()()()( s
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ssn
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nnw
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wwe

*
ee =′+−′++′+−′+ xVVxVVyUUyUU δρδρδρδρ  (III-45) 

que, com o auxílio da própria Eq.(III-41), pode ser rescrita na forma 

mssnnwwee SxVxVyUyU −=′−′+′−′ δρδρδρδρ  (III-46) 

No passo seguinte, as correções para a velocidade são relacionadas com as correções para a 

pressão. Para tanto, são utilizadas as equações da quantidade de movimento na forma 

discretizada, resultando em uma expressão semelhante à Eq.(III-43), a saber 
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No algoritmo SIMPLE, são desprezados os efeitos (implícitos) das correções para a 

velocidade nos pontos vizinhos, simplificando a expressão acima para 
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onde também foram apresentadas as expressões para as demais correções. Inserindo as Eqs. 

(III-48) na Eq. (III-46) resulta na equação da correção para a pressão 

mNNSSEEWWPP SPaPaPaPaPa −′+′+′+′=′  (III-49) 
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III.5.2 Condições de contorno para a equação da correção da pressão 

As condições de contorno aplicadas dizem respeito a valores conhecidos para as velocidades 

normais nas fronteiras. Tal é o caso dos tipos de fronteira implementados: paredes sólidas, 

linhas de simetria e perfis de entrada / saída. Nestas circunstâncias, a velocidade normal não 

precisa ser corrigida. 

Considerando por exemplo a fronteira sul, deve-se impor  Vs′ = 0, de modo que a Equação 

(III-46) fica na forma 

mnnwwee SxVyUyU −=′+′−′ δρδρδρ  (III-51) 

Introduzindo na relação acima as expressões para as correções para a velocidade, Eq. (III-48), 

chega-se à equação da correção para a pressão, desta vez porém com aS = 0. Do ponto de vista 

de implementação numérica, tal situação corresponde a uma condição de contorno de von 
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Neumann de gradiente nulo. Expressões análogas podem ser obtidas para as demais 

fronteiras. 

 

III.5.3 Atualização da pressão, das velocidades e dos fluxos mássicos  

Após relaxada a equação da correção para a pressão, a pressão em si, as componentes da 

velocidade e os fluxos mássicos são corrigidos segundo 
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Estes novos valores satisfazem a conservação de massa mas não mais satisfazem as equações 

da quantidade de movimento e servem como aproximação inicial do próximo passo iterativo. 

III-6. PARÂMETROS DE SUB-RELAXAÇÃO 

Em virtude da não-linearidade das equações para a quantidade de movimento, do 

acomplamento pressão-velocidade e do fato de alguns termos serem desconsiderados na 

dedução da equação para a pressão, o algoritmo SIMPLE pode divergir caso não seja emprega 

alguma forma de sub-relaxação. A prática adotada no presente trabalho segue aquela existente 

no programa computacional original Rabi, 1998, sendo abaixo descrita. 

Ao invés da Eq.(III-52), a pressão é corrigida segundo 

PP
*

PP          PPP ′+= ξ  (III-53) 

onde ξP é o fator de sub-relaxação para a pressão. 

Para as componentes da velocidade, a Eq. (III-20) é rescrita adicionando-se e subtraindo-se 

em seu lado direito o valor *
Pφ  oriundo da iteração anterior 
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Ao termo entre parênteses que representa a variação de φP por iteração é então aplicado um 

fator de sub-relaxação ξφ (ou seja, ξU e ξV ) de modo a ter 
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ou, equivalentemente, 
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Este mesmo tipo de sub-relaxação é também sugerida em Patankar, 1980. 
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CAPÍTULO IV O MÉTODO MULTIGRID 

IV-1. A FILOSOFIA DO MÉTODO MULTIGRID 

No capítulo anterior foi apresentado o procedimento de discretização da EGT aplicada a cada 

grandeza do escoamento com vistas a obter as equações algébricas a serem resolvidas 

computacionalmente pela aplicação de métodos numéricos. A equação algébrica resultante 

para um dado ponto nodal (no centro do respectivo VC) pode ser colocada de um modo geral 

na forma sugerida pela Eq.(III-20), mas aqui ela é rescrita na forma 

aP φij − aW φi−1j − aE φi+1j − aS φij−1  − aS φij+1 = bij (IV-1) 

onde os superscritos i j localizam na malha o ponto nodal nas direções x, y respectivamente. 

Promovendo a varredura de todos os índices i j, as Eqs. (IV-1) resultantes formam um sistema 

de equações algébricas expresso na forma matricial por 

Ak Φk = bk (IV-2) 

onde Ak é a chamada matriz dos coeficientes, Φk é a matriz das incógnitas e bk é a matriz que 

acomoda os termos fontes. O subscrito k refere-se à malha computacional em questão. 

Quando o sistema é resolvido em apenas uma malha, este subscrito torna-se desnecessário. 

Quando Ak tem estrutura tridiagonal, o sistema (IV-2) pode ser resolvido diretamente através 

de algum algoritmo apropriado. No entanto, problemas bidimensionais resultam em Ak 

pentadiagonal, requerendo a aplicação métodos iterativos. 

Em métodos iterativos clássicos como o de Jacobi, o de Gauss-Seidel ou o TDMA - 

TriDiagonal Matrix Algorithm (Maliska, 1985 e Patankar, 1980), a taxa de convergência da 

solução numérica é elevada no início dos cálculos, decaindo sensivelmente à medida que o 
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processo iterativo evolui. Através de uma análise espectral (ou seja, no espaço de fase), 

mostra-se (Hackbusch, 1985, Brandt, 1977, Stüben e Trottenberg, 1982 )que isto se deve ao 

fato de o método iterativo ser capaz de suavizar, isto é, remover de modo eficiente apenas 

aquelas componentes de Fourier do erro de altas freqüências, o mesmo não ocorrendo para as 

de baixas freqüências. A Figura IV-1(Stüben e Trottenberg, 1982) procura ilustrar este 

comportamento 

 

Figura IV-1 - Comportamento da suavização do erro em métodos iterativos de 

suavização. 

 

Conclui-se, pois, que as componentes do erro de baixas freqüências são as responsáveis pela 

lenta convergência eventualmente atingida pelos processos iterativos em malhas simples. 

Como as componentes de altas freqüências são aquelas cujos comprimentos de onda são 

menores ou comparáveis com o espaçamento da malha computacional, vem daí o fato deste 

efeito ser tanto mais pronunciado quanto mais refinada for a malha. 

A filosofia do método multigrid é baseada na premissa de que cada faixa de freqüência do 

erro deve ser suavizada na malha mais adequada para se fazê-la. Para que componentes do 

erro de elevados comprimentos de onda (baixas freqüências) possam ser melhor suavizadas, o 

método multigrid procura pois trabalhar não com uma única malha mas com uma seqüência 
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de malhas de refinamento decrescente. Deste modo, comprimentos de onda que são grandes 

em malhas finas são transformados em comprimentos de onda menores em malhas grossas, 

onde então são melhor suavizados. Assim, em cada nível de malha visitado, as componentes 

do erro correspondentes são eficientemente reduzidas, acelerando o processo de convergência. 

Há dois modos como o sistema de equações algébricas pode ser operado nas malhas mais 

grossas: são os chamados correction storage (CS) e full aproximation storage (FAS). Ambos 

são descritos e discutidos a seguir. Em Brandt,1982 é mostrado as operações necessárias para 

se migrar do CS ao FAS. Para problemas lineares, recomenda-se a utilização do CS, enquanto 

que o FAS é mais adequado para situações não lineares (Brandt, 1977, Brandt,1982 e Vanka, 

1986). Ainda assim, Jiang, et al, 1991 relatou ter obtido bons resultados na solução de alguns 

problemas bidimensionais de mecânica dos fluidos usando o método multigrid na concepção 

CS. 

Conforme poderá ser verificado logo adiante, a maior vantagem do CS frente ao FAS é que 

este tipo de algoritmo multigrid quando da passagem de uma malha fina para uma mais grossa 

(operação de restrição), requer apenas a manipulação dos resíduos das equações na malha 

fina, mas não requer a manipulação das grandezas resolvidas. Além disso, do ponto de vista 

de implementação numérica, a restrição dos resíduos é bem mais simples do que a restrição 

das grandezas. 

IV-2. CORRECTION STORAGE - CS 

Neste esquema, procura-se obter nas malhas grossas (isto é, em todas as malhas exceto a mais 

fina) aproximações da correção para a grandeza do escoamento, sendo esta última resolvida 

unicamente na malha mais fina. Em outras palavras, Φk na malha mais fina guarda 

aproximações da própria grandeza enquanto que em malhas grossas guarda aproximações da 

sua correção (donde o nome correction storage). 
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Após um certo número de iterações aplicadas ao sistema(IV-2), obtém-se uma aproximação 

kΦ , acompanhada da respectiva correção φk 

φk =  Φk − kΦ     ⇔     Φk =  kΦ  + φk (IV-3) 

Define-se o resíduo rk como sendo 

rk =  bk −  Ak kΦ  (IV-4) 

Inserindo a Eq. (IV-3) na Eq.(IV-2), levando em conta a definição ((IV-4) e considerando a 

matriz Ak linear (daí sua melhor aplicabilidade em problemas lineares), mostra-se que a 

correção φk é a solução de 

Ak φk =  rk (IV-5) 

a qual tem a mesma forma que a Eq. (IV-2). A solução exata da Eq. (IV-5)) é tão difícil 

quanto a da Eq. (IV-2). Contudo, φk pode ser melhor aproximada que Φk (Hackbusch, 1985). 

