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Abstract

New expressions for one-sided finite-difference approximations are proposed. In these approximations the odd-order
error terms are eliminated while the even-order terms are left to be taken care of by Richardson extrapolation. The effective
local truncation error is shown to be less than for higher-order one-sided finite-difference approximations but the solutions
for a test problem are shown to have comparable accuracy for both approximations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A finite-difference approximation is one of the commonly used methods for numerical solution of ordinary
and partial differential equations. The approximations most often used have second-order accuracy. The order
of accuracy can be increased either by using higher-order finite difference approximations or by Richardson
extrapolation [2,3]. For internal grid points, if central difference approximations are used, the truncation error
has the form A2h2 + A4h4 + A6h6 + � � �, where h is the distance between adjacent grid points and A2,A4,A6,. . .
are constants. Doing the computation with two or three different grid sizes and carrying out one or two extrap-
olations to eliminate the error terms of second order or of second and fourth order we obtain a solution with
fourth- or sixth-order accuracy. Since each of the computations uses a second-order-accurate finite-difference
approximation there is no difficulty with the boundary conditions for a Dirichlet problem. However, a prob-
lem arises when the boundary condition involves a derivative and we use a one-sided finite-difference approx-
imation for the derivative. By using three grid points, including one on the boundary, we can obtain a
one-sided approximation which is second-order-accurate [1]. The truncation error has the form
B2h2 + B3h3 + B4h4 + � � �. So if we carry out one extrapolation to eliminate the second-order error term the
result would have third-order rather than fourth-order accuracy. One way of obtaining fourth-order accuracy
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is by using a one-sided difference approximation which has a higher order of accuracy. Such higher-order-
accurate one-sided finite-difference approximations are known [1]. To obtain fourth-order accuracy, one could
use a one-sided finite-difference approximation which has fourth-order accuracy. This would involve five grid
points, including one on the boundary. The additional two points are required in order to eliminate the terms
of the order of h2 and h3 in the truncation error. However, if we are going to use Richardson extrapolation it is
not necessary to eliminate the order h2 term in the truncation error for the one-sided finite-difference approx-
imations. So we can use just one more point to obtain a one-sided difference approximation which has a trun-
cation error of the form B2h2 + B4h4 + B5h5 + � � �. After one extrapolation, this would give a result which has
fourth-order accuracy. Since this approximation involves smaller number of grid points compared to the
fourth-order approximation which involves points farther away from the boundary, although both the meth-
ods have fourth-order accuracy, we expect the coefficient of h4 in the truncation error to be smaller in the first
case. Continuing in this manner, if we require sixth-order accuracy, we can use one more point to obtain a
one-sided finite-difference approximation which has a truncation error of the form of B2h2 + B4h4 + B6h6 +
B7h7 + � � �.

In this study, we derive one-sided finite-difference approximations with odd-order terms in the truncation
error eliminated and the even-order terms left to be taken care of by Richardson extrapolation. We compare
the local truncation error with that of higher-order one-sided finite-difference approximations. We then apply
these approximations to a test problem and check the accuracy of the solutions obtained.

2. One-sided finite-difference approximations

Let us consider a function /(x) and define a set of uniformly spaced grid points xi, i = 0,1, . . . ,N, with the
grid spacing h = xi+1 � xi. We represent /(xi) by /i. Similarly / 0(xi),/00(xi), . . . , are represented by /0i;/

00
i ; . . .,

where the primes denote differentiation. We can write a Taylor series expansion for / around xi
/i�k ¼ /i � kh/0i þ
k2h2

2
/00i �

k3h3

6
/000i þ

k4h4

24
/ðivÞi �

k5h5

120
/ðvÞi þ

k6h6

720
/ðviÞ

i � � � � : ð1Þ
From Eq. (1) we readily obtain first-order-accurate one-sided finite-difference approximations [1]
/0i ¼
�ð/i � /i�1Þ

h
þOðhÞ; ð2Þ
where the upper and lower signs are to be used to the right and to the left of xi. Writing Eq. (1) for k = 1 and 2
and eliminating /00i between them, we obtain second-order-accurate one-sided finite-difference approximations
[1]
/0i ¼
�ð3/i � 4/i�1 þ /i�2Þ

2h
þOðh2Þ: ð3Þ
We now derive an approximation for use with Richardson extrapolation which has truncation error of the
form B2h2 + B4h4 + B5h5 + � � �. Writing Eq. (1) for k = 1, 2 and 3 and eliminating /00i and /ðivÞi between them
we obtain the one-sided approximations
/0i ¼
�ð10/i � 15/i�1 þ 6/i�2 � /i�3Þ

