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Abstract

Let {Sm} be an in�nite sequence whose limit or antilimit S can be approximated very e�ciently by applying a suitable
extrapolation method E0 to {Sm}. Assume that the Sm and hence also S are di�erentiable functions of some parameter
�; (d=d�)S being the limit or antilimit of {(d=d�)Sm}, and that we need to approximate (d=d�)S. A direct way of achieving
this would be by applying again a suitable extrapolation method E1 to the sequence {(d=d�)Sm}, and this approach has
often been used e�ciently in various problems of practical importance. Unfortunately, as has been observed at least in some
important cases, when (d=d�)Sm and Sm have essentially di�erent asymptotic behaviors as m → ∞, the approximations to
(d=d�)S produced by this approach, despite the fact that they are good, do not converge as quickly as those obtained for
S, and this is puzzling. In a recent paper (A. Sidi, Extrapolation methods and derivatives of limits of sequences, Math.
Comp., 69 (2000) 305–323) we gave a rigorous mathematical explanation of this phenomenon for the cases in which E0
is the Richardson extrapolation process and E1 is a generalization of it, and we showed that the phenomenon has nothing
to do with numerics. Following that we proposed a very e�ective procedure to overcome this problem that amounts
to �rst applying the extrapolation method E0 to {Sm} and then di�erentiating the resulting approximations to S. As a
practical means of implementing this procedure we also proposed the direct di�erentiation of the recursion relations of the
extrapolation method E0 used in approximating S. We additionally provided a thorough convergence and stability analysis
in conjunction with the Richardson extrapolation process from which we deduced that the new procedure for (d=d�)S has
practically the same convergence properties as E0 for S. Finally, we presented an application to the computation of integrals
with algebraic=logarithmic endpoint singularities via the Romberg integration. In this paper we continue this research by
treating Sidi’s generalized Richardson extrapolation process GREP(1) in detail. We then apply the new procedure to various
in�nite series of logarithmic type (whether convergent or divergent) in conjunction with the d(1)-transformation of Levin
and Sidi. Both the theory and the numerical results of this paper too indicate that this approach is the preferred one for
computing derivatives of limits of in�nite sequences and series. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and review of recent developments

Let {Sm} be an in�nite sequence whose limit or antilimit S can be approximated very e�ciently
by applying a suitable extrapolation method E0 to {Sm}. Assume that the Sm and hence also S are
di�erentiable functions of some parameter �; (d=d�)S being the limit or antilimit of {(d=d�)Sm}, and
that we need to approximate (d=d�)S. A direct way of achieving this would be by applying again
a suitable extrapolation method E1 to the sequence {(d=d�)Sm}, and this approach has often been
used e�ciently in various problems of practical importance. When Sm and (d=d�)Sm have essentially
di�erent asymptotic behaviors as m → ∞, the approximations to (d=d�)S produced by applying
E1 to {(d=d�)Sm} do not converge to (d=d�)S as quickly as the approximations to S obtained by
applying E0 to {Sm} even though they may be good. This is a curious and disturbing phenomenon
that calls for an explanation and a be�tting remedy, and both of these issues were addressed by the
author in the recent paper [14] via the Richardson extrapolation. As far as is known to us [14] is
the �rst work that handles this problem.
The procedure to cope with the problem above that was proposed in [14] amounts to �rst applying

the extrapolation method E0 to {Sm} and then di�erentiating the resulting approximations to S. As
far as practical implementation of this procedure is concerned, it was proposed in [14] to actually
di�erentiate the recursion relations satis�ed by the method E0.
In the present work we continue this new line of research by extending the approach of [14]

to GREP(1) that is the simplest case of the generalized Richardson extrapolation process GREP of
Sidi [7]. Following this, we consider the application of the d(1)-transformation, the simplest of the
d-transformations of Levin and Sidi [6], to computing derivatives of sums of in�nite series. Now
GREP is a most powerful extrapolation procedure that can be applied to a very large class of
sequences and the d-transformations are GREPs that can be applied successfully again to a very
large class of in�nite series. Indeed, it is known theoretically and has been observed numerically
that GREP in general and the d-transformations in particular have scopes larger than most known
extrapolation methods.
Before we go on to the main theme of this paper, we will give a short review of the motivation

and results of [14]. This will also help establish some of the notation that we will use in the
remainder of this work and set the stage for further developments. As we did in [14], here too we
will keep the treatment general by recalling that in�nite sequences are either directly related to or
can be formally associated with a function A(y), where y may be a continuous or discrete variable.
Let a function A(y) be known and hence computable for y ∈ (0; b] with some b¿ 0, the variable

y being continuous or discrete. Assume, furthermore, that A(y) has an asymptotic expansion of the
form

A(y) ∼ A+
∞∑
k=1

�ky�k as y → 0+; (1.1)

where �k are known scalars satisfying

�k 6= 0; k = 1; 2; : : : ; R�1¡R�2¡ · · · ; lim
k→∞

R�k =+∞; (1.2)

and A and �k ; k = 1; 2; : : : ; are constants independent of y that are not necessarily known.
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From (1.1) and (1.2) it is clear that A= limy→0+ A(y) when this limit exists. When limy→0+ A(y)
does not exist, A is the antilimit of A(y) for y → 0+; and in this case R�160 necessarily. In any
case, A can be approximated very e�ectively by the Richardson extrapolation process that is de�ned
via the linear systems of equations

A(yl) = A( j)n +
n∑

k=1

��ky
�k
l ; j6l6j + n; (1.3)

with the yl picked as

yl = y0!l; l= 0; 1; : : : ; for some y0 ∈ (0; b] and ! ∈ (0; 1): (1.4)

Here A( j)n are the approximations to A and the ��k are additional (auxiliary) unknowns. As is well
known, A( j)n can be computed very e�ciently by the following algorithm due to Bulirsch and Stoer
[2]:

A( j)0 = A(yj); j = 0; 1; : : : ;

A( j)n =
A( j+1)n−1 − cnA

( j)
n−1

1− cn
; j = 0; 1; : : : ; n= 1; 2; : : : ; (1.5)

where we have de�ned

cn = !�n ; n= 1; 2; : : : : (1.6)

Let us now consider the situation in which A(y) and hence A depend on some real or complex
parameter � and are continuously di�erentiable in � for � in some set X of the real line or the
complex plane, and we are interested in computing (d=d�)A ≡ Ȧ: Let us assume in addition to
the above that (d=d�)A(y) ≡ Ȧ(y) has an asymptotic expansion for y → 0+ that is obtained by
di�erentiating that in (1.1) term by term. (This assumption is satis�ed at least in some cases of
practical interest as can be shown rigorously.) Finally, let us assume that the �k and �k , as well as
A(y) and A, depend on � and that they are continuously di�erentiable for � ∈ X . As a consequence
of these assumptions we have

Ȧ(y) ∼ Ȧ+
∞∑
k=1

(�̇k + �k�̇k log y)y�k as y → 0+; (1.7)

where �̇k ≡ (d=d�)�k and �̇k ≡ (d=d�)�k: Obviously, Ȧ and the �̇k and �̇k are independent of y. As a
result, the in�nite sum on the right-hand side of (1.7) is simply of the form

∑∞
k=1(�k0 +�k1 log y)y�k

with �k0 and �k1 constants independent of y.
Note that when the �k do not depend on �, we have �̇k=0 for all k, and, therefore, the asymptotic

expansion in (1.7) becomes of exactly the same form as that given in (1.1). This means that
we can apply the Richardson extrapolation process above directly to Ȧ(y) and obtain very good
approximations to Ȧ. This amounts to replacing A(yj) in (1.5) by Ȧ(yj), keeping everything else
the same. However, when the �k are functions of �, the asymptotic expansion in (1.7) is essentially
di�erent from that in (1.1). This is so since y�k log y and y�k behave entirely di�erently as y → 0+.
In this case the application of the Richardson extrapolation process directly to Ȧ(y) does not produce
approximations to Ȧ that are of practical value.
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The existence of an asymptotic expansion for Ȧ(y) of the form given in (1.7), however, suggests
immediately that a generalized Richardson extrapolation process can be applied to produce approx-
imations to Ȧ in an e�cient manner. In keeping with the convention introduced by the author in
[12], this extrapolation process is de�ned via the linear systems

