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Abstract. We present geometric (GMG) and algebraic multigrid (AMG)
preconditioners for data-sparse boundary element matrices. Data-sparse
approximation schemes such as adaptive cross approximation (ACA) yield
an almost linear behavior in Nh, where Nh is the number of (boundary) un-
knowns. The treated system matrix represents the discretized single layer
potential operator (SLP) resulting from the interior Dirichlet boundary
value problem for the Laplace equation. It is well known, that the SLP
has converse spectral properties compared to usual finite element matri-
ces. Therefore, multigrid components have to be adapted properly. In the
case of GMG we present convergence rate estimates for the data-sparse
ACA version. Again, uniform convergence can be shown for the V-cycle.

Iterative solvers dramatically suffer from the ill-conditioness of the
underlying system matrix for growing Nh. Our multigrid-preconditioners
avoid the increase of the iteration numbers and result in almost optimal
solvers with respect to the total complexity. The corresponding numerical
3D experiments are confirming the superior preconditioning properties
for the GMG as well as for the AMG approach.

Keywords: integral equations of the first kind, single layer potential
operator, boundary element method, adaptive cross approximation, alge-
braic multigrid, geometrical multigrid, preconditioners, iterative solvers.

1 Introduction

In this paper we are concerned with the fast solution of data-sparse boundary
element equations by geometrical and algebraic multigrid methods.

The application of iterative solvers only will be reasonable, if the drawback of
dense matrices can be overcome. In the last years different sparse approximation
techniques for boundary element matrices have been developed. The multipole
method [14], the panel clustering method [7], the H-matrix approach [6] and
wavelet techniques [9] are certainly now the most popular ones. In our paper
we will consider the adaptive cross approximation (ACA) method suggested by
M. Bebendorf and S. Rjasanow [1,2]. The basic idea is to decompose the sys-
tem matrix into its near-field and far-field contributions. Finding an appropriate
low-rank approximation for the far-field matrix yields a data-sparse BEM matrix
approximating the original dense matrix in such a way that the discretization
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error is not affected. In conclusion, the application of a sparse representation al-
gorithm allows us to realize the matrix-by-vector multiplication in almost O(Nh)
operations.

Boundary element matrices originating from the discretization of the single
layer potential lead to ill-conditioned system matrices with a condition number
of order O(h−1). Thus, it is obvious that we need appropriate preconditioning
techniques in order to avoid the steady rise of the number of iterations for finer
and finer discretizations. In [11,10] we introduced algebraic multigrid precon-
ditioners for dense BEM matrices as well as for large-scaled data-sparse BEM
matrices. In this paper we focus on the comparison between the GMG and AMG
approach. Moreover, we give a convergence result for the geometric version of
our multigrid approach.

The paper is organized as follows: Section 2 gives a brief overview on the
considered single layer potential operator and its properties. In addition, the
ACA-method is briefly described. In Section 3, we introduce the multigrid com-
ponents designed for ACA-matrices and give convergence results for the geomet-
rical variant. Some results of our numerical studies are presented in Section 4.
Finally, we end up with some conclusions and discuss further investigations in
Section 5.

2 Problem Formulation and the ACA-Method

Let Ω ⊂ R
d (d=2,3) be a bounded, simply connected domain with one closed

boundary piece Γ = ∂Ω that is supposed to be sufficiently smooth. We consider
the boundary element technique by means of the interior Dirichlet problem for
Laplace’s equation:

−∆u(x) = 0 x ∈ Ω
u(x) = g(x) x ∈ Γ (1)

Once the Neumann and Dirichlet data are available, it is possible to formulate
the solution of the interior Dirichlet equation by the representation formula

σ(y)u(y) =
∫

Γ

∂u

∂nx
(x)E(x, y)dsx −

∫

Γ

u(x)
∂E

∂nx
(x, y)dsx (2)

where nx denotes the unit outward normal vector and E(x, y) is the fundamental
solution for the Laplace equation, i.e. in R