6h
þ h2 1

6
/000i � h4 11

120
/ðvÞi þ � � � : ð4Þ
Alternatively, we can use a fourth-order-accurate one-sided finite-difference approximation obtained by writ-
ing Eq. (1) for k = 1, 2, 3, and 4 and eliminating /00i , /000i and /ðivÞi , to obtain
/0i ¼
�ð25/i � 48/i�1 þ 36/i�2 � 16/i�3 þ 3/i�4Þ

12h
þ h4 24

120
/ðvÞi þ � � � : ð5Þ
When using the approximations given by Eq. (4), if we use Richardson extrapolation to eliminate the second-
order error term then the leading order error is due to the fourth-order term. Effectively the local truncation
error for this approximation becomes ð11=120Þh4/ðvÞi . If instead of Eq. (4) we use Eq. (5) the local truncation
error is ð24=120Þh4/ðvÞi . Thus the one-sided finite-difference approximations we have proposed, given by Eq.
(4), when used together with Richardson extrapolation, effectively give a local truncation error which is
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Fig. 1. The test problem.
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slightly less than half the local truncation error when using higher-order one-sided approximations given by
Eq. (5). Continuing the logic used in deriving Eq. (4) we can derive one-sided finite-difference approximations
which have a truncation error of the form of B2h2 + B4h4 + B6h6 + B7h7 + � � �. These are
Table
Solutio

N

x = 0.2
8

16
32
64

128
256

x = 0.7
8

16
32
64

128
256

x = 1.2
8

16
32
64

128
256

x = 1.7
8

16
32
64

128
256
/0i ¼
�ð35/i � 56/i�1 þ 28/i�2 � 8/i�3 þ /i�4Þ

20h
: ð6Þ
When used together with central difference approximations for internal grid points, if we carry out two Rich-
ardson extrapolations to eliminate the error terms of order h2 and h4, we can obtain a solution with sixth-order
accuracy.
1
n of the test problem using a first-order-accurate one-sided finite-difference approximation at the interface

/N /N � /N/2
/N=2�/N=4

/N�/N=2

5, y = 0.375
56.490197067 – –
56.993268539 0.503071472 –
57.126816809 0.133548270 3.767
57.163421776 0.036604967 3.648
57.174149692 0.010727916 3.412
57.177619246 0.003469554 3.092

5, y = 0.375
69.833661737 – –
70.500906337 0.667244600 –
70.704841909 0.203935572 3.272
70.774614378 0.069772469 2.923
70.801514255 0.026899877 2.594
70.812977553 0.011463298 2.347

5, y = 0.375
16.065279385 – –
16.223815006 0.158535621 –
16.298348196 0.074533190 2.127
16.335630665 0.037282469 1.999
16.354399344 0.018768679 1.986
16.363829300 0.009429956 1.990

5, y = 0.375
2.721814715 – –
2.716177209 �0.005637506 –
2.720323097 0.004145888 �1.360
2.724438065 0.004114968 1.008
2.727034781 0.002596716 1.585
2.728470993 0.001436212 1.808
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3. Application to a test problem

In this section, we use the finite-difference approximations derived in the previous section to compute the
numerical solution for a test problem and check the order of accuracy obtained. The test problem is defined
as
Table
Solutio

N

x = 0.2
8

16
32
64

128
256

x = 0.7
8

16
32
64

128
256

x = 1.2
8

16
32
64

128
256

x = 1.7
8

16
32
64

128
256
r2/ ¼ �1000 for 0 < x < 1; 0 < y < 1;

r2/ ¼ 0 for 1 < x < 2; 0 < y < 1;

o/
ox

� �
x¼1�
¼ r

o/
ox

� �
x¼1þ

for 0 < y < 1;

/ ¼ 0 for x ¼ 0 or 2; 0 6 y 6 1;

/ ¼ 0 for 0 6 x 6 2; y ¼ 0 or 1:

ð7Þ
This is shown in Fig. 1. For most of our numerical calculations we use r = 2. We define a set of grid points
(xj,yk) where xj = jh for 0 6 x 6 2N, yk = kh for 0 6 x 6 N and h = 1/N. For the internal grid points, except
the grid points at the interface x = 1, we use a second-order central difference approximation
ðr2/Þj;k ¼
/j;k�1 þ /j�1;k � 4/j;k þ /jþ1;k þ /j;kþ1

h2
: ð8Þ
The truncation error for this approximation has the form A2h2 + A4h4 + A6h6 + � � �. The boundary condition
/ = 0 on the domain boundary is easily taken into account. For the condition at the interface, x = 1, we study
the effect of using the different one-sided finite-difference approximations derived in the previous section. To
2
n of the test problem using a second-order-accurate one-sided finite-difference approximation at the interface

/N /N � /N/2
/N=2�/N=4

/N�/N=2
/N,N/2 /N,N/2 � /N/2,N/4

/N=2;N=4�/N=4;N=8

/N ;N=2�/N=2;N=4

5, y = 0.375
56.559208580 – – – – –
57.021969345 0.462760765 – 57.176222933 – –
57.140164802 0.118195457 3.915 57.179563288 0.003340355 –
57.169894850 0.029730048 3.976 57.179804866 0.000241578 13.827
57.177341913 0.007447063 3.992 57.179824267 0.000019401 12.452
57.179204997 0.001863084 3.997 57.179826025 0.000001758 11.036

5, y = 0.375
70.242735390 – – – – –
70.672971048 0.430235658 – 70.816382934 – –
70.785095839 0.112124791 3.837 70.822470769 0.006087835 –
70.813561534 0.028465695 3.939 70.823050099 0.000579330 10.508
70.820724716 0.007163182 3.974 70.823112443 0.000062344 9.292
70.822520916 0.001796200 3.988 70.823119649 0.000007206 8.652

5, y = 0.375
16.474353037 – – – – –
16.395879717 �0.078473320 – 16.369721944 – –
16.378602127 �0.017277590 4.542 16.372842930 0.003120986 –
16.374577822 �0.004024305 4.293 16.373236387 0.000393457 7.932
16.373609809 �0.000968013 4.157 16.373287138 0.000050751 7.753
16.373372671 �0.000237138 4.082 16.373293625 0.000006487 7.823

5, y = 0.375
2.790826227 – – – – –
2.744878015 �0.045948212 – 2.729561944 – –
2.733671090 �0.011206925 4.100 2.729935448 0.000373504 –
2.730911139 �0.002759951 4.061 2.729991155 0.000055707 6.705
2.730227009 �0.000684130 4.034 2.729998966 0.000007811 7.132
2.730056755 �0.000170254 4.018 2.730000004 0.000001038 7.525
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begin with we use the first-order-accurate one-sided approximations given by Eq. (2). The interface condition
in finite-difference approximation becomes
Table
Solutio
error t

N

x = 0.2
8

16
32
64

128
256

x = 0.7
8

16
32
64

128
256

x = 1.2
8

16
32
64

128
256

x = 1.7
8

16
32
64

128
256
/N ;j � /N�1;j

h
¼ r

/Nþ1;j � /N ;j

h
: ð9Þ
The system of equations given by Eqs. (8) and (9) are solved numerically. The solutions at x = 0.25, 0.75, 1.25
and 1.75 and y = 0.375 for different number of grid points are shown in Table 1, where /N represents the solu-
tion obtained using N grid intervals along each coordinate axis on each unit square. We observe that at
x = 0.25 and y = 0.375 for small number of grid points it almost appears that we have second-order accuracy
but as we increase the number of grid points the order of accuracy is seen to decrease. Near the interface
x = 0.75 and 1.25, y = 0.375 we observe close to first-order accuracy. Further at x = 1.75, y = 0.375 we ob-
serve that the accuracy is even worse but, with increase in number of grid points, appears to tend to first order.
This probably occurs because the solution in the square on the right is driven by the source term in the square
on the left through the interface condition. So an inaccurate modelling of the interface condition leads to inac-
curate solution in the entire square on the right, though why the order of accuracy at x = 1.75 seems worse
than at x = 1.25 is not clear. Thus we find that although the approximations for the internal grid points is
second-order-accurate, since we use a first-order-accurate approximation for the condition at the interface
the solution is only first-order-accurate.