B(yl) = B( j)n +
b(n+1)=2c∑

k=1

��k0y
�k
l +

bn=2c∑
k=1

��k1y
�k
l log yl; j6l6j + n; (1.8)

where B(y) ≡ Ȧ(y), B( j)n are the approximations to B ≡ Ȧ, and ��k0 and ��k1 are additional (auxiliary)
unknowns. (This amounts to “eliminating” from (1.7) the functions y�1 ; y�1 log y; y�2 ; y�2 log y; : : : ;
in this order.) With the yl as in (1.4), the approximations B( j)n can be computed very e�ciently by
the following algorithm developed in Sidi [12] and denoted the SGRom-algorithm there:

B( j)0 = B(yj); j = 0; 1; : : : ;

B( j)n =
B( j+1)n−1 − �nB

( j)
n−1

1− �n
; j = 0; 1; : : : ; n= 1; 2; : : : ; (1.9)

where we have now de�ned

�2k−1 = �2k = ck ; k = 1; 2; : : : ; (1.10)

with the cn as de�ned in (1.6).
Before going on, we would like to mention that the problem we have described above arises nat-

urally in the numerical evaluation of integrals of the form B=
∫ 1
0 (log x)x

�g(x) dx, where R�¿− 1
and g ∈ C∞[0; 1]. It is easy to see that B = (d=d�)A, where A =

∫ 1
0 x�g(x) dx. Furthermore, the

trapezoidal rule approximation B(h) to B with stepsize h has an Euler–Maclaurin (E–M) expan-
sion that is obtained by di�erentiating with respect to � the E–M expansion of the trapezoidal
rule approximation A(h) to A. With this knowledge available, B can be approximated by apply-
ing a generalized Richardson extrapolation process to B(h). Traditionally, this approach has been
adopted in multidimensional integration of singular functions as well. For a detailed discussion see
[3,9].
If we arrange the A( j)n and B( j)n in two-dimensional arrays of the form

Q(0)
0

Q(1)
0 Q(0)

1

Q(2)
0 Q(1)

1 Q(0)
2

Q(3)
0 Q(2)

1 Q(1)
2 Q(0)

3

...
...

...
...
. . .

(1.11)

then the diagonal sequences {Q( j)
n }∞n=0 with �xed j have much better convergence properties than

the column sequences {Q( j)
n }∞j=0 with �xed n. In particular, the following convergence results are
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known:

1. The column sequences satisfy

A( j)n − A=O(|cn+1|j) as j → ∞;

B( j)2m+s − B=O(j1−s|cm+1|j) as j → ∞; s= 0; 1: (1.12)

2. Under the additional condition that

R�k+1 − R�k¿d¿ 0; k = 1; 2; : : : ; for some �xed d (1.13)

and assuming that �k ; �̇k , and �k�̇k grow with k at most like exp(�k�) for some �¿0 and
�¡ 2, the diagonal sequences satisfy, for all practical purposes,

A( j)n − A := O

(
n∏

i=1

|ci|
)

as n → ∞;

B( j)n − B := O

(
n∏

i=1

|�i|
)

as n → ∞: (1.14)

The results pertaining to A( j)n in (1.12) and (1.14), with real �k , are due to Bulirsch and Stoer
[2]. The case of complex �k is contained in [12], and so are the results on B( j)n . Actually, [12] gives
a complete treatment of the general case in which

A(y) ∼ A+
∞∑
k=1

[ qk∑
i=0

�ki(logy)i
]
y�k as y → 0+; (1.15)

where qk are known arbitrary nonnegative integers, and �ki are constants independent of y, and the
�k satisfy the condition

�k 6= 0; k = 1; 2; : : : ; R�16R�26 · · · ; lim
k→∞

R�k =+∞ (1.16)

that is much weaker than that in (1.2). Thus, the asymptotic expansions in (1.1) and (1.7) are special
cases of that in (1.15) with qk = 0; k = 1; 2; : : : ; and qk = 1; k = 1; 2; : : : ; respectively.
Comparison of the diagonal sequences

{
A( j)n

}∞
n=0 and

{
B( j)n

}∞
n=0 (with j �xed) with the help of

(1.14) reveals that the latter has inferior convergence properties, even though the computational
costs of A( j)n and B( j)n are almost identical. (They involve the computation of A(yl); j6l6j+n, and
B(yl); j6l6j+ n, respectively). As a matter of fact, from (1.6), (1.10), and (1.13) it follows that
the bound on |A( j)2m − A| is smaller than that of |B( j)2m − B| by a factor of O(∏m

i=1 |cm+i=ci|) = O(!dm2)
as m → ∞. This theoretical observation is also supported by numerical experiments. Judging from
(1.14) again, we see that, when R�k+1−R�k = d for all k in (1.13), B( j)b√2 nc will have an accuracy

comparable to that of A( j)n . This, however, increases the cost of the extrapolation substantially, as the
cost of computing A(yl) and B(yl) increases drastically with increasing l in most cases of interest.
This quantitative discussion makes it clear that the inferiority of B( j)n relative to A( j)n is actually
mathematical and has nothing to do with numerics.
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From what we have so far it is easy to identify the Richardson extrapolation of (1.3) as method
E0 and the generalized Richardson extrapolation of (1.8) as method E1. We now turn to the new
procedure “(d=d�)E0”.
Let us now approximate Ȧ by (d=d�)A( j)n = Ȧ

( j)
n . This can be achieved computationally by di�er-

entiating the recursion relation in (1.5), the result being the following recursive algorithm:

A( j)0 = A(yj) and Ȧ
( j)
0 = Ȧ(yj); j = 0; 1; : : : ;

A( j)n =
A( j+1)n−1 − cnA

( j)
n−1

1− cn
and

Ȧ
( j)
n =

Ȧ
( j+1)
n−1 − cnȦ

( j)
n−1

1− cn
+

ċn
1− cn

(A( j)n − A( j)n−1); j = 0; 1; : : : ; n= 1; 2; : : : : (1.17)

Here ċn ≡ (d=d�)cn; n= 1; 2; : : : : This shows that we need two tables of the form given in (1.11),
one for A( j)n and another for Ȧ

( j)
n . We also see that the computation of the Ȧ

( j)
n involves both Ȧ(y)

and A(y).
The column sequences {Ȧ( j)n }∞j=0 converge to Ȧ almost in the same way the corresponding

sequences {A( j)n }∞j=0 converge to A, cf. (1.12). We have

Ȧ
( j)
n − Ȧ=O(j|cn+1|j) as j → ∞: (1.18)

The diagonal sequences {Ȧ( j)n }∞n=0 converge to Ȧ also practically the same way the corresponding
{A( j)n }∞n=0 converge to A, subject to the mild conditions that

∑∞
i=1 |ċi|¡∞ and

∑n
i=1 |ċi=ci| = O(na)

as n → ∞ for some a¿0, in addition to (1.13). We have for all practical purposes, cf. (1.14),

Ȧ
( j)
n − Ȧ := O

(
n∏

i=1

|ci|
)
as n → ∞: (1.19)

The stability properties of the column and diagonal sequences of the Ȧ
( j)
n are likewise analyzed in

[14] and are shown to be very similar to those of the A( j)n . We refer the reader to [14] for details.
This completes our review of the motivation and results of [14]. In the next section we present the

extension of the procedure of [14] to GREP(1). We derive the recursive algorithm for computing the
approximations and for assessing their numerical stability. In Section 3 we discuss the stability and
convergence properties of the new procedure subject to a set of appropriate su�cient conditions that
are met in many cases of interest. The main results of this section are Theorem 3.3 on stability and
Theorem 3.4 on convergence and both are optimal asymptotically. In Section 4 we show how the
method and theory of Sections 2 and 3 apply to the summation of some in�nite series of logarithmic
type via the d(1)-transformation. Finally, in Section 5 we give two numerical examples that illustrate
the theory and show the superiority of the new approach to derivatives of limits over the direct
one. In the �rst example we apply the new approach to the computation of the derivative of the
Riemann zeta function. In the second example we compute (d=d�)F(�; 12 ;

3
2 ; 1), where F(a; b; c; z) is
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the Gauss hypergeometric function. This example shows clearly that our approach is very e�ective
for computing derivatives of special functions such as the hypergeometric functions with respect to
their parameters.

