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SHORT COMMUNICATIONS

ROUND-OFF ERRORS IN RICHARDSON‘S EXTRAPOLATION METHOD"
S.YA. VILENKIN AND A.N. KALASHYAN

The effect of round-off error in Richardson's method in calculations
made on a computer with a small wordlength is suppressed by the
introduction of an additional mesh point.

In /1/ it is assumed that the round-off error is negligibly small and it is ignored when
choosing the weighting factors. This assumption is unacceptable when the increase in accumu-
lation of the round-off errors significantly affects the accuracy of the solution. The small
wordlength of a computer is usually the source of this increase.

The worsening of the accuracy of the solution at a sequence of meshes when the integration
step is increased (see Figs.l and 2 where 1 is the error of the solution by the Crank-Nicholson
scheme, and 2, 3, 4 are the errors of the extrapolated solutions UH(2) Usx™(2), Uy#(2) respectively)
is explained by the fact that the total round-off error ez) is inversely proportional to the
integration step /2, 3/. Thus to determined the weighting factors the round-off errors must
also be taken into account.
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We shall fix an arbitrary point z in @ On the basis of Theorem 2.1 in /1/ at this node
the expression
1

@)= @)+ Y hoy(a)+ @), )
=1
is obtained where
{ m, if =i,
[mf2], if =2

(i=2 corresponds to the case when the regular part of (1) contains only even degrees of i), vyz)
does not depend on h and the remaining term satisfies the estimate
In*(2) | <lin*(2) oy < ch™+F,
where ¢ is some constant and p is directly related to the approximation method of differential
operators with difference relations (see /1, p.23).
For hi>...>h42>0 let
= I+2 __
Q=[] O, * 2.
et

Let u* denote the solution for each . Taking into account the round-off error for every
value of the parameter hy we have the unique solution

ﬂ""—u’"‘{»eh.,

where es~wy/h? p>0 and wx are random independent equally distributed quantities with expectation
@ and finite variance. Finding exfor each k is quite a difficult problem. We will therefore
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consider é&m=w/l* Such a representation is justified as indicated by the numerical results.
The sequence of steps h in the extrapolation method is given as a function of the basic
step ky, i.e.
h=hy/qn, k=1,2,...,01+2,
where 1=@:<...<@u: For example =k or g=2:-1.
Let mw” be the solutions of the system of equations
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where

142

AG,9)=q.' [H wi-o [] cor _¢.=)]"

i=1 st

142 142 @
W=t ‘%"(2 D )[H (n*—?) H (ps* —wa’)]—
[ Ay skl

and for p={,2 i=1,2 we form the linear combination
1+2
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The following assertion holds.

Suppose that for the mesh domains Qa, with parameters h>...>hy2>0 the conditions of
Theorem 2.1 in /1/ are satisfied with a uniform norm and ep,=w/hy’, p=1, 2. Then for the extra-
polated solution U#(z) the estimate

142

m+p
maxlU"‘(x)—u(szd(Zm) g 3)

=i

is valid, where u is the sclution of the original problem and d is a constant that does not
depend upon .

Proof. Taking into account expansion (1) and the fact that ':u’" can be found from
system (2), we obtain

i+

|U#(z)—u(z) |< ¢ max |12 Zh,}"”.
1

=h=l+2

Since the function ¢.x is monotonically increasing we can always find an >0 such that ui/¢=
ita, k=1, 2,...,1+1.

It is not difficult to show that
) 1+a |1+ ) 1+@ |+t o
W< p(+2) (T) PP [ |<(z+1)(f) Priz
a

where a=a*+2¢. Thus

i+2

max|U%(z)— u(z) |< d (E hg)MH.

Rt

Numerical results. Calculations were carried out for an example taken from /1/:

@' +zu=(z?+z+i) exp(z), z=(0,2), u(0)=0,
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the solution of which is the function a(z)=exp (z).
The calculations were carried out on a 32-bit computer (of which 24 bits are assigned to
a number's mantissa) according to the Crank-Nicholson scheme

2=k | 2h
P e s @), wlz)=0, @
24 ha (wran) 24 ha )

where a(z)=z, f(z)=(z*tz+1) exp (z).

For problem (4) the assumptions that allow the extrapolation to be carried out in two or
more steps hkx are satisfied, and for it the reqular part of expansion (1) contains only even
degrees of h and eyx—w/k. This determines the choice of weighting factors gﬂt

Initially we shall solve some of the difference problems (4) with steps h=1/M:. In finding
uh at the point 2=2 we construct an extrapolated solution in two (U#(2)) and three (Uu#(2)
for qu=k and Usx¥(2) for g=2-!) approximations with weighting factors given in /1/.

With the coefficients ng) we shall find the extrapolated solution U,%(2) (gp.=k) and
UH(2) (pp=2""!) in three approximations.

We construct a graph of the dependence

En(Mp)=|u™(2)—u(2)|
of the points of the mesh ea={2j=jhy, j=0, 1,...,M}} on the number M, at the point z=2. This graph
is plotted in logarithmic coordinates in Figs.l and 2. BAnalogous graphs are constructed for
the extrapolated solutiocns. From Figs.l and 2 it is clear that the proposed method for

determining the weighting factors actually allows the accuracy of the solutions to be increased
for calculations on computers with a small wordlength.
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DIFFERENCE SCHEMES FOR NON-AUTONOMOUS STIFF SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS”

P.D. SHIRKOV

The properties of Rosenbrock schemes with complex coefficients and
implicit Runge-Kutta schemes for the numerical solution of Cauchy
problems for stiff systems of ordinary differential equations are
investigated. The model problem chosen is a linear non-autonomous
system. A one-stage second-order approximation Rosenbrock scheme is
constructed, which is monotonic and damped to second order when applied
to non-autonomous linear systems. This scheme enables one to compute
with large step-size outside the boundary layer and can be used for the
numerical solution of a broad range of stiff problems which are nearly
linear (including, e.g., computations of transients in electrical
circuits).

Introduction.

A considerable number of difference schemes have been proposed for the numerical inte-
gration of the Cauchy problem for stiff systems of ordinary differential equations (o.d.e.)

du/dt=f(t, u), u(0)=e, (1)

where u=(uy,...,um)% f=(fi,...,fm)7 6=(c1,...,6m)* (sSee e.g. /1-3/ and the references cited therein).
This profusion often complicates the already difficult task of selecting a numerical algorithm
to solve specific applied problems.

In order to ensure good gualitative and gquantitative behaviour of difference solutions

in nearly linear stiff problems. It is best to use schemes that meet the following conditions
*#Zh,vychisl.Mat.mat.Fiz.,27,1,131-135,1987