3 we haveE(x, y) = 1
4π

1
|x−y| . For y ∈ Ω

we have σ(y) = 1, for y /∈ Ω̄ it changes to σ(y) = 0. In the case of y ∈ Γ and
Γ is sufficiently smooth we will obtain σ = 1/2, that is still valid for applying
Galerkin discretization on C0,1 domains. In that case the first integral defines the
single layer potential operator V : H−1/2(Γ ) �→ H1/2(Γ ). In addition the second
integral gives the double layer potential operator K : H1/2(Γ ) �→ H1/2(Γ ). It
can be shown that the single layer potential operator is symmetric and positive
definite. These and other properties can be found in e.g. [15].
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Applying Galerkin discretization with the use of piecewise constant trial func-
tions leads to the matrix equation

Vhvh = f
h

= (
1
2
Ih +Kh)g

h
(3)

where g
h

is the discrete Dirichlet data obtained by linear interpolation, (Vh)ij =∫
Γj

∫
Γi
E(x, y)dsxdsy and (Kh)ij =

∫
Γi

∫
Γ

∂E
∂nx

(x, y)ψj(x)dsxdsy with the linear
trial function ψj . At this point we have to notice that Vh is still fully populated
and the condition number is of order O(h−1). To overcome the drawback of
dense matrices we replace the system matrix with some approximation matrix
provided by the ACA-algorithm. On the contrary to other matrix approxima-
tion techniques, an explicit description of the integral kernel is not necessary.
More precisely, only a procedure for evaluating selected matrix entries has to be
available. The rest are simple algebraic operations.

The basic idea is to decompose the computational domain into smaller clusters
Di and classify the interaction of two clusters into a near-field part and a far-field
part of the generated matrix, respectively. Based on geometrical information we
split the index set I = {1, ..., Nh} into index clusters ti ⊂ I which corresponds
to the partitioning of the domain Ω =

⋃
iDi. In order to select the blocks which

can be approximated by low-rank matrices, we give an admissibility condition
that classifies clusters-pairs into a near-field part and a far-field part.

Definition 1. Let (D1,D2) be a cluster pair with D1,D2 ⊂ R
d, then (D1,D2)

is called η - admissible if

diamD2 ≤ η dist(D1,D2). (4)

As usual dist(X,Y ) = inf{|x− y|, x ∈ X, y ∈ Y }.
Both, the clustering procedure and the approximation algorithm will cause

a overall complexity of O(ε−αN1+α
h ) with an arbitrarily small positive α. In [2]

one can find the appropriate algorithms and more detailed information. Since
the proposed adaptive cross approximation technique provides a low-rank ap-
proximation of V far

h consisting of submatrices which are η-admissible we obtain
the result

Ṽh = V near
h + Ṽ far

h . (5)

Starting from this representation we are able to present an appropriate construc-
tion of multigrid methods in the next section. Finally, we refer to [1,2] for more
detailed proofs and further remarks concerning the ACA-technique.

3 Multigrid Methods

In the previous section we showed, that our system matrix coincides with the
approximated discretized single layer potential operator Ṽh, which is the most
interesting case concerning our multigrid approach. Hence, we have to solve
Ṽhvh = f

h
in R

Nh with vh are the unknown Neumann data and f
h

the cor-
responding right-hand side. In order to make multigrid methods really efficient,
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it is necessary to adapt the multigrid components properly according to the
underlying physical problem and variational formulation. In the following we
are discussing the multigrid components by means of a twogrid algorithm. The
indices h and H denote the fine grid and coarse grid quantities, respectively.

In fact, the efficiency of multigrid methods depends on a clever interaction of
smoothing sweeps on the fine level and coarse grid correction on the coarse level.
Once a grid hierarchy (GMG) or a matrix hierarchy (AMG) is available we can
apply multigrid methods like the well-known V-cycle presented in Algorithm 1.
The coarsest level is denoted by the variable COARSELEVEL therein.