Tal aproximação é realizada nas malhas mais grossas 

Ak−1 φk−1 =  rk−1 (IV-6) 

onde rk−1 é obtido segundo 

k
1k

k1k rr −
− = I  (IV-7) 

O operador 1k
k

−I , denominado restrição, leva valores da malha k para a malha k−1 e será 

discutido em item posterior. 

Em situações ideais, recomenda-se (Hackbusch, 1985) que a Eq. (IV-6)) na malha mais grossa 

seja resolvida exatamente, o que nem sempre é possível. Todavia, por envolver um número 

expressivamente menor de VCs, pode-se pelo menos realizar um número bem maior de 

iterações nesta malha sem comprometer muito o esforço computacional. 
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Após obtida, a aproximação da correção 1m−φ  em malha grossa é levada de volta para malhas 

mais finas através do operador prolongamento k
1k−I  (também discutido adiante) 

 

1k
k

1kk −−= φφ I  (IV-8) 

de forma a refinar a aproximação kΦ  segundo 

kk
new
k φ+Φ=Φ  (IV-9) 

De um modo global, todo o procedimento pode ser resumido na expressão 

( )kkk
1k

k
1

1k
k

1kk
new
k Φ−+Φ=Φ −−

−− AbA II  (IV-10) 

IV-3. FULL APROXIMATION STORAGE - FAS 

Neste esquema, ao invés de se guardar nas malhas grossas correções para a grandeza do 

escoamento, a idéia é guardar em Φk−1 a aproximação da própria grandeza. 

Novamente parte-se da equação para a correção, Eq.(IV-5), porém escrita na forma 

Ak Φk − Ak kΦ  =  rk (IV-11) 

cuja aproximação em malha grossa é da forma 

Ak−1Φk−1 − Ak−1 1k−Φ = rk−1 (IV-12) 

sendo este o sistema a ser resolvido na malha grossa. A exemplo de rk−1, Eq.(IV-7), a 

aproximação na malha grossa é dada por 

k
1k

k1k Φ=Φ −
− I  (IV-13) 

Vê-se assim que, em contraste ao CS, não apenas o resíduo como também a aproximação são 

restringidos. Contudo, os operadores de restrição aplicados a cada um necessariamente não 
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são os mesmos Stüben e Trottenberg, 1982 e Bai e Mitra, 1994. Por outro lado, como 

nenhuma restrição foi feita à matriz Ak, este tipo de esquema é o mais adequado para 

problema não-lineares, conforme já citado. 

No procedimento de prolongamento deve-se lembrar que em última instância é a correção que 

está sendo suavizada. Assim, após obtido um novo valor para new
1k−Φ , a correção a ser 

prolongada é 

1k
new

1k1k −−− Φ−Φ=φ  (IV-14) 

de modo que na malha fina a atualização da aproximação é feita segundo 

1k
k

1kkkk
new
k −−+Φ=+Φ=Φ φφ I  (IV-15) 

Com o auxílio das Eqs. (IV-13) e (IV-14), a equação acima é rescrita na forma comumente 

encontrada na literatura (Brandt, 1977, Thompson e Ferziger, 1989, Vanka, 1986 e Bai e 

Mitra, 1994) 

( )k
1k

k
new

1k
k

1kk
new
k Φ−Φ+Φ=Φ −

−− II  (IV-16) 

IV-4. PROCEDIMENTOS DE MUDANÇA DE NÍVEL DE MALHA 

Conforme discutido nos itens anteriores, no algoritmo multigrid é necessário realizar a 

transferência de valores entre os diferentes níveis de malha como também ter disponível a 

matriz dos coeficientes Ak e as coordenadas x e y da malha em todos estes níveis k. Os 

procedimentos envolvidos em cada uma destas operações são apresentados a seguir. 

IV-4.a. Transferência de valores 

A transferência de valores entre as malhas se dá mediante o uso de operadores de 

interpolação. Quanto a transferência é no sentido “fina-para-grossa” (k para k−1), utiliza-se o 
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operador de restrição ( 1k
k

−I ); quando a transferência se dá no sentido oposto (k−1 para k), o 

operador empregado é o de prolongamento ( k
1k−I ). 

Em Hackbusch, 1985 são apresentadas diferentes definições de operadores de interpolação. 

Uma forma de interpolação comumente empregada na literatura Thompson e Ferziger, 1989, 

Vanka, 1986, Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989, Hortmann et al, 

1990,Joshi e Vanka,1991, Bonhaus,1993, é a interpolação bilinear (ou operador Lagrangeano 

de 4 pontos). Em algumas das referências acima citadas, este operador está definido para uma 

malha uniforme (espaçamento igual entre os pontos nodais), o que lhe confere uma forma 

invariante. No presente trabalho porém, com vistas à possibilidade de utilização de malhas 

não-uniformes, optou-se pela utilização deste operador em uma situação genérica, descrita a 

seguir. 

Do ponto de vista de implementação, a idéia é construir uma malha intermediária entre as 

malhas fina e grossa. Esta malha auxiliar define um novo conjunto de pontos nodais, onde são 

armazenados temporariamente os valores Φaux resultantes da aplicação do operador I sobre Φ 

segundo uma única direção coordenada (por exemplo y, que corresponde aos índices  j ). Em 

seguida, o operador é aplicado sobre Φaux segundo a direção coordenada remanescente ( x, 

índices i ) de modo a obter Φ na nova malha interpolada. A Figura IV-2 procura demonstrar 

esta seqüência de operações para a restrição e para o prolongamento. 
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Figura IV-2 - Esquema dos procedimentos de restrição (a) e de prolongamento (b). 

Vale ressaltar que a operação acima esquematizada não é aplicada para realizar a restrição do 

resíduo, Eq.(IV-7), mas apenas das aproximações para as grandezas, Eq.(IV-13). 

Conseqüentemente, ela se torna desnecessária para o algoritmo multigrid na formulação CS. 

Considerando a malha auxiliar já construída, a operação de prolongamento para se obter os 

valores na malha fina é realizada através da expressão 

j 1+I
1k

j I
1k

j i
k     )1( −− +−= φφφ ff  (IV-17) 

onde o fator de interpolação linear f com base no esquema exibido na Figura (cuja simbologia 

e nomenclatura seguem as da Figura IV-3 é dado por 

2i2i

2i1i

−+

−−

−
−

=
∆
∆

=
xx
xx

X
xf  (IV-18) 

A segunda igualdade pode ser obtida após algumas manipulações algébricas. As coordenadas 

x na Figura IV-3 e na Eq. (IV-18) são referentes à malha fina. 
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Figura IV-3 - Detalhes do procedimento de prolongamento 

 

O cálculo de f de acordo com o exemplo acima é um caso particular, onde o índice i é um 

número ímpar devido à existência de VCs de dimensões nulas (ver Figura III-1). A 

generalização pode ser feita segundo 

ii2iii2i

ii2iii+1i

−−−+

−−−

−
−

=
xx
xxf  (IV-19) 

onde o índice ii acrescentado é definido por 

ii = mod(i−1, 2) (IV-20) 

O operador mod(a, b) devolve o resto da divisão de a por b, ambos sendo números inteiros. 

Além disso, o índice I na Eq. (IV-17) referente à malha grossa é calculado segundo 

2
1+

=
iI  (IV-21) 

sendo esta operação realizada em aritmética de números inteiros. 

A malha auxiliar é obtida a partir da malha grossa de modo análogo, aplicado porém na 

direção-y. A vantagem deste procedimento é que ele pode ser facilmente estendido para uma 

situação tridimensional, uma vez que cada direção é tratada separadamente. 
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A prática utilizada Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989,Peric, Rüger e 

Scheurer, 1989, Joshi e Vanka,1991, Sathyamurthy e Patankar, 1994 na restrição do resíduo é 

simplesmente compor o resíduo do VC da malha grossa somando-se os resíduos dos 4 VCs da 

malha fina que formam-no, segundo um esquema semelhante ao da Figura IV-2 (a) (mas sem 

a necessidade de construir uma malha auxiliar). Matematicamente esta operação é expressa 

por 

1+j 1+i
k

j 1+i
k

1+j i
k

j i
k

J I
1k rrrrr +++=−  (IV-22) 

A razão disso é que as equações algébricas obtidas através da formulação em volumes finitos 

representam o balanço dos fluxos através das faces do VC e das fontes integradas no seu 

interior. Deste modo, a equação de balanço na malha grossa é equivalente à soma das quatro 

equações de balanço dos VCs de malha fina correspondentes. Vê-se assim que a restrição do 

resíduo é bem mais simples e direta que a restrição das grandezas, sendo esta a principal 

vantagem da formulação CS frente à formulação FAS. 

Neste ponto vale citar o modo como as grandezas Φk são armazenadas para todos os níveis k. 

Primeiramente os índices i e j são condensados em um único índice ij segundo um 

procedimento idêntico ao que é adotado em Rabi, 1998, permitindo o armazenamento em um 

vetor unidimensional. Em seguida, cada um dos vetores referentes aos vários níveis de malha 

são guardados seqüencialmente a partir de k = 1 até k = M = número de malhas.  