We repeat the calculation using second-order-accurate one-sided approximations given by Eq. (3) for the
condition at the interface. The results are shown in Table 2 and we clearly see second-order accuracy. We next
carry out Richardson extrapolation to eliminate the h2 term in the error. The extrapolated values are shown in
3
n of the test problem using at the interface a second-order-accurate one-sided finite-difference approximation with the third-order

erm eliminated

/N /N,N/2 /N,N/2 � /N/2,N/4
/N=2;N=4�/N=4;N=8

/N ;N=2�/N=2;N=4

5, y = 0.375
56.554744860 – – –
57.021465119 57.177038539 – –
57.140103470 57.179649587 0.002611048 –
57.169887237 57.179815159 0.000165572 15.770
57.177340963 57.179825538 0.000010379 15.953
57.179204877 57.179826182 0.000000644 16.116

5, y = 0.375
70.216290624 – – –
70.669948778 70.821168163 – –
70.784727144 70.822986599 0.001818436 –
70.813515737 70.823111935 0.000125336 14.508
70.820719000 70.823120088 0.000008153 15.373
70.822520201 70.823120601 0.000000513 15.893

5, y = 0.375
16.447908271 – – –
16.392857448 16.374507174 – –
16.378233431 16.373358759 �0.001148415 –
16.374532025 16.373298223 �0.000060536 18.971
16.373604094 16.373294784 �0.000003439 17.603
16.373371956 16.373294577 �0.000000207 16.614

5, y = 0.375
2.786362507 – – –
2.744373789 2.730377550 – –
2.733609758 2.730021748 �0.000355802 –
2.730903526 2.730001449 �0.000020299 17.528
2.730226059 2.730000237 �0.000001212 16.748
2.730056636 2.730000162 �0.000000075 16.160



Table 4
Solution of the test problem using a fourth-order-accurate one-sided finite-difference approximation at the interface

N /N /N,N/2 /N,N/2 � /N/2,N/4
/N=2;N=4�/N=4;N=8

/N ;N=2�/N=2;N=4

x = 0.25, y = 0.375
8 56.555836789 – – –

16 57.021497060 57.176717150 – –
32 57.140104452 57.179640249 0.002923099 –
64 57.169887268 57.179814873 0.000174624 16.739

128 57.177340964 57.179825529 0.000010656 16.387
256 57.179204877 57.179826181 0.000000652 16.344

x = 0.75, y = 0.375
8 70.222733447 – – –

16 70.670139896 70.819275379 – –
32 70.784733036 70.822930749 0.003655370 –
64 70.813515920 70.823110215 0.000179466 20.368

128 70.820719004 70.823120032 0.000009817 18.281
256 70.822520198 70.823120596 0.000000564 17.406

x = 1.25, y = 0.375
8 16.454351095 – – –

16 16.393048566 16.372614390 – –
32 16.378239323 16.373302909 0.000688519 –
64 16.374532209 16.373296504 �0.000006405 �107.497

128 16.373604099 16.373294729 �0.000001775 3.608
256 16.373371955 16.373294574 �0.000000155 11.452

x = 1.75, y = 0.375
8 2.787454436 – – –

16 2.744405730 2.730056161 – –
32 2.733610740 2.730012410 �0.000043751 –
64 2.730903557 2.730001163 �0.000011247 3.890

128 2.730226060 2.730000228 �0.000000935 12.029
256 2.730056636 2.730000161 �0.000000067 13.955
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the table as /N,N/2. Here /N,N/2 denotes the value obtained by the extrapolation using /N and /N/2. The ratio
of the differences appear close to 8 indicating third-order accuracy. If the interface condition were not present
we should have got fourth-order accuracy after one extrapolation.

In order to obtain fourth-order accuracy after one extrapolation we use one-sided finite-difference approx-
imations given by Eq. (4). The results are shown in Table 3. We observe that after one extrapolation we clearly
obtain fourth-order accuracy. Next we use the approximations given by Eq. (5) and the results are shown in
Table 4. Again after one extrapolation we obtain fourth-order accuracy. Comparing Tables 3 and 4 we find
that although the local truncation error is smaller for the approximations in Eq. (4) the accuracy of the solu-
tion for the test problem is similar to that obtained using Eq. (5). However, Eq. (4) still has the advantage that
it is easier to derive.

Next we use the approximation given by Eq. (6) and the results are shown in Table 5. Here /N,N/2,N/4 is the
value obtained by using Richardson extrapolation to eliminate the order h4 error term between /N,N/2 and
/N/2,N/4. After two extrapolations the differences are very small and consequently, it is difficult to show that
we obtain sixth-order accuracy. However, we do observe that agreement to 9 significant figures is obtained
with reasonable number of grid points. Alternatively if we were to use sixth-order-accurate one-sided finite
difference approximations the algebra involved in deriving the expressions would be extremely tedious. Thus
the advantage of Eq. (6) is that, when used together with Richardson extrapolation, it provides high accuracy
without requiring very tedious algebra.