Algorithm 1 Multigrid V-Cycle

MG(u�, f�
, 
)

if 
 = COARSELEVEL
calculate u� = (V�)−1f

�
by some coarse grid solver

else
smooth νF times on V�u� = f

�
calculate the defect d� = f

�
− V�u�

restrict the defect to the next coarser level 
+ 1 : d�+1 = P�
� d�

set u�+1 ≡ 0
call MG(u�+1, d�+1, 
+ 1)
prolongate the correction s� = P�u�+1

update the solution u� = u� + s�

smooth νB times on V�u� = f
�

end if

Since the single layer operator represents a pseudo-differential operator of order
minus one, the eigenvalues and eigenvectors act conversely compared to those of
finite element matrices. Therefore, standard smoothing procedures like damped
Jacobi or Gauß-Seidel does not provide a satisfying smoothing sweep. Bramble,
Leyk and Pasciak [3] present an appropriate approach to this problem class of
operators. In order to reduce the highly oscillating components of the error we
introduce a matrix Ah ∈ R

Nh×Nh being some discretization of the Laplace-
Beltrami operator on the boundary Γ . Consequently, we obtain a smoothing
iteration of the form

uh ← uh + τh ·Ah(f
h
− Ṽhuh) (6)

with a well chosen damping parameter τh, see e.g. [10].
In the case of algebraic multigrid we need a matrix hierarchy which represents

a ’virtual’ grid on each level. Therefore, we first construct prolongation operators
Ph : R

NH �→ R
Nh by exploiting a sparse auxiliary matrix Bh which includes

geometrical information [11]. Then, we are applying Galerkin’s method to obtain
the system matrix VH = P�

h VhPh on the coarse level. In addition, the restriction
of a fine ACA matrix Ṽh immediately leads to matrices on the coarse level

V near
H = P�

h V
near
h Ph, Ṽ far

H =
NB∑
i=1

ri∑
j=1

P�
h u

i
j (P�

h v
i
j)

� (7)
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where NB denotes the number of admissible blocks and ri the rank of the ith

block. Due to the exact preserving of representation (5) on the coarse grid, we
are able to use the same ACA-datastructures in our numerical realization.

On the other hand in the geometrical version of our multigrid approach a
nested mesh-hierarchy is available. In this case we are calculating the discretized
single layer potential on each grid separately. Strictly speaking, we apply the
ACA-algorithm level by level to obtain the approximated single layer potential
operators. Again we provide a set of data-sparse system matrices, which are used
within the V-cycle.

In order to obtain results for convergence, we verify conditions on the ap-
proximated single layer potential operator Ṽh. Based on theoretical results in [4]
which are weaker than the regularity and approximation conditions, we have to
show the spectral equivalence inequalities

c1(Vhv, v) ≤ (Ṽhv, v) ≤ c2(Vhv, v) v ∈ R
Nh (8)

and an approximation result in the sense

|(Vhv, w)− (Ṽhv, w)| ≤ c0λ−β/2
J ||vh||Vh

||wh||Vh
vh, wh ∈ R

Nh . (9)

In the last inequality λJ denotes the largest eigenvalue of the induced operator
V defined by (Vvh, wh)−1 = (Vhvh, wh) with the functions vh, wh described by
the basis coefficients vh, wh. Moreover, β is a arbitrary small positive parameter.
It can be proofed, that (8) holds with the spectral constants

c1 = (1 − ε√Nhκ(Vh))
c2 = (1 + ε

√
Nhκ(Vh)). (10)

Furthermore, we can show that the estimate

|(Vhvh, wh)− (Ṽhvh, wh)| ≤ c0εhγλ
−β/2
J ||vh||Vh

||uh||Vh
vh, wh ∈ R

Nh (11)

is valid, where ε is the accuracy from the ACA-approximation. Nevertheless,
the upper bound still depends on the typical mesh size h and whose exponent
γ = −(d + β + 4)/2 additionally includes the dimension d of the boundary
parameterization of ∂Ω. With an appropriate choose of ε one can cancel out
the h-dependency. However, in our numerical experiments we kept ε fix and
cannot observe a negative influence anyway. From these estimates and the general
convergence theory given in [4] we can immediately proof uniform convergence
of the V-cycle.