A Figura IV-4 procura ilustrar a forma do vetor unidimensional resultante deste modo de 

armazenamento. 

Φ1 Φ2 ... Φk ... ΦM 

Figura IV-4 - Modo de armazenamento das grandezas pelos vários níveis de malha. 
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Desconsiderando os VCs de fronteira, as dimensões das malhas computacionais caem 

segundo uma PG de razão q = ¼ à medida que k vai de M até 1. Assim, sendo dM a dimensão 

da malha mais fina, o tamanho (superestimado) do vetor unidimensional resultante Figura(IV-

4) pode ser determinado a priori lembrando que a soma dos termos de uma PG infinita é dada 

por S∞ = dM / (1 − q), donde  S∞ = (0.75)−1 dM ≅ 1.333 dM. No caso, todavia, é adotado S∞ = 2 

dM de modo a acomodar os VCs da fronteira (com folgas). 

Do ponto de vista da manipulação dos valores Φk, são definidas matrizes de trabalho φ(i, j) 

(com os índices desacoplados) dimensionadas de acordo com o tamanho da malha mais fina. 

Estas matrizes devolvem para e recebem do vetor unidimensional os valores Φk do nível de 

malha em questão, sendo implementadas para tal tarefa uma rotina de importação (do vetor 

para a matriz-trabalho) e outra de exportação (da matriz-trabalho para o vetor). 

IV-4.b. Obtenção da matriz dos coeficientes 

Considerando as Eqs. (III-21) e (III-24), observa-se que os coeficientes que compõem 

a matriz Ak contem uma contribuição convectiva e outra difusiva, condizente com a 

física envolvida na EGT,Eq. (II-6) ponto de partida na obtenção destes coeficientes. 

Conforme será visto adiante, o algoritmo multigrid implementado tem início na malha 

mais fina, onde então estas contribuições são calculadas e os coeficientes, montados. 

À medida que vão se procedendo as restrições, torna-se necessário obter a matriz Ak em 

níveis mais grossos (k < M). Um procedimento comumente adotado na literatura Jiang, et al, 

1991, Peric, Rüger e Scheurer, 1989 e Hortmann, Peric e Scheurer, 1990 consiste em tratar 

separadamente as contribuições convectivas e difusivas. Estas últimas, por depender da 

geometria da malha computacional, são recalculadas a cada mudança de nível de malha 

(independentemente do sentido da mudança). Por sua vez, os fluxos mássicos nas interfaces 
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(contribuições convectivas) são combinados, isto é, somados de modo a compor os 

respectivos fluxos na malha grossa. A Figura IV-5 procura ilustrar este procedimento, onde os 

fluxos referentes às faces w e s foram omitidos por simplicidade. 

 

 

 

Figura IV-5 - Combinação dos fluxos mássicos nas interfaces 
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Recentemente, Sathyamurthy e Patankar, 1994 reportaram a implementação de um algoritmo 

multigrid no qual os coeficientes na malha grossa são obtidos a partir de combinações 

apropriadas dos coeficientes da malha fina. No entanto, nenhuma informação é fornecida  

Acerca do modo de como se operar tal combinação apropriada. 

IV-4.c. Tratamento das coordenadas da malha computacional 

As malhas consideradas no presente trabalho são estruturadas e ortogonais, podendo ou não 

ser uniformes (regulares). Sendo assim, o procedimento adotado visa tratar a situação mais 

genérica que corresponde às malhas não-uniformes, consistindo a situação de malha uniforme 

em um caso particular. 

As malhas não-regulares são extremamente úteis para se promover um refinamento maior em 

regiões do domínio de cálculo onde há gradientes elevados, de modo a aumentar a 

concentração de pontos nodais nestas regiões. Em são apresentados exemplos de funções 

(stretching functions) capazes de realizar tais refinamentos da malha. 

Contudo, no presente trabalho foi elaborado um algoritmo de construção de malha que calcula 

as coordenadas das faces dos VCs de modo que as dimensões dos mesmos formem uma 

progressão geométrica (PG) crescente ou decrescente. A razão de tal adoção será explicitada 

mais adiante. A malha que de fato é construída é a malha mais fina (k = M), sendo as demais 

obtidas recursivamente a partir desta. 

Um parâmetro importante é a razão de espectro RE definida como a razão entre as dimensões 

na direção coordenada em questão do primeiro e do último VC de dimensões não-nulas da 

malha. Com o auxílio da Figura, tem-se portanto para a direção x como exemplo 

1NI

2
x

−

=
x
xRE

δ
δ  (IV-23) 
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onde NI é o número total de pontos nodais na direção x (incluindo os da fronteira). Para 

valores crescentes de i, a PG é decrescente se REx > 1 ou crescente se REx < 1. 

 

 

 

 

Figura IV-6 - Representação de uma malha não-uniforme 

 

Sendo N = NI−2 o número de VCs de dimensões não-nulas e o comprimento Lx definido 

como mostra a Figura IV-6, mostra-se que a razão da PG qx e a dimensão inicial δx2 são 

dados respectivamente por 

N

N

q
qLx

RE
q

x

x
x2

1
1

x
x 1

1               e               1
−
−

=







=

−

δ  (IV-24) 

As demais dimensões são obtidas recursivamente segundo 

δxi = qx δxi−1  ,   i = 3, NI−1 (IV-25) 

A malha uniforme corresponde ao caso REx = qx = 1 e δx2 =... = δxi =... = δxNI−1 = Lx / N. Para 

a direção y, aplica-se um procedimento semelhante. 

Em casos em que é desejável promover um refinamento nas proximidades de ambas as 

fronteiras do domínio a partir da linha média (ou em casos onde ocorra o contrário, isto é, 

refinamento próximo à linha média a partir das fronteiras), deve-se primeiramente dividir o 

domínio ao meio e construir uma malha não-uniforme para cada metade segundo o 

procedimento anteriormente descrito. Em uma das metades a razão da PG é qx, enquanto que 
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na outra é qx
−1, além de haver a necessidade de existir no domínio como um todo um número 

par de VCs (para permitir a divisão ao meio). 

As coordenadas na malha grossa XI são obtidas promovendo-se as igualdades XI = xi, onde os 

índices da malha fina i variam de 1 até NI−1, percorridos de 2 em 2 (i = 1, 3, 5,..., NI−1), ao 

passo que os da malha grossa são contados de 1 em 1 a partir de 1 enquanto durar a varredura 

dos índices i. Ao término desta, é feita a igualdade entre as coordenadas coincidentes XNI = 

XNI−1 (ver Figura III-1). 

A vantagem da adoção da malha não-uniforme em PG surge quando se opera o 

prolongamento. As coordenadas coincidentes podem ser recuperadas em um procedimento 

similar àquele descrito no parágrafo anterior, enquanto que as coordenadas intermediárias são 

recuperadas através da expressão 

x

1+i1ix
i   1

     
q

xxqx
+

+
= −  (IV-26) 

Inserindo qx = 1 na expressão acima, observa-se que o caso uniforme (divisão ao meio) é 

satisfeito, podendo a mesma ser usada em qualquer situação. A vantagem consiste no fato de 

que nem sempre é fácil obter as funções inversas (se existirem) para outras funções de 

refinamento, que seriam necessárias para a recuperação das coordenadas intermediárias. 

As coordenadas xi e yj são armazenadas em um único vetor, uma vez que podem ser rescritas 

a cada mudança de malha. Este tipo de tratamento tem, pois, a vantagem de se economizar 

memória que pode ser significativa em problemas que exijam vários VCs e/ou níveis de 

malha. Tem, porém, a desvantagem de acarretar em um esforço computacional extra a cada 

mudança de malha que pode prejudicar a performance do algoritmo. 

Um procedimento alternativo seria calcular no ínicio do algoritmo não apenas as 

coordenadas da malha fina como também as coordenadas em todos os níveis de malha. Com 

isso, evitar-se-ia a necessidade de a cada mudança de nível recalcular-se as coordenadas da 
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malha em questão, poupando tempo de computação. Em contrapartida, aumenta-se a 

quantidade de informação a ser armazenada que pode ser relevante para problemas onde 

sejam resolvidas várias grandezas do escoamento. Como futuramente estas grandezas serão 

incorporadas ao programa, este procedimento não foi adotado no presente trabalho 

IV-5. ESTRATÉGIA DE MUDANÇA DE NÍVEL DE MALHA 

Durante o algoritmo multigrid diferentes níveis de malha são visitados, nos quais as 

componentes do erro com comprimentos de onda comparáveis ao espaçamento da malha 

correspondente são eficientemente suavizadas. A seqüência como os procedimentos (IV-10)e 

(IV-16) são concatenados entre níveis consecutivos de malha caracteriza os chamados ciclo-V 

e ciclo-W. A Figura IV-7 mostra a seqüência de operações em cada ciclo durante uma iteração 

multigrid completa para cada ciclo. As operações são de pré-suavização (s), de restrição (r), 

de iteração em malha grossa (g) e de prolongamento (p). As operações de pós-suavização não 

são apresentadas por simplicidade. 

 

 

 

 

Figura IV-7 - Sequência de operações em iteração multigrid completa com 4 malhas 
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Duas estratégias distintas podem ser adotadas para se determinar o momento de se mudar de 

malha. Uma delas consiste em monitorar a taxa de convergência da solução numérica, a qual 

pode ser determinada pela razão das normas dos resíduos de duas iterações sucessivas. 