So far the calculations have been carried out for r = 2. We now check whether the one-sided approxima-
tions work well for larger values of r. The results for the test problem with r = 10 computed using Eq. (4) are
shown in Table 6. Again we find that this provides fourth-order accuracy after one Richardson extrapolation,
as expected. The magnitude of the errors are also comparable with those for r = 2.



Table 5
Solution of the test problem using at the interface a second-order-accurate one-sided finite-difference approximation with the third- and
fifth-order error terms eliminated

N /N /N,N/2 /N,N/2,N/4

x = 0.25, y = 0.375
8 56.554967006 – –

16 57.021471538 57.176973049 –
32 57.140103667 57.179647710 57.179826021
64 57.169887243 57.179815102 57.179826261

128 57.177340963 57.179825536 57.179826232
256 57.179204877 57.179826182 57.179826225

x = 0.75, y = 0.375
8 70.217600995 – –

16 70.669987186 70.820782583 –
32 70.784728324 70.822975370 70.823121556
64 70.813515774 70.823111591 70.823120672

128 70.820719001 70.823120077 70.823120643
256 70.822520200 70.823120600 70.823120635

x = 1.25, y = 0.375
8 16.449218642 – –

16 16.392895856 16.374121594 –
32 16.378234611 16.373347529 16.373295925
64 16.374532062 16.373297879 16.373294569

128 16.373604095 16.373294773 16.373294566
256 16.373371956 16.373294576 16.373294563

x = 1.75, y = 0.375
8 2.786584653 – –

16 2.744380208 2.730312060 –
32 2.733609955 2.730019871 2.730000392
64 2.730903532 2.730001391 2.730000159

128 2.730226059 2.730000235 2.730000158
256 2.730056636 2.730000162 2.730000157

Table 6
Solution of the test problem using at the interface a second-order-accurate one-sided finite-difference approximation with the third-order
error term eliminated and with r = 10

N /N /N,N/2 /N,N/2 � /N/2,N/4
/N=2;N=4�/N=4;N=8

/N ;N=2�/N=2;N=4

x = 0.25, y = 0.375
8 54.528299401 – – –

16 55.025556909 55.191309412 – –
32 55.152023647 55.194179226 0.002869814 –
64 55.183775584 55.194359563 0.000180337 15.914

128 55.191722015 55.194370825 0.000011262 16.013
256 55.193709150 55.194371528 0.000000703 16.020

x = 0.75, y = 0.375
8 58.254175518 – – –

16 58.747870635 58.912435674 – –
32 58.873284649 58.915089320 0.002653646 –
64 58.904765175 58.915258684 0.000169364 15.668

128 58.912643299 58.915269340 0.000010656 15.894
256 58.914613331 58.915270008 0.000000668 15.952

(continued on next page)
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Table 6 (continued)

N /N /N,N/2 /N,N/2 � /N/2,N/4
/N=2;N=4�/N=4;N=8

/N ;N=2�/N=2;N=4

x = 1.25, y = 0.375
8 4.485793165 – – –

16 4.470779304 4.465774684 – –
32 4.466790936 4.465461480 �0.000313204 –
64 4.465781462 4.465444971 �0.000016509 18.972

128 4.465528390 4.465444033 �0.000000938 17.600
256 4.465465080 4.465443977 �0.000000056 16.750
x = 1.75, y = 0.375

8 0.759917048 – – –
16 0.748465579 0.744648423 – –
32 0.745529934 0.744551386 �0.000097037 –
64 0.744791871 0.744545850 �0.000005536 17.528

128 0.744607107 0.744545519 �0.000000331 16.725
256 0.744560901 0.744545499 �0.000000020 16.550
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4. Conclusion

In this study, we have proposed some one-sided finite-difference approximations for use with Richardson
extrapolation. The essential logic is to use extra grid points to eliminate the odd-order terms in the truncation
error but leave the even-order terms to be eliminated by Richardson extrapolation. Using a test problem we
have demonstrated that the computed results have the order of accuracy we would expect. These one-sided
finite-difference approximations, when used together with Richardson extrapolation are shown to have smaller
local truncation error than the conventional higher-order one-sided finite-difference approximations. How-
ever, for the test problem for both approximations the solutions have comparable accuracy. The one-sided
difference approximations proposed in this manuscript involve smaller number of grid points and are easier
to derive than the conventional one-sided approximations which provide same order of accuracy.
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