2. GREP(1) and its derivative

2.1. General preliminaries on GREP(1)

As GREP(1) applies to functions A(y) that are in the class F(1), we start by describing F(1).

De�nition 2.1. We shall say that a function A(y), de�ned for 0¡y6b, for some b¿ 0, where y
can be a discrete or continuous variable, belongs to the set F(1), if there exist functions �(y) and
�(y) and a constant A, such that

A(y) = A+ �(y)�(y); (2.1)

where �(x), as a function of the continuous variable x and for some �6b, is continuous for 06x6�,
and, for some constant r ¿ 0, has a Poincar�e-type asymptotic expansion of the form

�(x) ∼
∞∑
i=0

�ixir as x → 0 + : (2.2)

If, in addition, the function B(t) ≡ �(t1=r), as a function of the continuous variable t, is in�nitely
di�erentiable for 06t6�r, we shall say that A(y) belongs to the set F(1)∞ . Note that F

(1)
∞ ⊂F(1).

Remark. A=limy→0+ A(y) whenever this limit exists. If limy→0+A(y) does not exist, then A is said
to be the antilimit of A(y). In this case limy→0+ �(y) does not exist as is obvious from (2.1) and
(2.2).
It is assumed that the functions A(y) and �(y) are computable for 0¡y6b (keeping in mind

that y may be discrete or continuous depending on the situation) and that the constant r is known.
The constants A and �i are not assumed to be known. The problem is to �nd (or approximate) A
whether it is the limit or the antilimit of A(y) as y → 0+, and GREP(1), the extrapolation procedure
that corresponds to F(1), is designed to tackle precisely this problem.

De�nition 2.2. Let A(y) ∈ F(1), with �(y); �(y); A, and r being exactly as in De�nition 2.1.
Pick yl ∈ (0; b]; l = 0; 1; 2; : : : ; such that y0¿y1¿y2¿ · · · ; and liml→∞ yl = 0. Then A( j)n , the
approximation to A, and the parameters ��i; i = 0; 1; : : : ; n − 1; are de�ned to be the solution of the
system of n+ 1 linear equations

A( j)n = A(yl) + �(yl)
n−1∑
i=0

��iy
ir
l ; j6l6j + n; (2.3)

provided the matrix of this system is nonsingular. It is this process that generates the approximations
A( j)n that we call GREP(1).
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As is seen, GREP(1) produces a two-dimensional table of approximations of the form given in
(1.1).
Before going on we let t = yr and tl = yr

l ; l= 0; 1; : : : ; and de�ne a(t) ≡ A(y) and ’(t) ≡ �(y).
Then the equations in (2.3) take on the more convenient form

A( j)n = a(tl) + ’(tl)
n−1∑
i=0

��it
i
l; j6l6j + n: (2.4)

A closed-form expression for A( j)n can be obtained by using divided di�erences. In the sequel we
denote by D(s)

k the divided di�erence operator of order k over the set of points ts; ts+1; : : : ; ts+k . Thus,
for any function g(t) de�ned at these points we have

D(s)
k {g(t)}= g[ts; ts+1; : : : ; ts+k] =

s+k∑
l=s




s+k∏
i=s
i 6=l

1
tl − ti


 g(tl) ≡

k∑
i=0

c(s)ki g(ts+i): (2.5)

Then A( j)n is given by

A( j)n =
D( j)

n {a(t)=’(t)}
D( j)

n {1=’(t)} : (2.6)

As is clear from (2.6), A( j)n can be expressed also in the form

A( j)n =
n∑

i=0


( j)ni a(tj+i); (2.7)

where 
( j)ni are constants that are independent of a(t) and that depend solely on the tl and ’(tl) and
satisfy

∑n
i=0 


( j)
ni = 1. The quantity �( j)n de�ned by

�( j)n =
n∑

i=0

|
( j)ni | (2.8)

(note that �( j)n ¿1) plays an important role in assessing the stability properties of the approximation
A( j)n with respect to errors (roundo� or other) in the a(tl). As has been noted in
various places, if �l is the (absolute) error committed in the computation of a(tl); l = 0; 1; : : : ;
then |A( j)n − �A

( j)
n |6�( j)n (maxj6l6j+n|�l|), where �A( j)n is the computed (as opposed to exact) value of

A( j)n . Concerning �( j)n we have a result analogous to (2.6), namely,

�( j)n =
n∑

i=0

|
( j)ni |=
|D( j)

n {u(t)}|
|D( j)

n {1=’(t)}| ; (2.9)

where u(t) is arbitrarily de�ned for all t except for t0; t1; : : : ; where it is de�ned by

u(tl) = (−1)l=|’(tl)|; l= 0; 1; : : : : (2.10)

This is a result of the following lemma that will be used again later in this paper.



A. Sidi / Journal of Computational and Applied Mathematics 122 (2000) 251–273 259

Lemma 2.1. With D(s)
k {g(t)} as in (2:5); we have

k∑
i=0

|c(s)ki |hs+i = (−1)sD(s)
k {u(t)}; (2.11)

where hl are arbitrary scalars and

u(tl) = (−1)lhl; l= 0; 1; : : : ; (2.12)

but u(t) is arbitrary otherwise.

Proof. The validity of (2.11) follows from (2.5) and from the fact that c(s)ki =(−1)i|c(s)ki |; i=0; 1; : : : ; k.

The results in (2.6) and (2.9) form the basis of the W-algorithm that is used in computing both
the A( j)n and the �( j)n in a very e�cient way. For this we de�ne for all j and n

M ( j)
n = D( j)

n {a(t)=’(t)}; N ( j)
n = D( j)

n {1=’(t)} and H ( j)
n = D( j)

n {u(t)} (2.13)

with u(tl) as in (2.10), and recall the well-known recursion relation for divided di�erences, namely,

D( j)
n {g(t)}= D( j+1)

n−1 {g(t)} − D( j)
n−1{g(t)}

tj+n − tj
: (2.14)

(See, e.g., [15, p. 45].) Here are the steps of the W-Algorithm:

1. For j = 0; 1; : : : ; set

M ( j)
0 = a(tj)=’(tj); N ( j)

0 = 1=’(tj) and H ( j)
0 = (−1)j=|’(tj)|: (2.15)

2. For j = 0; 1; : : : ; and n= 1; 2; : : : ; compute M ( j)
n ; N ( j)

n ; and H ( j)
n recursively from

Q( j)
n =

Q( j+1)
n−1 − Q( j)

n−1
tj+n − tj

(2.16)

with Q( j)
n equal to M ( j)

n ; N ( j)
n ; and H ( j)

n .
3. For all j and n set

A( j)n =
M ( j)

n

N ( j)
n

and �( j)n =
|H ( j)

n |
|N ( j)

n | : (2.17)

Note that the W-Algorithm for A( j)n was originally developed in [8]. The recursion for �( j)n was
given recently in [10]. Stability and convergence studies for GREP(1) can be found in [10], and more
recently in [13].
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Let us now assume that A(y) and A depend on a real or complex parameter � and that we would
like to compute (d=d�)A ≡ Ȧ assuming that Ȧ is the limit or antilimit of (d=d�)A(y) as y → 0+.
We also assume that �(y) and �i in (2.1) are di�erentiable functions of � and that Ȧ(y) has an
asymptotic expansion as y → 0+ obtained by di�erentiating that of A(y) given in (2.1) and (2.2)
term by term. Thus

Ȧ(y) ∼ Ȧ+ �̇(y)
∞∑
i=0

�iyir + �(y)
∞∑
i=0

�̇iy
ir as y → 0 + : (2.18)

Here �̇(y) ≡ (d=d�)�(y) and �̇i ≡ (d=d�)�i in keeping with the convention of the previous section.
We can now approximate Ȧ by applying the extrapolation process GREP(2) to (2.18). The approx-

imations B( j)n to B ≡ Ȧ that result from this are de�ned via the linear systems

B(yl) = B( j)n + �(yl)
b(n−1)=2c∑

i=0

��1iy
ir
l + �̇(yl)

bn=2c−1∑
i=0

��2iy
ir
l ; j6l6j + n; (2.19)

where B(y) ≡ Ȧ(y) as before. (Compare (2.18) and (2.19) with (1.7) and (1.8), respectively.) Now
the B( j)n converge to Ȧ, but their rate of convergence to Ȧ is inferior to that of the corresponding A( j)n

to A. We, therefore, would like to employ the approach of [14] hoping that it will produce better
results also with GREP(1).