Quando o problema em envolve a solução de uma única grandeza do escoamento, a aplicação 

deste tipo de estratégia não traz dificuldades pois há apenas uma única taxa de convergência a 

ser monitorada. 

Contudo, para um sistema de equações acopladas torna-se necessária a definição de um 

critério de convergência que leve em conta a taxa de convergência das várias equações. Na 

literatura podem ser encontradas diferentes definições deste critério Thompson e Ferziger, 

1989, Vanka, 1986, Peric, et al, 1989, Sathyamurthy e Patankar, 1994, Hutchinson et al 1988. 

A desvantagem desta estratégia é que as taxas podem diferir de equação para equação e não 

ser necessariamente sempre monotônicas Hortmann, Peric e Scheurer, 1990. 

Um procedimento alternativo adotado Jiang, et al, 1991, Bai e Mitra, 1994, Peric, et al, 1989, 

Joshi e Vanka,1991 é especificar o número de pré- e pós-suavições (suavizações antes da 

restrição e após o prolongamento, respectivamente).Hortmann et al, 1990 cita que esta prática 

em certos casos é mais eficiente que o critério dinâmico, sendo aqui também adotado. 

IV-6. FLUXOGRAMA DO ALGORITMO MULTIGRID CS 

 Pelo fato de problemas térmicos serem lineares, foi utilizado com sucesso o 

algorimto multigrid na formulação CS. Dada a sua maior simplicidade de implementação, seu 

emprego foi estendido para o tratamento de problemas de mecânica dos fluidos. Embora 

nestes casos o uso da formulação FAS seja o mais adequado, na literatura há precedentes da 

utilização do algoritmo multigrid CS na solução desta classe de problemas não-lineares Jiang, 

et al, 1991, conforme citado no início deste capítulo. 
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 O fluxograma do algoritmo multigrid CS [3] é mostrado na Figura IV-8 O parâmetro 

γ é o que determina o tipo de ciclo multigrid. As escolhas γ = 1 e γ = 2 levam aos ciclos-V e -

W, respectivamente. Em malhas grossas (isto é, exceto na mais fina), vê-se que antes de se 

proceder a pré-suavização, as correções são inicialmente zeradas.  

 No teste de parada / convergência é verificado se o resíduo na malha mais fina rM 

está abaixo de uma certa precisão (convergência) ou acima de um dado limite (divergência), 

se o tempo de computação e se o número de iterações excederam seus limites respectivos. A 

veracidade de apenas um destes testes é suficiente para provocar o término da execução. 
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Figura IV-8 - Fluxograma do algoritmo multigrid na formulação CS 
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CAPÍTULO V RESULTADOS E DISCUSSÃO 

V-1. INTRODUÇÃO 

Neste capítulo são apresentados os resultados obtidos a partir dos ensaios realizados no 

programa desenvolvido. Para alguns casos apresentados, os ensaios foram realizados em um 

computador IBM-PC com Intel Pentium de 166 MHZ e demais resultados foram obtidos em 

um processador Intel Pentium III de 500 MHZ. O programa foi escrito em linguagem 

FORTRAN 90, através do Micrososft Fortran Power Station do ambiente Microsoft 

Developer Studio for Windows. 

A partir da solução de problemas hidrodinâmicos abordados na tese de Rabi, 1998, foi feito o 

estudo de problemas térmicos bidimensionais simples em regime permanente, com o campo 

de velocidades tido conhecido (solução desacoplada) ou desconhecido (solução acoplada). 

Na solução desacoplada trata-se a solução de um problema linear, envolvendo apenas a 

equação da energia dado o campo de velocidades. Na solução acoplada os campos térmico e 

hidrodinâmico são resolvidos simultaneamente portanto, envolve as equações de Navier-

Stokes e da energia. 

Finalmente, para todos os casos considerados foi feito um estudo com o objetivo de se 

determinar os parâmetros ótimos do ciclo multigrid. A Tabela V-1  apresenta o sumário dos 

resultados obtidos. 

 



 V-2

Tabela V-1 – Súmario dos resultados 

Seção Sub-seção Página Descrição Figura Variáveis 
V-15  - Escoamento entre placas com expansão abrupta V-11  
V-17  - Escoamento com expansão abrupta: resíduos da velocidade U, Re= 100 e 400, Ciclo V V-12 RU x CPU 
V-18  - Escoamento com expansão abrupta: resíduos da velocidadeV, Re= 100 e 400, Ciclo V V-13 RV x CPU 
V-19  - Escoamento com expansão abrupta: resíduos da pressão P, Re= 100 e 400, ciclo V V-14 RP x CPU 
V-20  - Escoamento com expansão abrupta: resíduos da velocidade U, Re=100 e 400, Ciclo W V-15 RU x CPU 
V-21  - Escoamento com expansão abrupta: resíduos da velocidade V, Re= 100 e 400, Ciclo W V-16 RV x CPU 
V-22  - Escoamento com expansão abrupta: resíduos da pressão P, Re= 100 e 400, Ciclo W V-17 RP x CPU 

Escoamento com 
expansão abrupta 
 

V-23 - Escoamento com expansão abrupta: visualização da região de entrada V-18  
V-24  - Escoamento em tanque retangular V-19  
V-26  - Escoamento em tanque retangular: visualização do escoamento Re= 300 V-20  
V-27  - Escoamento em tanque retangular: resíduo da velocidade U, Re= 75, 150, 300 Ciclo V V-21 RU x CPU 
V-28  - Escoamento em tanque retangular: resíduo da velocidade V, Re = 75, 150, 300 Ciclo V V-22 RV x CPU 

 Escoamento em tanque 
retangular 
 

V-29  - Escoamento em tanque retangular: resíduo da pressão P, Re= 75, 150, 300 Ciclo V V-23 RP x CPU 
V-30  - Escoamento de jato confinado: visualização da região próxima à entrada. V-24  
V-31  - Escoamento de jato confinado: trecho da malha computacional não-uniforme V-25  
V-33  - Escoamento de jato confinado: resíduo da velocidade U, Re=50 e 300 Ciclo V V-26 RU x CPU 
V-34 -Escoamento de Jato confinado: resíduo da velocidade V, Re=50 e 300 Ciclo V V-27 RV x CPU 
V-35 -Escoamento de jato confinado:resíduo da pressão P, Re= 50 e 300 Ciclo V V-28 RP x CPU 

Escoamento 
com 
recirculação 
 

 Escoamento de jato 
confinado 
 

V-36 - Escoamento de jato confinado: visualização do escoamento em jato confinado. V-29  
V-39  - Escoamento com expansão abrupta: visualização do campo térmico para Re= 100 e 

400(de cima para baixo) 
V-30  

V-40  - Escoamento com expansão abrupta: resíduos da temperatura T, Re= 100 e 400 Ciclo V V-31 RT x CPU 

V-41  - Escoamento com expansão abrupta: resíduos da temperatura T, Re= 100 e 400 Ciclo W V-32 RT x CPU 
V-42  - Escoamento com expansão abrupta: comparação entre a solução acoplada e a 

desacoplada 
V-33 RT x CPU 

 Escoamento com 
expansão abrupta 
 

V-43  - Escoamento com expansão abrupta: comparação entre a solução em malha 144x48 e a 
solução em malha 218x74 para os resíduos da temperatura 

V-34 RT x CPU 

V-45  - Escoamento em tanque retangular: visualização do campo térmico para Re=75, 150 e 
300 (de cima para baixo) 

V-35  

V-46  - Escoamento em tanque retangular: resíduos da temperatura T, Re= 75, 150 e 300. V-36 RT x CPU 

 Escoamento em tanque 
retangular 
 

V-47  - Escoamento em tanque retangular: comparação entre a solução acoplada e a solução 
desacoplada. 

V-37 RT x CPU 

V-49  - Escoamento de jato confinado: visualização do campo térmico Re= 50, 300 (de cima 
para baixo) 

V-38  

SOLUÇÃO DE 
PROBLEMAS 
TÉRMICOS 
 

 Escoamento de jato 
confinado 
 V-50  - Escoamento de jato confinado: resíduo da temperatura T, Re= 50 e 300 Ciclo V V-39 RT x CPU 
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  V-51  - Escoamento de jato confinado: comparação entre a solução acoplada e a solução 
desacoplada 

V-40 RT x CPU 

V-54  - Escoamento com expansão abrupta: esforço computacional para diferentes números de 

iterações de pré-/pós-suavizações, 
cgν = 3. 

V-41 CPU x preν = postν  

V-55  - Escoamento com expansão abrupta: esforço computacional para diferentes números de 

iterações de pré-/pós-suavizações 
cgν = 6 

V-42 CPU x preν = postν  

V-56  - Escoamento com expansão abrupta: Esforço computacional para diferentes números de 

iterações de pré-/pós-suavizações 
cgν = 9. 

V-43 CPU x preν = postν  

V-57  - Escoamento com expansão abrupta: Esforço computacional para diferentes números de 

iterações de pré-/pós-suavizações 
cgν = 15. 

V-44 CPU x preν = postν  

V-59  - Escoamento com expansão abrupta: Influência do número de iteração na malha mais 

grossa 
cgν sobre o esforço computacional. 