4 Numerical Studies

In order to show the efficiency of the suggested multigrid approach we present
some results in 3D for the interior Dirichlet boundary value problem for the
Laplace equation. The Galerkin boundary element matrices are generated by
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(a) L-Shape (b) Fichera Corner

Fig. 1. 3D Geometries

Table 1. Assembling �Vh and Setup Times for L-Shape

AMG (sec) GMG (sec)

Number of Assembling Galerkin Assembling Matrix-

Unknowns �Vh Projection �Vh hierarchy

7168 77 15 32.5 6.9
28672 158 30 158 40

the software package OSTBEM developed by O. Steinbach, cf. [16], the AMG-
preconditioner is realized within the software package PEBBLES [8].

For our numerical comparison of the geometrical multigrid preconditioner and
the algebraic multigrid preconditioner, we choose a few rather simple 3D geome-
tries, see Figure 1. Nevertheless, these domains include a wide spectrum of prob-
lem classes, for e.g. edges, corners and non-convex domains. First of all, we com-
pare the times for constructing the AMG matrix hierarchy by Galerkin projection
and building up the ACA matrices for GMG on the coarser grids. These CPU-
times are almost of the same order, see Table 1. It is obvious, that most of the
assembling time is needed for construction the system matrix Ṽh. Secondly, we
compare the numbers of iterations, that are needed within the preconditioned
conjugate gradient (PCG) method. Moreover, the CPU-time of one single PCG-
iteration for different numbers of unknowns are listed in Table 2. One can clearly
observe the expected almost linear increase of the CPU-times for one iteration

Table 2. Key data for AMG/GMG Preconditioner

Number of AMG GMG
Unknowns PCG-Cycle (sec) Iterations PCG-Cycle (sec) Iterations

L-Shape

1792 0.1 6 0.1 7
7168 0.8 6 0.6 7

28672 4.2 9 2.9 7

Fichera-Corner

1920 0.1 14 0.1 15
7680 0.8 15 0.6 15

30720 5.0 17 3.2 15
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with respect to the number of unknowns. Considering the time for one PCG-
iteration, we notice, that the GMG version is faster for larger problems.

Furthermore, we obtain constant iteration numbers for a wide range of problem
sizes.That implies that ourdata-sparsemultigridpreconditioner for the single layer
potential operator is of high quality. In the case of AMG preconditioning we also
have small iterationnumbers, nevertheless they are slightly increasing.Because the
coarsermatrix levels are produced in a purely algebraic way, it is hardly possible to
preserve corresponding ’virtual’ coarse grids of the original geometry.

5 Conclusions and Further Remarks

In this paper we presented a geometrical multigrid and algebraic multigrid ap-
proach for the solution of large-scale boundary element equations. For that pur-
pose an approximation of the boundary element matrices is absolutely essential.
Our numerical experiments have been realized by the adaptive cross approxi-
mation technique which guarantees that the effort for storing the matrices and
for a single matrix-by-vector multiplication can be reduced to almost O(Nh).
The discretized single layer potential operator yields symmetric positive defi-
nite matrices in the original dense version as well as in the ACA representation.
Therefore, the system of boundary element equations can be solved by means
of multigrid preconditioned CG-algorithms. Due to the sparse representation of
our matrices, we had to adapt each component of our AMG-algorithm properly.
In order to set up the matrix hierarchy and the corresponding transfer opera-
tors an auxiliary matrix was constructed for the AMG method. On the other
hand the matrices were built accordingly to the grid hierarchy in the GMG
method. The smoothing procedure was realized by the proposed BLP-smoother
for pseudo-differential operators of order minus one.

The overall algorithm provides interesting numerical results. One can notice
small constant iteration numbers for the GMG method and also small (but
slightly increasing) iteration numbers for the AMG approach. That confirms the
high quality of our multigrid preconditioners. In addition, the CPU time for a
single iterative step almost grows like O(Nh). As expected, the GMG variant is
faster than the AMG version. We mention that efficient multigrid preconditioner
for the discrete single layer potential operator are very important as building
blocks in primal and dual domain decomposition preconditioners [5,12,13].

Last but not least we would like to acknowledge the Austrian Science Fund
‘Fond zur Förderung der wissenschaftlichen Forschung (FWF)’ for supporting
this work under grant P14953 ‘Robust Algebraic Multigrid Methods and their
Parallelization’.
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