2.2. (d=d�)GREP(1) and its implementation

Let us di�erentiate (2.7) with respect to �. We obtain

Ȧ
( j)
n =

n∑
i=0


( j)ni ȧ(tj+i) +
n∑

i=0


̇( j)ni a(tj+i); (2.20)

where 
̇( j)ni ≡ (d=d�)
( j)ni and ȧ(t) ≡ (d=d�)a(t) ≡ Ȧ(y).

It is clear that, unlike B( j)n in (2.19) that depends only on ȧ(t); Ȧ
( j)
n depends on both ȧ(t) and a(t).

Also the stability of Ȧ
( j)
n is a�ected by errors both in a(tl) and ȧ(tl). In particular, if �l and �l are the

(absolute) errors in a(tl) and ȧ(tl), respectively, then |Ȧ( j)n − �̇A
( j)

n |6
( j)
n [maxj6l6j+nmax(|�l|; |�l|)],

where �̇A
( j)

n is the computed (as opposed to exact) value of Ȧ
( j)
n , and


( j)
n =

n∑
i=0

|
( j)ni |+
n∑

i=0

|
̇( j)ni |: (2.21)

We shall call this extension of GREP(1) simply (d=d�)GREP(1).

2.2.1. Computation of Ȧ
( j)
n

Let us start by di�erentiating A( j)n =M ( j)
n =N ( j)

n : Upon denoting (d=d�)M ( j)
n = Ṁ

( j)
n and (d=d�)N ( j)

n =
Ṅ
( j)
n , we have

Ȧ
( j)
n =

Ṁ
( j)
n

N ( j)
n

− M ( j)
n Ṅ

( j)
n

[N ( j)
n ]2

: (2.22)



A. Sidi / Journal of Computational and Applied Mathematics 122 (2000) 251–273 261

Now M ( j)
n and N ( j)

n are already available from the W-algorithm. We need only compute Ṁ
( j)
n and

Ṅ
( j)
n , and these can be computed by direct di�erentiation of (2.16) along with the appropriate initial
conditions in (2.15).

2.2.2. Computation of an upper bound on 
( j)
n

The assessment of stability of Ȧ
( j)
n turns out to be much more involved than that of A( j)n , and it

requires a good understanding of the nature of Ṁ
( j)
n .

First, we note that, as the tl are independent of �, D( j)
n and (d=d�) commute, i.e., (d=d�)D( j)

n {g(t)}=
D( j)

n {(d=d�)g(t)}. Consequently, from (2.16) we have

Ṁ
( j)
n = D( j)

n

{
d
d�

a(t)
’(t)

}
= D( j)

n

{
ȧ(t)
’(t)

− a(t)’̇(t)
[’(t)]2

}
: (2.23)

Next, substituting (2.23) in (2.22), and using the fact that D( j)
n is a linear operator, we obtain

Ȧ
( j)
n = Y1 + Y2 + Y3; (2.24)

where

Y1 =
D( j)

n {ȧ(t)=’(t)}
N ( j)

n
=

n∑
i=0


( j)ni ȧ(tj+i);

Y2 =− Ṅ
( j)
n D( j)

n {a(t)=’(t)}
[N ( j)

n ]2
=− Ṅ

( j)
n

N ( j)
n

n∑
i=0


( j)ni a(tj+i);

Y3 =−D( j)
n {a(t)’̇(t)=[’(t)]2}

N ( j)
n

=−
n∑

i=0

�( j)ni a(tj+i) (2.25)

with �( j)ni = 
( j)ni ’̇(tj+i)=’(tj+i). Here we have used the fact that

D( j)
n {h(t)=’(t)}
D( j)

n {1=’(t)} =
n∑

i=0


( j)ni h(tj+i) for any h(t): (2.26)

Recalling (2.20), we identify


̇( j)ni =− Ṅ
( j)
n

N ( j)
n


( j)ni − �( j)ni ; i = 0; 1; : : : ; n: (2.27)

Therefore,


( j)
n =

n∑
i=0

|
( j)ni |+
n∑

i=0

∣∣∣∣∣∣
Ṅ
( j)
n

N ( j)
n


( j)ni + �( j)ni

∣∣∣∣∣∣=
n∑

i=0

|
( j)ni |+
n∑

i=0

|
( j)ni |
∣∣∣∣∣∣
Ṅ
( j)
n

N ( j)
n
+

’̇(tj+i)
’(tj+i)

∣∣∣∣∣∣ : (2.28)
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Now even though the �rst summation is simply �( j)n , and hence can be computed very inexpensively,
the second sum cannot, as its general term depends also on Ṅ

( j)
n =N ( j)

n ; hence on j and n. We can,

however, compute, again very inexpensively, an upper bound 
̃
( j)

n on 
( j)
n , de�ned by


̃
( j)

n = �( j)n +
|Ṅ ( j)

n |
|N ( j)

n |�
( j)
n +�( j)

n where �( j)
n ≡

n∑
i=0

|�( j)ni | (2.29)

which is obtained by manipulating the second summation in (2.28) appropriately. This can be
achieved by �rst realizing that

�( j)
n =

|D( j)
n {v(t)}|
|N ( j)

n | ; (2.30)

where v(t) is arbitrarily de�ned for all t except for t0; t1; : : : ; for which it is de�ned by

v(tl) = (−1)l|’̇(tl)|=|’(tl)|2; l= 0; 1; : : : (2.31)

and then by applying Lemma 2.1.

2.2.3. The (d=d�)W-algorithm for Ȧ
( j)
n

Combining all of the developments above, we can now extend the W-algorithm to compute Ȧ
( j)
n

and 
̃
( j)

n . We shall denote the resulting algorithm the (d=d�)W-algorithm. Here are the steps of this
algorithm.

1. For j = 0; 1; : : : ; set

M ( j)
0 =

a(tj)
’(tj)

; N ( j)
0 =

1
’(tj)

; H ( j)
0 = (−1)j|N ( j)

0 |; and

Ṁ
( j)
0 =

ȧ(tj)
’(tj)

− a(tj)’̇(tj)
[’(tj)]

2 ; Ṅ
( j)
0 =− ’̇(tj)

[’(tj)]
2 ; H̃

( j)
0 = (−1)j|Ṅ ( j)

0 |: (2.32)

2. For j=0; 1; : : : ; and n=1; 2; : : : ; compute M ( j)
n ; N ( j)

n ; H ( j)
n ; Ṁ

( j)
n ; Ṅ

( j)
n , and H̃

( j)
n recursively from

Q( j)
n =

Q( j+1)
n−1 − Q( j)

n−1
tj+n − tj

: (2.33)

3. For all j and n set

A( j)n =
M ( j)

n

N ( j)
n

; �( j)n =
|H ( j)

n |
|N ( j)

n | ; and

Ȧ
( j)
n =

Ṁ
( j)
n

N ( j)
n

− A( j)n
Ṅ
( j)
n

N ( j)
n

; 
̃
( j)

n =
|H̃ ( j)

n |
|N ( j)

n | +

1 + |Ṅ ( j)

n |
|N ( j)

n |


�( j)n : (2.34)

It is interesting to note that we need six tables of the form (1.11) in order to carry out the
(d=d�)W-algorithm. This is twice the number of tables needed to carry out the W-algorithm. Note
also that no tables need to be saved for A( j)n ; �( j)n ; Ȧ

( j)
n ; and 
̃

( j)

n . This seems to be the situation for
all extrapolation methods.
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3. Column convergence for (d=d�)GREP (1)

In this section we shall give a detailed analysis of the column sequences {Ȧ( j)n }∞j=0 with n �xed
for the case in which the tl are picked such that

t0¿t1¿ · · ·¿ 0 and lim
m→∞

tm+1
tm

= ! for some ! ∈ (0; 1): (3.1)

We also assume that

lim
m→∞

’(tm+1)
’(tm)

= !� for some (complex) � 6= 0;−1;−2; : : : : (3.2)

Recalling from De�nition 2.1 that �(y) ≡ B(t) ∼∑∞
i=0 �iti as t → 0+; we already have the following

optimal convergence and stability results for A( j)n and �( j)n , see Theorems 2:1 and 2:2 in [10].