V-45 CPU x cgν  

V-61 
 - Escoamento com expansão abrupta: influência do refinamento da malha 

cgν = 1 Ciclo 
V 

V-46 CPU x preν = postν  

 Escoamento com 
expansão abrupta 
 

V-62 
 - Escoamento com expansão abrupta: influência do refinamento da malha 

preν =
postν  

ciclo V 

V-47 CPU x cgν  

V-65  - Escoamento em tanque retangular: esforço computacional para diferentes números de 

iterações de pré-/pós-suavizações (
preν =

postν ). 

V-48 CPU x preν = postν   Escoamento em tanque 
retangular 
 

V-66  - Escoamento em tanque retangular: Influência do número de iterações na malha mais 

grossa (
cgν ) sobre o esforço computacional. 

V-49 CPU x cgν  

V-68  - Escoamento de jato confinado: esforço computacional para diferentes números de 
iterações de pré-/ pós-suavizações, Re= 50 e 100 

V-50 CPU x preν = postν  

 OTIMIZAÇÃO DOS 
PARÂMETROS 
MULTIGRID  

 Escoamento de jato 
confinado 
 V-69  - Escoamento de jato confinado: influência do número de iterações na malha mais grossa 

(
cgν ) sobre o esforço computacional. 

V-51 CPU x cgν  

 

 



 V-4

V-2.VALIDAÇÃO NUMÉRICA 

V-2.a.Problema hidrodinâmico 

Com a finalidade de se verificar a validação numérica das soluções multigrid, foi considerado 

o problema do escoamento entre placas planas e paralelas,uma vez que o perfil desenvolvido 

da velocidade é um resultado bastante conhecido. As dimensões do domínio de cálculo e as 

condições de contorno empregadas são esquematizadas na Figura V-1 . 

 

 

 

 

 

 

 

 

Figura V-1- -Escoamento entre placas planas e paralelas 

 

Os valores adotados foram yL = 0.05 m, xL =1.0 m e 0U =0.1 m/s. Quanto às propriedades, 

foram considerados ρ = 1.0 Kg/m3 e µ = 10-4 Kg/m.s . 

Definindo o número de Reynolds Re com base no diâmetro hidráulico Dh = 4 yL , tem-se 

µ
ρ hDU0Re =  (V-1) 

Os valores considerados levam a Re = 200, condizente com a hipótese de escoamento laminar. 
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Neste problema os maiores gradientes encontram-se próximos á região de entrada e á parede. 

Foi então usada uma malha  não-uniforme  com 160 x 32 VCs, estando os mesmos mais 

concentrados nestas regiões. As razões de espaçamento usadas foram xRE  = 0.5 e yRE  = 2 . 

Quando o escoamento encontra-se totalmente desenvolvido, tem-se V=0 e o perfil da 

componente U da velocidade ao longo da seção transversal é dada por Shah e London, 1978 : 

( )
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

















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
−=
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0 1
2
3

yL
yUyU  (V-2)  

 

com y medido a partir da linha de simetria. A Figura V-2 compara  o resultado obtido com o 

uso de 1 e 4 malhas computacionais  com o perfil dado pela equação (V-2) . Vê-se que a 

solução multigrid possui boa concordância com a solução analítica . 

As Figuras V-3 , V-4 e V-5 mostram o comportamento dos resíduos de U, V e P na obtenção 

desta solução multigrid (4M) e em malha única (1M). Foram adotados Uξ  = 0.8, Vξ  = 0.6, Pξ  

= 0.01 para os fatores de sub-relaxação e para a solução multigrid foi empregado o ciclo V 

com preν = postν = cgν = 1. Na Figura V-6 é checado de maneira qualitativa o padrão dos 

resultados obtidos pela solução multigrid na região de entrada. O desenvolvimento da camada 

limite próxima à parede pode ser claramente observado. 
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Figura V-2 - Escoamento entre placas: validação numérica da solução multigrid 
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Figura V-3 - Escoamento entre placas : resíduo da velocidade U, Re = 200, ciclo V 
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Figura V-4 - Escoamento entre placas : resíduo da velocidade V, Re = 200, ciclo V 
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Figura V-5 - Escoamento entre placas : resíduo da pressão P, Re = 200, ciclo V 
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Figura V-6 - Escoamento entre placas : Visualização do escoamento entre placas planas 

 

V-2.b.Problema térmico 

Com o objetivo de se validar a solução da equação da energia, foi considerado também o 

problema  de escoamento entre placas planas , com a geometria de acordo com a Figura V-1. 

Para este caso, da mesma forma que o problema hidrodinâmico, foram considerados os 

seguintes valores yL = 0.05 m, xL =1.0 m, 0U =0.1 m/s, ρ = 1.0 Kg/m3 e µ = 10-4 Kg/m.s  de 

modo a ter Re = 200, lembrando que Re é calculado de acordo com a equação (V-1). Foram 

adotados Uξ  = 0.8, Vξ  = 0.6, Pξ  = 0.01, Tξ = 0.30 para os fatores de sub-relaxação e para a 

solução multigrid foi empregado o ciclo V com preν = postν = cgν = 1. 

A Figura V-7 procura mostra a visualização da distribuição adimensional da temperatura pra o 

escoamento entre placas planas da Figura V-1. 
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Figura V-7 - Escoamento entre Placas : Visualização do campo térmico para Re = 200 

 

A Figura V-8 compara o comportamento do número de Nusselt, calculado a partir do dados 

do programa, com o valor teórico. Para a geometria considerada e no caso de escoamento 

laminar e desenvolvido, com temperatura constante nas superfícies, o valor de Nusselt 

(Ozisik, 1985) é Nu = 7.541. Este resultado demonstra a boa concordância entre a solução 

analítica e a solução numérica.  

A Figura V-9 compara o comportamento dos resíduos da temperatura T para as soluções 

multigrid em malha única (1M) e 4 malhas (4M). As vantagens do método são claramente 

observadas na figura. As diferenças encontradas quando se utiliza a solução acoplada e a 

solução desacoplada, são apresentadas na Figura V-10 . Por se tratar de um problema 

fisicamente desacoplado, a solução numérica desacoplada é possível, acarretando em uma 

substancial economia no esforço computacional exigido. 
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Figura V-8- -Escoamento entre Placas : validação numérica da solução térmica 
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Figura V-9 - Escoamento entre Placas : resíduos da temperatura T , Re = 200 Ciclo V 

 

0 2000 4000 6000
t (s)

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

RT

Escoamento entre Placas
Solução acoplada
Malha : 160 x 32 

Ciclo V 

M =1 , Re = 200

M =4 , Re = 200



 V-14

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura V-10 - Escoamento entre placas :comparação entre a solução acoplada e a 

solução desacoplada 
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V-3.ESCOAMENTO COM RECIRCULAÇÃO 

Nesta seção será apresentado o estudo de três casos básicos de escoamento com recirculação, 

todos com geometrias distintas, a saber : 

• Escoamento com expansão abrupta 

• Escoamento em tanque retangular 

• Escoamento de jato confinado 

V-3.a.Escoamento com expansão abrupta 

O primeiro problema hidrodinâmico laminar considerado foi o de escoamento com expansão 

abrupta entre placas de expansão abrupta (backward facing step flow), cujo o esquema é 

mostrado na Figura V-11. 

 

 

 

 

 

 

Figura V-11 - Escoamento entre placas com expansão abrupta. 

 

Para este problema foram adotados yL  = 0.05 m, xL  = 0.5 m, 0U = 0.2 m/s, ρ= 1.0 Kg/m3 e 

µ= 10-4 kg/m.s, de modo a ter Re= 100 e 400, com o número de Reynolds calculado segundo: 
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µ
ρ yLU0Re =   (V-3) 

Foi usada uma malha não-uniforme com 144 x 48 VCs e xRE = yRE = 0.333, com yRE  

calculada com base no VC próximo à parede e o VC junto da linha média ( há maior 

concentração junto às paredes e menor junto à linha média ). Os coeficientes de sub-relaxação 

adotados foram Uξ = 0.8, Vξ = 0.6, Pξ  = 0.3 e a estratégia para as soluções multigrid em ciclo 

–V e para Ciclo-W foram preν = postν = 1 e cgν = 2.  

Nas Figura V-12 a Figura V-17 são mostrados o comportamento dos resíduos das velocidades 

U e V, da pressão P em malha única (1M ) e em 4 malhas tanto em ciclo V e Ciclo W, para 

Re= 100 e Re= 400. 

A solução do problema térmico-hidrodinâmico é acoplada, ou seja, o campo térmico e o 

campo hidrodinâmico são solucionados simultânemente, de modo que a temperatura é sempre 

relaxada após o campo do escoamento, de acordo com o ciclo multigrid. Para baixos valores 

de Re obtém-se soluções mais rápidas. Neste caso, os termos difusivos são de maior 

importância relativa e, assim, contribuem com peso maior à estabilidade numérica do sistema 

de equações. Com o aumento valor de Re, de 100 para 400, verifica-se maior gasto de tempo 

de CPU. Sendo, porém, a vantagem da solução multigrid mais pronunciada, tanto para o ciclo 

V quanto para o ciclo W. 
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Figura V-12 - Escoamento com expansão abrupta: resíduos da velocidade U, Re= 100 e 

400, Ciclo V 
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Figura V-13 - Escoamento com expansão abrupta: resíduos da velocidadeV, Re= 100 e 

400, Ciclo V. 
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Figura V-14 - Escoamento com expansão abrupta: resíduos da pressão P, Re= 100 e 

400, ciclo V 

 

0 4000 8000 12000
t (s)

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

RP

Escoamento com Expansão Abrupta
Solução Acoplada 
Malha  : 144 X 48

Ciclo - V 

M =1 , RE = 100

M =4 , RE = 100

M =1 , RE = 400

M =4 , RE = 400



 V-20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura V-15 - Escoamento com expansão abrupta: resíduos da velocidade U, Re=100 e 

400, Ciclo W 
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Figura V-16 - Escoamento com expansão abrupta: resíduos da velocidade V, Re= 100 e 

400, Ciclo W 
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Figura V-17 - Escoamento com expansão abrupta: resíduos da pressão P, Re= 100 e 

400, Ciclo W. 
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A Figura V-18 contém a visualização dos vetores velocidade na região próxima à entrada, 

obtidos a partir da solução 4M. A Figura mostra a bolha de recirculação obtida e indica que 

reproduz o padrão esperado dos resultados. 

 

 

 

 

 

 

 

 

 

 

 

Figura V-18 - Escoamento com expansão abrupta: visualização da região de entrada. 
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V-3.b. Escoamento em tanque retangular 

O segundo caso analisado foi o escoamento em um tanque retangular conforme o esquema da 

Figura V-19, onde yL = 0.6 m, xL = 0.6 m, 0U  = 0.01 m/s, ρ = 1.0 Kg/m3 e µ = 10-4 kg/m.s. 

Foi empregadas uma malha não- uniforme  com 66 x 66 VCs e as razões de espaçamento 

usadas foram xRE  = yRE =1.0. Os fatores de sub-relaxação empregados foram Uξ = 0.6, Vξ = 

0.6, Pξ = 0.1. Para as soluções multigrid em ciclo-V e ciclo-W assumiu-se preν = postν  = cgν = 

1. 

 

 

 

 

 

 

 

 

 

 

 

Figura V-19 - Escoamento em tanque retangular. 
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Como já foi mencionado, no caso do tanque retangular foi utilizada uma malha 66x66 assim 

como três valores diferentes de número de Reynolds, a saber Re= 75, 150, 300. Vale lembra 

que Re é calculado de acordo com a equação (V-3). 

Na Figura V-20 o padrão dos resultados obtidos pela solução multigrid 4M é verificado de 

maneira qualitativa, demonstrando mais uma vez que a solução multigrid reproduz o padrão 

dos resultados obtidos com uma malha única. 

As Figuras V-21 a V-23 visualizam os resíduos das velocidades U e V e da pressão P, com Re 

= 75, 150, 300 com a solução em malha única (1M) e 4 malhas (4M) para o ciclo V. A 

solução do problema térmico-hidrodinâmico é acoplada, ou seja o campo térmico e o campo 

hidrodinâmico são solucionados simultâneamente, de modo que a temperatura é sempre 

relaxada após o campo do escoamento, de acordo com o ciclo multigrid, que para o presente 

caso adotou-se somente o ciclo V. Nota-se que baixos valores de Re obtém-se soluções mais 

rápidas. Para os valores de Re= 75,120 e 300, verifica-se também maior gasto de tempo de 

CPU quanto maior o valor de Re. Porém, a vantagem da solução multigrid 4M, torna-se 

evidente mais uma vez. 
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Figura V-20 - Escoamento em tanque retangular: visualização do escoamento Re= 300 
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Figura V-21 - Escoamento em tanque retangular: resíduo da velocidade U, Re= 75, 150, 

300 Ciclo V. 
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Figura V-22 - Escoamento em tanque retangular: resíduo da velocidade V, Re = 75, 150, 

300 Ciclo V. 
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Figura V-23 - Escoamento em tanque retangular: resíduo da pressão P, Re= 75, 150, 

300 Ciclo V. 
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V-3.c. Escoamento de jato confinado 

 

Por fim, foi considerado o escoamento de um jato confinado, cujo esquema é mostrado na 

Figura V-24. Os valores adotados foram yL = 0.5m, xL = 2.0m, 0U  = 0.01m/s, ρ= 1.0 Kg/m3 e 

µ = 10-4 Kg/m.s. 

Foi empregada uma malha não-uniforme contendo 160 x 64 VCs e as razões de espaçamento 

usadas foram xRE = 0.25 e yRE = 0.4, esta última com base no VC próximo ao canto superior 

esquerdo. A Figura V-25 ilustra o trecho da malha próximo da região de entrada do jato. 

 

 

 

 

 

 

 

 

 

 

Figura V-24 - Escoamento de jato confinado: visualização da região próxima à entrada. 
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Nesta geometria as soluções multigrid empregam no máximo 3 níveis de malha. Não foi 

usado um quarto nível porque neste caso, na malha mais grossa o VC do canto superior 

esquerdo (entrada do jato) seria solicitado à oeste por duas condições de contorno diferentes 

(entrada e parede). 

Os fatores de sub-relaxação empregados foram Uξ = 0.6, Vξ = 0.6, Pξ = 0.1 e a estratégia para 

as soluções multigrid em ciclo V fez uso de preν = postν = cgν = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura V-25 - Escoamento de jato confinado: trecho da malha computacional não-

uniforme. 
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Nas Figuras V-26 a V-28 são exibidos os comportamentos dos resíduos na solução em malha 

única (1M) e em 3 malhas (3M) para o ciclo V com Re=50 e 300. A solução do problema 

térmico-hidrodinâmico é acoplada, ou seja o campo térmico e o campo hidrodinâmico são 

solucionados simultaneamente. Aqui também com baixos valores de Re obtém-se soluções 

mais rápidas. Para os valores de Re, 50 e 300, verifica-se maior gasto de tempo de CPU. Para 

Re =300, confirmando o padrão dos resultados até aqui apresentados, a vantagem da solução 

multigrid, torna-se evidente mais uma vez. 

A Figura V-29 checa de maneira qualitativa o padrão dos resultados obtidos pela solução 

multigrid 3M. 

Vale destacar, que, para as três geometrias estudadas, o uso de número de malhas maior que 

quatro, não significa necessariamente maior ganho, pois a partir deste valor o tempo gasto nas 

operações de transferência entre malhas, pode acarretar num maior tempo de CPU, 

comprometendo,desta forma a eficiência global do ciclo multigrid. 
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Figura V-26 - Escoamento de jato confinado: resíduo da velocidade U, Re=50 e 300 

Ciclo V 
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Figura V-27-Escoamento de Jato confinado: resíduo da velocidade V, Re=50 e 300 

Ciclo V. 
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Figura V-28-Escoamento de jato confinado:resíduo da pressão P, Re= 50 e 300 Ciclo V. 
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Figura V-29 - Escoamento de jato confinado: visualização do escoamento em jato 

confinado. 
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V-4.SOLUÇÃO DE PROBLEMAS TÉRMICOS 

V-4.a. Escoamento com expansão abrupta 

O primeiro caso térmico analisado foi o escoamento entre placas com expansão abrupta, 

conforme a Figura V-11. Para este problema, também foram adotados yL = 0.05m, xL = 0.5m, 

0U = 0.2 m/s e 0.8m/s, ρ= 1.0 Kg/m3 e µ = 10-4 Kg/m.s de modo a ter Re= 100 e 400. 

Foi usada uma malha não-uniforme com 144 x 48 VCs e xRE = yRE = 0.333, com 

yRE calculado com base no VC próximo à parede e o VC junto da linha média (há maior 

concentração junto às paredes e menor junto a linha média). Os coeficientes de sub-relaxação 

adotados foram Uξ = 0.8, Vξ = 0.6, Pξ = 0.03, Tξ = 0.30. A estratégia para as soluções 

multigrid para ciclo V e o ciclo W adotou preν = postν = 1 e postν = 2. Com a finalidade de 

verificar o efeito do número Re, a Figura V-30 mostra a distribuição adimensional da 

temperatura para o escoamento com expansão abrupta da Figura V-11. 

Todas as paredes são conservadas na mesma temperatura, sendo esta mais alta que a 

temperatura de entrada do fluido. No caso simulado as paredes são mantidas a 100°C e a 

temperatura de entrada do fluido é 50°C. O efeito do incremento de Reynolds pode ser 

facilmente visualizado na Figura, através do aumento da penetração do fluido mais frio. 

As Figuras V-31 e V-32 mostram os resíduos da temperatura para a solução multigrid em 

ciclo V e W respectivamente. Mais uma vez fica evidenciado que o aumento de Re requer 

maio tempo de CPU e a solução multigrid apresenta melhor resultado. 

A Figura V-33 apresenta os resíduos da equação da energia para duas situações distintas, uma 

é a solução simultânea da velocidade e da temperatura (chamada aqui de solução acoplada) e 
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a outra e a solução desacoplada que consiste da resolução da equação da energia isoladamente 

a partir do campo hidrodinâmico dado. Como já era esperado, o número de iterações da 

solução desacoplada é bem menor que o da solução acoplada. Conseqüentemente o uso de 

malhas múltiplas é mais vantajoso quando se utiliza a solução acoplada pois, nestes casos os 

tempos de computação são maiores. 