Theorem 3.1. Under the conditions given in (3:1) and (3:2); we have

A( j)n − A ∼
(

n∏
i=1

cn+�+1 − ci
1− ci

)
�n+�’(tj)t

n+�
j as j → ∞; (3.3)

where �n+� is the �rst nonzero �i with i¿n; and

lim
j→∞

n∑
i=0


( j)ni z
i =

n∏
i=1

z − ci
1− ci

≡ Un(z) ≡
n∑

i=0


̃niz
i; (3.4)

so that for each �xed n

lim
j→∞

�( j)n =
n∏

i=1

1 + |ci|
|1− ci| hence sup

j
�( j)n ¡∞: (3.5)

Here

ck = !�+k−1; k = 1; 2; : : : : (3.6)

We shall see below that what we need for the analysis of (d=d�)GREP(1) are the asymptotic
behaviors of 
( j)ni and 
̇( j)ni . Now that we know the behavior of 


( j)
ni as j → ∞ from (3.4), we turn to

the study of 
̇( j)ni . We start with

n∑
i=0


( j)ni z
i =

T ( j)n (z)

T ( j)n (1)
with T ( j)n (z) =

n∑
i=0

c( j)ni

’(tj+i)
zi; (3.7)

which follows from the fact that 
( j)ni = [c
( j)
ni =’(tj+i)]=D( j)

n {1=’(t)}. Of course, T ( j)n (1)=D( j)
n {1=’(t)}.

Di�erentiating (3.7) with respect to �, and denoting Ṫ
( j)
n (z) = (d=d�)T

( j)
n (z), we obtain

n∑
i=0


̇( j)ni z
i =

Ṫ
( j)
n (z)T

( j)
n (1)− T ( j)n (z)Ṫ

( j)
n (1)

[T ( j)n (1)]2
: (3.8)
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Obviously,

Ṫ
( j)
n (z) =−

n∑
i=0

c( j)ni
’̇(tj+i)
[’(tj+i)]

2 z
i; (3.9)

as a result of which we have

Ṫ
( j)
n (z)

T ( j)n (1)
=−

n∑
i=0


( j)ni
’̇(tj+i)
’(tj+i)

zi: (3.10)

Substituting (3.10) in (3.8) and using the fact that
∑n

i=0 

( j)
ni = 1, we �nally get

n∑
i=0


̇( j)ni z
i =−

n∑
i=0


( j)ni
’̇(tj+i)
’(tj+i)

zi +

(
n∑

i=0


( j)ni z
i

)(
n∑

i=0


( j)ni
’̇(tj+i)
’(tj+i)

)
: (3.11)

We have now come to the point where we have to make a suitable assumption on ’̇(t). The
following assumption seems to be quite realistic for many examples that involve logarithmically
convergent sequences and some others as well:

’̇(t) = ’(t)[K log t + L+ o(1)] as t → 0 + for some constants K 6= 0 and L: (3.12)

Now the condition limm→∞(tm+1=tm)=! in (3.1) implies that tm+1=tm=!(1+�m); where limm→∞ �m=0.
Therefore, tj+i = tj!i∏i−1

s=0(1 + �j+s), and hence, for each �xed i¿0

log tj+i = log tj + i log!+ �( j)i ; lim
j→∞

�( j)i = 0; (3.13)

since �( j)i =O(max{|�j|; |�j+1|; : : : ; |�j+1−i|}): Next, (3.12) and (3.13) imply that, for each �xed i¿0,

’̇(tj+i)
’(tj+i)

= (K log tj + L) + Ki log!+ �( j)i ; lim
j→∞

�( j)i = 0; (3.14)

since limm→∞ tm = 0.
Substituting (3.14) in (3.11), we see that the problematic term (K log tj + L) that is unbounded

as j → ∞ disappears altogether, and we obtain

n∑
i=0


̇( j)ni z
i =−

n∑
i=0


( j)ni (Ki log!+ �( j)i )z
i +

(
n∑

i=0


( j)ni z
i

)(
n∑

i=0


( j)ni (Ki log!+ �( j)i )

)
: (3.15)
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Letting j → ∞ in (3.15) and invoking limj→∞ �( j)i = 0 and recalling from Theorem 3.1 that
limj→∞ 
( j)ni = 
̃ni, we obtain the �nite limit

lim
j→∞

n∑
i=0


̇( j)ni z
i = K log!

{(
n∑

i=0


̃niz
i

)(
n∑

i=0

i
̃ni

)
−
(

n∑
i=0

i
̃niz
i

)}
: (3.16)

The following theorem summarizes the developments of this section up to this point.

Theorem 3.2. Subject to the conditions concerning the tl and ’(t) that are given in (3:1); (3:2);
and (3:12);

∑n
i=0 
̇

( j)
ni z

i has a �nite limit as j → ∞ that is given by

lim
j→∞

n∑
i=0


̇( j)ni z
i = K log![Un(z)U ′

n(1)− zU ′
n(z)] ≡ Wn(z) ≡

n∑
i=0

˜̇
niz
i; (3.17)

where Un(z) =
∏n

i=1
(z−ci)
(1−ci)

and ci = !�+i−1; i = 1; 2; : : : ; and U ′
n(z) = (d=dz)Un(z).

Theorem 3.2 is the key to the study of stability and convergence of column sequences {Ȧ( j)n }∞j=0
that follows.

3.1. Stability of column sequences {Ȧ( j)n }∞j=0

Theorem 3.3. Under the conditions of Theorem 3:2; the sequences {Ȧ( j)n }∞j=0 are stable in the sense
that supj 


( j)
n ¡∞.

Proof. The result follows from the facts that limj→∞ 
( j)ni = 
̃ni and limj→∞ 
̇( j)ni = ˜̇
ni for all n and i,
which in turn follow from Theorems 3.1 and 3.2, respectively.

3.2. Convergence of column sequences {Ȧ( j)n }∞j=0

Theorem 3.4. Under the conditions of Theorem 3:2 and with the notation therein we have

Ȧ
( j)
n − Ȧ=O(’(tj)tnj log tj) as j → ∞: (3.18)

A more re�ned result can be stated as follows: If �n+� is the �rst nonzero �i with i¿n in (2:2)
and if �̇n+� is the �rst nonzero �̇i with i¿n; then

Ȧ
( j)
n − Ȧ= �̇n+�Un(cn+�+1)’(tj)tn+�

j [1 + o(1)]

+K�n+�Un(cn+�+1)’(tj)t
n+�
j log tj[1 + o(1)] as j → ∞: (3.19)

Thus; when �6� the second term dominates in Ȧ
( j)
n − Ȧ; while the �rst one does when �¿�. In

particular; if �n 6= 0; we have
Ȧ
( j)
n − Ȧ ∼ K�nUn(cn+1)’(tj)tnj log tj as j → ∞: (3.20)
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Proof. We start with the fact that

A( j)n − A=
n∑

i=0


( j)ni [a(tj+i)− A] =
n∑

i=0


( j)ni ’(tj+i)Bn(tj+i); (3.21)

where

Bn(t) = B(t)−
n−1∑
i=0

�iti ∼
∞∑
i=n

�iti as t → 0 + : (3.22)

Di�erentiating (3.21) with respect to �, we obtain

Ȧ
( j)
n − Ȧ= E( j)n;1 + E( j)n;2 + E( j)n;3 (3.23)

with

E( j)n;1 =
n∑

i=0


̇( j)ni ’(tj+i)Bn(tj+i);

E( j)n;2 =
n∑

i=0


( j)ni ’(tj+i)Ḃn(tj+i);

E( j)n;3 =
n∑

i=0


( j)ni ’̇(tj+i)Bn(tj+i): (3.24)

By the conditions in (3.1) and (3.2), and by (3.14) that follows from the condition in (3.12), it can
be shown that

tj+i ∼ tj!i; ’(tj+i) ∼ !i�’(tj); and ’̇(tj+i) ∼ K!i�’(tj) log tj as j → ∞: (3.25)