Com a finalidade de se verificar também a influência do número de malhas no esforço 

computacional, foi simulado para a mesma geometria da Figura V-11, onde yL = 0.05m, xL = 

0.5m e com 0U = 0.2 m/s e 0.8m/s, ρ= 1.0 Kg/m3 e µ= 10-4 Kg/m.s de modo a ter Re= 100 e 

400. Utilizou-se uma malha não-uniforme mais refinada com 218 x 74 VCs e xRE = yRE = 

0.333. Este estudo foi feito em um computador IBM-PC com processador Intel Pentium III de 

500 MHz. 

A Figura V-34 indica que para valores menores de Re, não importando a malha utilizada, 

soluções mais rápidas são obtidas. O uso de um menor número de malhas com o mesmo 

número de Reynolds é vantajoso. Estas características fazem o método multigrid uma técnica 

atrativa, justificando o seu crescente uso. Por outro lado, o aumento do número de VCs da 

malha mais fina desacelera a convergência como já esperado, independente do Re utilizado. 
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Figura V-30 - Escoamento com expansão abrupta: visualização do campo térmico para 

Re= 100 e 400(de cima para baixo). 
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Figura V-31 - Escoamento com expansão abrupta: resíduos da temperatura T, Re= 100 e 

400 Ciclo V. 

0 2000 4000 6000 8000 10000
t (s)

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

RT

Escoamento com Expensão Abrupta
Solução Acoplada
Malha : 144 x 48

Ciclo V

M =1 , Re = 100

M =1 , Re = 400

M =4 , Re = 100

M =4 , Re = 400



 V-41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura V-32 - Escoamento com expansão abrupta: resíduos da temperatura T, Re= 100 e 

400 Ciclo W. 
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Figura V-33 - Escoamento com expansão abrupta: comparação entre a solução acoplada 

e a desacoplada. 
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Figura V-34 - Escoamento com expansão abrupta: comparação entre a solução em 

malha 144x48 e a solução em malha 218x74 para os resíduos da temperatura. 
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V-4.b. Escoamento em tanque retangular 

É agora apresentado o escoamento em um tanque retangular, conforme a Figura V-19, onde 

yL = 0.6m, xL = 0.6m, 0U = 0.1, 0.05, 0.02 m/s, ρ= 1.0 Kg/m3 e µ= 10-4 Kg/m.s. estes 

parâmetros acarretam em Re= 300, 150 e 75. 

Neste caso é empregada uma malha não-uniforme com 66x66 VCs e as razões de 

espaçamento utilizadas foram xRE = yRE = 1.0. Os fatores de sub-relaxação empregados 

foram Uξ = 0.6, Vξ = 0.6, Pξ = 0.01, Tξ = 0.30. Na estratégia para as soluções multigrid em 

ciclo V foi adotadas o valor preν = postν = cgν = 1. 

A Figura V-35 mostra a distribuição adimensional da temperatura para o tanque da Figura 

V-19, onde todas as paredes são mantidas a 100°C e a temperatura de entrada do fluido é de 

50°C. O efeito do incremento de Reynolds pode ser facilmente visualizado na Figura, através 

do aumento da penetração do fluido mais frio. É interessante notar que os maiores gradientes 

da temperatura estão na parede do lado direito, indicando elevação local troca de calor com 

material sólido. 

A Figura V-36 ilustra os resíduos da temperatura para a solução multigrid em 1M e 4M, 

ambas utilizando o esquema de ciclo V. A Figura comprova uma vez mais que, baixos valores 

de Re aumentam a taxa de convergência. Nota-se também que, a solução multigrid 4M 

apresenta os melhores resultados quando comparados às soluções com malha única. 

Finalmente, a Figura V-37 faz a comparação entre a solução acoplada e a solução desacoplada 

e, como esperado, a segunda metodologia necessita de um menor número de iterações. 

Conseqüentemente, o uso do método multigrid torna-se mais vantajoso quanto se usa a 

solução acoplada devido ao maior tempo computacional necessário. 
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Figura V-35 - Escoamento em tanque retangular: visualização do campo térmico para 

Re=75, 150 e 300 (de cima para baixo) 
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Figura V-36 - Escoamento em tanque retangular: resíduos da temperatura T, Re= 75, 

150 e 300. 
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Figura V-37 - Escoamento em tanque retangular: comparação entre a solução acoplada e 

a solução desacoplada. 

0 500 1000 1500 2000 2500
t (s)

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

RT

Escoamento em Tanque Retangular
Malha : 66x66

Ciclo V

M =4 , Re = 300 , Acoplada

M =4 , Re = 300 , Desacoplada

M =4 , Re = 150 , Acoplada

M =4 , Re = 150 , Desacoplada 

M =4 , Re = 75 , Acoplada

M =4 , Re = 75 , Desacoplada 



 V-48

 

V-4.c. Escoamento de jato confinado 

Neste item é apresentado um estudo sobre o escoamento de jato confinado, cujo esquema foi 

mostrado na Figura V-24. Para esta geometria adotou-se yL = 0.5m, xL = 2.0m, 0U = 0.01 m/s 

e 0.06m/s, ρ= 1.0 Kg/m3 e µ= 10-4 Kg/m.s, de modo a se ter Re= 50 e 300 respectivamente. 

Os fatores de sub-relaxação empregados foram preν = postν = cgν = 1. 

A Figura V-38 mostra a distribuição adimensional da temperatura para o escoamento de jato 

confinado, todas as paredes são mantidas a 100°C e a temperatura de entrada do fluido é 

50°C. O efeito do incremento de Reynolds pode ser facilmente visualizado na Figura V-38, 

através do aumento da penetração do fluido mais frio. 

Na Figura V-39 são mostrados os resíduos da equação da energia para a solução multigrid em 

ciclo V. A Figura mostra que com incremento de Re, independente do número de malhas, é 

necessário um maior tempo computacional. Nota-se, entretanto que esta diferença não é tão 

marcante quanto nos outros casos analisados. 

A Figura V-40 faz a comparação entre a solução acoplada e a solução desacoplada, ambos os 

casos em relação ao resíduo da temperatura. Como esperado, a segunda solução apresenta 

menor número de iterações para um mesmo resíduo mínimo. Conseqüentemente, o uso do 

método multigrid torna-se mais vantajoso quanto se usa a solução acoplada devido ao maior 

tempo computacional requerido na solução simultânea. Confrontando aos resultados da Figura 

V-40 com os resultados obtidos nas Figuras V-33 e V-37, mais uma vez fica evidenciado a 

influência da geometria nos resultados apresentados. 
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Figura V-38 - Escoamento de jato confinado: visualização do campo térmico Re= 50, 

300 (de cima para baixo). 
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Figura V-39 - Escoamento de jato confinado: resíduo da temperatura T, Re= 50 e 300 

Ciclo V. 
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Figura V-40 - Escoamento de jato confinado: comparação entre a solução acoplada e a 

solução desacoplada. 
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V-5. OTIMIZAÇÃO DOS PARÂMETROS MULTIGRID 

V-5.a. Escoamento com expansão abrupta 

No trabalho de Rabi e de Lemos, 1998b, foi feito um estudo com a finalidade de se investigar 

valores ótimos para os parâmetros preν , postν  e cgν . Uma vez que as soluções intermediárias 

antes e depois da mudança de malha, não são resolvidas inteiramente, mas sim relaxadas preν e 

postν  vezes, surge a questão a respeito do valor ótimo, para estes parâmetros. As operações de 

prolongamento e restrição introduzem imprecisões aos valores transferidos. Então, a solução 

numérica intermediaria deve ser relaxada um certo número de vezes, não só para remover as 

imprecisões introduzidas nas operações de transferência mas, também para reduzir o resíduo a 

cada iteração. Alguns destes testes foram divulgados por de Lemos e Mesquita, 1999 e são 

aqui também apresentados 

Foi considerado novamente a geometria da Figura V-11 com as mesmas dimensões 

apresentadas nos estudos anteriores, ou seja yL = 0.05m, xL = 0.5m e com 0U = 0.2 m/s e 

0.8m/s, ρ= 1.0 Kg/m3 e µ= 10-4 Kg/m.s, de modo a se ter Re= 100 e 400. 

Para um número fixo de iterações na malha mais grossa, ( cgν ), a saber 3, 6, 9 e 15 as Figuras  

V-41, V-42, V-43 e V-44 reproduzem o tempo necessário para convergência quando o 

número de pré-/pós-suavizações  variam livremente, mantendo-se sempre preν = postν . 

Pode-se claramente detectar um valor ótimo para os parâmetros de relaxação em cada caso 

apresentado. Um número adicional de iterações, além dos valores ótimos determinados pode 

significar consumo extra do esforço computacional. Por outro lado, menores valores de preν  

ou postν  demandarão maiores esforços computacionais. É interessante salientar a vantagem 

em se usar o ciclo V na solução desacoplada. Estes resultados são condizentes com as 
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conclusões de Rabi e de Lemos, 1998b. Neste trabalho foi observada uma redução no esforço 

computacional para os casos de velocidade conhecida e uso do ciclo V. 
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Figura V-41 - Escoamento com expansão abrupta: esforço computacional para 

diferentes números de iterações de pré-/pós-suavizações, cgν = 3. 
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Figura V-42 - Escoamento com expansão abrupta: esforço computacional para 

diferentes números de iterações de pré-/pós-suavizações cgν = 6. 
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Figura V-43 - Escoamento com expansão abrupta: Esforço computacional para 

diferentes números de iterações de pré-/pós-suavizações cgν = 9. 
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Figura V-44 - Escoamento com expansão abrupta: Esforço computacional para 

diferentes números de iterações de pré-/pós-suavizações cgν = 15. 
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Na Figura V-45 o número de pré-/pós-suavizações foi fixado em preν = postν = 2, enquanto 

que o número de iterações na malha mais grossa cgν  varia livremente Os resultados 

apresentam certo espalhamento e portanto nenhum valor ótimo pode ser observado. 

As Figuras V-41 a V-45 sugerem um balanço delicado entre todos os parâmetros envolvidos 

com a finalidade de se obter um tempo mínimo de CPU. Um conjunto ótimo de parâmetros 

não pode ser facilmente determinado a priori e por isto,estratégias adaptativas foram 

propostas na literatura. Em certos algorítmos, a média dos resíduos após duas varreduras 

sucessivas é monitorada e usada como critério para mudança de malha. 

No trabalho de Hortmann et al, 1990, é ressaltado que está prática é preferida para sistemas de 

equações simples, mas para o caso de equações completas, como aqui apresentado, esta 

prática torna-se de difícil implementação. Sendo assim, muitos trabalhos na literatura 

especificam um número fixo de varreduras, como mostrado por Hutchinson et al 1988, 

Sathyamurthy e Patankar, 1994. 
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Figura V-45 - Escoamento com expansão abrupta: Influência do número de iteração na 

malha mais grossa cgν sobre o esforço computacional. 
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Com a finalidade de se verificar também o refinamento da malha no esforço computacional e 

conseqüentemente nos parâmetros do ciclo multigrid ( preν , postν e cgν ), foi também 

empregada uma malha não-uniforme com 218 x 74 VCs. Este estudo foi feito em um 

computador IBM-PC com processador Intel Pentium III de 500 MHz. As Figuras V-46 e 

V-47 ilustram os resultados obtidos. 

A Figura V-46 reproduz o tempo necessário para convergência quando o número de pré-/pós-

suavizações varia livremente, mantendo-se o mesmo valor para cgν =1. Embora nos resultados 

apresentados pela Figura V-46, a identificação de um ponto ótimo não seja clara nas Figuras 

V-41 a V-44, ainda é possível identificar um valor ótimo para os parâmetros de relaxação . É 

interessante ressaltar que para a mesma geometria, o uso de malhas distintas causa variação 

no padrão dos resultados e conclusões . 

Na Figura V-47 o número de pré-/pós-suavizações foi fixado em preν = postν =3 e o número de 

interações na malha mais grossa ( cgν ) varia livremente. Neste caso é possível detectar um 

valor ótimo para os parâmetros de relaxação. Este resultado confirma a influência do 

refinamento da malha no padrão dos resultados. Para isso basta confrontar os resultados da 

Figura V-45 com os da Figura V-47. 
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Figura V-46 - Escoamento com expansão abrupta: influência do refinamento da malha 

cgν = 1 Ciclo V, Re= 100 
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Figura V-47 - Escoamento com expansão abrupta: influência do refinamento da malha 

preν = postν  ciclo V. 
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V-5.b. Escoamento em tanque retangular 

Baseado na Figura V-19 do escoamento em tanque retangular, para um número fixo de 

varreduras na malha mais grossa ( cgν = 6 e 10), a Figura V-48 reproduz o tempo necessário 

para convergência, quando o número de iterações pré-/pós-suavizações ( preν = postν ) varia 

livremente. 

Pode-se ver que mais de uma varredura para relaxação da solução intermediária, antes e 

depois da mudança de nível de malha, não traz necessariamente alguma vantagem e, 

conseqüentemente, quando o número de relaxações ultrapassa este limite, um aumento do 

esforço computacional é observado. 

A vantagem obtida quando se usa o Ciclo W, também é aparente, ao visualizarmos a Figura 

IV-7 notamos que o tempo gasto na malha mais grossa no ciclo V é em média maior, 

conseqüentemente erros de baixa freqüência são melhor suavizados (Rabi e de Lemos, 

1998b). Entretanto esta explicação esta contrária aos resultados anteriormente apresentados. 

Assim sendo, não se pode tirar conclusões universais totais para os parâmetros ótimos em 

algoritmos multigrid. 

Ainda, para os dois valores de cgν usados (6 e 10) não foi detectado, para ambos os ciclos, 

nenhuma melhora significativa no tempo computacional. 

Na Figura V-49 o número de pré-/pós-suavizações foi fixado em preν = postν = 2, de modo que 

o número de iterações na malha mais grossa cgν varia livremente. Um valor ótimo pode ser 

identificado claramente para ambos os ciclos e parâmetros maiores que estes não significam 

necessariamente ganho em tempo de CPU. Aqui novamente a superioridade do ciclo W é 

aparente. 
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As Figuras V-48 e V-49 sugerem um balanço delicado entre todos os parâmetros envolvidos 

com a finalidade de se obter um tempo mínimo de CPU. Um conjunto ótimo de parâmetros 

não pode ser facilmente determinado a priori. Como já foi mencionado, estratégias 

adaptativas foram propostas na literatura. 
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Figura V-48 - Escoamento em tanque retangular: esforço computacional para diferentes 

números de iterações de pré-/pós-suavizações ( preν = postν ). 
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Figura V-49 - Escoamento em tanque retangular: Influência do número de iterações na 

malha mais grossa ( cgν ) sobre o esforço computacional. 
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V-5.c. Escoamento de jato confinado 

Conforme o esquema da Figura V-24 do escoamento em jato confinado, a Figura V-50 

reproduz o tempo necessário para convergência, quando o número de iterações pré-/pós-

suavizações ( preν = postν ) varia livremente para  um valor fixo do número de iterações na 

malha mais grossa ( cgν =3). A partir dos resultados, é possível identificar claramente um valor 

ótimo para os parâmetros de relaxação. Um número de varreduras maior que este valor ótimo,  

pode vir a consumir um tempo computacional maior, comprometendo a eficiência do ciclo 

multigrid. 

Finalmente na Figura V-51 o número de pré-/pós-suavizações foi fixado em preν = postν = 1, de 

modo que o número de iterações na malha mais grossa cgν varia livremente. Através dos 

resultados é possível identificar  valores ótimos para ambos os valores de Re. 
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Figura V-50 - Escoamento de jato confinado: esforço computacional para diferentes 

números de iterações de pré-/ pós-suavizações, Re= 50 e 100. 
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Figura V-51 - Escoamento de jato confinado: influência do número de iterações na 

malha mais grossa ( cgν ) sobre o esforço computacional. 
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CAPÍTULO VI CONCLUSÃO E DESENVOLVIMENTOS 

FUTUROS 

 No presente trabalho foi aplicada a técnica multigrid na implementação de um 

programa computacional visando a solução numérica de problemas bidimensionais de 

mecânica dos fluidos (regime laminar) e transferência de calor. Foram utilizadas malhas 

computacionais estruturadas e ortogonais, assim como um algoritmo iterativo para a solução 

do sistema de equações algébricas, obtidas segundo uma discretização em volumes finitos.No 

método multigrid foi empregado o esquema CS (correction storage). 

 Em todos os casos considerados e estudados ficou nítida a melhor perfomance dos 

métodos iterativos com a formulação multigrid através destes métodos pode-se obter soluções 

numéricas com ganhos expressivos de tempo de computação em relação à solução obtida em 

malha única, sem ao mesmo tempo comprometer a qualidade da solução. Observou-se ainda 

ser este ganho tanto maior quanto mais refinada for a malha computacional empregada (nível 

de malha mais fino). 

 Foi verificado também que, no caso em que temos a solução desacoplada, com o 

incremento do número de Reynolds a solução tende a se tornar mais rápida, fato oposto ao 

verificado quando se tem a solução acoplada, ou seja, com o aumento de Reynolds, a taxa de 

convergência torna-se mais lenta. 

 Com relação a otimização dos parâmetros do ciclo multigrid, chegou-se a seguinte 

conclusão que cada caso é peculiar, tem que ser analisado separadamente, tanto a nível de 

refinamento das malhas quanto ao número de Reynolds. 

 Como desenvolvimentos futuros ao presente trabalho, podem ser apontados os 

seguintes: 
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• Considerar problemas com propriedades do fluido (ρ  e/ou µ) variáveis (ex: 

convecção natural). 

• Tratamento de problemas com fontes internas de calor (lineares e/ou não-lineares). 

• Extensão para problemas tridimensionais. Para estes casos, além das extensões a 

serem introduzidas no procedimento de obtenção das equações algébricas, devem 

ser introduzidos passos adicionais nos procedimentos de restrição e 

prolongamento. 

• Incluir tratamento de geometrias mais complexas. Uma extensão interessante seria 

a de escrever o programa computacional em coordenadas generalizadas, o que 

além de acarretar em dificuldades adicionais ao processo de discretização, deve 

trazer cuidados especiais na implementação do método multigrid. 

• Implementação de algoritmo multigrid com critério dinâmico de mudança de nível 

de malha, com vistas a permitir comparação com o algoritmo de número pré-

fixado de iterações em cada nível de malha (aqui utilizado). 
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