Substituting these in (3.24), noting that Bn(t) ∼ �n+�tn+� and Ḃn(t) ∼ �̇n+�t
n+� as t → 0+, and

recalling (3.4) and (3.17), we obtain

E( j)n;1 = �n+�Wn(cn+�+1)’(tj)t
n+�
j + o(’(tj)t

n+�
j ) as j → ∞;

E( j)n;2 ∼ �̇n+�Un(cn+�+1)’(tj)tn+�
j as j → ∞;

E( j)n;3 ∼ K�n+�Un(cn+�+1)’(tj)t
n+�
j log tj as j → ∞; (3.26)

with Wn(z) as de�ned in (3.17). Note that we have written the result for E( j)n;1 di�erently than for
E( j)n;2 and E( j)n;3 since we cannot be sure that Wn(cn+�+1) 6= 0. The asymptotic equalities for E( j)n;2 and
E( j)n;3, however, are valid as Un(ci) 6= 0 for all i¿n+1: The result now follows by substituting (3.26)
in (3.23) and observing also that E( j)n;1 = o(E

( j)
n;3) as j → ∞, so that either E( j)n;2 or E

( j)
n;3 determines the

asymptotic nature of Ȧ
( j)
n − Ȧ. We leave the details to the reader.

Remark. Comparing (3.19) pertaining to Ȧ
( j)
n − Ȧ with (3.3) pertaining to A( j)n − A, we realize that,

subject to the additional assumption in (3.12), the two behave practically the same way asymptoti-
cally. In addition, their computational costs are generally similar. (In many problems of interest A(y)
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and Ȧ(y) can be computed simultaneously, the total cost of this being almost the same as that of
computing A(y) only or Ȧ(y) only. An immediate example is that of numerical integration discussed
in Section 1.) In contrast, the convergence of {B( j)n }∞j=0 obtained by applying GREP(2) directly to
Ȧ(y) ≡ ȧ(t) (recall (2.18) and (2.19)), is inferior to that of {A( j)n }∞j=0. This can be shown rigorously
for the case in which �̇(y) ≡ ’̇(t) = K’(t)(log t + constant) exactly. In this case the asymptotic
expansion in (2.18) assumes the form ȧ(t) ∼ Ȧ+

∑∞
k=1 ’(t)(�k0 + �k1 log t)tk as t → 0+ : Therefore,

under the additional condition that limm→∞ �m log tm = 0; where �m is as de�ned following (3.12),
Theorem 2:2 of [11] applies and we have

B( j)2m − B=O(’(tj)tmj log tj) as j → ∞: (3.27)

Now the computational costs of Ȧ
( j)
2m and B( j)2m are similar, but {Ȧ

( j)
2m}

∞
j=0 converges to Ȧ much faster

than {B( j)2m}
∞
j=0. Again, we have veri�ed the superiority of our new approach to the direct approach,

at least with respect to column sequences.
We would like to add that the theory of [11] applies to the more general class of functions A(y)

that have asymptotic expansions of the form A(y) ∼ A +
∑∞

k=1  k(y)(
∑qk

i=0 �ki(log y)i) as y → 0+,
where qk are arbitrary nonnegative integers.

4. Application to in�nite series via the d (1)-transformation: the (d=d�)d (1)-transformation

4.1. General usage

Let {Sm} be the sequence of partial sums of the in�nite series ∑∞
k=1 vk , namely,

Sm =
m∑

k=1

vk ; m= 1; 2; : : : : (4.1)

Assume that

vm ∼
∞∑
i=0

�im�−i as m → ∞; �0 6= 0; �+ 1 6= 0; 1; 2; : : : : (4.2)

As is known, limm→∞ Sm exists and is �nite if and only if R� + 1¡ 0. When R� + 1¿0 but
�+ 1 6= 0; 1; 2; : : : ; {Sm} diverges but has a well de�ned and useful antilimit as has been shown in
Theorem 4.1 of [10]. For all � in (4.2) this theorem reads as follows:

Theorem 4.1. With Sm as in (4:1) and (4:2); we have

Sm ∼ S + mvm
∞∑
i=0

�im−i as m → ∞; �0 6= 0: (4.3)

Here S = limm→∞ Sm when R�+ 1¡ 0; and S is the antilimit of {Sm} otherwise.

The part of Theorem 4.1 concerning convergent sequences {Sm} is already contained in
Theorem 2 of [6].
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From Theorem 4.1 it is clear that GREP(1) can be applied to the sequence {Sm} by drawing the
analogy a(t)↔ Sm; t ↔ m−1; ’(t)↔ mvm, and A ↔ S, and by picking tl = 1=Rl for some positive
integers Rl; 16R0¡R1¡R2¡ · · · ; and the W-algorithm can be used to implement it. This GREP(1)

is simply the Levin–Sidi d(1)-transformation, and we denote its A( j)n by S ( j)n .
As already explained in [10,4], for the type of sequences considered here we should pick the Rl

such that {Rl} increases exponentially to ensure the best stability and convergence properties in the
S ( j)n . Exponential increase in the Rl can be achieved by picking them, for example, as in

R0 = 1 and Rl+1 = b�Rlc+ 1; l= 0; 1; : : : ; for some �¿ 1: (4.4)

(With � = 1 we have Rl = l + 1; l = 0; 1; : : : ; for which the d(1)-transformation becomes the Levin
[5] u-transformation.) This gives Rl = O(�l) as l → ∞: Needless to say, � should not be picked
too far from 1 to avoid too quick a growth in the Rl. We have found that � between 1:1 and 1:5 is
su�cient for most purposes. Since tl = 1=Rl, (4.4) implies that

tl
� + tl

6tl+1¡
tl
�
; l= 0; 1; : : : (4.5)

as a result of which {tl} satis�es (3.1) with !=1=� ∈ (0; 1). Therefore, Theorem 3.1 applies to the
approximations S( j)m to S obtained via the d(1)-transformation, as has been shown in [10]. Clearly,
�=−�− 1 in (3.2) and (3.6) for this case.
If, in addition, vm and S are di�erentiable functions of a parameter �, Ṡ is the limit or antilimit

of {Ṡm}, and
v̇m = vm[K ′ logm+ L′ + o(1)] as m → ∞; for some constants K ′ 6= 0 and L′ (4.6)

and the asymptotic expansion in (4.3) can be di�erentiated with respect to � term by term, then
Theorems 3.2–3.4 apply to {Ṡ( j)n }∞j=0 without any modi�cations. We shall denote this method that
produces the Ṡ

( j)
n the (d=d�)d(1)-transformation for short. The rate of convergence of the Ṡ

( j)
n to Ṡ is

almost identical to the rate of convergence of the S( j)n to S as we have observed in many numerical
examples, and as we have proved in Theorem 3.4 for the column sequences.
To summarize the relevant convergence results for the d(1)- and (d=d�)d(1)-transformations as these

are applied to {Sm} and {Ṡm} above, we have from Theorems 3.1 and 3.4

S ( j)n − S =O(vRjR
−n+1
j ) = O(�(�+1−n) j) as j → ∞;

Ṡ
( j)
n − Ṡ =O(vRjR

−n+1
j logRj) = O(j�(�+1−n) j) as j → ∞: (4.7)

Of course, these results are not optimal. Optimal results follow from (3.3) and (3.19), and we leave
them to the reader. The results for �( j)n and 
( j)

n that pertain to stability can be obtained from
Theorems 3.1–3.3.
For the sake of completeness we note that the (d=d�)W-algorithm takes tj=1=Rj; a(tj)=

∑Rj

k=1 vk ;
ȧ(tj) =

∑Rj

k=1 v̇k ; ’(tj) = RjvRj , and ’̇(tj) = Rjv̇Rj as input for this problem.
It is worth mentioning that we can also compute Ṡ by applying the d(2)-transformation directly

to {Ṡm}. The d(2)-transformation is a GREP(2). As we mentioned earlier, this is less e�ective than
the application of the (d=d�)d(1)-transformation to {Sm}. We shall see this also through numerical
examples in the next section.
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4.2. A special application

We next turn to an interesting application of the (d=d�)d(1)-transformation to the summation of a
class of in�nite series

∑∞
k=1 ṽk , where ṽm has the form

ṽm = [log �(m)]vm; �(m) ∼
∞∑
i=0

�im�−i as m → ∞; �0 6= 0 and � 6= 0; (4.8)

with vm as in (4.2). (When �=0 the d(1)-transformation is very e�ective on the series
∑∞

k=1 ṽk .) To
this end �rst let us consider the in�nite series

∑∞
k=1 uk(�), where

um(�) = vm[�(m)]
�; m= 1; 2; : : : : (4.9)

(Here vm and �(m) do not depend on �). Now it can be shown that [�(m)]� ∼ ∑∞
i=0 �

′
im

�−i as
m → ∞, where �′

0 = ��
0 6= 0 and � = ��. Consequently, um(�) ∼ ∑∞

i=0 �
′
im

�′−i as m → ∞, where
�′0=�0�� 6= 0 and �′=�+��, so that um(�) is of the form described in (4.1) for all �. That is to say,
the d(1)-transformation can be applied to sum

∑∞
k=1 uk(�) for any �. Next, u̇ m(�)= um(�) log �(m) ∼

um(�)[� logm + log �0 + o(1)] as m → ∞; cf. (4.6). Therefore, the (d=d�)d(1)-transformation can
be used for summing

∑∞
k=1 u̇ k(�) for any �. Finally, um(0) = vm and u̇ m(0) = ṽm, and hence the

(d=d�)d(1)-transformation can be used for summing
∑∞

k=1 ṽk in particular. This can be done by setting
tj=1=Rj; a(tj)=

∑Rj

k=1 vk ; ȧ(tj)=
∑Rj

k=1 ṽk ; ’(tj)=RjvRj , and ’̇(tj)=RjṽRj in the (d=d�)W-algorithm.

5. Numerical examples

In this section we wish to demonstrate numerically the e�ectiveness of (d=d�)GREP(1) via the
(d=d�)d(1)-transformation on some in�nite series, convergent or divergent. We will do this with two
examples. The �rst one of these examples has already been treated in [14] within the framework of
the Richardson extrapolation process.

Example 5.1. Consider the series
∑∞

k=1 k
−�−1 that converges for R�¿ 0 and de�nes the Riemann

zeta function �(�+ 1). As is known, �(z) can be continued analytically to the entire complex plane
except z = 1, where it has a simple pole. As the term vm = m−�−1 is of the form described in the
previous section, Theorem 4.1 applies to Sm =

∑m
k=1 k

−�−1 with S = �(� + 1) and � = �, whether
limm→∞ Sm exists or not. Furthermore, the asymptotic expansion of Ṡm=

∑m
k=1(−log k)k−�−1 can be

obtained by term-by-term di�erentiation of the expansion in (4.3), as has already been mentioned in
[14]. This implies that the (d=d�)d(1)-transformation can be applied to the computation of Ṡ=�′(�+1),
and Theorems 3.2–3.4 are valid with �= �. In particular, (4.7) is valid with �=−�− 1 there.
We applied the (d=d�)d(1)-transformation to this problem to compute Ṡ = �′(� + 1). We picked

the integers Rl as in (4.4) with � = 1:2 there. We considered the two cases (i) � = 1 and (ii)
� = −0:5. Note that in case (i) both limm→∞ Sm and limm→∞ Ṡm exist and are S=�(2) and Ṡ=�′(2),
respectively, while in case (ii) these limits do not exist and S = �(0:5) and Ṡ = �′(0:5) are the
corresponding antilimits. We also applied the d(2)-transformation directly to {Ṡm} with the same
Rl’s, the resulting approximations being denoted B( j)n , as in (2.19). The numerical results are shown
in Tables 1–3.
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Table 1
Numerical results on Process I for �(z) in Example 5.1, where �(z) is the Riemann zeta function,
with z=2. The d(1)- and (d=d�)d(1)-transformations on {Sm} and {Ṡm} and the d(2)-transformation
on {Ṡm} are implemented with �=1:2 in (4.4). Here P( j)n =|S( j+1)n −S|=|S( j)n −S|; Q( j)

n =|Ṡ( j+1)n −
Ṡ|=|Ṡ( j)n − Ṡ|, and Z ( j)n = |B( j+1)n − Ṡ|=|B( j)n − Ṡ|, where S( j)n , Ṡ

( j)
n , and B( j)n are the approximations

obtained from the d(1)-, (d=d�)d(1)-, and d(2)-transformations, respectively. All six columns are
tending to �−7 = 0:279 : : :

j P( j)5 Q( j)
5 Z ( j)10 P( j)6 Q( j)

6 Z ( j)12

0 1:53D − 01 1:62D − 01 3:18D − 01 1:09D − 03 2:25D − 02 3:08D − 02
2 1:94D − 01 2:09D − 01 2:01D − 01 3:23D − 01 3:19D − 01 1:06D − 01
4 1:97D − 01 2:10D − 01 1:58D − 01 2:30D − 01 2:41D − 01 1:58D − 02
6 2:33D − 01 2:46D − 01 2:02D − 01 2:44D − 01 2:56D − 01 4:27D − 01
8 2:45D − 01 2:57D − 01 4:95D − 01 2:51D − 01 2:63D − 01 2:93D − 01
10 2:50D − 01 2:61D − 01 3:56D − 01 2:56D − 01 2:66D − 01 2:65D − 01
12 2:65D − 01 2:75D − 01 3:22D − 01 2:66D − 01 2:75D − 01 2:58D − 01
14 2:67D − 01 2:76D − 01 3:07D − 01 2:68D − 01 2:77D − 01 2:60D − 01
16 2:70D − 01 2:79D − 01 3:03D − 01 2:71D − 01 2:79D − 01 2:69D − 01
18 2:70D − 01 2:79D − 01 2:99D − 01 2:71D − 01 2:79D − 01 2:78D − 01
20 2:74D − 01 2:82D − 01 2:97D − 01 2:74D − 01 2:82D − 01 2:85D − 01

Table 2
Numerical results on Process II for �(z) in Example 5.1, where �(z) is the Riemann zeta function,
with z=2. The d(1)- and (d=d�)d(1)-transformations on {Sm} and {Ṡm} and the d(2)-transformation
on {Ṡm} are implemented with �=1:2 in (4.4). Here S( j)n , Ṡ

( j)
n , and B( j)n are the approximations

obtained from the d(1)-, (d=d�)d(1)-, and d(2)-transformations, respectively. (The in�nite series
converge.)

n Rn |SRn − S| |S(0)n − S| |ṠRn − Ṡ| |Ṡ(0)n − Ṡ| |B(0)n − Ṡ|
0 1 6:45D − 01 1:64D + 00 9:38D − 01 9:38D − 01 9:38D − 01
2 3 2:84D − 01 1:99D − 02 6:42D − 01 3:67D − 02 4:56D − 01
4 5 1:81D − 01 3:12D − 05 4:91D − 01 1:07D − 04 3:28D − 03
6 9 1:05D − 01 7:08D − 07 3:42D − 01 1:56D − 06 6:19D − 04
8 14 6:89D − 02 8:18D − 09 2:53D − 01 2:35D − 08 3:26D − 05
10 21 4:65D − 02 3:71D − 11 1:89D − 01 1:25D − 10 8:26D − 07
12 32 3:08D − 02 6:95D − 14 1:38D − 01 2:70D − 13 5:11D − 07
14 47 2:11D − 02 2:55D − 17 1:02D − 01 1:44D − 16 4:17D − 09
16 69 1:44D − 02 8:28D − 20 7:54D − 02 3:03D − 19 1:60D − 11
18 100 9:95D − 03 1:14D − 22 5:58D − 02 4:90D − 22 4:32D − 13
20 146 6:83D − 03 5:75D − 26 4:09D − 02 2:72D − 25 2:14D − 16
22 212 4:71D − 03 1:52D − 29 2:99D − 02 4:53D − 29 4:53D − 17
24 307 3:25D − 03 2:44D − 30 2:19D − 02 3:52D − 29 1:97D − 19

Table 1 shows the validity of the theory for Process I given in Sections 2–4 very clearly. The
results of this table that have been computed with �= 1 can be understood as follows:
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Table 3
Numerical results on Process II for �(z) in Example 5.1, where �(z) is the Riemann zeta
function, with z = 0:5. The d(1)- and (d=d�)d(1)-transformations on {Sm} and {Ṡm} and the
d(2)-transformation on {Ṡm} are implemented with �=1:2 in (4.4). Here S( j)n , Ṡ

( j)
n , and B( j)n are

the approximations obtained from the d(1)-, (d=d�)d(1)-, and d(2)-transformations, respectively.
(The in�nite series diverge.)

n Rn |SRn − S| |S(0)n − S| |ṠRn − Ṡ| |Ṡ(0)n − Ṡ| |B(0)n − Ṡ|
0 1 2:46D + 00 1:46D + 00 3:92D + 00 3:92D + 00 3:92D + 00
2 3 3:74D + 00 1:28D − 01 2:80D + 00 1:65D − 01 5:33D − 01
4 5 4:69D + 00 1:01D − 03 1:39D + 00 4:64D − 04 9:62D + 00
6 9 6:17D + 00 4:71D − 06 1:55D + 00 9:73D − 06 2:50D + 00
8 14 7:62D + 00 2:32D − 07 5:13D + 00 8:13D − 08 1:05D + 00
10 21 9:27D + 00 2:24D − 09 9:90D + 00 4:19D − 10 2:01D − 01
12 32 1:14D + 01 8:85D − 12 1:69D + 01 5:88D − 12 4:02D − 02
14 47 1:38D + 01 1:33D − 14 2:56D + 01 1:71D − 14 1:79D − 03
16 69 1:67D + 01 2:51D − 18 3:74D + 01 8:66D − 18 1:41D − 05
18 100 2:00D + 01 2:74D − 20 5:23D + 01 2:88D − 20 1:50D − 07
20 146 2:42D + 01 2:76D − 23 7:23D + 01 4:34D − 23 1:91D − 09
22 212 2:92D + 01 6:72D − 27 9:79D + 01 3:13D − 26 2:21D − 11
24 307 3:51D + 01 6:38D − 27 1:31D + 02 1:54D − 26 1:41D − 13

Since

Sn−1 ∼ �(�+ 1)− n�

�

∞∑
i=0

(−�

i

)
Bin−i as n → ∞;

and since B0 = 1; B1 =− 1
2 , while B2i 6= 0; B2i+1 = 0; i=1; 2; : : : ; we have that with the exception of

�2i+1; i=1; 2; : : : ; all the other �i are nonzero, and that exactly the same applies to the �̇i. (Here Bi

are the Bernoulli numbers and should not be confused with B( j)n .) Consequently, (3.19) of Theorem
3.4 holds with �= � there. Thus, whether limm→∞ Sm exists or not, as j → ∞; |S ( j+1)n − S|=|S ( j)n − S|
is O(�−1) for n = 0, O(�−2) for n = 1; O(�−3) for n = 2, and O(�−(2i+1)) for both n = 2i − 1 and
n=2i, with i=2; 3; : : : : Similarly, whether limm→∞ Ṡm exists or not, as j → ∞; |Ṡ ( j+1)n − Ṡ|=|Ṡ ( j)n − Ṡ|
is O(�−1) for n= 0; O(�−2) for n= 1; O(�−3) for n= 2, and O(�−(2i+1)) for both n= 2i − 1 and
2i, with i = 2; 3; : : : :
As for the approximations B( j)n to Ṡ obtained from the d(2)-transformation on {Ṡm}, Theorem 2:2

in [11] implies that, as j → ∞; |B( j+1)n − Ṡ|=|B( j)n − Ṡ| is O(�−1) for n=0; O(�−2) for n=2; O(�−3)
for n= 4, and O(�−(2i+1)) for both n= 2(2i − 1) and n= 4i, with i = 2; 3; : : : :
The numerical results of Tables 2 and 3 pertain to Process II and show clearly that our approach

to the computation of derivatives of limits is a very e�ective one.

Example 5.2. Consider the summation of the in�nite series
∑∞

k=0 v̇k , where vm = bm(�)m=m! and
(�)m =

∏m−1
i=0 (� + i); and bm ∼ ∑∞

i=0 �im�−i as m → ∞. By the fact that (�)m = �(� + m)=�(�)
and by formula 6:1:47 in [1] we have that (�)m=m! ∼ ∑∞

i=0 �im�−i−1 as m → ∞. Consequently,
vm ∼∑∞

i=0 �im�+�−1−i as m → ∞, so that the d(1)-transformation can be applied successfully to sum
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Table 4
Numerical results on Process II for F(�; 12 ;

3
2 ; 1) in Example 5.2, where F(a; b; c; z)is the Gauss

hypergeometric function, with � = 0:5. The d(1)- and (d=d�)d(1)-transformations on {Sm} and
{Ṡm} and the d(2)-transformation on {Ṡm} are implemented with � = 1:2 in (4.4). Here S( j)n ,
Ṡ
( j)
n , and B( j)n are the approximations obtained from the d(1)-, (d=d�)d(1)-, and d(2)-transformations,
respectively. (The in�nite series converge.)

n Rn |SRn − S| |S(0)n − S| |ṠRn − Ṡ| |Ṡ(0)n − Ṡ| |B(0)n − Ṡ|
0 1 5:71D − 01 1:57D + 00 2:18D + 00 2:18D + 00 2:18D + 00
2 3 3:29D − 01 4:70D − 02 1:64D + 00 2:18D − 01 6:79D − 01
4 5 2:54D − 01 4:06D − 05 1:41D + 00 4:06D − 04 1:51D − 01
6 9 1:89D − 01 1:69D − 06 1:16D + 00 1:22D − 05 4:59D − 02
8 14 1:51D − 01 1:95D − 08 9:96D − 01 1:39D − 07 3:76D − 03
10 21 1:23D − 01 1:11D − 10 8:63D − 01 7:94D − 10 1:47D − 04
12 32 9:99D − 02 3:11D − 13 7:41D − 01 2:20D − 12 4:42D − 06
14 47 8:24D − 02 3:99D − 16 6:43D − 01 2:61D − 15 9:14D − 08
16 69 6:80D − 02 1:20D − 19 5:57D − 01 1:41D − 19 1:26D − 09
18 100 5:64D − 02 2:04D − 22 4:84D − 01 2:38D − 21 1:57D − 11
20 146 4:67D − 02 2:03D − 25 4:18D − 01 2:03D − 24 2:21D − 13
22 212 3:88D − 02 6:77D − 29 3:61D − 01 7:81D − 28 1:86D − 15
24 307 3:22D − 02 2:41D − 29 3:12D − 01 1:51D − 28 1:13D − 18

∑∞
k=0 vk , as described in the previous section. Now v̇m = vm[

∑m−1
i=0 1=(�+ i)], and

∑m−1
i=0 1=(�+ i) ∼

logm+
∑∞

k=0 eim
−i as m → ∞. Therefore, we can apply the (d=d�)d(1)-transformation to sum ∑∞

k=0 v̇k
provided that the asymptotic expansion of Ṡm can be obtained by term-by-term di�erentiation by
Theorem 4.1. (We have not shown that this last condition is satis�ed).
We have applied the (d=d�)d(1)-transformation with bm = 1=(2m + 1). With this bm the series∑∞
k=0 vk and

∑∞
k=0 v̇k both converge. Actually we have

∑∞
k=0 vk =F(�; 12 ;

3
2 ; 1). By formula 15.1.20 in

[1],
∑∞

k=0 vk=(
√
�=2)(�(1−�)=�(3=2−�))=S. Di�erentiating both sides with respect to �, we obtain∑∞

k=0 v̇k = (
√
�=2)(�(1− �)=�(3=2− �)){ ( 32 − �)−  (1− �)}= Ṡ, where  (z) = (d=dz)�(z)=�(z).

Letting now � = 1
2 throughout, we get S = �=2 and Ṡ = � log 2, the latter following from formulas

6:3:2 and 6:3:3 in [1].
In our computations we picked the Rl as in the �rst example. We also applied the d(2)-transformation

directly to {Ṡm} with the same Rl’s.
Table 4 contains numerical results pertaining to Process II.
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